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1 Introduction

In this paper, we shall investigate relative Riemann-Roch formulas for the
λ-operations acting on Grothendieck groups ”compactified” in the sense of
Arakelov geometry. Let Y be a quasi-projective scheme over Z, which is smooth
over Q. We shall call such a scheme an arithmetic variety. Following [21, II], one
can associate to Y an arithmetic Grothendieck group K̂0(Y ), whose generators
are differential forms and vector bundles on Y equipped with hermitian metrics
on the manifold Y (C) of complex points of Y . The group K̂0(Y ) is related to
the Grothendieck group K0(Y ) of vector bundles of Y via the sequence

K1(Y ) → Ã(Y ) → K̂0(Y ) → K0(Y ) → 0

where K1(Y ) is the first Quillen K-group of Y and Ã(Y ) is a space of differential
forms on Y (C). Recall that the exterior powers of vector bundles λk are well-
defined on K0(Y ) and give rise to a λ-ring structure. It is shown in [21, Th.
7.3.4, p. 235, II] that the exterior powers of hermitian bundles give rise to
well-defined operations λk on K̂0(Y ) as well, such that the morphism K̂0(Y ) →
K0(Y ) is compatible with the operations. In [32] (see also [33]), we prove
that they actually define a λ-ring structure on K̂0(Y ); a different proof can be
found in [30]. To such a structure is canonically associated a family of ring
endomorphisms ψk, called Adams operations (they are universal polynomials in
the λ-operations).
Let now B be another arithmetic variety and g : Y → B a morphism which is
projective, flat and smooth over the rational numbers Q (abbreviated p.f.s.r.).
We suppose that g is also a local complete intersection morphism and that
Y (C) is endowed with some Kähler metric (this is always possible, with the
given assumptions on Y ). Using the higher analytic torsion defined in [12],
one can define a push-forward map g∗ : K̂0(Y ) → K̂0(B); its determinant is
represented in K̂0(B) by the determinant of the cohomology, endowed with the
Quillen metric. The main result of the following paper is to give a Riemann-
Roch theorem for the Adams operations, relatively to the push-forward map.
More precisely, for any y ∈ K̂0(Y )⊗ Z[ 1

k ], we have

ψk(g∗(y)) = g∗(θk
A(Tg

∨
)
−1
.ψk(y)) (1)

where θk
A(Tg

∨
)
−1

is an element of K̂0(Y )⊗Z[ 1
k ], which depends on g only. An

algebraic analog of this equation can be found in [19, Th. 7.6, p. 149] (see also
[29, 16.6, p. 71]). The formula (1) is deduced from another Riemann-Roch theo-
rem, describing the behaviour of Adams operations under immersions. To prove
(1) for the natural projection Pn

Z → SpecZ of a projective space of dimension n
over SpecZ, we combine an induction argument on n with the Riemann-Roch
theorem for immersions, applied to the diagonal immersion Pn

Z → Pn
Z × Pn

Z.
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(1) Via a projection formula and a base change formula, we show that (1) holds
for the projection from any relative projective space to its base. The existence
of this method, which has an algebraic analog, shows that the Riemann-Roch
theorem for local complete intersection p.f.s.r. morphisms can be derived from
the Riemann-Roch theorem for immersions in an almost formal way. See also
the remarks at the end of the section 7. To obtain (1) in general, we show that
the Riemann-Roch theorem for immersions implies that (1) is itself compatible
with immersions. To describe the Riemann-Roch theorem for immersions, let
i : Y → X be a regular immersion into an arithmetic variety X and f : X → B
a p.f.s.r. morphism to B, such that g = f ◦ i. We suppose that X is endowed
with a Kähler metric and that Y carries the induced metric. We endow the
normal bundle N of Y in X with the quotient metric. Let η be a hermitian
bundle on Y and

0 → ξm → ξm−1 → . . .→ ξ0 → i∗η → 0

a resolution of η by vector bundles on X. We suppose that the ξ· and η are
endowed with hermitian metrics. Furthermore, we suppose that these metrics
satisfy Bismut’s assumption (A) (see [10, Def. 1.1, p. 258]) with respect to the
metric of N . The theorem reads

g∗(θk(N
∨
)ψk(η)i∗(x)) =

m∑
i=0

(−1)if∗(ψk(ξi)x)+

∫
Y/B

Td(Tg)ch(i∗(x))ch(ψk(η)θk(N∨))R(N)+
∫

X/B

kTd(Tf)φk(T (hξ·))ch(x)−∫
Y/B

krg(N)ch(i∗(x))ch(ψk(η))φk(Td−1(N))T̃ d(g/f) (2)

Here T (hξ) is a current whose singular support is Y and T̃ d(g/f) is the Bott-
Chern secondary class of the normal sequence associated to i on Y . The class
R is the R-genus of Gillet and Soulé, an additive real cohomological class which
will be described below. For k = 1, this theorem follows immediately from Bis-
mut’s theorem describing the behaviour of analytic torsion under immersions
(see [6]). To prove it in general, we use the deformation to the normal cone
technique of [3]. Since both sides of (2) depend on the Kähler metric of P , we
have to control the Kähler metrics of the fibers of the deformation; the ”good”
metrics on the deformation space appear to satisfy certain normality conditions;
they are constructed via the Grassmannian graph construction.
All these analytical and geometric techniques also appear in the proof of the
arithmetic Riemann-Roch theorem for the first Chern class with values in arith-
metic Chow groups (see [23, 4.2.3]). Furthermore, the following weak connection
between that theorem and the theorem (1) can be established. If X and B are

1In this part of the proof, we were helped by Nicusor Dan.
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regular varieties, the arithmetic Chow groups can be defined and proceeding as
in [23, 4.2.3], using [6] rather than [13] (which was the only formula available
at that time), one can prove a Riemann-Roch theorem for the full Chern char-
acter with values in arithmetic Chow groups (this extension of [23, 4.2.3] is not
yet published). Using this Riemann-Roch theorem and the fact that arithmetic
K0-theory and arithmetic Chow theory are isomorphic modulo torsion (see [21,
7. p. 219, II]), it is possible to derive the formula (1) in a purely formal manner,
provided we consider that both sides are elements of K̂0(Y )⊗Z Q. The formula
(1) shows that denominators can be removed, up to powers of 1

k . In the book
[16], a method of proof of a Riemann-Roch theorem for the full Chern charac-
ter with values in arithmetic Chow groups is outlined, which doesn’t use the
analytical results of Bismut; the result [16, Th. 6.1, p. 77] stated there could
also be used to establish the logical connection mentioned above if one could
identify (perhaps only compare) the definition of the direct image in arithmetic
K0-theory defined there (see [16, Lecture 5]) and the one used here, which makes
use of the torsion forms of Bismut-Köhler.
In the last section of the paper, a Riemann-Roch theorem for a Chern character
with values in a graded ring arising from the λ-structure of arithmetic K0-theory
is deduced from (1). It is formally similar to either of the Riemann-Roch the-
orems for the Chern character mentioned above (see also the end of section 8)
and also implies arithmetic analogs of the Hilbert-Samuel theorem. The main
results of this paper are announced in [34].
Acknowledgments. We want to thank Christophe Soulé for having proposed
this topic of investigation to us and for his constant support, help and advice
during our work; thanks also to Nicusor Dan, with whom I had very fruitful
discussions and to the referees, whose detailed comments helped to improve the
article a great deal.

2 The λ-structure of arithmetic K0-theory

Let X be a scheme of finite type over Z, with smooth generic fiber. We shall
write X(C) for the manifold of complex points associated to X. Complex
conjugation induces an antiholomorphic automorphism F∞ on X(C). We define
Ap,p(X) as the set of differential forms ω of type p, p on X(C), that satisfy the
equation F ∗∞ω = (−1)pω and we write Zp,p(X) ⊆ Ap,p(X) for the kernel of the
operation d = ∂ + ∂. We also define Ã(X) :=

⊕
p≥0(A

p,p(X)/(Im∂ + Im∂))
and Z(X) =

⊕
p≥0 Z

p,p(X). A hermitian bundle E = (E, h) is a vector bundle
E on X, endowed with a hermitian metric h, which is invariant under F∞, on
the holomorphic bundle EC on X(C), which is associated to E. We denote by
ch(E) the representative of the Chern character associated by the formulas of
Chern-Weil to the hermitian holomorphic connection defined by h. Let E : 0 →
E′ → E → E′′ → 0 be an exact sequence of vector bundles on X. We shall
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write E for the sequence E and hermitian metrics on E′C, EC and E′′C (invariant
under F∞). To E are associated three hermitian bundles E

′
, E and E

′′
as well

as a secondary Bott-Chern class c̃h(E) ∈ Ã(X); for the definition, we refer to
[9, Par. f)].

Definition 2.1 The arithmetic Grothendieck group K̂0(X) associated to X is
the group generated by Ã(X) and the isometry classes of hermitian bundles on
X, with the relations

(a) For every exact sequence E as above, we have c̃h(E) = E
′ − E + E

′′

(b) If η ∈ Ã(X) is the sum of two elements η′ and η′′, then η = η′ + η′′ in
K̂0(X).

Notice that there is an exact sequence of groups

Ã(X) → K̂0(X) → K0(X) → 0 (3)

where the second map sends element of Ã(X) on 0 and hermitian vector bundles
on the corresponding vector bundles. Let us consider the group Γ(X) := Z(X)⊕
Ã(X). We equip it with the grading whose term of degree p is Zp,p(X) ⊕
Ãp−1,p−1(X) if p ≥ 1 and Z0,0(X) if p = 0. We define a bilinear map ∗ from
Γ(X)× Γ(X) to Γ(X) via the formula

(ω, η) ∗ (ω′, η′) = (ω ∧ ω′, ω ∧ η′ + η ∧ ω′ + (ddcη) ∧ η′).

Recall that dc = 1
4πi (∂ − ∂). This map endows Γ(X) with the structure of a

commutative graded R-algebra (cf. [21, Lemma 7.3.1, p. 233]). There is thus a
unique λ-ring structure on Γ(X) such that the k-th associated Adams operation
acts by the formula ψk(x) =

∑
i≥0 k

ixi, where xi stands for the component of
degree i of the element x ∈ Γ(X) (see [24, 7.2, p. 361, Appendice]). For the
definition of the term λ-ring (also called special λ-ring), see [24, Def. 2.1, p.
314].

Definition 2.2 If E + η,E
′
+ η′ are two generators of K̂0(X), the product ⊗

is given by the formula

(E + η)⊗ (E
′
+ η′) = E ⊗ E

′
+ [(ch(E), η) ∗ (ch(E

′
), η′)]

where [.] refers to the projection on the second component of Γ(X). If k ≥ 0,
set

λk(E + η) = λk(E) + [λk(ch(E), η)]

where λk(E) is the k-th exterior power of E and λk(ch(E), η) stands for the
image of (ch(E), η) under the k-th λ-operation of Γ(X).
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H. Gillet and C. Soulé have shown in [21, Th. 7.3.4, p. 235] that ⊗ and λk are
compatible with the defing relations of K̂0(X) and that it endows it with the
structure of a pre-λ-ring. In [32], we show that K̂0(X) is actually a λ-ring.

3 The statement

An arithmetic variety will denote a quasi-projective scheme over Z, with
smooth generic fiber. Let g : Y → B be a projective, flat morphism of arithmetic
varieties, which is smooth over the rational numbers Q (abbreviated p.f.s.r.).
Fix a conjugation invariant Kähler metric hY on Y . Let η be an element of
Ã(Y ) and (E, h) a hermitian bundle on Y , acyclic relatively to g. The sheaf of
modules g∗E, which is the direct image of E, is then locally free and we write
g∗h for the smooth metric it inherits from E by integration on the fibers (see
[5, p. 278] or below). We write T (hY , h

E) for the higher analytic torsion of
(E, h) relatively to the Kähler fibration defined by g and hY . We shall recall its
definition in paragraph 5.1. We write TgC for the tangent bundle relative to gC,
endowed with the induced metric and Td(TgC) for the Todd form associated to
the holomorphic hermitian connection of TgC.

Proposition 3.1 There is a unique group morphism g∗ : K̂0(Y ) → K̂0(B) such
that g∗((E, h)+η) = (g∗E, g∗h)−T (hY , h

E)+
∫

Y/B
Td(TgC)η for all (E, h) and

η as above.

The proof of 3.1 will be given below after the Theorem 5.16. Proposition 3.1 and
its proof are similar to [22, Th. 3.2, p. 46] and its proof. See also [16, Lecture 5].
The group morphism of the last Proposition will be called the push-forward
map associated to g and hY . To state the Riemann-Roch theorem, we need to
define a characteristic class. The following definition is taken from [22, 1.2.3, p.
25].

Definition 3.2 The R genus is the unique additive characteristic class defined
for a line bundle L by the formula

R(L) =
∑

m odd,≥1

(2ζ ′(−m) + ζ(−m)(1 +
1
2

+ . . .+
1
m

))c1(L)m/m!

where ζ(s) is the Riemann zeta function.

For any λ-ring A, denote by Afin its subset of elements of finite λ-dimension
(an element a is of finite λ-dimension if λk(a) = 0 for all k >> 0). For each
k ≥ 1, the Bott cannibalistic class θk (see [2, Prop. 7.2, p. 268]) is uniquely
determined by the following properties:
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(a) For every λ-ring A, θk maps Afin into Afin and the equation θk(a + b) =
θk(a)θk(b) holds for all a, b ∈ Afin;

(b) The map θk is functorial with respect to λ-ring morphisms;

(c) If e is an element of λ-dimension 1, then θk(e) =
∑k−1

i=0 e
i.

If H = ⊕∞i=0Hi is a graded commutative group, we define φk(h) =
∑∞

i=0 k
ihi,

where hi is the component of degree i of h ∈ H. If H is also a commutative
graded ring, the φk coincide with the Adams operations canonically associated
to H. Let now H = Ã(Y ) be endowed with the grading giving degree p to differ-
ential forms of type p, p. If ω ∈ Ã(Y ), then one computes that ψk(ω) = k.φk(ω),
where on the left side ω is viewed as an element of Γ(Y ) (endowed with the λ-
structure described in section 2) and on the right side ω is viewed as an element
of the graded group Ã(Y ). Thus we shall often write k.φk for ψk in that case.
Consider now the form k−rg(E)Td−1(E)φk(Td(E)), where E is a hermitian bun-
dle and Td(E) is viewed as an element of the group Z(X) endowed with its
natural grading. This form is by construction a universal polynomial in the
Chern forms ci(E) and we shall denote the associated symmetric polynomial
in r = rg(E) variables by CT k. One can compute from the definitions that
CT k = kr

∏r
i=1

eTi−1
TieTi

k.Tie
k.Ti

ek.Ti−1
where T1, . . . Tr are the variables.

Definition 3.3 Let E : 0 → E′ → E → E′′ → 0 be an exact sequence of her-
mitian holomorphic bundles on a complex manifold. The Bott-Chern secondary
class associated to E and to CT k will be denoted by θ̃k(E).

Let g : Y → B be a local complete intersection p.f.s.r. morphism of arithmetic
varieties. Suppose that Y is endowed with a Kähler metric. Let i : Y → X
be a regular closed immersion into an arithmetic variety X and f : X → B
a smooth map, such that g = f ◦ i. Endow X with a Kähler metric and
the normal bundle NY/X with some hermitian metric. Let NC be the sequence
0 → TgC → TfC → NX(C)/Y (C) → 0, endowed with the the induced metrics on
TgC and TfC. In the next definition, the notation Z[ 1

k ] refers to the localization
of Z at the multiplicative subset generated by the integer k.

Definition 3.4 The arithmetic Bott class θk(Tg
∨
)−1 (or θk(T

∨
Y/B)−1) of g is

the element θk(N
∨
Y/X)θ̃k(NC) + θk(N

∨
Y/X)θk(i∗Tf

∨
)−1 in K̂0(Y )⊗Z Z[ 1

k ].

We shall prove later (see after 4.5) that the Bott class θk of every hermitian
bundle has an inverse in K̂0(Y ) ⊗Z Z[ 1

k ], so that the above definition is mean-
ingful.

Lemma 3.5 The arithmetic Bott class of g doesn’t depend on i nor on the
metrics on X and N .
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We shall prove this after 7.3. We shall also show later (see 7.2) that when g is
smooth, the arithmetic Bott class of g is simply the inverse of the Bott element
of the dual of the relative tangent bundle Tg, endowed with the induced metric
(as the notation suggests).
Let A be a λ-ring and let λt(x) : A → 1 + t.A[[t]] be defined as λt(x) =
1 +

∑∞
k=1 λ

k(x)tk, where 1 + t.A[[t]] is the multiplicative subgroup of the ring
of formal power series A[[t]] consisting of power series with constant coefficient
1. We recall the relationship between the Adams operations ψk and the λ-
operations (cf. [24, V, Appendice]): define a formal power series ψt by the
formula

ψt(x) :=
t.dλ−t(x)/dt
λ−t(x)

.

The Adams operations are then given by the identity ψt(x) =:
∑

k≥1 ψ
k(x)tk.

The Adams operations are ring endomorphisms of A and satisfy the identi-
ties ψk ◦ ψl = ψkl (k, l ≥ 1). We are now ready for the statement of the
Riemann-Roch theorem for Adams operations and local complete intersection
p.f.s.r. morphisms:

Theorem 3.6 Let g : Y → B be a p.f.s.r. local complete intersection morphism
of arithmetic varieties. For each k ≥ 0, let θk

A(Tg
∨
)
−1

= θk(Tg
∨
)−1.(1 +

R(TgC)− k.φk(R(TgC))). Then for the map g∗ : K̂0(Y )⊗Z Z[ 1
k ] → K̂0(B)⊗Z

Z[ 1
k ], the equality

ψk(g∗(y)) = g∗(θk
A(Tg

∨
)
−1
.ψk(y))

holds in K̂0(B)⊗Z Z[ 1
k ] for all k ≥ 1 and y ∈ K̂0(Y )⊗Z Z[ 1

k ].

The sections 4 to 7 will be devoted to a proof of this statement.

4 The γ-filtration of arithmetic K0-theory

In this subsection, we shall prove that on any arithmetic variety, the ring K̂0(Y )
has a locally nilpotent γ-filtration. For the definition of these terms, see [24, V,
3.10, p. 331] or below.
Let R be any λ-ring endowed with an augmentation homomorphism rk : R→ Z.
The γ operations are defined by the formula

γt(x) =
∑
i≥0

γi(x)ti := λ t
1−t

(x).

By construction, the γ-operations also define a pre-λ-ring structure, i.e. the
equalities γt(x + y) = γt(x).γt(y), γ0 = 1 and γ1 = Id are satisfied. We use
them to construct the γ-filtration FnR (n ∈ Z) of R. Define FnR = R for n ≤ 0
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and F 1R := ker rk. Further, define FnR to be the additive subgroup generated
by the elements γr1(x1) . . . γrk(xk), where x1 . . . xk ∈ F 1R,

∑k
i=1 ri ≥ n. By

construction, F 1R ⊇ F 2R ⊇ F 3R ⊇ . . . and it is easily checked that the FnR
are ideals that form a ring filtration. The γ-filtration of R is said to be locally
nilpotent, if for each y ∈ F 1R, there is a natural number n(y), depending on
y, such that γr1(y)γr2(y) . . . γrd(y) = 0, if r1 + . . .+ rd > n(y). If this condition
is fulfilled for a particular y ∈ R, we shall say that the γ-filtration is nilpotent
at y. Until the end of the text, we shall use the the notation GQ = G ⊗Z Q,
for any commutative ring G.

Proposition 4.1 Let A = ⊕d
i=0Ai be a graded ring with finite grading, such

that A0 = Z. Endow it with the λ-structure associated to the grading and with
the augmentation arising from the projection on A0. Then the filtration induced
on AQ by the γ-filtration of A coincides with the filtration arising from the
grading of AQ.

Proof: See [24, Cor. 6.6.7., p. 352] Q.E.D.

Proposition 4.2 Suppose that R is an augmented, locally γ-nilpotent λ-ring.
Then, for every λ-finite element e ∈ R, the Bott element θk(e) is invertible in
R⊗Z Z[ 1

k ].

Proof: Suppose first that e = u1 + . . . ur, where the ui are line elements (i.e.
of λ-dimension 1). We can write

θk(e) =
r∏

i=1

k−1∑
j=0

uj
i =

r∏
i=1

k−1∑
j=0

(1 + (ui − 1))j .

The last expression is a symmetric polynomial in the uj − 1 with constant
coefficient jr. The k-th symmetric function of the uj−1 is by definition γk((u1+
. . . ur)−r) = γk(e−r). Thus θk(e) = jr +P (γ1(e−r), . . . γm(k,r)(e−r)), where
P is a polynomial with m(k, r) variables, with vanishing constant coefficient,
for some m(k, r) ≥ 1.
Returning to the case where e is any λ-finite element, consider that by [2, p.
266], there exists a λ-ring R′ containing R, in which e is a sum of line elements.
This implies that the formula θk(e) = jr +P (γ1(e− r), . . . γm(k,r)(e− r)) holds
for any λ-finite element e. Now consider the element

j−r
∞∑

l=0

( −j−rP (γ1(e− r), . . . γm(k,r)(e− r)) )l

in R⊗ZZ[ 1
k ], which is the geometric series applied to the element −j−rP (γ1(e−

r), . . . γm(k,r)(e−r)). The sum on l is finite, since P (γ1(e−r), . . . γm(k,r)(e−r)) ∈
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F 1R and R is locally nilpotent. By construction, it yields an inverse of θk(e).
Q.E.D.

If g = e − e′ where e, e′ are λ-finite elements in R, then the element θk(g) can
be defined by the formula θk(e)θk(e′)−1 in R ⊗ Z[ 1

k ]. It is independent of the
choice of e and e′.
We define an augmentation on rk : K̂0(Y ) → Z by the formula rk(E + η) =
rank(E), for all hermitian bundles E and differential forms η ∈ Ã(Y ). To prove
the statement mentioned at the beginning of the section, we first consider a
particular case. LetGi,j be the Grassmannian representing the functor assigning
to each Z-scheme T the set of locally free quotients of Oi+j

T of rank j (see [15,
Th. I.9.7.4]). It is a model over Z of the usual complex Grassmannian. Denote
its universal bundle by Qi,j . We endow Qi,j with the standard quotient metric.

Lemma 4.3 Let i = q.j, for some positive integer q. The ring K̂0(Gi,j) is
locally γ-nilpotent at Qi,j − j.

Proof: Let q be the element Qi,j−j of K̂0(Gi,j). Let m and r1, . . . rd be natural
numbers such that r1 + . . .+ rd > m. Let m be greater than dim(Gi,j). Notice
the following facts:
(a) γr1(q)γr2(q) . . . γrd(q) ∈ Ã(Gi,j).
This follows from the fact that the forgetful map K̂0(Gi,j) → K0(Gi,j) is a map
of augmented λ-rings and from the fact that the γ-filtration of K0(Gi,j) vanishes
in degree greater than dim(Gi,j) (see [24, Th. 6.9, p. 413]).
(b) ch(γr1(q)γr2(q) . . . γrd(q)) = 0.
From [21, Lemma 7.3.3, p. 235] we can deduce that

ch(γr1(q)γr2(q) . . . γrd(q)) = γr1(ch(q))γr2(ch(q)) . . . γrd(ch(q))).

Thus we can deduce (b) from 4.1 and the fact that Z(Gi,j) vanishes in degrees
greater than dim(Gi,j)− 1.
Therefore γr1(q)γr2(q) . . . γrd(q) lies in the image in K̂0(Gi,j) of the even de
Rahm cohomology H(Gi,j(C)), which consists of the kernel of the operator
ddc acting on Ã(Gi,j). Now consider that there is a morphism of schemes
µ : G⊕j

q,1 → Gi,j , such that µ∗Qi,j is isometrically isomorphic to an orthogonal
sum of line bundles L1 ⊕ L2 ⊕ . . . Lj (see [35, 4.2, p. 84]). Moreover the map
µ induces an injection on cohomology µ∗ : H(Gi,j(C)) → H(G⊕j

q,1(C)) (see [21,
Lemma 3.1.5, p. 182]). It follows from the definitions that for a line bundle Li,
we have γn(Li − 1) = 0 for n > 1 and thus K̂0(G

⊕j
q,1) is locally γ- nilpotent at

Li − 1. Now we can compute

µ∗(γr1(q)γr2(q) . . . γrd(q)) =

γr1(L1 + . . .+ Lj − j) . . . γrd(L1 + . . .+ Lj − j) =
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γr1((L1− 1) + (L2− 1) + . . . (Lj − 1)) . . . γrd((L1− 1) + (L2− 1) + . . . (Lj − 1)).

By the preceding remark and 4.4, the last expression vanishes for m >> 0.
Therefore γr1(q)γr2(q) . . . γrd(q) vanishes also for such m, since it lies in the
even de Rahm cohomology and µ∗ is injective there. This completes the proof.
Q.E.D.

For the next Proposition, we shall need the

Lemma 4.4 Let y1, . . . yr be elements of an augmented λ-ring R. Suppose that
R is locally γ-nilpotent at each of the y1, . . . yd. Then it is locally γ-nilpotent at
the sum y1 + . . .+ yd.

Proof: Since we can apply induction on d, we can assume without loss of
generality that d = 2. Let m and r1, . . . + rd be natural numbers such that
r1 + . . .+ rd > m. Using the fact that γt is a homomorphism, we can compute

γr1(y1 + y2)γr2(y1 + y2) . . . γrd(y1 + y2) =
d∏

i=1

(
ri∑

j=0

γj(y1)γri−j(y2)).

The last expression is a sum of terms of the form

γr′1(y1)γr′2(y1) . . . γr′l(y1)γr′l+1(y2) . . . γr′d(y2)

where 1 ≤ l ≤ d and r′1+. . .+r′d > m. Now choose m such that m > 2.n(y1) and
m > 2.n(y2). Then either γr′1(y1)γr′2(y1) . . . γr′l(y1) = 0 or γr′l+1(y2) . . . γr′d(y2) =
0, since either r′1 + . . . + r′l > m/2 or r′l+1 + . . . + r′d′ > m/2. This shows that
we can choose n(y1 + y2) = m and ends the proof. Q.E.D.

Notice that if any morphism g : Y → B of arithmetic varieties is given, there is
a natural pull-back map g∗ : K̂0(B) → K̂0(Y ), given by the formula g∗((E, h)+
η) := (g∗E, g∗h) + g∗η. The pull-back map is a ring morphism, which preserves
the λ-operations.

Proposition 4.5 Let Y be any arithmetic variety. The γ-filtration of K̂0(Y )
is locally nilpotent.

Proof: In K̂0(Y ), for all y ∈ F 1K̂0(Y ), we have y = κ+E−F , where κ ∈ Ã(Y )
is a differential form and E, F are hermitian vector bundles of same rank. Notice
the following:

Lemma 4.6 The Grothendieck group of vector bundles K0(Y ) of Y is gener-
ated as a group by globally generated vector bundles.

Proof of 4.6: since Y is quasi-projective, there is an immersion Y → Pr
Z.

Recall that there is an isomorphism Z[T ]/((1 − T )r+1) ' K0(Pr
Z) given by

11



T 7→ O(1). This implies that if E is any vector bundle on Y , we can write
E = E(1 − (1 − O(1))r+1)k, for any k ≥ 1. But E(1 − (1 − O(1))r+1)k is a
linear combination of elements E(i), for i ≥ k. If we let k be sufficiently big, all
the E(i) will thus be globally generated (see [25, Th. 8.8, p. 252, III]), which
finishes the proof. Q.E.D.

To prove Proposition 4.5, consider that in view of the preceding lemma, we can
assume that E and F are globally generated. We can also assume that E and F
are endowed with some metrics of our choice, since a modification of the metrics
is equivalent to the addition of an element of Ã(Y ), by the definition of K̂0(Y ).
By definition, there are natural numbers N and M and morphisms fE : Y →
GN,rg(E) and fF : Y → GM,rg(F ) such that the isomorphisms f∗E(QN,rg(E)) ' E
and f∗F (QM,rg(F )) ' F hold. Clearly, we may assume that N is a multiple
of rg(E) and M a multiple of rg(F ). Endow the universal bundles QN,rg(E)

and QM,rg(F ) with their canonical quotient metrics. Endow E and F with the
metrics arising from the isomorphisms. By the last Proposition, K̂0(Y ) is locally
γ-nilpotent at f∗E(QN,rg(E)−rg(E)) = E−rg(E) and at f∗F (QM,rg(F )−rg(F )) =
F − rg(F ). By 4.1, it is also locally γ-nilpotent at κ. By 4.4, it is thus locally
nilpotent at (E − rg(E))− (F − rg(F )) + κ = κ+E − F , which completes the
proof. Q.E.D.

Notice that in view of 4.2, the Bott element of every hermitian bundle on Y is
invertible in K̂0(Y )⊗Z Z[ 1

k ].
Open questions. Is the group K̂0(Y ) generated by λ-finite elements ? Does
the γ-filtration F iK̂0(Y ) actually vanish for i > dim(Y ) ?

5 Analytical preliminaries

5.1 The higher analytic torsion

In this subsection, we shall recall the definition of the higher analytic torsion,
as it is needed to define the push-forward map of arithmetic K0-theory. The
higher analytic torsion can be viewed as a sort of relative version of the Bott-
Chern secondary classes and was defined in [12, Def. 3.8, p. 668]. In [22,
Th. 3.1, p. 41] and [16, Lecture 5], one finds different attempts to define an
object with properties similar to the object defined in [12, Def. 3.8, p. 668]. A
good reference for the background material needed for this section is [5]. Let
f : M → S be a proper smooth holomorphic map of complex manifolds. Denote
by JTf the almost complex structure on the real tangent bundle underlying
the relative complex tangent bundle Tf . Suppose that Tf is endowed with
some hermitian metric h. Let THM be a (differentiable) complex subbundle
of TM , such that there is a direct sum decomposition TM = THM ⊕ Tf . In
the following, we shall identify real differential forms with complex conjugation
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invariant differential forms. The following definition is taken from [12, Def. 1.1,
p. 650].

Definition 5.1 The map f together with the bundle THM and the hermitian
metric h define a Kähler fibration if there is a real closed (1, 1) form ω on M
such that THM and Tf are orthogonal with respect to ω and such that the
equation ω(X,Y ) = h(X, JTfY ) holds for all X,Y ∈ Tfm and all m ∈M .

We shall suppose that the triple f, THM,h form a Kähler fibration and fix an
associated differential form ω with the above properties. It is shown in [9, II,1.]
that for a given Kähler fibration, the form ω is unique up to addition of a form
f∗η, where η is a real closed (1, 1)-form on S. Moreover, for given f , a Kähler
metric on M defines a Kähler fibration, if we choose THM to be the orthogonal
complement of Tf in TM , ω to be the Kähler form associated to the metric
and h to be the metric obtained by restriction.
We shall from now on use the subscript R to denote the underlying real bundle
of a complex bundle (e.g. TH

RM etc.). The subscript C will denote the com-
plexification of the underlying real bundle of a complex bundle (e.g. TH

C M =
TH
RM ⊗R C etc.). Fix a Riemannian metric on TRS. Let ∇TRS be the Levi-

Civita connection on S, which is the unique metric torsion free connection on
TRS. Let ∇TRf be the real connection induced on TRf by the canonical holo-
morphic hermitian connection on Tf . The natural identification of C∞ bundles
f∗TRS ' TH

RM yields a connection ∇T H
R M on TH

RM . Via the direct sum de-
composition TM = THM ⊕ Tf , we thus get a connection on TRM . Denote its
torsion by T ; this is a (real) 2-form with values in TRM . It is shown in [9, II]
that its values are in TRf ⊆ TRM and that T doesn’t depend on the metric
chosen on TRS. The torsion T measures the extent to which the horizontal
bundle is not integrable.
The bundle TCf carries a natural hermitian metric and thus yields a bundle of
Clifford algebras C(TCf) (for the definition of a Clifford algebra, see (see [28,
Th. 8.1, p. 512]).
Now let ξ be a holomorphic bundle on M . Denote by T (0,1)f the differen-
tiable bundle of −i eigenspaces of the endomorphism JTf ⊗R C of TCf and let
T ∗(0,1)f its complex dual. Let T (1,0) be the differentiable bundle of i eigenspaces
of JTf ⊗R C. Denote by Λ(T ∗(0,1)f) the associated bundle of exterior algebras.
There is a fibrewise C(TCf)-module structure on the bundle Λ(T ∗(0,1)f) ⊗ ξ.
By the universal property of Clifford algebras, to define the module structure, it
is sufficient to describe the action of elements W ∈ TCfm on (Λ(T ∗(0,1)f)⊗ ξ)m

(m ∈ M). Let W = U + V , where U ∈ T (1,0)fm and V ∈ T (0,1)fm. Let U ′

be element of T ∗(0,1)fm defined by the formula U ′(Y ) = h(U, Y ) (where we
view h as extended to TCf). We define the complex endomorphism c(W ) by
the formula c(W )(.) =

√
2U ′ ∧ (.)−

√
2ι(.), where ι is the contraction operator

(see [5, Def. 1.6., p. 18]). In the following ⊗̂ refers to the Z2-graded tensor
product. Recall that every Z-graded vector space carries a natural Z2-grading.
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The following definition is taken from [12, Def. 1.6, p. 653].

Definition 5.2 For each point p ∈ S, let f1, . . . f2n be a basis of TRSp ⊆ TCSp

and f1, . . . f2n be its dual basis in T ∗RSp. The element

c(T ) ∈ (f∗Λ(T ∗CS)⊗̂(End(Λ(T ∗(0,1)f)⊗ ξ)))odd

is defined by the formula

c(T ) =
1
2

∑
1≤α≤2n
1≤β≤2n

fα ∧ fβ⊗̂c(T (fH
α , f

H
β ))

The upperscript (.)H refers to the horizontal lift, obtained via the natural iso-
morphism f∗TRS ' TH

RM . It can be shown that the definition 5.2 doesn’t
depend on the choice of the basis. Notice now that the bundle Λ(T ∗(0,1)f)
carries a natural connection, induced by the holomorphic hermitian connection
on Tf . Suppose that ξ is equipped with a hermitian metric hξ. The bundle
Λ(T ∗(0,1)f) ⊗ ξ is then also endowed with a natural connection, which is the
tensor product of the connection on Λ(T ∗(0,1)f) with the hermitian holomor-
phic connection on ξ. Both of these connections are by construction hermitian.
We now let E be the infinite dimensional bundle on S whose fiber at each point
p ∈ S consists of the C∞ sections of (Λ(T ∗(0,1)f)) ⊗ ξ|f−1p. The following
definition is taken from [12, (b), p. 651]:

Definition 5.3 Let u > 0. The Bismut (or Levi-Civita) superconnection on E
is the differential operator

Bu = ∇E +
√
u(∂

Z
+ ∂

Z∗
)− 1

2
√

2u
c(T )

on f∗(Λ(T ∗CS))⊗̂(Λ(T ∗(0,1)f)⊗ ξ).

The operator ∇E is the superconnection on E associated to the hermitian con-
nection on Λ(T ∗(0,1)f)⊗ ξ and the horizontal bundle TH

C M ; see [5, Prop. 9.13,
p. 283] for the definition. The operator ∂

Z
is the Dolbeaut operator along

the fibers of f and we let ∂
Z∗

denote its formal adjoint. Both are differential
operators on Λ(T ∗(0,1)f)⊗ ξ.

Definition 5.4 The operator NV is the endomorphism of Λ(T ∗(0,1)f)⊗ξ acting
on Λp(T ∗(0,1)f) ⊗ ξ as multiplication by p. The element ωHH is the section of
f∗(Λ2(T ∗RS)) ⊆ f∗(Λ2(T ∗CS)) defined by the formula ωHH(U, V ) = ω(UH , V H),
where U, V are in some fiber of TCS. For u > 0, let Nu be the section of
f∗(Λ(T ∗CS))⊗̂End(Λ(T ∗(0,1)f)⊗ ξ) defined by the formula Nu := NV + i

uω
HH .
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Following [12, Def. 3.8, p. 668], we now proceed to define the higher analytic
torsion. From now on we make the hypothesis that ξ is f -acyclic, i.e. its non-
zero relative cohomology groups vanish. Let φ be the endomorphism of Λ(T ∗CS)
which acts as multiplication by (2iπ)−q/2 on Λq(T ∗CS) (we fix an arbitrary square
root of i). Do not confuse φ with the operator φk defined before 3.3! Notice that
since Bu is a superconnection, its square B2

u is a family of differential operators
acting on the fibers of f , with differential form coefficients. Furthermore, the
restriction of B2

u to each fiber of f is the sum of a nilpotent operator and a
generalized Laplacian on E; we can thus associate to B2

u a (smooth) family of
kernels (see [5, Th. 9.51, p. 315]), which is written exp(−B2

u). The family
exp(−B2

u) can be viewed as a section of f∗(Λ(T ∗CS))⊗̂End(Λ(T ∗(0,1)f) ⊗ ξ).
The bundle f∗ξ can be endowed with a metric built from the metric of ξ and
the form ω associated to the fibration. By definition, elements U, V ∈ f∗ξ|p of a
fiber of f∗ξ at a point p ∈ S correspond to holomorphic sections of ξ|f−1p. Let
d = dim(M)− dim(S); we define a pairing < ., . > on f∗ξ|p by the formula

< U, V >:=
1

(2π)d

∫
f−1p

hξ(U, V )ωd/d!.

This pairing defines a hermitian metric on f∗ξ, which shall be denoted by the
symbol f∗hξ (see also [12, p. 666]). For each section l of f∗(Λ(T ∗CS))⊗̂End(Λ(T ∗(0,1)f)⊗
ξ), we can form the pointwise supertrace Trs(l) ∈ f∗(Λ(T ∗CS)); if we take the
mean of Trs(l) over the fibers of f∗(Λ(T ∗CS)), with the volume form ωd/d!, we
obtain an element of Λ(T ∗CS), which we also call Trs(l) (see [5, p. 285]). The
symbol −(∇f∗ξ)2 will refer to the square of the hermitian holomorphic connec-
tion on f∗ξ endowed with the metric f∗hξ and with the trivial Z2-grading. It
is an element of Λ(T ∗CS)⊗̂End(f∗ξ). In the coming definition, Γ will be Euler’s
Gamma function.

Definition 5.5 For s ∈ C with Re(s) > 1 let

ζ1(s) := − 1
Γ(s)

∫ 1

0

us−1{φ(Trs(Nu.exp(−B2
u))− Trs(NV .exp(−(∇f∗ξ)2)))}du

and similarly for s ∈ C with Re(s) < 1/2 let

ζ2(s) := − 1
Γ(s)

∫ ∞

1

us−1{φ(Trs(Nu.exp(−B2
u))− Trs(NV .exp(−(∇f∗ξ)2)))}du

It it shown in [12, p. 668] that ζ1 extends to a meromorphic function of s,
holomorphic for |Re(s)| < 1/2 and that ζ2(s) is holomorphic for |Re(s)| < 1/2.

Definition 5.6 The higher analytic torsion T (ω, hξ) of ξ is the differential form
∂
∂s (ζ1 + ζ2)(0).
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When the fibration arises from a Kähler metric hM on M , we shall also use the
notation T (hM , hξ) in place of T (ω, hξ). The higher analytic torsion satisfies
the following equality, which establishes the link with the Bott-Chern secondary
classes appearing in the definition of arithmetic K0-theory.

Proposition 5.7 The form T (ω, hξ) is real (conjugation invariant) and a sum
of forms of type (p, p) (p > 0). It satisfies the equation of currents

ddcT (ω, hξ) = ch(f∗ξ, f∗hξ)−
∫

M/S

Td(Tf, hTf )ch(ξ, hξ).

Its component in degree 0 is the Ray-Singer analytic torsion of ξ in each fiber
of M over S.

For the proof, whose essential ingredient is the local index theorem, we refer
to [12, Th. 3.9, p. 669]. Notice that the last Proposition can be viewed as a
”double transgressed” version of the Riemann-Roch theorem with values in real
de Rahm cohomology. The following theorem studies the dependence of T on
ω:

Theorem 5.8 Let ω′ be the form associated to another Kähler fibration for
f : M → S. Let g

′Tf be the metric on Tf in this new fibration. The following
identity holds in Ã(S) = ⊕p≥0(Ap,p(S)/(Im∂ + Im∂)):

T (ω′, h
′ξ)− T (ω, hξ) = −

∫
M/S

T̃ d(Tf, gTf , g
′Tf )ch(ξ, hξ) + c̃h(gω

∗ h
E , gω′

∗ h
E).

Here T̃ d(Tf, gTf , g
′Tf ) refers to the Todd secondary class of the sequence

0 → Tf → Tf → 0 → 0,

where the second term is endowed with the metric gTf and the third term with
the metric g

′Tf . The term c̃h(gω
∗ h

ξ, gω′

∗ h
ξ) is the Chern secondary class of the

sequence
0 → g∗ξ → g∗ξ → 0 → 0,

where the second term carries the metric obtain by integration along the fibers
with the volume form coming from ω′ and the third one the metric obtain by
integration along the fibers with the volume form coming from ω. For the proof,
we refer to [12, Th. 3.10, p. 670].

5.2 The singular Bott-Chern current

The singular Bott-Chern current is a generalisation of the usual Bott-Chern form
to sequences involving coherent sheaves supported on regular closed subvarieties.
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In the sequel, let M ′ i→M be an embedding of complex manifolds, with normal
bundle N . Recall that the space of currents Dp,q(M) is the topological dual of
the space of differential forms An−p,n−q(M) (n = dim(M)) equipped with the
Schwartz topology. Furthermore, to each current γ on M , one may associate a
closed conical subset WF (γ) of T ∗RM , called the wave front set of γ; if two
currents have disjoint wave front sets, their exterior products can be defined.
See [27] for more details.

Definition 5.9 The set PM
M ′ is the vector space of real currents ω on M such

that

(a) ω is a sum of currents of type p, p (p ≥ 0);

(b) The wave front set of ω is contained in N∗
R ⊆ T ∗RM .

Definition 5.10 The set PM,0
M ′ is the subset of PM

M ′ consisting of currents of
the form ∂α+ ∂β, where α and β are currents whose wave front set is included
in N∗

R. The sets PM and PM,0 are defined similarly, omtting condition (b).

Let
Ξ : 0 → ξm → ξm−1 → . . .→ ξ0 → i∗η → 0

be a resolution in M by holomorphic vector bundles ξi of the coherent analytic
sheaf i∗η, where η is a vector bundle on M ′. Let F = ⊕m

i=0H
i(Ξ) be the direct

sum of the homology sheaves of Ξ. There is a natural identification of graded
bundles i∗F ' ⊕rk(N)

i=0 Λi(p∗N (N∨)) ⊗ η (see [24, Prop. 2.5, p. 431]). Now fix
hermitian metrics on N and η and hermitian metrics on the ξi. Homology
sheaves carry the quotient metrics and direct sums, duals, exterior powers and
tensor products of bundles carry the orthogonal sum, dual, exterior power and
tensor product metrics; thus we see that both of the just described graded
bundles carry natural metrics.

Definition 5.11 We say that the hermitian metrics on the bundles ξi satisfy
Bismut’s assumption (A) with respect to the metrics on N and η if the isomor-
phism i∗F ' ⊕rk(N)

i=0 Λi(p∗N (N∨))⊗ η also identifies the metrics.

It is proved in [8, Prop. 1.6] that there always exist metrics on the ξi such that
this assumption is satisfied. For more details see [10, p. 259]. Let us suppose
now that the bundles ξi are equipped with hermitian metrics on M and that
the bundle η is equipped with a hermitian metric on M ′, which satisfy Bismut’s
assumption (A) with respect to N . The singular Bott-Chern current of Ξ
is an element T (hξ·) of PM

M ′ satisfying the equation

ddcT (hξ·) = i∗(Td−1(N)ch(η))−
m∑

i=0

(−1)ich(ξi)
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(see [10, Th. 2.5, p. 266]). Here i∗ refers to the pushforward of currents. If i
is the identity, Ξ becomes an exact sequence of bundles on M and the singular
Bott-Chern current a differential form, which coincides with the Bott-Chern
secondary class of Ξ defined in [9, Par. f)].
If f : F → M is a holomorphic map tranversal to M ′, the equation T (hf∗ξ·) =
f∗T (hξ·) holds for the holomorphic resolution f∗ξ· of (f |f−1(M ′))∗η (endowed
with the pull-back metric). Furthermore, the following result holds:

Proposition 5.12 Let

0 0 0 0
↑ ↑ ↑ ↑

0 → ξ0m → ξ0m−1 → . . .→ ξ00 → i∗η
0 → 0

↑ ↑ ↑ ↑
0 → ξ1m → ξ1m−1 → . . .→ ξ10 → i∗η

1 → 0
↑ ↑ ↑ ↑
. . . . . . . . . . . .
↑ ↑ ↑ ↑

0 → ξn
m → ξn

m−1 → . . .→ ξn
0 → i∗η

n → 0
↑ ↑ ↑ ↑
0 0 0 0

be the elements of an exact sequence of complexes resolving an exact sequence of
bundles ηj on M ′, for 0 ≤ j ≤ n. Fix a hermitian metric on the normal bundle
NM/M ′ and suppose that the rows are endowed with metrics satisfying Bismut’s
assumption (A). Then the following formula holds:

n∑
j=0

(−1)jT (hξj
· ) = i∗(Td−1(N)c̃h(η·))− (

m∑
i=0

(−1)ic̃h(ξ
·
i))

in PM
M ′/P

M,0
M ′ .

Proof: See [11, Th. 2.9, p. 279]. Q.E.D.

We shall not recall the definition of T (hξ·) here since we shall only need its
above mentioned properties and since it doesn’t appear in the final result of the
paper; see [10] for the definition.

Proposition 5.13 Let ξ be a hermitian holomorphic vector bundle on M and
let s be a regular section of ξ. Let

0 → Λrank(ξ)(ξ∨) → . . . ξ∨ → OZ(s) → 0

be the Koszul resolution it induces on M , where Z(s) is the zero-scheme of s.
Endow the elements of this resolution with the exterior power metrics, the nor-
mal bundle with the metric induced by ξ and OZ(s) with the trivial metric. Then
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these metrics satisfy Bismut’s assumption (A) and the current Td(ξ)T (hΛ·ξ) is
of type rank(ξ)− 1, rank(ξ)− 1 in PM

M ′/P
M,0
M ′ .

Proof: See [11, Th. 3.17, p. 301]. Q.E.D.

Recall that a section s as above is regular iff it is transverse to the zero section.
The current g = Td(ξ)T (hΛ·ξ) will be called the Green current associated to s.

Proposition 5.14 Suppose that M̃ ′ ĩ→ M and M ′ i→ M are closed analytic
subvarieties meeting transversally. Suppose that the normal bundles Ñ of M̃ ′

and N of M ′ are endowed with hermitian metrics. Let

Ξ : 0 → ξm → ξm−1 → . . . ξ0 → i∗η → 0

be a resolution by hermitian bundles in M of the hermitian bundle η in M ′ and
let

Ξ̃ : 0 → ξ̃′m̃ → ξ̃′m̃−1 → . . . ξ̃′0 → ĩ∗η̃ → 0

be a resolution by hermitian bundles in M of the hermitian bundle η̃ in M̃ ′. Let

Ξ′′ : 0 → ξ′′m+m̃ → ξ′′m+m̃−1 → . . . ξ′′0 → η|M̃ ′ ⊗ η̃|M ′ → 0

be the tensor product resolution Ξ⊗Ξ′, which resolves the bundle η|M̃ ′⊗ η̃|M ′ on
M ′∩M̃ ′. Suppose that the resolutions Ξ and Ξ̃ both satisfy Bismut’s assumption
(A) with respect to the metrics on the normal bundles. Endow the normal bundle
of M ′ ∩ M̃ ′ in M with the metric arising from its canonical identification with
N |M̃ ′ ⊕ Ñ |M ′ . Then the formula

T (hξ′′· ) = {
m∑

i=0

(−1)ich(ξi))T (hξ̃·}+ ĩ∗{Td−1(Ñ)ch(η̃)̃i∗(T (hξ·))}

holds in PM
M ′∪M̃ ′/P

M,0

M ′∪M̃ ′ .

Here the space PM
M ′∪M̃ ′/P

M,0

M ′∪M̃ ′ is defined similarly to the space PM
M ′/P

M,0
M ′ ,

by requiring all the involved currents to have their wave front sets included in
N∗

R + Ñ∗
R. For the proof of 5.14, we refer to [10, Th. 2.7, p. 271].

Corollary 5.15 The singular Bott-Chern current of the resolution

Ξ⊗ α : 0 → ξm ⊗ α→ ξm−1 ⊗ α→ . . . ξ0 ⊗ α→ i∗(η ⊗ α) → 0

where α is a hermitian bundle on M , is equal to ch(α)T (hξ·) in PM
M ′/P

M,0
M ′ .
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5.3 Bismut’s theorem

We shall now state the fundamental theorem of Bismut describing the behaviour
of the relative analytic torsion under immersions (see [6]). Let i : M ′ → M be
closed immersion of complex manifolds and let g : M ′ → S, f : M → S be
smooth proper holomorphic maps such that g = f ◦ i. Let

Ξ : 0 → ξm → . . . ξ0 → i∗η → 0

be a resolution with metrics as at the beginning of 5.2. Suppose that Tf is
endowed with a hermitian metric h and that a horizontal tangent bundle THM
is given, such that h, THM and f define a Kähler fibration. Let ω be a real (1, 1)-
form associated to this fibration. We endow M ′ with the fibration structure,
which is the restriction of the fibration structure on M and with the associated
form ω′ = i∗ω. We shall write T̃ d(g/f) for T̃ d(N ), where N is the sequence

0 → Tg → Tf → N → 0

where N is the normal bundle of the immersion, endowed with the quotient
metric. Recall that T̃ d(N ) is a Bott-Chern secondary class and satisfies the
equation

ddcT̃ d(N ) = Td(Tf)− Td(Tg ⊕N).

We also suppose in this subsection that the ξi are f -acyclic and that η is g-acylic.
Let f∗Ξ denote the sequence

0 → f∗(ξm) → f∗(ξm−1) → . . .→ f∗(ξ0) → g∗η → 0.

It is exact, by the properties of long exact cohomology sequences associated
to the functor f∗. By the semi-continuity of the Euler characteristic, all the
elements of f∗(Ξ) are vector bundles and we can thus endow them with the
metrics f∗hξ and g∗hη obtained by integration on the fibers.

Theorem 5.16 The equality

m∑
i=0

(−1)iT (ω, hξi)− T (ω′, hη) + c̃h(f∗Ξ) =

∫
M ′/S

ch(η)R(N)Td(Tg) +
∫

M/S

T (hξ·)Td(Tg)−
∫

M ′/S

ch(η)T̃ d(g/f)Td−1(N)

holds in Ã(S).

For an announcement of the proof, see [6]; for the proof itself, which is very
long and technical, see [7]. A proof in the case that S is a point, as well as an
overview of the involved techniques is contained in [13].
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Proof of 3.1: Consider the group K̂ac
0 (Y ), whose generators are the g-acyclic

hermitian bundles on Y and the elements of Ã(Y ), with same relations as the
group K̂0(Y ). A theorem of Quillen (see [31, Cor. 3., p. 111]) for the algebraic
analogs of these groups implies that the natural map K̂ac

0 (Y ) → K̂0(Y ) is an
isomorphism. Consider now an exact sequence

E : 0 → E′ → E → E′′ → 0

of g-acyclic bundles on Y , endowed with (conjugation invariant) hermitian met-
rics. Using the just mentioned isomorphism, the definition of g∗ and the defining
relations of K̂0(Y ), we see that to prove our claim, it will be sufficient to prove
that

(g∗E, g∗hE)− T (hY , h
E) +

∫
Y/B

Td(TgC)c̃h(E)− (g∗E′, g∗hE′
)+

T (hY , h
E′

)− (g∗E′′, g∗hE′′
) + T (hY , h

E′′
) = 0 (4)

in K̂0(B). According to 5.16 (applied with the identity as immersion) and the
remarks made before 5.14, the equation

T (hY , h
E′

)− T (hY , h
E) + T (hY , h

E′′
) + c̃h(g∗E) = −

∫
Y/B

Td(TgC)c̃h(E) (5)

holds in Ã(B). By the defining relations of K̂0(Y ), we have

(g∗E, g∗hE) + c̃h(g∗E)− (g∗E′, g∗hE′
)− (g∗E′′, g∗hE′′

) = 0 (6)

in K̂0(B). Combining (5) and (6), we see that (4) holds. This ends the proof.
Q.E.D.

Remarks. (a) The case of 5.16 used in the above proof can be deduced from
5.7 by a simple geometric deformation argument (see [22, Th. 3.2, p. 46] for
such an argument).
(b) On any arithmetic variety, one can define a K0-theory of hermitian coherent
sheaves (see [23, Def. 25, p. 499]); if the variety is regular, it can be proved
to coincide with the K0-theory of hermitian bundles (see [22, Lemma 13, p.
499]). If B is regular, one can use this isomorphism to obtain a push-forward
map even if g is not flat. The argument is similar to the above argument, with
hermitian bundles replaced by hermitian coherent sheaves. We shall stick to
the definition of the push-forward map for the flat case, however, in view of the
relative nature of the notion of flatness of a morphism and because arithmetic
varieties are often assumed to be flat over Z.
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6 An Adams-Riemann-Roch formula for closed
immersions

This section is devoted to the proof of the Adams-Riemann-Roch formula (2)
mentioned in the introduction. The exact statement can be found in 6.22.

6.1 Geometric preliminaries

In this subsection, we shall define the geometric objects that will be needed for
the proof.

6.1.1 The deformation to the normal cone

The strategy of proof of the Adams-Riemann-Roch theorem for closed immer-
sions consists in studying the behaviour of the Adams operations along the fibres
of a deformation parameterized by P1

Z. Let Y i→ X be a regular closed immer-
sion of schemes over a Dedekind domain D. Let N denote the normal bundle
of i. Since we want to consider the arithmetic as well as the complex case, let
D be Z or C in this subsection. In the sequel, the notation P(E), where E is
a vector bundle on any scheme, will refer to the space Proj(Sym(E∨)). Note
that P can naturally be considered as a covariant functor.

Definition 6.1 The deformation to the normal cone of the immersion i is the
blow up W of X ×P1

D along Y × {∞}.

We define pX to be the projection X ×P1
D → X, pY the projection Y ×P1

D →
Y and π the blow-down map W → X × P1

D. Let also q be the projection
X × P1

D → P1
D and qW the map q ◦ π. From the universality of the blow-up

construction, we know that there is a canonical closed immersion Y ×P1
D

j→W
such that π ◦ j = i × Id. We shall denote the map π−1|X×{0} by iX . The
following is known about the structure of W :

Proposition 6.2 The closed subscheme q−1(∞) is a Cartier divisor with two
irreducible components P and X̃, that meet regularly. The component P is
isomorphic to P(N⊕1) and the component X̃ is isomorphic to the blow-up of X
along Y . The component X̃ does not meet j(Y×P1

D) and j(Y×P1
D)∩P (scheme-

theoretic intersection) is the image of the canonical section of P(N ⊕ 1) → Y .

Proof: See [18, Ch. 5]. Q.E.D.

The canonical section i∞ : Y → P(N ⊕ 1) arises from the morphism of vector
bundles OY → N ⊕OY .
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The embeddings of P and X̃ in W will be denoted by iP and iX̃ . Let p : P → Y
be the projection and φ := pX ◦ π : W → X.
The interest of W comes from the possibility to control the rational equivalence
classe of the fibres q−1(p) (p ∈ P1

D). In the language of line bundles, this is
expressed by the fact that O(X) ' O(P + X̃) ' O(P ) ⊗ O(X̃), which is an
immediate consequence of the isomorphism O(∞) ' O(0) on P1

D.
This equality will enable us to reduce certain computations on X to computa-
tions on P , which is often much easier to handle. Indeed on P , the canonical
quotient bundle Q has a canonical regular section s, which vanishes exactly on
Y . Thus, the section s determines a global Koszul resolution

K : 0 → Λdim(Q)(Q∨) → . . .→ Q∨ → OP → i∞∗OY → 0.

Also, the immersion iP (resp. iX) is Tor independent of the immersion j. If X
and Y are integral, we have the following alternative description of W via the
Grassmannian graph construction of MacPherson.

Proposition 6.3 Suppose that X and Y are integral. Let s be a section of a
vector bundle E on X such that Z(s) = Y . Let f be the morphism X ×A1

D →
P(E⊕1)×P1

D given by f(x, a) = [a.s(x), 1]×a, where [., .] denotes homogeneous
coordinates and A1

D ⊆ P1
D is the affine line over D. There is an isomorphism

between W and the Zariski closure of Im f .

Proof: [18, Ch. 5]. Q.E.D.

Lemma 6.4 Suppose that X and Y are integral. The composition of the in-
clusion of W in P(E ⊕ 1) × P1

D with the morphism j is given by the formula
y × a 7→ [0, 1]× a.

Proof: We have to show that the image of the map given by the formula
y × a 7→ [0, 1]× a|y∈Y,a∈P1

D
is the closure of the image of the map given by the

formula y×a 7→ [0, 1]×a|y∈Y,a∈A1
D

. That is, we have to show that every Zariski
closed subset of P(E⊕1)×P1

D containing the image of the second map contains
the image of the first map. Now the closure of Y ×A1

D in X×P1
D is Y ×P1

D and
the map p : P(E ⊕ 1) × P1

D → X × P1
D is proper. Thus p∗ sends every closed

subset of P(E ⊕ 1) × P1
D containing the image of y × a 7→ [0, 1] × a|y∈Y,a∈A1

D

onto a set containing Y ×P1
D, which proves our claim.

Q.E.D.

6.1.2 Deformation of resolutions

One of the difficulties of a Riemann-Roch formula for embeddings in K̂0-theory
comes from the impossibility to represent explicitly coherent sheaves, in par-
ticular images of locally free sheaves by the embedding. One has to stick to
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certain explicit resolutions of these sheaves by locally free ones. Let η be a
vector bundle on Y and

Ξ : 0 → ξm → . . . ξ0 → i∗η → 0

a resolution of i∗η in X. We shall make use of a particular extension of Ξ to
W , whose existence is ensured by the following result:

Proposition 6.5 There exists a resolution

Ξ̃ : 0 → ξ̃m → . . . ξ̃0 → j∗p
∗
Y (η) → 0

on W extending Ξ and such that
(1) The restriction Ξ̃|X̃ is split acyclic;
(2) There is an exact sequence of complexes on P

0 → S → i∗P (Ξ̃) → K⊗ p∗(η) → 0

where S is split acyclic.

For the proof, we refer to [11, Th. 4.8, p. 318]. Recall that K is a Koszul
resolution. We shall denote the complex i∗P (Ξ̃) by ξ∞· .

6.2 Proof of the Adams-Riemann-Roch theorem for closed
immersions

In the next paragraphs, we shall very often use the following key fact. Let M
be a complex manifold and let ζ, κ be two elements of PM , with disjoint wave
front sets. Then the equation

(ddcζ) ∧ κ = ζ ∧ (ddcκ) (7)

holds in PM/PM,0. The proof follows from the equalities ∂(ζ ∧∂κ) = ∂ζ ∧∂κ+
ζ ∧ ∂∂κ and −∂(∂ζ ∧ κ) = ∂ζ ∧ ∂κ+ ∂∂ζ ∧ κ.

6.2.1 The case k = 1

In this subsection, we shall use Bismut’s theorem to derive a formula comparing
the push-forwards of η and of

∑m
i=0(−1)iξi to a base B. This formula can be

considered as a Riemann-Roch theorem for the immersion i and the Adams
operation ψ1 = Id.

Proposition 6.6 Let i : Y → X be a regular closed immersion of arithmetic
varieties and g : Y → B, f : X → B be p.f.s.r. morphisms to an arithmetic
variety B such that g = f ◦ i. Let

Ξ : 0 → ξm → ξm−1 → . . .→ ξ0 → i∗η → 0
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be a resolution by f-acyclic vector bundles on X of a g-acylic vector bundle η
on Y . Suppose that X is endowed with a Kähler metric hX , that Y carries
the induced metric hY and that the normal bundle N of i carries the quotient
metric. Suppose that η and the ξi are endowed with hermitian metrics satisfying
Bismut’s assumption (A) with respect to the metric of N . Then the equality

g∗(η)−
m∑

i=0

(−1)if∗(ξi) =

∫
Y/B

ch(η)R(N)Td(Tg) +
∫

X/B

T (hξ·)Td(Tf)−
∫

Y/B

ch(η)T̃ d(g/f)Td−1(N)

holds in K̂0(B).

Proof: Using the defining relations of arithmetic K0-theory, we compute

g∗(η)−
m∑

i=0

(−1)if∗(ξi) = (g∗η, g∗hη)−T (hY , η)−(
m∑

i=0

(−1)i((f∗ξi, g∗hξi
)−T (hX , ξi))) =

c̃h(f∗Ξ)− T (hY , η) +
m∑

i=0

(−1)iT (hX , ξi).

Comparing the last expression with the formula in 5.16 yields the proof. Q.E.D.

Theorem 6.7 The Proposition 6.6 holds without acyclicity conditions on η and
the ξi.

Proof: Since f is projective, there is a closed embedding k : X → Pr
B in a

relative projective space over B, such that f = p ◦ k, where p : Pr
B → B is the

natural projection. On P = Pr
B , we have a canonical exact sequence

KP : 0 → OP → p∗(E∨)(1) → . . .→ p∗(Λr+1E∨)(r + 1) → 0

(see [19, p. 107]) where E = O⊕r+1
B . Restricting this sequence to X, we obtain

an exact sequence of exact sequences (a double complex):

0 → Ξ → Ξ⊗ f∗(E∨)(1) → . . .→ Ξ⊗ f∗(Λr+1E∨)(r + 1) → 0.

Endow E with the trivial metric. Let us make the assumption that 6.6 holds
for Ξ⊗ f∗(ΛnE∨)(n), n ≥ 1. We show that this implies that it holds for Ξ. We
compute

g∗(η) = g∗(−
r+1∑
j=1

(−1)jη ⊗ g∗(ΛjE∨)(j)) +
∫

Y/B

Td(Tg)ch(η)c̃h(KP )
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and
m∑

i=0

(−1)if∗(ξi) =
m∑

i=0

(−1)if∗(−
r+1∑
j=1

(−1)jξi ⊗ f∗(ΛjE∨)(j))+

m∑
i=0

(−1)i

∫
X/B

Td(Tf)ch(ξi)c̃h(KP )

by the relations of arithmetic K0-theory. Moreover∫
Y/B

ch(η)R(N)Td(Tg) =
∫

Y/B

−
r+1∑
j=1

(−1)jch(η ⊗ g∗(ΛjE∨)(j))R(N)Td(Tg)

and ∫
X/B

Td(Tf)T (hξ·) =
∫

X/B

Td(Tf){δY Td−1(N)ch(η)c̃h(KP )−

m∑
i=0

(−1)ich(ξi)c̃h(KP )−
r+1∑
j=1

(−1)jT (hξ·)ch(f∗(ΛjE∨)(j))}

by 5.12 and 5.15. We also have∫
Y/B

ch(η)Td−1(N)T̃ d(g/f) =

∫
Y/B

{ ddcc̃h(KP )ch(η)−
r+1∑
j=1

(−1)jch(η ⊗ g∗(ΛjE∨)(j)) }Td−1(N)T̃ d(g/f) =

∫
Y/B

c̃h(KP )ch(η)(Td−1(N)Td(Tf)− Td(Tg))−

∫
Y/B

r+1∑
j=1

(−1)jch(η ⊗ g∗(ΛjE∨)(j))Td−1(N)T̃ d(g/f)

by the definition of the Bott-Chern secondary class. We want to prove that

g∗(η)−
m∑

i=0

(−1)if∗(ξi)−
∫

Y/B

ch(η)R(N)Td(Tg)−
∫

X/B

T (hξ·)Td(Tf)

+
∫

Y/B

ch(η)T̃ d(g/f)Td−1(N)

vanishes. Using our assumption and the previous computations, we see that the
last expression equals ∫

Y/B

Td(Tg)ch(η)c̃h(KP )−
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m∑
i=0

(−1)i

∫
X/B

Td(Tf)ch(ξi)c̃h(KP )−
∫

Y/B

c̃h(KP )ch(η)Td−1(N)Td(Tf)+

m∑
i=0

∫
X/B

(−1)iTd(Tf)ch(ξi)c̃h(KP )+∫
Y/B

c̃h(KP )ch(η)(Td−1(N)Td(Tf)− Td(Tg))

vanishes (the sums
∑r+1

j=1(. . .) cancel by the assumption). Therefore 6.6 holds
for Ξ. Now, since E is free and endowed with the trivial metric, the formula
of 6.6 holds for Ξ ⊗ f∗(ΛnE∨)(n), if it holds for Ξ(n), for n ≥ 1. Applying
descending induction on n, we see that the formula of 6.6 holds for Ξ, if it holds
for Ξ(n), for all n >> 0. But this last condition is satisfied, since η(n) is g-
acyclic and the ξi(n) are f -acyclic for n >> 0 (see [25, Th. 12.11, p. 290, III]
and [25, Th. 8.8(c), p. 252]). This ends the proof. Q.E.D.

6.2.2 A model for closed embeddings

Let Y be an arithmetic variety. In this subsection, we prove a Riemann-Roch
formula for the closed immersion i∞ : Y → P(N⊕1) mentioned at the beginning
of 6.1.1. The deformation theorem of the next subsection will then show that a
Riemann-Roch formula for all regular immersions can be derived from that one.
We suppose that P = P(N⊕1) is endowed with a Kähler metric, that Y carries
the metric induced from P via i∞ and we assume that the normal bundle N∞ is
endowed with the quotient metric. We fix an arithmetic variety B and a p.f.s.r.
(i.e. projective and flat, smooth over Q) map g : Y → B. We fix a metric on
Q (the universal quotient bundle on P ) which yields the metric of N∞, when
restricted to Y . The resolution K carries the exterior product metrics of Q.
We shall denote the elements of the resolution K ⊗ p∗(η) by κ·, endowed with
the tensor product metric. Moreover, for any arithmetic variety Y , we shall use
the map ch : K̂0(Y ) → Z(Y ), which is defined by ch(E + η) = ch(E) + ddcη.
This map is well-defined by the definition of the K̂0-groups. We shall also call
an element of K̂0(Y ) which lies in the subgroup generated by all the hermitian
vector bundles a virtual hermitian bundle.

Proposition 6.8 Let α be a virtual hermitian bundle on P . The equality

g∗(θk(N
∨
∞)ψk(η)α) =

rg(N)∑
i=0

(−1)i(g ◦ p)∗(ψk(κi)α)+

∫
Y/B

ch(α)Td(Tg)ch(ψk(η)θk(N∨))R(N)+
∫

P/B

k.ch(α)Td(T (g ◦ p))φk(T (hκ·))−
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∫
Y/B

krg(N)ch(α)ch(ψk(η))φk(Td−1(N∞))T̃ d(g/g ◦ p)

holds in K̂0(B) for all k ≥ 1.

Proof: We shall need a formula comparing restrictions by i∞ and direct-images
by p. This is the content of

Lemma 6.9 The equality

g∗(i∗∞(xα)) = (g ◦ p)∗(λ−1(Q
∨
)xα) +

∫
Y/B

Td(Tg)i∗∞(ch(α.x))R(N)+

∫
P/B

Td(T (g ◦ p))T (hK·)ch(α.x)−
∫

Y/B

i∗∞(ch(α.x))Td−1(N∞)T̃ d(g/g ◦ p)

holds in K̂0(B) for any virtual hermitian bundle x ∈ K̂0(P ).

Proof of 6.9: If x = V and α = V
′
apply 5.15 and then 6.7 to the resolution

K⊗ V ⊗ V ′. Since both sides of the formula are additive, this yields the result.
Q.E.D.

As in the classical case the Riemann-Roch formula for the canonical model boils
down to certain formal identies, contained in the next two lemmas:

Lemma 6.10 Let R be any λ-ring and e ∈ R an element of finite λ-dimension.
The equality

ψk(λ−1(e)) = λ−1(e)θk(e)

holds.

The proof of 6.10 can be found in [2, Prop. 7.3, p. 269].

Lemma 6.11 The identity ch(θk(V )) = kdim(V )Td(V
∨
)φk(Td−1(V

∨
)) holds

for any hermitian bundle V .

Proof of 6.11: let r = dim(V ). Let Ω be the (local) curvature matrix of VC

associated to the canonical hermitian holomorphic connection. By construction
ch(θk(V )) is a power series with real coefficients in the elements of the matrix
Ω, which is invariant under conjugation. On the other hand the power series
Det(1 + eΩ + e2Ω + . . . e(k−1)Ω) has the same properties and coincides with
ch(θk(V )) if Ω is diagonal. To verify that they coincide for all matrices of forms
Ω, notice that it is sufficient to show that they coincide as (entire) functions
defined on Mr×r, the set of all matrices with complex coefficients. Since they
coincide for all diagonalisable matrices (they are invariant under conjugation),
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they coincide on all matrices by continuity, since diagonalisable matrices are
dense in Mr×r. Thus, we are reduced to prove the identity

Det(1 + eΩ + e2Ω + . . . e(k−1)Ω) = krDet(
−e−ΩΩ
e−Ω − I

)Det(
−ke−kΩ

e−kΩ − I
)

where we have used the multiplicativity of φk and the fact that φk(Ω) = k.Ω.
Both sides are power series with real coefficients in the coefficients of Ω and are
invariant under conjugation, and so by the same density argument as above, we
are reduced to verify that they coincide on diagonal matrices. Letm1,m2, . . .mr

be the diagonal elements of a diagonal complex matrix M . On the left hand,
we compute

Det(1 + eM + e2M + . . . e(k−1)M ) =
r∏

i=1

(1 + emi + . . . e(k−1)mi) =
r∏

i=1

1− ekmi

1− emi

and on the right hand, we get

kr
r∏

i=1

−e−mimi

e−mi − 1
· e

−kmi − 1
−kekmimi

The expressions for the left and right hand sides clearly coincide, so we are done.
Q.E.D.

We now resume the proof of 6.8. Using the fact that the arithmetic K0-groups
are λ-rings (see [32, Cor. 3.30]) and 6.10, we compute

(g ◦ p)∗(ψk(p∗(η))ψk(λ−1(Q
∨
))α) =

(g ◦ p)∗(ψk(p∗(η))θk(Q
∨
)λ−1(Q

∨
)α)

By 6.9, the last expression equals

g∗(ψk(p∗(η))θk(Q
∨
)α)−

∫
Y/B

ch(α)Td(Tg)ch(ψk(p∗(η))θk(Q∨))R(N)−

∫
P/B

ch(α)Td(T (g ◦ p))T (hK· )ch(ψk(p∗(η))θk(Q
∨
))+∫

Y/B

ch(α)ch(ψk(p∗(η))θk(Q
∨
))Td−1(N)T̃ d(g/g ◦ p)

where we dropped the i∗ and i∗∞ to make the expression less heavy. Using 5.13
to compute T (hK· ) and 6.11, we see that the last expression equals

g∗(ψk(p∗(η))θk(Q
∨
)α)−

∫
Y/B

ch(α)Td(Tg)ch(ψk(η)θk(N∨))R(N)−
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∫
P/B

ch(α)Td(T (g ◦ p))ch(ψk(p∗(η))θk(Q
∨
))Td−1(Q)g+∫

Y/B

ch(α)ch(ψk(η))krg(N)Td(N)φk(Td−1(N))Td−1(N)T̃ d(g/g ◦ p)

where g is the Green current of K, described after 5.13 . Recall that it is of pure
type (rg(N)− 1, rg(N)− 1), so that φk(g) = krg(N)−1g. To complete the proof
of Proposition 6.8, we only have to compute the integral of the second line:∫

P/B

ch(α)Td(T (g ◦ p))ch(ψk(p∗(η))θk(Q
∨
))Td−1(Q)g =

∫
P/B

ch(α)k.k−rg(Q)φk(g)Td(T (g ◦ p))φk(ch(p∗(η))θk(Q
∨
))Td−1(Q) =∫

P/B

k.ch(α)Td(T (g ◦ p))φk(ch(p∗(η)))φk(Td−1(Q)g) =∫
P/B

k.ch(α)Td(T (g ◦ p))φk(T (hκ·))

where we have used 5.15 to compute T (hκ·) from T (hK· ). Q.E.D.

Corollary 6.12 Let ξ∞i be endowed with any metric satisfying Bismut’s as-
sumption (A) with respect to η and N∞. The equality

g∗(θk(N
∨
∞)ψk(η)α) =

m∑
i=0

(−1)i(g ◦ p)∗(ψk(ξ
∞
i )α)+

∫
Y/B

ch(α)Td(Tg)ch(ψk(η)θk(N∨))R(N)+
∫

P/B

kch(α)Td(T (g ◦ p))φk(T (hξ∞· ))−∫
Y/B

krg(N)ch(α)ch(ψk(η))φk(Td−1(N∞))T̃ d(g/g ◦ p)

holds in K̂0(B) for all k ≥ 1.

Proof: Let us put a split orthogonal hermitian metric on S, in 6.5. Let us then
denote the sequence of the i-th row in 6.5 by E i. By the formula 5.12, we know
that

m∑
i=0

(−1)iξ
∞
i − T (hκ·) + T (hξ·) =

m∑
i=0

(−1)i(ξ
∞
i − c̃h(E i)) =
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m∑
i=0

(−1)i(κi + S ·) =
m∑

i=0

(−1)iκi

in K̂0(P ). Therefore we can compute

m∑
i=0

(−1)i(g ◦ p)∗(ψk(κi)α) +
∫

P/B

ch(α)kTd(T (g ◦ p))φk(T (hκ·)) =

(
m∑

i=0

(−1)i(g◦p)∗(ψk(ξ
∞
i )−T (hκ·)+T (hξ·))α)+

∫
P/B

ch(α)kTd(T (g ◦ p))φk(T (hκ·)) =

m∑
i=0

(−1)i(g ◦ p)∗(ψk(ξ
∞
i )α) +

∫
P/B

ch(α)kTd(T (g ◦ p))φk(T (hξ∞· ))

where the definition of the push-forward of forms was used from the second to
the third line. If we reinsert this expression in the formula of 6.8, we get the
result. Q.E.D.

6.2.3 The deformation theorem

Let i : Y → X be a regular closed immersion of arithmetic varieties and let
g : Y → B, f : X → B be p.f.s.r. maps to an arithmetic variety B such that
g = f ◦i. Let the terminology of the geometric preliminaries 6.1 hold. From now
on, we shall assume that the ξ̃· are endowed with metrics such that Bismut’s
assumption (A) is satisfied on W and such that the sequence 0 → ξm → ξm−1 →
. . . ξ0 → 0 is orthogonally split on X̃. This is possible, since X̃ is disjoint with
j∗(Y ×P1).

Definition 6.13 A metric h on W is said to be normal to the deformation if

(a) It is Kähler;

(b) the restriction h|j∗(Y ×P1) is a product h′ × h′′, where h′ is a metric on
Y and h′′ a metric on P1;

(c) the intersection of iX∗X with j∗(Y ×P1) and of iP∗P with j∗(Y ×P1) are
orthogonal.

Lemma 6.14 There exists a metric on W , which is normal to the deformation.

Proof: We use the terminology of 6.3. Since the last definition concerns the
integral part of WC only, we might suppose without loss of generality that D =
C and that X and Y are integral. Choose an embedding k : P(E⊕1) → X×Pr
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into a relative projective space over X. Composing maps, we get an embedding
W → X ×Pr ×P1. If we choose a Kähler metric on X and Kähler metrics on
Pr and P1, we can endow X ×Pr×P1 with the product metric, which induces
a Kähler metric on W by restriction. This metric has the required properties.
Q.E.D.

Theorem 6.15 (Deformation theorem) Let W be endowed with a metric
normal to the deformation. Let α be in the subgroup of K̂0(W ) generated by
hermitian bundles. Then the formula

−g∗(θk(N
∨
)ψk(η)α) +

m∑
i=0

(−1)if∗(ψk(ξi)α) +
∫

X/B

k.Td(Tf)φk(T (hξ))ch(α)−

∫
Y/B

k.φk(ch(η))ch(α)φk(Td−1(N0))T̃ d(g/f) =

−g∗(θk(N
∨
∞)ψk(η)α)+

m∑
i=0

(−1)i(g◦p)∗(ψk(ξ
∞
i )α)+

∫
P/B

k.Td(T (g ◦ p))φk(T (hξ∞))ch(α)−

∫
P/B

k.φk(ch(η))ch(α)φk(Td−1(N∞))T̃ d(g/g ◦ p)

holds in K̂0(B).

Proof: We choose once and for all sections of O(X), O(P ), O(X̃) whose zero-
schemes are X, P and X̃. If D is a Cartier divisor and the bundle O(D) carries
a hermitian metric, we shall often write Td(D) for Td(O(D)). We shall also
write ψk(ξ·) for

∑m
i=0(−1)iψk(ξi).

Lemma 6.16 There are hermitian metrics on O(X), O(P ) and O(X̃) such
that the isometry O(X) ' O(P )O(X̃) holds and such that the restriction of
O(X) to X yields the metric of the normal bundle NX/W , the restriction of
O(X̃) to X̃ yields the metric of the normal bundle NX̃/W and the restriction of
O(P ) to P yields the metric of the normal bundle NP/W .

Proof of 6.16: choose metrics on O(P ) in a small neighborhood of P such that
the restriction of O(P ) to P yields the metric of the normal bundle. Do the
same for O(X̃). Since X is closed and disjoint from X̃ and P , we can extend
these metrics via a partition of unity to metrics defined on W , so that the the
restriction of the metric that O(X) inherits from the isomorphism O(X) '
O(P )O(X̃) yields the metric of the normal bundle NX/W . This completes the
proof. Q.E.D.

From now on, we shall suppose that O(X), O(X̃) and O(P ) are endowed with
hermitian metrics satisfying the hypothesies of the the last lemma. We shall
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compare push-forwards of Adams operations on X and P , by applying 6.7 to
the resolutions

0 → O(−X) → OW → iX∗OX → 0, (8)

0 → O(−P ) → OW → iP ∗OP → 0, (9)

0 → O(−X̃) → OW → iX̃∗OX̃ → 0 (10)

and to the resolution which is the tensor product of (9) and (10):

0 → O(−X)⊗O(−P ) → O(−X)⊕O(−P ) → OW → iP∩X̃OP∩X̃ → 0 (11)

They satisfy Bismut’s assumption (A) (by 6.16 for (8), (9), (10), by 5.14 for
(11)). The resolutions (8), (9), (10) are Koszul resolutions and we shall denote
the associated Green currents by gX , gP and gX̃ , respectively. First note that
the equality

αψk(ξ̃·)((1−O(−X))−(1−O(−P ))−(1−O(−X̃))+(1−O(−P ))(1−O(−X̃)) = 0

holds in K̂0(W ). We shall apply the push-forward map to both sides of this
equality, and show that the resulting equality is equivalent to the statement of
the theorem. Using 6.7, 5.14 and 5.13, we compute that this equality implies

f∗(ψk(ξ·)α)−
∫

X/B

ch(α)ch(ψk(ξ·))R(NX/W )Td(Tf)−

∫
W/B

ch(α)Td(T (f ◦ φ))ch(ψk(ξ̃·))Td
−1(X)gX)+∫

X/B

ch(α)ch(ψk(ξ·))Td
−1(NX/W )T̃ d(f/f ◦ φ)−

(g ◦ p)∗(ψk(ξ
∞
· )α)−

∫
P/B

ch(α)ch(ψk(ξ∞· ))R(NP/W )Td(T (g ◦ p))−∫
W/B

ch(α)Td(T (f ◦ φ))ch(ψk(ξ̃·))Td
−1(P )gP +∫

P/B

ch(α)ch(ψk(ξ
∞
· ))T̃ d(g ◦ p/f ◦ φ)Td−1(NP/W ))−∫

W/B

ch(α)Td(T (f ◦ φ))ch(ψk(ξ̃·))Td
−1(X̃)gX̃

+
∫

W/B

ch(α)Td(T (f ◦ φ))ch(ψk(ξ̃·))Td
−1(P + X̃)(c1(O(P ))gX̃ + δX̃ .gP ) = 0
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where we have dropped all the terms where an integral was taken over X̃, since
ch(ψk(ξ̃·)) vanishes on X̃. For the same reason the term∫

W/B

ch(α)Td(T (f ◦ φ))ch(ψk(ξ̃·))Td
−1(P + X̃)(δX̃ .gP )

vanishes. For the next step, we shall need the cohomological Riemann-Roch
theorem. Let j : M ′ → M be a projective smooth subvariety of a complex
smooth projective variety M . Let H(M) be the even real de Rahm cohomology
of M . It can be viewed as the kernel of the operator ddc acting on Ã(M). In
the next theorem, j∗ : H(M ′) → H(M) will stand for the push-forward map in
cohomology associated to j.

Theorem 6.17 Let N be the normal bundle of the immersion j. The equality

j∗(Td(N)−1ch(x)) = ch(j∗(x))

holds in H(M), for any virtual vector bundle x on M ′.

For the proof, see [19, VI, 8.]. Recall that i is the immersion Y → X and i∞
the immersion Y → P(N ⊕ 1) of the canonical model. Notice that the group
endomorphism φk : H(X) → H(X) (defined before 3.3) has an inverse in this
case, which we shall denote by φ

1
k ; the map φ

1
k is R-linear and defined by the

formula φ
1
k (

∑
i≥0 xi) =

∑
i≥0

1
kixi, for every element x ∈ H(X). Using the

projection formula in cohomology, we compute

iX∗(ch(ψ
k(ξ·))ch(α)R(NX/W )Td(Tf)) = (12)

iX∗{φk{i∗{Td−1(NY/X)ch(η)i∗{φ 1
k (R(NX/W )Td(Tf))}}}}ch(α).

Similarly, we have at infinity

iP ∗(ch(ψ
k(ξ·))ch(α)R(NP/W )Td(T (g ◦ p))) = (13)

iP ∗{φk{i∞∗{Td−1(NY/P )ch(η)i∗∞{φ
1
k (R(NP/W )Td(T (g ◦ p))}}}}ch(α).

Now notice that the restriction of NP/W to Y∞ is trivial and that the restriction
of NX/W to Y0 is trivial. To see this, notice that by construction NY∞/Y×P1

and NY0/Y×P1 are trivial and by transversality j∗∞NP/W ' NY∞/Y×P1 and
j∗0NX/W ' NY0/Y×P1 . Thus i∗∞(φ

1
k (R(NP/W ))) = 0 and i∗(φ

1
k (R(NX/W ))) =

0 and the expressions in (12) and (13) vanish. Thus we are left with the equality

f∗(ψk(ξ·)α)− (g ◦ p)∗(ψk(ξ
∞
· )α) =∫

W/B

ch(α)Td(T (f ◦ φ))ch(ψk(ξ̃·))(Td
−1(X)gX − Td−1(P )gP − Td−1(X̃)gX̃+
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Td−1(P + X̃)c1(O(P ))gX̃)−∫
X/B

ch(α)ch(ψk(ξ·))Td
−1(NX/W )T̃ d(f/f◦φ)+

∫
P/B

ch(α)ch(ψk(ξ
∞
· ))T̃ d(g◦p/f◦φ)Td−1(NP/W ).

Using the properties of the singular Bott-Chern current, we compute the equality
of currents

ch(ψk(ξ̃·))(Td
−1(X)gX−Td−1(P )gP−Td−1(X̃)gX̃+Td−1(P+X̃)c1(O(P ))gX̃) =

−φk(ddcT (hξ̃)− ch(p∗Y η)Td
−1(NY×P1/W )δY×P1)(Td−1(X)gX − Td−1(P )gP−

Td−1(X̃)gX̃ + Td−1(P + X̃)c1(O(P ))gX̃) =

−{ Td−1(X)φk(ddcT (hξ̃)gX)−Td−1(P )φk(ddcT (hξ̃)gP )−Td−1(X̃)φk(ddcT (hξ̃)gX̃)+

Td−1(P + X̃)
1
k
φk(ddcT (hξ̃)c1(O(P ))gX̃)−

{φk(ch(p∗Y η)Td
−1(NY×P1/W )δY×P1)}{Td−1(X)gX−

Td−1(P )gP − Td−1(X̃)gX̃ + Td−1(P + X̃)c1(O(P ))gX̃} }

The next lemma will evaluate the first part of the last expression.

Lemma 6.18 The equality

Td−1(X)φk(ddcT (hξ̃)gX)−Td−1(P )φk(ddcT (hξ̃)gP )−Td−1(X̃)φk(ddcT (hξ̃)gX̃)+

Td−1(P + X̃)
1
k
φk(ddcT (hξ̃)c1(O(P ))gX̃) =

kφk(T (hξ̃·))(Td−1(X)δX − Td−1(P )δP − Td−1(X̃)δX̃+

Td−1(P + X̃)c1(O(P ))δX̃))

holds in PW /PW,0.

For the proof we shall need the

Lemma 6.19 Let E be a hermitian bundle of rank r. The identity of forms

Td(E)ch(λ−1(E
∨
)) = cr(E)

holds.
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Proof of 6.19: let Ω be the (local) curvature matrix associated to the hermitian
holomorphic connection of E. By construction the identity to be proved is
equivalent to the identity

Det(
Ω.eΩ

eΩ − I
)Tr(Λ−1(e−Ω)) = Det(Ω)

where Tr(Λ−1(e−Ω)) = Tr(I)−Tr(Λ1(e−Ω))+Tr(Λ2(e−Ω))−. . .. Here Λk refers
to the k-th exterior power of the standard representation of GLn(C). Both sides
are power series in the entries of Ω and invariant under matrix conjugation. Thus
by the same density argument as in the proof of 6.11, we are reduced to prove
that both sides coincide when evaluated on a diagonal matrix M = (m1, . . .mr)
with complex entries. By construction Tr(Λ−1(e−M )) =

∏r
i=1(1 − e−mi). We

can now compute

Det(
M.eM

eM − I
)Tr(Λ−1(e−M )) =

r∏
i=1

mie
mi

emi − 1
(1− e−mi) =

r∏
i=1

mi = Det(M)

and thus we are done. Q.E.D.

Proof of 6.18: using (7), we compute that the left hand of the equality gives

Td−1(X)φk(T (hξ̃)(−c1(O(X)) + δX))− Td−1(P )φk(T (hξ̃)(−c1(O(P )) + δP ))−

Td−1(X̃)φk(T (hξ̃)(−c1(O(X̃)) + δX̃))+

Td−1(P + X̃)
1
k
φk(T (hξ̃)c1(O(P ))(−c1(O(X̃)) + δX̃)) =

−kφk(T (hξ̃))(Td−1(X)c1(O(X))− Td−1(P )c1(O(P ))− Td−1(X̃)c1(O(X̃))+

Td−1(P + X̃)c1(O(X̃))c1(O(P )))+

kφk(T (hξ̃))(Td−1(X)δX − Td−1(P )δP − Td−1(X̃)δX̃+

Td−1(P + X̃)c1(O(P ))δX̃))

Using the identity in 6.19, we compute that

Td−1(X)c1(O(X))− Td−1(P )c1(O(P ))− Td−1(X̃)c1(O(X̃))+

Td−1(P + X̃)c1(O(X̃))c1(O(P )) = 0 (14)

This completes the proof. Q.E.D.
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Lemma 6.20 The equality∫
W/B

ch(α)Td(T (f ◦ φ))φk(ch(p∗Y (η))Td−1(NY×P1
D

/W )δY×P1
D

)(Td−1(X)gX−Td−1(P )gP−

Td−1(X̃)gX̃ + Td−1(P + X̃)c1(O(P ))gX̃) =∫
Y/B

ch(α)kcod(Y )φk(ch(η)Td−1(N0))T̃ d(g/f)−∫
Y/B

ch(α)kcod(Y )φk(ch(η)Td−1(N∞))T̃ d(g/g ◦ p)+

g∗(θk(N
∨
0 )ψk(η)α)− g∗(θk(N

∨
∞)ψk(η)α)

holds in K̂0(B).

Proof of 6.20: using the definition of T̃ d and (7), we can rewrite the left side
of the equality as∫

W/B

ch(α)(ddcT̃ d(g ◦ pY /f ◦ φ) + Td(NY×P1
D

/W )Td(T (g ◦ pY ))).

(Td−1(X)gX − Td−1(P )gP − Td−1(X̃)gX̃ + Td−1(P + X̃)c1(O(P ))gX̃)

δY×P1
D
kcod(Y )φk(ch(p∗Y (η))Td−1(NY×P1

D
/W )) =∫

W/B

ch(α)T̃ d(g ◦ pY /f ◦ φ)δY×P1
D
kcod(Y )φk(ch(p∗Y (η))Td−1(NY×P1

D
/W ))

{Td−1(X)(δX − c1(X))− Td−1(P )(δP − c1(P ))−

Td−1(X̃)(δX̃ − c1(X̃)) + Td−1(P + X̃)c1(O(P ))(δX̃ − c1(X̃))}+∫
W/B

ch(α)Td(NY×P1
D

)φk(Td−1(NY×P1
D

/W ))Td(T (g ◦ pY ))φk(ch(p∗Y (η)))kcod(Y )

δY×P1
D

(Td−1(X)gX − Td−1(P )gP − Td−1(X̃)gX̃ + Td−1(P + X̃)c1(O(P ))gX̃)

By 6.13, we have Td−1(NY×P1
D

/W )|Y∞ = Td−1(N∞), Td(P )|Y∞ = 1 and
Td−1(NY×P1

D
/W )|Y0 = Td−1(N0), Td(X)|Y0 = 1. Furthermore, remember that

δY×P1
D
∧ δX̃ = 0, δY×P1

D
∧ δP = δY∞ , δY×P1

D
∧ δX = δY0 . With these equalities

in hand and (14), we can evaluate the expression after the last equality as∫
Y/B

ch(α)kcod(Y )φk(ch(η)Td−1(N0))T̃ d(g ◦ pY /f ◦ φ)−
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∫
Y/B

ch(α)kcod(Y )φk(ch(η)Td−1(N∞))T̃ d(g ◦ pY /f ◦ φ)+∫
Y×P1

D
/B

ch(α)ch(θk(N
∨
Y×P1

D
/W ))Td(T (g ◦ pY ))ch(ψk(p∗Y (η)))(Td−1(X)gX−Td−1(P )gP−

Td−1(X̃)gX̃ + Td−1(P + X̃)c1(O(P ))gX̃)

Now, we can also compute that T̃ d(g ◦ pY /f ◦ φ)|Y×{∞} = T̃ d(g/g ◦ p) and
T̃ d(g◦pY /f ◦φ)|Y×{0} = T̃ d(g/f); indeed, by 6.13, the restriction of the normal
sequence of Y ×P1

D in W to Y × {0} (resp. Y × {∞}) is the orthogonal direct
sum of the normal sequence of Y × {0} in X (resp. Y × {∞} in P ) with a
sequence 0 → T → T → 0, where T is a trivial line bundle endowed with
a constant metric. From this, by the symmetry formula 5.12, the equalities
follow. Furthermore, we can compute∫

Y×P1
D

/B

ch(α)ch(θk(N
∨
Y×P1

D
/W ))Td(T (g ◦ pY ))ch(ψk(p∗Y (η)))(Td−1(X)gX−Td−1(P )gP−

Td−1(X̃)gX̃ + Td−1(P + X̃)c1(O(P ))gX̃) =

g∗(θk(N
∨
0 )ψk(η)α)− g∗(θk(N

∨
∞)ψk(η)α) (15)

To see this, notice that that there are natural isomorphisms j∗0O(−X) ' O(−Y0)
and j∗∞O(−P ) ' O(−Y∞). Thus we have resolutions

0 → j∗O(−X) → OY×P1 → iY 0OY → 0

and
0 → j∗O(−P ) → OY×P1 → iY ∞OY → 0

where iY 0 is the embedding Y → Y ×P1 at 0 and iY ∞ is the embedding Y →
Y ×P1 at ∞. The normal sequences of iY 0 and iY ∞ are clearly split orthogonal,
the normal bundles of iY 0 and iY ∞ are trivial and the bundle j∗O(−X̃) is trivial.
Thus, if apply 6.7 to the equality

j∗(α)ψk(η)θk(N
∨
Y×P1/W )((1−j∗(O(−X)))−(1−j∗(O(−P )))−(1−j∗(O(−X̃)))+

(1− j∗(O(−P )))(1− j∗(O(−X̃)))) = 0

as at the beginning of the proof of the deformation theorem, we obtain (15).
Q.E.D.

Combining the results of 6.18 and 6.20 yields the equality

f∗(ψk(ξ·)α)− (g ◦ p)∗(ψk(ξ
∞
· )α) =

−
∫

W/B

ch(α)Td(T (f ◦ φ))kφk(T (hξ̃·))(Td−1(X)δX − Td−1(P )δP−
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Td−1(X̃)δX̃ + Td−1(P + X̃)c1(P )δX̃)−∫
Y/B

ch(α)kcod(Y )φk(ch(η)Td−1(N∞))T̃ d(g/g ◦ p)+∫
Y/B

ch(α)kcod(Y )φk(ch(η)Td−1(N0))T̃ d(g/f)+

g∗(θk(N
∨
0 )ψk(η)α)− g∗(θk(N

∨
∞)ψk(η)α)−∫

X/B

ch(α)ch(ψk(ξ·))Td
−1(NX/W )T̃ d(f/f ◦ φ)+∫

P/B

ch(α)ch(ψk(ξ
∞
· ))Td−1(NP/W )T̃ d(g ◦ p/f ◦ φ).

The deformation theorem will follow from the next lemma, which evaluates the
integrals appearing on the two last lines.

Lemma 6.21 The equalities∫
X/B

ch(α)ch(ψk(ξ·))Td
−1(NX/W )T̃ d(f/f ◦ φ) =

∫
X/B

ch(α)kφk(T (hξ))Td(Tf)−
∫

X/B

ch(α)kφk(T (hξ))Td−1(NX/W )Td(T (f ◦ φ))

and ∫
P/B

ch(α)ch(ψk(ξ
∞
· ))Td−1(NP/W )T̃ d(g ◦ p/f ◦ φ) =∫

P/B

ch(α)kφk(T (hξ∞))Td(T (g ◦ p))−
∫

P/B

ch(α)kφk(T (hξ∞))Td−1(NP/W )Td(T (f ◦ φ))

hold in Ã(B).

Proof of 6.21: we shall only prove the second one, the proof of the first
one being similar. Using the definition of the singular Bott-Chern current, we
compute ∫

P/B

ch(α)ch(ψk(ξ
∞
· ))Td−1(NP/W )T̃ d(g ◦ p/f ◦ φ) =

−
∫

P/B

ch(α)φk(ddcT (hξ∞)−Td−1(N∞)ch(η)δY )Td−1(NP/W )T̃ d(g◦p/f ◦φ) =

−
∫

P/B

ch(α)k(ddcφk(T (hξ∞)))Td−1(NP/W )T̃ d(g ◦ p/f ◦ φ)+
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∫
Y/B

ch(α)kφk(Td−1(N∞)ch(η))Td−1(NP/W )T̃ d(g ◦ p/f ◦ φ).

The last integral vanishes, since the normal sequence of P in W is split orthog-
onal on Y × {∞}. Applying (7), we get∫

P/B

ch(α)kφk(T (hξ∞))Td−1(NP/W )(Td(NP/W )Td(T (g ◦ p))− Td(T (f ◦ φ))

which is the result. Q.E.D.

Q.E.D.

6.2.4 The general case

In this subsection, we state and prove the general form of the Adams-Riemann-
Roch theorem for closed immersions, which provides a formula for direct images
- composed with push-forward to a common base - of Adams operators acting on
hermitian bundles. The proof is an immediate consequence of the deformation
theorem and our computation for the canonical model.
If a regular immersion Y → X as above is given, we shall call deformable a
Kähler metric on X which is extendable to a metric that is normal to the
deformation.

Theorem 6.22 Let i : Y → X be a regular closed immersion of arithmetic
varieties and g : Y → B, f : X → B be p.f.s.r. morphisms to an arithmetic
variety B such that g = f ◦ i. Let

Ξ : 0 → ξm → ξm−1 → . . .→ ξ0 → i∗η → 0

be a resolution by vector bundles on X of a vector bundle η on Y . Suppose that
X is endowed with a deformable Kähler metric, that Y carries the induced metric
and that the normal bundle N of i carries the quotient metric. Suppose that η
and the ξi are endowed with hermitian metrics satisfying Bismut’s assumption
(A) with respect to the metric of N . Let x lie in the subgroup of K̂0(X) generated
by all the hermitian bundles. The equality

g∗(θk(N
∨
)ψk(η)i∗(x)) = f∗(ψk(ξ·)x)+∫

Y/B

Td(Tg)ch(i∗(x))ch(ψk(η)θk(N∨))R(N)+
∫

X/B

kTd(Tf)φk(T (hξ·))ch(x)−∫
Y/B

krg(N)ch(i∗(x))ch(ψk(η))φk(Td−1(N))T̃ d(g/f)

holds in K̂0(B) for all k ≥ 1.
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Proof: If we let α = φ∗(x), the deformation theorem tells us that this formula
holds, if it holds for the closed immersion i∞ and the resolution ξ

∞
· . This is

proved in 6.12, so we are done. Q.E.D.

Remark. Using 5.8 and going through a computation of the same type as the
one appearing in the proof of 6.7, one can show that 6.22 holds for any Kähler
metric on X. However, we do not prove this, since the proof doesn’t use any
new techniques and since we shall not need this fact in the proof of 3.6. If one
is ready to give up the part 1

k over the torsion, then 6.22 can also be deduced
from 3.6, by applying the operation ψk to both sides of the equality of 6.7.

7 The arithmetic Adams-Riemann-Roch theo-
rem for local complete intersection p.f.s.r. mor-
phisms

Let us recall the statement of Theorem 3.6:

Theorem 7.1 Let g : Y → B be a p.f.s.r. local complete intersection morphism
of arithmetic varieties. Suppose that Y is endowed with some Kähler metric.
For each k ≥ 0, let θk

A(Tg
∨
)
−1

= θk(Tg
∨
)−1.(1 + R(TgC) − k.φk(R(TgC))).

Then for the map g∗ : K̂0(Y )⊗Z Z[ 1
k ] → K̂0(B)⊗Z Z[ 1

k ], the equality

ψk(g∗(y)) = g∗(θk
A(Tg

∨
)
−1
.ψk(y))

holds in K̂0(B) for all k ≥ 1 and y ∈ K̂0(Y )⊗Z Z[ 1
k ].

The entire section will be devoted to the proof of this theorem. The strategy
goes as follows; we first define an error term which measures the difference be-
tween both sides of the equality in 7.1; we show that the error term vanishes for
differential forms (7.5), that it is invariant under change of the Kähler metric
(7.6), that it is additive up to an explicit cohomological term (7.9) and that it
is base-change invariant (7.18). Next we prove that these properties suffice to
prove the theorem for projective spaces, using a diagonal embedding argument.
Using additivity again, we can then establish the full result.

Before starting with the core of the proof itself, we give a proof of 3.5, whithout
which the statement of the theorem wouldn’t be meaningful. For this, we first
establish two propositions. Recall that the group homomorphism ch : K̂0(Y ) →
Z(Y ) is the map given by the formula ch(E + η) = ch(E) + ddcη, where ch(E)
refers to the representative of the Chern character of EC arising from the canon-
ical hermitian holomorphic connection.
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Proposition 7.2 For any short exact sequence of hermitian bundles

E : 0 → E′ → E → E′′ → 0

on an arithmetic variety Y , the equality

θ̃k(E) = θk((E
′ ⊕ E

′′
)∨)−1 − θk(E

∨
)−1

holds in K̂0(Y )⊗ Z[ 1
k ].

Proof: By 6.11, ddcθ̃k(E) = ch(θk((E
′ ⊕ E

′′
)∨)−1) − ch(θk(E

∨
)−1). Now

consider the exterior product bundle E′(1) := E′2O(1) on Y × P1
Z. Let σ be

the canonical section of O(1), which vanishes only at ∞. It defines a map of
vector bundles E′ → E′(1). Define the bundle Ẽ as (E ⊕ E′(1))/E′. We have
an exact sequence on Y ×P1

Z

Ẽ : 0 → E′(1) → Ẽ → E′′ → 0

(compare with [9, I, Par. f)]) and isomorphisms j∗0 Ẽ ' E, j∗∞Ẽ ' E′ ⊕ E′′.
Endow Ẽ with a metric making these isomorphisms isometric. Endow O(1)
with the Fubini-Study metric, E′(1) with the product metric. Denote by p the
projection Y × P1

Z → Y . Using [20, Theorem, 4.4.6, p. 161], we can now
compute

θk((E
′ ⊕ E

′′
)∨)−1 − θk(E

∨
)−1 =

j∗∞θ
k(Ẽ

∨
)−1 − j∗0θ

k(Ẽ
∨
)−1 =

−
∫
P1
ch(θk(Ẽ

∨
)−1)log|z|2 =∫

P1
( ch(θk((E

′
(1)⊕ E

′′
)∨)−1)− ch(θk(Ẽ

∨
)−1) )log|z|2

The last equality is justified by the fact that∫
P1
ch(θk((E

′
(1)⊕ E

′′
)∨)−1)log|z|2 = 0.

Indeed ch(θk((E
′
(1) ⊕ E

′′
)∨)−1) is by construction invariant under the change

of variable z → 1/z and log|1/z|2 = −log|z|2. Therefore the integral changes
sign under that change of variable. Resuming our computations, we get∫

P1
( ch(θk((E

′
(1)⊕ E

′′
)∨)−1)− ch(θk(Ẽ

∨
)−1) )log|z|2 =∫

P1
dzd

c
z θ̃

k(Ẽ)log|z|2 =
∫
P1
θ̃k(Ẽ)dzd

c
zlog|z|2 =

j∗0 θ̃
k(Ẽ)− j∗∞θ̃

k(Ẽ) = θ̃k(E)

which ends the proof. Q.E.D.
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Proposition 7.3 For any short exact sequence of hermitian bundles

E : 0 → E′ → E → E′′ → 0

on a complex manifold, θ̃k(E) is equal to the expression

{ k−rg(E)Td−1(E)φk(Td(E))krg(E′′)T̃ d(E)− k1−rg(E′)φk(T̃ d(E)) }.

Td−1(E
′
)k−rg(E′′)Td−1(E

′′
) (16)

in Ã(M).

Proof: A straightforward computation using the identity φk ◦ ddc = k.ddc ◦ φk

shows that we obtain

k−rg(E′+E′′)Td−1(E
′ ⊕ E

′′
)φk(Td(E

′ ⊕ E
′′
))− k−rg(E)Td−1(E)φk(Td(E))

if we apply ddc to the expression in 7.3. Furthermore the expression in 7.3
clearly vanishes when the sequence E splits orthogonally. Thus, by the axiomatic
caracterisation of secondary classes (see [9, I, Par. f)]), our claim is proved.
Q.E.D.

Proof of 3.5.
Let i1 : Y → X1 be a second factorisation like the one before 3.5. Let X ′ be the
fiber product X ×B X1. Let j : Y → X ′ denote the diagonal embedding. If we
endow X ′ with a Kähler metric and the normal bundle NY (C)/X′(C) with any
hermitian metric, then j gives a third factorisation. If we denote the natural
projection morphism X ′ → X by p and by h the map f ◦ p, then we have a
commutative diagram of bundles on Y (C).

N ′ N
0 0
↓ ↓

TgC
Id' TgC

↓ ↓
0 → j∗TpC → j∗ThC → i∗TfC → 0 R1

↓ Id ↓ ↓
0 → j∗TpC → NY (C)/X′(C) → NY (C)/X(C) → 0 R2

↓ ↓
0 0

By a result of Gillet-Soulé in [23, Lemma 14, p. 501], we have

T̃ d(N ′)Td(NY/X′)−1 − T̃ d(N )Td(NY/X)−1+

T̃ d(R2)Td(j∗Th)Td(NY/X′)−1Td(NY/X)−1Td(j∗Tp)−1−
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T̃ d(R1)Td(NY/X)−1Td(j∗Tp)−1 = 0.

Applying the formula 7.3 and carrying through a tedious but elementary calcu-
lation, we conclude that similarly

θ̃k(N ′)θk(NY/X′
∨
)− θ̃k(N )θk(NY/X

∨
)+

θ̃k(R2)θk(j∗Th
∨
)−1θk(NY/X′

∨
)θk(NY/X

∨
)θk(j∗Tp

∨
)−

θ̃k(R1)θk(NY/X
∨
)θk(j∗Tp

∨
) = 0 (17)

Another way to prove this identity is to consider that the proof of [23, Lemma
14, p. 501] can be carried through without change for θ̃k in place of T̃ d. We
can now compute

θk(N
∨
Y/X)θ̃k(N ) + θk(N

∨
Y/X)θk(i∗Tf

∨
)−1−

( θk(N
∨
Y/X′)θ̃k(N ′) + θk(N

∨
Y/X′)θk(i∗Th∨)−1 ) =

[θk(j∗Tp
∨
)−1θk(i∗Tf

∨
)−1 − θk(j∗Th

∨
)−1]θk(N

∨
Y/X).θk(j∗Tp

∨
)+

[θk(N
∨
Y/X′)−1−θk((j∗Tp)∨)−1θk(N

∨
Y/X)−1]θk(j∗Th

∨
)−1θk(N

∨
Y/X′)θk(N

∨
Y/X)θk(j∗Tp

∨
)+

θ̃k(N )θk(N
∨
Y/X)− θ̃k(N ′)θk(N

∨
Y/X′).

The expression after the last equality vanishes in view of 7.2 and (17), so we
have proved that the arithmetic Bott class determined by i and the hermitian
metrics on Tf and NY/X coincides with the arithmetic Bott class determined
by j and the hermitian metrics on Th and NX′/Y . To complete the proof, note
that by symmetry, the arithmetic Bott class determined by j also coincides with
the arithmetic Bott class determined by i1. Q.E.D.

If A(x) = a0 + a1x+ a2x
2 + . . . is a power series with real coefficients, we define

A to be the unique additive characteristic class such that A(L) = a0 +a1c1(L)+
a2c1(L)2 + . . . for every line bundle L.

Definition 7.4 Let A(x) be a power series with real coefficients. Let g : Y →
B be a p.f.s.r. local complete intersection morphism of arithmetic varieties.
Let hY be a Kähler metric on Y . Let y0 ∈ K̂0(Y ). Define θk

A(Tg
∨
)−1 :=

θk(Tg
∨
)
−1

(1 − A(TgC)). The error term δ(A, g, hY , y0) relative to A, g, hY

and y0 is the difference

ψk(g∗(y0))− g∗(θk
A(Tg

∨
)−1ψk(y0)).
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Proposition 7.5 For any morphism g, any power series A and any metric hY ,
the error term δ(A, g, hY , y0) vanishes when y0 = ω, where ω ∈ Ã(Y ).

Proof: We compute

ψk(g∗(ω)) = k.φk

∫
Y/B

Td(Tg)ω =∫
Y/B

k.kdimB−dimY φk(Td(Tg))φk(ω) =∫
Y/B

k.ch(θk(Tg
∨
)−1)Td(Tg)φk(ω) =

g∗(θk(Tg
∨
)−1φk(ω)) = g∗(θk

A(Tg
∨
)−1φk(ω))

where we used the identity of 6.10 in the second line and and the definition of
the product in Ã(Y ) in the third line. Q.E.D.

Proposition 7.6 Fix a power series A, a morphism g and an element y0 ∈
K̂0(Y ). If h, h′ are two Kähler metrics on Y , then δ(A, g, h, y0) = δ(A, g, h′, y0).

Proof: In order to emphasize the dependence on the metric, we shall in this
proof write gh

∗ for the pushforward map K̂0(Y ) → K̂0(B) associated to g and
a Kähler metric h on Y . We write θk((Thg)∨)−1 for the arithmetic Bott class
associated to g and h. Let us write MC for the sequence

0 → TgC
Id→ TgC → 0 → 0

where the second term carries the metric induced by h and the third one the
metric induced by h′.

Lemma 7.7 The equality θk((Thg)∨)−1 − θk((Th′g)∨)−1 = θ̃k(MC) holds in
K̂0(Y ).

Proof of 7.7: consider a factorisation f = g ◦ i as in 3.5, where i is a regular
closed immersion into an arithmetic variety and f is a smooth map. Consider
the diagram

0 0 0
↓ ↓ ↓

0 → TgC → i∗TfC → NX(C)/Y (C) → 0
↓ Id ↓ Id ↓ Id

0 → TgC → i∗TfC → NX(C)/Y (C) → 0
↓ ↓ ↓

0 → 0 → 0 → 0 → 0
↓ ↓ ↓
0 0 0

45



where TgC is endowed with metric induced by h on the second row and the
metric induced by h′ on the third row. If we apply the general symmetry
formula of [21, Prop. 1.3.4, p. 173] to this diagram and use the multiplicativity
of k−rg(.)Td−1(.)φk(Td(.)) we see that the difference between the secondary
Bott-Chern form θ̃k of the second row and the secondary form of the third row
is equal to θ̃k(MC)ch(θk(N

∨
)−1) .The claim thus follows from the definition of

the arithmetic Bott class. Q.E.D.

Lemma 7.8 For any y ∈ K̂0(Y ), the formula gh′

∗ (y)−gh
∗ (y) =

∫
Y/B

ch(y)T̃ d(MC)
holds.

Proof of 7.8: since the Grothendieck group of vector bundles K0(Y ) is gener-
ated by g-acyclic vector bundles and both sides of the equality to be proved are
additive, we can assume that y = E, where E is a g-acyclic hermitian vector
bundle or that y = κ ∈ Ã(Y ). For y = κ, we compute

gh′

∗ (κ)− gh
∗ (κ) =

∫
Y/B

(Td(Th′gC)− Td(Th′gC))κ =

∫
Y/B

ddcT̃ d(MC)κ =
∫

Y/B

T̃ d(MC)ddcκ =
∫

Y/B

T̃ d(MC)ch(κ).

For y = E = (E, hE), we compute using 5.8

gh′

∗ (E)−gh
∗ (E) = (g∗E, gh′

∗ h
E)−T (h′, (E, hE))−(g∗E, gh

∗h
E)+T (h, (E, hE)) =

−T (h′, (E, hE)) + T (h, (E, hE)) + c̃h(gh
∗h

E , gh′

∗ h
E) =

∫
Y/B

T̃ d(MC)ch(E).

Combining our computations, we get the result. Q.E.D.

We resume the proof of 7.6. Let δ = dim(Y )− dim(B). Using the last Lemma,
we compute that on the left side of the error term

ψk(gh′

∗ (y0))− ψk(gh
∗ (y0)) = k.φk(

∫
Y/B

ch(y0)T̃ d(MC)) =

∫
Y/B

k1−δφk(ch(y0))φk(T̃ d(MC))

On the right side, we compute

gh′

∗ (θk
A(Th′g∨)−1ψk(y0))− gh

∗ (θk
A(Thg∨)−1ψk(y0)) =

gh′

∗ (θk(Th′g∨)−1ψk(y0))− gh
∗ (θk(Thg∨)−1ψk(y0)) =

( gh′

∗ (θk(Th′g∨)−1ψk(y0))− gh
∗ (θk(Th′g∨)−1ψk(y0)) )−
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( gh
∗ (θk(Thg∨)−1ψk(y0))− gh

∗ (θk(Th′g∨)−1ψk(y0)) )

Using 7.7 and 7.3, we can see that the expression after the last equality equals∫
Y/B

{ ch(ψk(y0))ch(θk((Th′g)∨)−1)T̃ d(MC)− θ̃k(MC)ch(ψk(y0))Td(Thg) }

(18)
On the other hand, using 7.3 we compute that

θ̃k(MC) = Td−1(Thg)( ch(θk((Th′g)∨)−1)T̃ d(MC)− k1−rg(Tg)φk(T̃ d(MC)) ).

If we reinsert this in (18), we see that both sides coincide and we can conclude.
Q.E.D.

In view of the last proposition, we shall from now on drop the Kähler metric
entry in the error term δ. Let i : Y → X be a regular closed immersion into an
arithmetic variety X and f : X → B a p.f.s.r. map such that g = f ◦ i. Let η
be a locally free sheaf on Y and

0 → ξm → ξm−1 → . . . ξ0 → i∗η → 0

be a locally free resolution on X of i∗η. We endow X with a deformable Kähler
metric, Y with the induced metric and the normal bundle N of i the quotient
metric. We endow the bundles η, ξi with hermitian metrics satisfying Bismut’s
assumption (A). The next Proposition studies the behaviour under immersions
of the error term δ((.), (.), (.)):

Proposition 7.9 Let A(x) be a formal power series with real coefficients. The
formula

δ(A, g, η)−
m∑

i=0

δ(A, f, ξi) =

∫
Y/B

ch(ψk(η)){k.kdimB−dimY φk(R(N)Td(Tg))−

Td(Tf)A(Tf)ch(θk(Tf∨)−1).Td(N)−1)ch(θk(N∨))−

Td(Tg)R(N)ch(θk(N∨))ch(θk(Tf∨)−1)+

Td(Tg)ch(θk(Tg∨)−1)A(Tg)}

holds in K̂0(B).

Proof: Let N be the normal sequence of the immersion, with the given metrics.
Using 6.7, we compute

ψk(g∗(η)) =

ψk(f∗(ξ·)) + k.φk(
∫

X/B

T (hξ·)Td(Tf))
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−k.φk(
∫

Y/B

ch(η)Td−1(N)T̃ d(g/f)) + k.φk(
∫

Y/B

ch(η)R(N)Td(Tg))

and secondly, using the definition of the arithmetic Bott element,

g∗(θk(Tg
∨
)
−1

(1−A(Tg))ψk(η)) =

g∗(θk(N
∨
)θk(T

∨
f)
−1
.ψk(η)) +

∫
Y/B

Td(Tg)ch(θk(N
∨
).ψk(η))θ̃k(N )−∫

Y/B

Td(Tg)ch(θk(Tg∨)−1)ch(ψk(η))A(Tg).

With these expressions in hand, we can compute:

ψk(g∗(η))− g∗(θk(Tg
∨
)
−1

(1−A(Tg))ψk(η)) =

ψk(f∗(ξ·)) + k.φk(
∫

X/B

T (hξ·)Td(Tf))

−k.φk(
∫

Y/B

ch(η)Td−1(N)T̃ d(g/f)) + k.φk(
∫

Y/B

ch(η)R(N)Td(Tg))−

( g∗(θk(N
∨
)θk(T

∨
f)
−1
.ψk(η))+∫

Y/B

(Td(Tg)ch(θk(N
∨
).ψk(η))θ̃k(N ))−∫

Y/B

Td(Tg)ch(θk(Tg∨)−1)ch(ψk(η))A(Tg) ).

Using 6.22, we compute

g∗(θk(N
∨
)θk(T

∨
f)
−1
.ψk(η)) =

f∗(θk(T
∨
f)
−1
ψk(ξ·))+

∫
Y/B

Td(Tg)R(N)ch(θk(N∨))ch(θk(Tf∨)−1)ch(ψk(η))+∫
X/B

Td(Tf)k.φk(T (hξ·))ch(θk(T
∨
f)
−1

)−∫
Y/B

krg(N)ch(θk(T
∨
f)
−1

)ch(ψk(η))φk(Td−1(N))T̃ d(g/f).

Now notice that we can write

f∗(θk(T
∨
f)
−1
ψk(ξ·)) = f∗(θk(T

∨
f)
−1

(1−A(Tf))ψk(ξ·))+∫
X/B

Td(Tf)A(Tf)ch(ψk(ξ·))ch(θk(T∨X/B)−1).
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Finally, returning to our expression for the substraction above, we get

ψk(g∗(η))− g∗(θk(Tg
∨
)
−1

(1−A(Tg))ψk(η)) =

ψk(f∗(ξ·)) + k.φk(
∫

X/B

T (hξ·)Td(Tf))

−k.φk(
∫

Y/B

ch(η)Td−1(N)T̃ d(g/f)) + k.φk(
∫

Y/B

ch(η)R(N)Td(Tg))−

( f∗(θk(T
∨
f)
−1

(1−A(Tf))ψk(ξ·))+
∫

X/B

Td(Tf)A(Tf)ch(ψk(ξ·))ch(θk(T∨f)−1)+∫
Y/B

Td(Tg)R(N)ch(θk(N∨))ch(θk(Tf∨)−1)ch(ψk(η))+∫
X/B

Td(Tf)k.φk(T (hξ·))ch(θk(T
∨
f)
−1

)−∫
Y/B

krg(N)ch(θk(T
∨
f)
−1

)ch(ψk(η))φk(Td−1(N))T̃ d(g/f)

+
∫

Y/B

(Td(Tg)ch(θk(N
∨
).ψk(η))θ̃k(N ))−∫

Y/B

Td(Tg)ch(θk(Tg∨)−1)ch(ψk(η))A(Tg) )

We first reorder the expression, in order to gather integrals on closed forms,
metrical terms (containing (̃.)) and singular current terms in separate groups.
We obtain

ψk(g∗(η))−g∗(θk(Tg
∨
)
−1

(1−A(Tg))ψk(η))−ψk(f∗(ξ·))+f∗(θ
k(T

∨
f)−1(1−A(Tf))ψk(ξ·)) =

{k.φk(
∫

X/B

T (hξ·)Td(Tf))−∫
X/B

Td(Tf)k.φk(T (hξ·))ch(θk(T
∨
f)
−1

)}+

{ − k.φk(
∫

Y/B

ch(η)Td−1(N)T̃ d(g/f))+∫
Y/B

krg(N)ch(θk(T
∨
f)
−1

)ch(ψk(η))φk(Td−1(N))T̃ d(g/f)

−
∫

Y/B

(Td(Tg)ch(θk(N
∨
).ψk(η))θ̃k(N ))}+
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{k.φk(
∫

Y/B

ch(η)R(N)Td(Tg))−∫
X/B

Td(Tf)A(Tf)ch(ψk(ξ·))ch(θk(T∨f)−1)−∫
Y/B

Td(Tg)R(N)ch(θk(N∨))ch(θk(Tf∨)−1)ch(ψk(η))+∫
Y/B

Td(Tg)ch(θk(Tg∨)−1)ch(ψk(η))A(Tg)}

The expression before the last equal sign is by definition equal to δ(A, g, η) −∑m
i=0 δ(A, f, ξi). The proof of the Proposition will now follow from the next

three lemmas, which evaluate the expressions in the brackets {·} separately.

Lemma 7.10 The equality of differential forms

k.φk(
∫

X/B

T (hξ·)Td(Tf))−
∫

X/B

Td(Tf)k.φk(T (hξ·))ch(θk(T
∨
f)
−1

) = 0

holds.

Proof of 7.10: we compute∫
X/B

Td(Tf)k.φk(T (hξ·))ch(θk(T
∨
f)
−1

) =

∫
X/B

Td(Tf)k.φk(T (hξ·))k−rg(Tf)Td(Tf)−1φk(Td(Tf)) =∫
X/B

k.φk(T (hξ·))k−rg(Tf)φk(Td(Tf)) =∫
X/B

k.k−rg(Tf)φk(T (hξ·)Td(Tf)) =

k.φk(
∫

X/B

T (hξ·)Td(Tf)).

Q.E.D.

Lemma 7.11 The equality

−k.φk(
∫

Y/B

ch(η)Td−1(N)T̃ d(g/f))+

∫
Y/B

krg(N)ch(θk(T
∨
f)
−1

)ch(ψk(η))φk(Td−1(N))T̃ d(g/f)
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−
∫

Y/B

(Td(Tg)ch(θk(N
∨
).ψk(η))θ̃k(N )) = 0

holds in Ã(B).

Proof of 7.11: apply 7.3 to the sequence N . Q.E.D.

For the next and last lemma, we shall need the Adams-Riemann-Roch theorem
for the Grothendieck group of vector bundles. In the next theorem, let i∗ denote
the push-forward map K0(Y ) → K0(X) associated to the immersion i (see [24,
2.12, p. 289]).

Theorem 7.12 Let the definitions of the last theorem hold. The equality

i∗(θk(N∨)ψk(x)) = ψk(i∗(x))

holds in K0(X).

For the proof, see [19, VI, 8.] or apply the forgetful map K̂0(B) → K0(B) to
both sides of 6.22.

Lemma 7.13 The equality

{k.φk(
∫

Y/B

ch(η)R(N)Td(Tg))−

∫
X/B

Td(Tf)A(Tf)ch(ψk(ξ·))ch(θk(T∨f)−1)−∫
Y/B

Td(Tg)R(N)ch(θk(N∨))ch(θk(Tf∨)−1)ch(ψk(η))+∫
Y/B

Td(Tg)ch(θk(Tg∨)−1)ch(ψk(η))A(Tg)} =∫
Y/B

ch(ψk(η)){k.kdimB−dimY φk(R(N)Td(Tg))−

Td(Tf)A(Tf)ch(θk(Tf∨)−1).Td(N)−1)ch(θk(N∨))−

Td(Tg)R(N)ch(θk(N∨))ch(θk(Tf∨)−1)+

Td(Tg)ch(θk(Tg∨)−1)A(Tg)}

holds in H(B) ⊆ Ã(B).
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Proof of 7.13: we can compute, using the Adams-Riemann-Roch and coho-
mological Riemann-Roch theorems for coherent sheaves, that

ch(ψk(ξ·)) = ch(i∗(θk(N∨)ψk(η)) = i∗(Td(N)−1ch(θk(N∨))ch(ψk(η))).

Thus, using the projection formula for the push-forward in cohomology, we can
compute ∫

X/B

Td(Tf)A(Tf)ch(ψk(ξ·))ch(θk(T∨f)−1) =∫
Y/B

Td(Tf)A(Tf)Td(N)−1ch(θk(N∨))ch(ψk(η))ch(θk(T∨f)−1). (19)

Reinserting (19) in the expression on the left hand of the equality of 7.13, we
obtain the right hand. Q.E.D.

Q.E.D.

In the next corollary, (.)|Y means restriction to Y .

Corollary 7.14 Let the terminology of 7.9 hold. If A(Tf)|Y = k.φk(R(Tf))|Y−
R(Tf)|Y and A(Tg) = k.φk(R(Tg))−R(Tg) then

δ(A, g, η)−
m∑

i=0

δ(A, f, ξi) = 0

Proof: If we compute the right side of the equality of 7.9, we get∫
Y/B

ch(ψk(η)){k.kdimB−dimY φk(R(N)Td(Tg))+

Td(Tf)(R(Tf)− k.φk(R(Tf)))ch(θk(Tf∨)−1).Td(N)−1)ch(θk(N∨))−

Td(Tg)R(N)ch(θk(N∨))ch(θk(Tf∨)−1)−

Td(Tg)ch(θk(Tg∨)−1)(R(Tg)− kφk(R(Tg)))}.

Using 6.11, this expression can be rewritten as∫
Y/B

ch(ψk(η)){k.kdimB−dimY φk(R(N))φk(Td(Tg)) + Td(Tf)(R(Tf)−

k.φk(R(Tf)))kdimB−dimXTd(Tf)−1φk(Td(Tf))Td(N)−1krg(N)Td(N)φk(Td(N)−1)−

Td(Tg)R(N)krg(N)Td(N)φk(Td(N)−1)kdimB−dimXTd(Tf)−1φk(Td(Tf))−

Td(Tg)kdimB−dimY Td(Tg)−1φk(Td(Tg))(R(Tg)− k.φk(R(Tg)))}.
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Using the multiplicativity of the Todd class and the additivity of R(.), the last
expression can be evaluated to be∫

Y/B

ch(ψk(η)){k.kdimB−dimY φk(R(N))φk(Td(Tg))+

(R(Tf)− k.φk(R(Tf)))kdimB−dimXφk(Td(Tf))krg(N)φk(Td(N)−1)−

R(N)krg(N)φk(Td(N)−1)kdimB−dimXφk(Td(Tf))−

kdimB−dimY φk(Td(Tg))(R(Tg)− k.φk(R(Tg)))} =∫
Y/B

ch(ψk(η)){k.kdimB−dimY φk(R(N))φk(Td(Tg))+

R(Tf)kdimB−dimXφk(Td(Tf)).krg(N)φk(Td(N)−1)−

k.φk(R(Tf))kdimB−dimXφk(Td(Tf))krg(N)φk(Td(N)−1)−

R(N)krg(N)φk(Td(N)−1)kdimX−dimBφk(Td(Tf))−kdimB−dimY φk(Td(Tg))R(Tg)+

kdimB−dimY φk(Td(Tg))kφk(R(Tg))} =∫
Y/B

ch(ψk(η))kdimB−dimY {k.φk(Td(Tg))φk(R(N)−R(Tf) +R(Tg))+

φk(Td(Tg))(R(Tf)−R(N)−R(Tg))} = 0

which ends the proof. Q.E.D.

The next lemma is needed to prove the projection formula stated after it.

Lemma 7.15 Let M be a complex Kähler manifold. Let n > 0 and let pM :
M ×Pn(C) → M and pP : M ×Pn(C) → Pn(C) be the projection maps. Fix
a Kähler metric on M and endow M × Pn(C) with the product of the Kähler
metric on M and the Fubini-Study metric on Pn(C). Let η be a hermitian
bundle on M . Endow the tautological bundle O(1) on Pn(C) with the Fubini-
Study metric. The formula

T (hM×Pn(C), p
∗
M (η)⊗ p∗P (O(k))) = ch(η)τ(O(k))

holds for all k >> 0, where τ(O(k)) is the Ray-Singer analytic torsion of O(k).

Proof: For u > 0, recall that the Bismut superconnection of the fibration
defined by hM×Pn(C) and pM is the differential operator

Bu = ∇E +
√
u(∂

Z
+ ∂

Z∗
)− 1

2
√

2u
c(T )
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where E is the infinite dimensional bundle on M whose fibers are the C∞

sections of the bundle Λ(T ∗(0,1)pM )⊗ p∗P (O(n))⊗ p∗M (η) ' p∗P (Λ(T ∗(0,1)Pn)⊗
O(k))⊗ p∗M (η), T is the torsion of a certain connection and ∂

Z
is the Dolbeaut

operator along the fibers. Recall that for Re(s) > 1

ζ1(s) = − 1
Γ(s)

∫ 1

0

us−1{φ(Trs(Nu.exp(−B2
u))−Trs(NV .exp(−(∇pM∗(p

∗
P (O(k))⊗p∗M (η)))2))}du

and similarly for Re(s) < 1/2

ζ2(s) = − 1
Γ(s)

∫ ∞

1

us−1{φ(Trs(Nu.exp(−B2
u))−Trs(NV .exp(−(∇pM∗(p

∗
P (O(k))⊗p∗M (η)))2))}du.

where Nu is the operator defined in 5.4. The functions ζ1 and ζ2 have meromor-
phic continuations to the whole complex plane, which are holomorphic at the
origin. By definition, the higher analytic torsion T (hM×Pn(C), h

p∗P (O(k))⊗p∗M (η))
equals ∂

∂s (ζ1 + ζ2)(0). First notice that the term 1
2
√

2u
c(T ) vanishes, since the

horizontal bundle THpM is integrable. Let ω be the Kähler form of the metric
hM×Pn(C) and ω′ the Kähler form of the metric hM . The forms ω and ω−p∗Mω′

induce the same metrics on the bundle TpM and thus by 5.8, we have

T (hM×Pn(C), h
p∗P (O(k))⊗p∗M (η)) = T (ω, hp∗P (O(k))⊗p∗M (η)) = T (ω−p∗Mω′, hp∗P (O(k))⊗p∗M (η)).

This shows that we can assume that Nu = NV . Now let s be a section of
Λ(T ∗(0,1)Pn)⊗O(k) over Pn(C) and t a section of η⊗Λ(T ∗CM) over M . Since
the bundle p∗P (Λ(T ∗(0,1)Pn)⊗O(k)) is trivial in horizontal directions, we have

Bu(p∗P (s)⊗ p∗M (t)) = p∗P (
√
u(∂ + ∂

∗
)(s))⊗ p∗M (t) + (−1)|s|p∗P (s)⊗ p∗M (∇η(t))

where |s| is the graded degree of s. Squaring both sides of this formula, we get

B2
u(p∗P (s)⊗ p∗M (t)) = p∗P (u.∆(s))⊗ p∗M (t) + p∗P (s)⊗ p∗M ((∇η)2(t))

where ∆ is the Laplacian ∂∂
∗

+ ∂
∗
∂. Thus, using the fact that Bu is a vertical

differential operator, we get

NV exp(−B2
u)(pP (s)⊗p∗M (t)) = p∗P (NV exp(−u∆)(s))⊗p∗M (t)+p∗P (s)⊗p∗M (exp(−∇η)2(t))

which proves that Trs(NV exp(−B2
u)) is the mean of p∗P (Trs(NV exp(−u∆))).p∗M (φ−1(ch(η)))

over the fibers of p∗M (ΛTCM) (φ−1 is the inverse of the map φ). Thus Trs(NV exp(−B2
u)) =

φ−1(ch(η))Trs(NV exp(−u∆)). On the other hand, we clearly have

Trs(NV .exp(−(∇pM∗(p
∗
P (O(k))⊗p∗M (η)))2)) = φ−1(ch(η))Trs(NV .exp(−(∇pM∗(p

∗
P (O(k)))2)) =

φ−1(ch(η))sn,k
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where sn,k is the dimension of the space of global holomorphic sections of O(k)
over Pn(C). So we finally get

ζ1(s) = ch(η).(− 1
Γ(s)

∫ 1

0

{us−1φ(Trs(NV exp(−u∆))− sn,k)}du)

and we have a similar equation for ζ2. From this and 5.5 the claim of the lemma
follows. Q.E.D.

We shall need the following special case of the projection formula:

Proposition 7.16 Let B be any arithmetic variety. Let pB : Pn
B → B be the

projection from some relative projective. Endow Pn
B with the product Kähler

metric. The formula
pB∗(p∗B(b)a) = b.pB∗(a)

holds for all b ∈ K̂0(B) and all a ∈ K̂0(Pn
B).

Proof: If b is represented by an element of Ã(B) or a is represented by an
element of Ã(Pn

B) then the claim of the Proposition follows from the projection
formula for fiber integrals (see [5, p. 31]). If we remember that K0(Pn

B) is
generated by elements of the type p∗Pn

Z
(O(k))⊗p∗B(b), we are thus reduced to the

case where a = p∗Pn
Z
(O(k)) and b is represented by an acyclic hermitian bundle

V . Let E be the trivial bundle of rank n+ 1 over M , with trivial metric. Using
7.15, we compute pB∗(p∗B(b)a) = Symk(E) ⊗ V − T (hPn

B
, hp∗B(V )⊗p∗P (O(k))) =

Symk(E)⊗ V − ch(V )τ(O(k)) = b.pB∗(a), which ends the proof. Q.E.D.

We shall also need the following special case of a ”base change” formula for the
push-forward map:

Proposition 7.17 Let the terminology of 7.16 hold. Let fn : Pn
Z → SpecZ and

pPn
Z

: Pn
B → P be the natural projections. Endow Pn

Z with the Fubini-Study
metric and Pn

B with the product metric. The formula

f∗nfn,∗(p) = pB∗p
∗
Pn

Z
(p)

holds in K̂0(Pn
Z) for all p ∈ K̂0(Pn

Z).

Proof: Suppose first that p is represented by an element η ∈ Ã(Pn
Z); using

Fubini’s theorem for the integration on product spaces, we compute

pB∗p
∗
Pn

Z
(η) =

∫
B(C)×Pn(C)/B(C)

Td(TpB)p∗Pn
Z
(η) =

∫
Pn(C)/B(C)

p∗Pn
Z
(Td(TPn

Z).η) =
∫
Pn(C)

Td(TPn
Z).η = f∗nfn,∗(η)
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which shows that the claim holds in this case. To prove the general case, we can
again assume that p is represented by the bundle O(k). The claim then follows
immediately from the definition of the push-forward (after 3.1) and 7.15 (with
η taken to be the trivial bundle). Q.E.D.

Remark. The two last propositions hold for more general fiber products than
relative projective spaces; this can be proved either by observing that both
equalities are compatible with 6.7 or by generalizing 7.15.

Proposition 7.18 Let the terminology of 7.17 and 7.16 hold. Fix a power
series A. Then if δ(A, fn, (.)) vanishes on all the elements of K̂0(Pn

Z) then
δ(A, pB , (.)) vanishes on all the elements of K̂0(Pn

B).

Proof: We again endow Pn
B with the product metric. Let O(1) be the tau-

tological line bundle on Pn
Z, endowed with its Fubini-Study metric. Write

θBP := θk(TpB
∨
)−1(1 − A(TpB)) and θP := θk(Tfn

∨
)−1(1 − A(Tfn)). Write

pP = pPn
Z
. By construction, we have θBP := p∗P (θP ). Using 7.17 and 7.16, we

can compute for all p ∈ K̂0(Pn
Z) and all b ∈ K̂0(B)

pB∗(θBPψ
k(p∗P (p)p∗B(b))) = pB∗(θBPψ

k(p−1
P (p)))ψk(b) =

pB∗(p∗P (θPψ
k(p)))ψk(b) =

f∗(f∗(θPψ
k(p)))ψk(b) = f∗(ψk(f∗(p)))ψk(b) = ψk(pB∗(p∗P (p)))ψk(b) =

ψk(pB∗(p∗P (p)p∗B(b)))

which shows that δ(A, pB , p
∗
P (p)p∗B(b)) = 0 holds for all the elements p∗P (p)p∗B(b).

Since K̂0(Pn
B) is generated by such elements and elements of Ã(Pn

B), we are
done. Q.E.D.

Proposition 7.19 If A = k.φk(R) − R then δ(A, fn, y0) = 0 for all y0 ∈
K̂0(Pn

Z) and for all n ≥ 0.

Proof: We first need two lemmas.

Lemma 7.20 Let A be a power series with real coefficients. Suppose that
δ(A, fn, y0) = 0 for all hermitian bundles y0 ∈ K̂0(Pn

Z). Then A(TPn
Z) =

k.φk(R(TPn
Z))−R(TPn

Z).

Proof of 7.20: let ∆ : Pn
Z → Pn

Z × Pn
Z be the diagonal embedding and f :

Pn
Z × Pn

Z → Pn
Z be the projection on the first factor and g : Pn

Z → Pn
Z be the

identity. Endow Pn
Z×Pn

Z with a deformable Kähler metric, endow Pn
Z with the

metric induced by ∆ and the normal bundle N of ∆ with the quotient metric.
Using the hypothesis and 7.18, we see that δ(A, f, y0) = 0 for all hermitian
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vector bundles y0 ∈ K̂0(Pn
Z × Pn

Z). Also, δ(A, g, y0) = 0 for every hermitian
vector bundle y0 ∈ K̂0(Pn

Z), since g is the identity. Applying 7.9 with η the
trivial hermitian bundle, we get the equation

k.φk(R(N))− Td(Tf)A(Tf)ch(θk(Tf∨)−1)Td(N)−1ch(θk(N∨))−

R(N)ch(θk(N∨))ch(θk(Tf∨)−1) = 0

where N is the normal bundle of the immersion ∆. It is shown in [18, Ex. 8.4.2,
p. 146] that we have N ' TPn

Z. Furthermore, we clearly have Tf = p∗2TPn
Z,

where p2 is the projection on the second factor of Pn
Z × Pn

Z. Thus ∆∗Tf =
∆∗p∗2TPn

Z = (p2 ◦∆)∗TPn
Z = TPn

Z. Therefore, we can compute

k.φk(R(T (Pn))−Td(TPn)A(TPn)ch(θk((TPn)∨)−1)Td(TPn)−1ch(θk((TPn)∨))−

R(TPn)ch(θk((TPn)∨))ch(θk((TPn)∨)−1) = k.φk(R(TPn))−A(TPn)−R(TPn) = 0

which proves our claim. Q.E.D.

The use of the diagonal immersion in the above proof was suggested to us by
Nicusor Dan. The next lemma might be compared to the lemma [26, Lemma
1.7.1], which gives a determination of the Todd genus.

Lemma 7.21 Let A(x) be a power series with real coefficients. The n+ 1 first
coefficients a0, . . . an of A are uniquely determined by the conditions δ(A, fi,OPi

Z
) =

0 (i = 0 . . . n), where the OPi
Z

are the trivial line bundles endowed with their
trivial metrics.

Proof of 7.21: let k > 0. Writing out the conditions stated in the lemma, we
get the following system of equations for the coefficients of A:

fi∗(θ
k(Tfi

∨
)−1A(Tfi)) = ψk(fi∗(1))− fi∗(θ

k(Tfi
∨
)−1) (20)

where 0 ≤ i ≤ n. Notice that we have an exact sequence

0 → R → K̂0(Z) → K0(Z) → 0

over Z (see [21, Th. 6.2, (i), p. 213]). In view of the algebraic Adams-Riemann-
Roch theorem for local complete intersection morphisms (see [19, Th. 7.6, p.
149]), the image in K̂0(Z) ⊗ Z[ 1

k ] of the right side of (20) lies in R. Since the
left side is by construction in R we can consider (20) as a system of linear
equations over R. Let yi be the real number corresponding to ψk(fi∗(1)) −
fi∗(θk(Tfi

∨
)−1). We have to solve the following system:∫

Pi(C)

k−iφk(Td(Tfi))A(Tfi) = yi, 0 ≤ i ≤ n
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Recall that on Pi(C) there is an exact sequence

0 → O → O(1)⊕i+1 → TPi(C) → 0 (21)

Let x = c1(O(1)). Using the additivity of R and the the multiplicativity of the
Todd class, we are thus reduced to∫

Pi(C)

k−iφk(Td(x)i+1)(i+ 1)A(x) = yi.

For each i ≥ 0, this is a system of equations in the variables a0, . . . ai and the
coefficient of ai is the real number k−i(i + 1)

∫
Pi(C)

xi = k−i(i + 1). Thus we
are done. Q.E.D.

The preceding lemma provides us with a unique power series A(x) such that the
δ(A, fi,OPi

Z
) = 0 for all i ≥ 0. Until the end of the proof, let A(x) denote that

uniquely determined series. We make the following inductive hypothesis on n:
the term δ(A, fi, y0) vanishes for any virtual hermitian bundle y0 on Pi

Z, for all
non-negative i < n and the coefficients a0, a1, . . . an−1 coincide with the n first
coefficients q0, q1, . . . qn−1 of the series k.φk(R) − R. This hypothesis is clearly
true for n = 0.
We carry out the first part of the inductive step. Let O(1) be the tautological
line bundle on Pn

Z. Let s be the canonical section of O(1) vanishing on the
hyperplane at ∞. The section s determines a resolution

0 → O(−1) → OPn → i∗OPn−1 → 0

If we tensorize this sequence with O(l), wet get the sequence

0 → O(l − 1) → O(l) → i∗(O(l)) → 0.

Let f be the projection Pn
Z → Spec Z and g the projection Pn−1

Z → Spec Z.
By construction, δ(A, f,OPn

Z
) vanishes. Applying induction on l, we suppose

that δ(A, f,OPn
Z
(l − 1)) = 0. Let N be the normal bundle of the immer-

sion i of the hyperplane. Using the induction hypothesis on the coefficients
of A, the fact that N is a line bundle and the fact that c1(N)i = 0 for all
i > n− 1 (since the cohomology vanishes in degree greater than the dimension
of Pn−1

C ), we see that A(N) = R(N) − k.φk(R(N)). Using the same argu-
ment and the exact sequence (21), we also see that A(Tg) = (n+ 1)A(O(1)) =
(n + 1)(R(O(1)) − k.ψk(O(1))) = R(Tg) − k.φk(R(Tg)). From this we de-
duce that i∗(A(Tf)) = A(N) + A(Tg) = i∗(R(Tf) − k.φk(R(Tf))). So by
7.14 f∗(θk(Tf

∨
)−1(1−A(Tf))ψk(O(l)))−ψk(f∗(O(l))) = 0, which means that

δ(A, f,O(l)) vanishes as well. By induction on l, it thus holds for all O(l)
(l ≥ 0). Since these generate K0(Pn

Z), any hermitian bundle can be represented
in K̂0(Pn

Z) as a linear combination of elements of Ã(Pn
Z) and bundles O(l). Us-

ing 7.5 and additivity, we conclude that δ(A, f, y0) = 0 holds for all hermitian
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vector bundles y0 on Pn
Z. This settles the first part of the inductive step on n.

To prove the second part, we apply 7.20 and conclude thatA(TPn) = k.φk(R(TPn))−
R(TPn). Using the exact sequence (21), we compute∫

Pn
C

A(TPn) = (n+ 1)
∫
Pn

C

A(x) = (n+ 1)an

∫
Pn

C

xn = (n+ 1)an.

Carrying out a similar computation for R(TPn)− k.φk(R(TPn)) in place of A,
we get ∫

Pn
C

k.φk(R(TPn))−R(TPn) = (n+ 1)qn.

Thus an = qn and we are through with the inductive step on n. Q.E.D.

Corollary 7.22 The statement 7.1 holds.

Proof: Apply the Propositions 7.14, 7.18 and 7.19. Q.E.D.

Let us notice that the ”diagonal trick” we use to prove 7.1 for the projective
spaces works in the algebraic case as well. In the arithmetic case, the advantage
of this method over the original method of Gillet and Soulé (which gave birth to
the R-genus) is that it avoids any explicit computation of the analytic torsion.
In the algebraic case, it avoids the computation of the group K0(Pn

Z). About
this, see also [17]. J.-B. Bost told us that he knew a proof of the analog of 7.19
for arithmetic Chow groups, using explicit resolutions of the diagonal.

8 The arithmetic Grothendieck-Riemann-Roch
theorem for local complete intersection p.f.s.r.
morphisms

In this section, we shall define a graded ring which arises from the γ-filtration
on arithmetic Grothendieck groups, define a Chern character with values in that
ring, state and prove a relative Riemann-Roch theorem for that Chern character
and finally discuss shortly the relationship between that ring and the arithmetic
Chow ring.
Let R be a λ-ring endowed with an augmentation rk : R→ Z. We also suppose
that R is locally nilpotent. The following definition appears in [24, V, 1.11, p.
308 and 3.10, p. 331].

Definition 8.1 The group GrR is the direct sum
⊕∞

i=0 F
iR/F i+1R.
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Since the γ-filtration is a ring filtration, the group GrR carries a natural ring
structure, which is compatible with its natural grading.

Definition 8.2 Let y ∈ R. The i-th Chern class cgr
i (y) of y is the element

γi(y − rk(y)) mod F i+1R ∈ GriR.

Let σn denote the n-th symmetric function in the variables T1, . . . Tn. Let P
be the unique power series with rational coefficients such that P (σ1, . . . σn) =∑n

i=1 e
Ti . The Chern character chgr(y) ∈ GrRQ is the element P (cgr

1 (y), . . . cgr
n (y)).

Let also Q be the unique power series with rational coefficients such that
Q(σ1, . . . σn) =

∏n
i=1

Ti

1−e−Ti
. The Todd class Tdgr(y) ∈ GrRQ is the element

Q(cgr
1 (y), . . . cgr

n (y)). For each j ≥ 0, let us denote by Rj
k the eigenspace in

RQ associated to the eigenvalue kj of the Q-vector space endomorphism of RQ

given by the k-th Adams operation ψk. The proof of the following proposition
can be found in [4, Th. 4.3, p. 119 and Th. 1, p. 97]:

Proposition 8.3 (a) The space Rj
k is independent of k; it will thus henceforth

be denoted by Rj;

(b) if GrRQ is endowed with the λ-ring structure arising from its grading then
the Chern character induces a λ-ring isomorphism chgr : RQ → GrRQ; if
x ∈ Rj, then chgr(x) = x mod F j+1RQ.

Notice that in view of 4.1 and (b), the equality F jRQ = ⊕l≥0R
j+l holds, where

the direct sum is interior.
We now specialize to the case R = K̂0(Y ). If ω ∈ Ã(Y ), we shall abbreviate
chgr(ω) by ω. The following lemma is well-known; because we can’t give a
reference for a proof, we shall include one.

Lemma 8.4 Let A = ⊕∞i=0Ai be a graded commutative Q-algebra. Let C ∈
1 + ⊕∞i=1Ai. For k > 1, the equation a−1.φk(a) = C has a unique solution in
1 +⊕∞i=1Ai.

Proof: Let C = C0 +C1 +C2 + . . ., a = a0 +a1 +a2 + . . . be the representations
of C and a arising from the grading (the sums are finite). In terms of the ai

and the Ci, the equation reads

∞∑
i=0

ki.ai = (
∞∑

i=0

ai)(
∞∑

i=0

Ci)

which is equivalent to the linear system of equations

a0Ci + a1Ci−1 + . . .+ ai−1C1 + (1− ki)ai = 0.
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Let us fix a0 = 1. The fact that 1−ki 6= 0 for i > 0 then implies that the system
has a unique solution, which can be determined recursively. This completes the
proof. Q.E.D.

Let Y → B be a local complete intersection p.f.s.r. morphism. We suppose that
Y is endowed with a Kähler metric.

Definition 8.5 The arithmetic Todd genus Tdgr
A (Tg) of g is the unique element

of GrK̂0(Y )Q determined via the last lemma by the equation

chgr(θk
A(Tg

∨
)−1) = kdim(B)−dim(Y )Tdgr

A (Tg)−1φk(Tdgr
A (Tg)).

To see that how the R-genus appears in the arithmetic Todd genus, let us define
the element Tdgr(Tg), which is uniquely determined via the last lemma by the
equation

chgr(θk(Tg
∨
)−1) = kdim(B)−dim(Y )Tdgr(Tg)−1φk(Tdgr(Tg))

(if g is smooth, it can proved that Tdgr(Tg) is the Todd class of the hermitian
bundle Tg). Let us now look for an additive real characteristic class A, such
that the equation

chgr(θk
A(Tg

∨
)−1) = kdim(B)−dim(Y )(Tdgr(Tg)(1−A(Tg)))−1φk(Tdgr(Tg)(1−A(Tg)))

is satisfied. Were are lead to the equation in cohomology

1 +R(Tg)− k.φk(R(Tg)) = (1−A(Tg))−1.ψk(1−A(Tg)).

Using the definition of the product in arithmetic K0-theory, the expression after
the last equality can be evaluated to be

(1 +A(Tg)).(1− k.φk(A(Tg))) =

1− k.φk(A(Tg)) +A(Tg)− ddcA(Tg).k.φk(A(Tg)) = 1− k.φk(A(Tg)) +A(Tg)

an thus using the last lemma, we can conclude that A(Tg) = R(Tg) and thus
that Tdgr

A (Tg) = Tdgr(Tg)(1 − R(Tg)). We can now state the main result of
this section.

Theorem 8.6 Let g : Y → B be a local complete intersection p.f.s.r. mor-
phism. Let d = dim(Y )− dim(B).

(a) The inclusion g∗F
iK̂0(Y )Q ⊆ F i−dK̂0(B)Q holds for all i ∈ Z. Thus the

push-forward map induces a group map g∗ : GrK̂0(Y )Q → GrK̂0(B)Q.

(b) Let y ∈ K̂0(Y ). The equality chgr(g∗(y)) = g∗(Td
gr
A (Tg)chgr(y)) holds in

GrK̂0(B)Q.
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Proof: Before beginning the proof, notice that the element θk
A(Tg

∨
)−1 is in-

vertible in K̂0(Y )Q. This follows from 4.2 and the fact that for any differential
form ω ∈ Ã(Y ), an inverse in K̂0(Y ) of the element 1− ω is given by the finite
sum 1 + ω + ddcω.ω + ddcω.ddcω.ω + . . ..
(a) Let e = chgr,−1(Tdgr

A (Tg)−1). Let k > 1. From the definitions, we have
θk

A(Tg
∨
)−1.ψk(e) = e.k−d. Let y ∈ K̂0(Y )j . We compute

ψk(g∗(e.y)) = g∗(θk
A(Tg

∨
)−1ψk(e).ψk(y)) =

g∗(k−de.kjy) = kj−dg∗(e.y).

In view of 8.3, this implies that g∗(e.y) ∈ F j−dK̂0(B)Q. Since e.y ∈ F jK̂0(Y )Q,
it is thus sufficient to show that every element of F jK̂0(Y )Q is of the form
e.(y1 + . . . yr), where for all 1 ≤ i ≤ r, ψk(yi) = kjiyi for some ji ≥ j. This is a
consequence of the fact that e is invertible in K̂0(Y )Q and of the remark after
8.3 (b), so we are done.
(b) Continuing with the same terminology, we compute

chgr(ψk(g∗(e.y))) = kj−dg∗(e.y) mod F
j−d+1
Q =

kj−dg∗(y) mod F
j−d+1
Q =

kj−dg∗(chgr(y)) = φk(g∗(chgr(y)))

where the first equality follows from (a) and the second one from the fact that
by construction e is the sum of 1 and an element of F 1K̂0(Y )Q. Notice now
that by additivity, the resulting equality chgr(ψk(g∗(e.y))) = φk(g∗(chgr(y)))
is valid for all y ∈ K̂0(Y )Q. Thus we might choose y = e−1.y′ and we obtain
the equality φk(chgr(g∗(y′))) = φk(g∗(Td

gr
A (Tg)chgr(y′))) and thus the result of

(b). Q.E.D.

The part (b) of the last theorem is formally identical to the arithmetic Riemann-
Roch theorem in all degrees stated in [16, Th. 6.1, p. 77]. Analogously to the
arithmetic Riemann-Roch theorem [23, Th. 8, p. 534], it can be used to estimate
asymptotically the covolumes of twisted hermitian bundles. More precisely, let
B = SpecZ and let E be a hermitian bundle on Y . Let L be an ample line
bundle on Y , endowed with a positive hermitian metric. For any hermitian Z-
module V , let V ol(V ) denote the volume of a fundamental domain of the lattice
V ⊂ VC, for the unique Haar measure which gives volume 1 to the unit ball.
It follows from the definitions that there is an isomorphism Gr1K̂0(Z) ' R,
which sends elements of Ã(Z) on the corresponding real number and hermitian
Z-modules V on − log(V ol(V )). Let Γ(.) take the global sections of a hermitian
bundle, endowed with the metric integrated along the fibers. From (b), we
obtain that

− log(V ol(Γ(E ⊗ L
⊗n

))) =
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τ(EC ⊗ LC
⊗n

) + g∗(Td
gr
A (Tg)chgr(E ⊗ L

⊗n
))

when n >> 0. By a theorem of Bismut and Vasserot [14], the asymptotic esti-
mate τ(EC⊗LC

⊗n
) = O(ndim(Y (C))log(n)) holds. For degree reasons, the term

g∗(Td
gr
A (Tg)chgr(E ⊗ L

⊗n
)) = g∗(Td

gr
A (Tg)chgr(E)exp(n.cgr

1 (L))) is a polyno-
mial of degree dim(Y ), with leading coefficient 1

dim(Y )!rk(E)g∗(c
gr
1 (L)dim(Y )).

As a consequence, the equality of real numbers

− lim
n→∞

log(V ol(Γ(E ⊗ L
⊗n

)))
ndim(Y )

=
1

dim(Y )!
rk(E)g∗(c

gr
1 (L)dim(Y ))

holds, which is a variant of an arithmetic analog of the Hilbert-Samuel theorem.
About this, see [23, Th. 9, p. 539] and [1, Intro.].
The group GrK̂0(.)Q is naturally isomorphic to the arithmetic Chow theory
defined in [20], as a covariant and contravariant functor. The contravariance
statement follows immediately from the functoriality of the λ-operations and
the fact that arithmetic Chow theory and arithmetic K0-theory are isomorphic
as λ-rings (modulo torsion) via the arithmetic Chern character (see [21, Th.
7.3.4, p. 235] for the proof). The covariance statement can be deduced from
the unpublished arithmetic Riemann-Roch theorem in all degrees for arithmetic
Chow groups mentioned in the introduction, the just mentioned isomorphism
statement and the unicity of arithmetic Chern classes proved in [21, Th. 4.1, p.
187]. However, we shall not carry out the details of the proof of covariance, in
view of the inofficial character of the just mentioned arithmetic Riemann-Roch
theorem.
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