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Abstract

Let p > 0 be a prime number. We give a short proof of the Adams-

Riemann-Roch theorem for the p-th Adams operation, when the involved

schemes live in characteristic p. We also answer a question of B. Köck.

1 Introduction

Let Y be a scheme. Suppose that Y is quasi-compact and is endowed with an

ample line bundle. Let f : X → Y be a projective local complete intersection

morphism of schemes. Let E be a coherent locally free sheaf on X and let k > 2 be

a natural number. The Adams-Riemann-Roch theorem asserts that the equality

ψk(R•f∗(E)) = R•f∗
(
θk(Lf )−1 ⊗ ψk(E)

)
(1)

holds in K0(Y )[ 1
k
] := K0(Y )⊗Z Z[ 1

k
].

The various symbols appearing in this formula are defined as follows.

The Grothendieck group of locally free coherent sheaves on a scheme Z is denoted

by K0(Z).
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The map R•f∗ : K0(X)→ K0(Y ) refers to the unique group morphism K0(X)→
K0(Y ), which sends the class of a locally free coherent sheaf E on X to the class

of the strictly perfect complex R•fE in K0(Y ) (see [5, IV, 2.12]).

To define the symbol ψk, recall that the tensor product of OZ-modules makes

the group K0(Z) into a commutative unitary ring and that the inverse image of

coherent sheaves under any morphism of schemes Z ′ → Z induces a morphism of

unitary rings K0(Z)→ K0(Z ′). The symbol ψk refers to an operation associating

a ring endomorphism of K0(Z) to any quasi-compact scheme Z. It is uniquely

determined by the properties:

(i) for any invertible sheaf L on Z we have

ψk(L) = L⊗k,

(ii) for any morphism of quasi-compact schemes g : Z ′ → Z, we have

g∗ ◦ ψk = ψk ◦ g∗.

The symbol θk refers to an operation associating an element of K0(Z) to any lo-

cally free coherent sheaf on a quasi-compact scheme Z. It is uniquely determined

by the properties:

(i) for any invertible sheaf L on a quasi-compact scheme Z we have

θk(L) = 1 + L+ · · ·+ Lk−1,

(ii) for any short exact sequence 0→ E ′ → E → E ′′ → 0 of locally free coherent

sheaves on a quasi-compact scheme Z we have

θk(E) = θk(E ′)⊗ θk(E ′′),

(iii) for any morphism of quasi-compact schemes g : Z ′ → Z and any locally free

coherent sheaf E on Z we have

g∗(θk(E)) = θk(g∗(E)).

If E is a locally free coherent sheaf on a quasi-compact scheme Z, then the

element θk(E) is often called the k-th Bott element. If Z is quasi-compact and
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carries an ample line bundle, it is known that θk(E) is invertible in K0(Z)[ 1
k
] for

every locally free coherent sheaf E on Z (see Lemma 3.3 below). In the latter

situation θk extends to a unique map K0(Z)→ K0(Z)[ 1
k
] satisfying

θk(E) = θk(E ′) · θk(E ′′)

whenever E = E ′ + E ′′ in K0(Z).

The symbol Lf refers to the cotangent complex of the morphism f , which a

strictly perfect complex on X (under the running assumptions on f). Here Lf is

identified with its class in K0(X).

This explains all the ingredients of the formula (1).

The calculations made in [5, VIII] imply that the equality (1) is valid in K0(Y )⊗
Q. The method of [5, VIII] involves factoring f into a closed immersion and a

projection from a relative projective space. After the introduction of the defor-

mation to the normal cone technique (see [1]), it became clear that the equality

(1) is also valid in K0(Y )[ 1
k
], as stated above. In the situation where Y is also

supposed to be of finite type over a noetherian ring, a proof can be found in

[4, V, par. 7, Th. 7.6]. Nevertheless, no complete proof of the equality (1) can

be found in the literature.

Our aim in this text is to provide a new and more direct proof of the formula (1)

in the specific situation where the following supplementary hypotheses are made:

k is a prime number p, f is smooth and Y is a scheme of characteristic p.

The search for this proof was motivated by the fact that for any quasi-compact

scheme Z of characteristic p, the endomorphism ψp : K0(Z) → K0(Z) coincides

with the endomorphism F ∗Z : K0(Z) → K0(Z) induced by pullback by the abso-

lute Frobenius endomorphism FZ : Z → Z. This is a consequence of the splitting

principle [5, VI]. We asked ourselves whether in this case θp(Lf ) = θp(Ωf ) can

also be represented by an explicit virtual bundle. If such a representative were

available, one might try to give a direct proof of (1) that does not involve fac-

torisation. The proof given in Section 3 shows that this is indeed possible.

In the article [6, sec. 5] by B. Köck, a different line of speculation led to a

question (Question 5.2) in the context of a characteristic p interpretation of the

Adams-Riemann-Roch formula. See the Appendix for details. Our Proposition

2.6 and Proposition 3.2 show that the answer to this question is positive.

The Adams-Riemann-Roch formula (1) formally implies the Hirzebruch-Riemann-
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Roch theorem for a smooth projective variety over a field. This is explained for

instance in [9, Intro.]. On the other hand, a specialization argument shows that

the Hirzebruch-Riemann-Roch theorem for varieties over any field follows from

the Hirzebruch-Riemann-Roch theorem for varieties over finite fields. Thus by

reduction modulo primes our proof of (1) in positive characteristic leads to a

proof of the Hirzebruch-Riemann-Roch formula in general.

The structure of the article is the following. In Section 2, we construct a canonical

bundle representative for the element θp(E) for any locally free coherent sheaf

E on a quasi-compact scheme of characteristic p. In Section 3, we give the

computation proving (1) with the following supplementary assumptions : k = p,

f is smooth and Y is a scheme of characteristic p.

Acknowledgments. The second author thanks Reinhold Hübl for explanations

on the relative Frobenius morphism and for providing a key argument in the

proof of Proposition 3.2. He also thanks B. Kck for encouraging him to drop

some restrictive hypotheses made in earlier versions of this text. Both authors

thank the referee for their work and for their suggestions.

2 A bundle representative for θp(E)

Let p be a prime number and Z a scheme of characteristic p. Let E be a locally

free coherent sheaf on Z. For any integer k > 0 let Symk(E) denote the k-th

symmetric power of E. Then

Sym(E) :=
⊕
k>0

Symk(E)

is a quasi-coherent graded OZ-algebra, called the symmetric algebra of E. Let

JE denote the graded sheaf of ideals of Sym(E) that is locally generated by the

sections ep of Symp(E) for all sections e of E, and set

τ(E) := Sym(E)/JE.

Locally this construction means the following. Consider an open subset U ⊂ Z

such that E|U is free, and choose a basis e1, . . . , er. Then Sym(E)|U is the poly-

nomial algebra over OZ in the variables e1, . . . , er. Since Z has characteristic p,

for any open subset V ⊂ U and any sections a1, . . . , ar ∈ OZ(V ) we have(
a1e1 + . . .+ arer

)p
= ap1e

p
1 + . . .+ apre

p
r.
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It follows that JE|U is the sheaf of ideals of Sym(E)|U that is generated by

ep1, . . . , e
p
r. Clearly that description is independent of the choice of basis and

compatible with localization; hence it can be used as an equivalent definition of

JE and τ(E).

The local description also implies that τ(E)|U is free over OZ |U with basis the

images of the monomials ei11 · · · eirr for all choices of exponents 0 6 ij < p. From

this we deduce:

Lemma 2.1. If E is a locally free coherent sheaf of rank r, then τ(E) is a locally

free coherent sheaf of rank pr.

Now we go through the different properties that characterize the operation θp.

Lemma 2.2. For any invertible sheaf L on Z we have

τ(L) ∼= OZ ⊕ L⊕ · · · ⊕ L⊗(p−1).

Proof. In this case the local description shows that JL is the sheaf of ideals of

Sym(L) that is generated by Symp(L) = L⊗p. The lemma follows at once.

Lemma 2.3. For any morphism of schemes g : Z ′ → Z and any locally free

coherent sheaf E on Z we have

g∗(τ(E)) ∼= τ(g∗(E)).

Proof. Direct consequence of the construction.

Lemma 2.4. For any two locally free coherent sheaves E ′ and E ′′ on Z we have

τ(E ′ ⊕ E ′′) ∼= τ(E ′)⊗ τ(E ′′).

Proof. The homomorphism of sheaves

E ′ ⊕ E ′′ ↪→ Sym(E ′)⊗ Sym(E ′′), (e′, e′′) 7→ e′ ⊗ 1 + 1⊗ e′′

induces an algebra isomorphism

Sym(E ′ ⊕ E ′′)→ Sym(E ′)⊗ Sym(E ′′).
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The local description as polynomial rings in terms of bases of E ′|U and E ′′|U
shows that this is an isomorphism of sheaves of OZ-algebras. Since

(e′ ⊗ 1 + 1⊗ e′′)p = e′p ⊗ 1 + 1⊗ e′′p

for any local sections e′ of E ′ and e′′ of E ′′, this isomorphism induces an isomor-

phism of sheaves of ideals

JE′⊕E′′ → JE′ ⊗ Sym(E ′′)⊕ Sym(E ′)⊗ JE′′ .

The lemma follows from this by taking quotients.

Lemma 2.5. For any short exact sequence 0 → E ′ → E → E ′′ → 0 of locally

free coherent sheaves on a quasi-compact scheme Z we have

τ(E) = τ(E ′)⊗ τ(E ′′)

in K0(Z).

Proof. Let Ẽ ′ and Ẽ ′′ denote the inverse images of E ′ and E ′′ under the projec-

tion morphism Z ×P1 → Z. Then there exists a short exact sequence

0→ Ẽ ′ → Ẽ → Ẽ ′′ → 0

of locally free coherent sheaves on Z × P1 whose restriction to the fiber above

0 ∈ P1 is the given one and whose restriction to the fiber above ∞ ∈ P1 is split

(the construction is given in [2, I, Par. f)]). Thus the respective restrictions

satisfy Ẽ0
∼= E and Ẽ∞ ∼= E ′⊕E ′′. Using Lemmata 2.3 and 2.4 this implies that

τ(E) ∼= τ(Ẽ0) ∼= τ(Ẽ)0

and

τ(E ′)⊗ τ(E ′′) ∼= τ(E ′ ⊕ E ′′) ∼= τ(Ẽ∞) ∼= τ(Ẽ)∞.

But the fact that K0(Z × P1) is generated by the powers of O(1) over K0(Z)

(see [5, VI, Th.1.1]) implies that the restriction to 0 and∞ induce the same map

K0(Z × P1) → K0(Z). Thus it follows that τ(Ẽ)0 = τ(Ẽ)∞ in K0(Z), whence

the lemma.

Remark. Lemma 2.5 can also be proved by an explicit calculation of sheaves.

For a sketch consider the decreasing filtration of Sym(E) by the graded ideals
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Symi(E ′) · Sym(E) for all i > 0. One first shows that the associated bi-graded

algebra is isomorphic to Sym(E ′) ⊗ Sym(E ′′). The filtration of Sym(E) also

induces a filtration of τ(E) by graded ideals, whose associated bi-graded algebra

is therefore a quotient to Sym(E ′) ⊗ Sym(E ′′). To prove that this quotient is

isomorphic to τ(E ′)⊗ τ(E ′′) one shows that the kernel of the quotient morphism

Sym(E ′)⊗ Sym(E ′′)� Gr(τ(E)) is precisely JE′ ⊗ Sym(E ′′)⊕ Sym(E ′)⊗ JE′′ .

But this is a purely local assertion, for which one can assume that the exact

sequence splits. The calculation then becomes straightforward, as in Lemma 2.4.

Proposition 2.6. For any locally free coherent sheaf E on a quasi-compact

scheme Z we have τ(E) = θp(E) in K0(Z).

Proof. Combination of Lemmata 2.2, 2.3, 2.5 and the defining properties (i),

(ii), (iii) of θp(·) in Section 1.

3 Proof of the Adams-Riemann-Roch formula

Let us now consider the morphism of schemes f : X → Y of the introduction. Re-

call that we supposed that f is a projective local complete intersection morphism

and that Y is quasi-compact and endowed with an ample line bundle. We now

make the supplementary hypothesis that f is smooth and that Y is a scheme of

characteristic p > 0. Let r be the rank of Ωf . This is a locally constant function

on X.

Consider the commutative diagram

X
F //

f

  B
BB

BB
BB

B

FX

  
X ′

J //

f ′

��

X

f

��
Y

FY // Y

where FX and FY are the respective absolute Frobenius morphisms and the square

is cartesian. The morphism F = FX/X′ is called the relative Frobenius morphism

of X over Y . The following lemma summarizes the properties of F that we shall

need.

Lemma 3.1. The morphism F is finite and flat of constant degree pr.
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For lack of a more complete reference, see [3, 1.1, p. 249]. Let I denote the kernel

of the natural morphism of OX-algebras F ∗F∗OX → OX , which by construction

is a sheaf of ideals of F ∗F∗OX . Let

Gr(F ∗F∗OX) :=
⊕
k>0

Ik/Ik+1

denote the associated graded sheaf of OX-algebras.

Proposition 3.2. 1

(a) There is a natural morphism of OX-modules

I/I2 ∼= Ωf .

(b) There is a natural morphism of graded OX-algebras

τ(I/I2) ∼= Gr(F ∗F∗OX). (2)

Proof. Since F is affine (see Lemma 3.1), there is a canonical isomorphism

Spec F ∗F∗OX
∼= X ×X′ X,

for which the natural morphism of OX-algebras F ∗F∗OX → OX corresponds

to the diagonal embedding X ↪→ X ×X′ X. We carry out these identifications

throughout the remainder of this proof. Then I is the sheaf of ideals of the

diagonal, and so I/I2 is naturally isomorphic to the relative sheaf of differentials

ΩF . On the other hand we have F ∗Ωf ′ = F ∗J∗Ωf = F ∗XΩf , which yields a natural

exact sequence

F ∗XΩf → Ωf → ΩF → 0.

Here the leftmost arrow sends any differential dx to d(xp) = p · xp−1 · dx = 0.

Thus the exact sequence yields an isomorphism Ωf
∼= ΩF

∼= I/I2, proving the

first assertion.

1The special case of Proposition 3.2 where Y is assumed to be a field can be found

in an unpublished text by M. Rost (see Lemma 2, p. 5 in the text Frobenius, K-

theory, and characteristic numbers, available at the web address http://www.mathematik.uni-

bielefeld.de/∼rost/frobenius.html), who attributes it to P. Deligne. The authors discovered

Proposition 3.2 independently.
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For the second assertion observe that, by the universal property of the sym-

metric algebra Sym(·), the embedding I/I2 ↪→ Gr(F ∗F∗OX) extends to a unique

morphism of OX-algebras

ρ : Sym(I/I2)→ Gr(F ∗F∗OX).

We want to compare the kernel of ρ with JI/I2 . For this recall that I, as the

sheaf of ideals of the diagonal, is generated by the sections s ⊗ 1 − 1 ⊗ s for all

local sections s of OX . The p-th power of any such section is

(s⊗ 1− 1⊗ s)p = sp ⊗ 1− 1⊗ sp = 0

in F ∗F∗OX , because sp = F ∗Xs is the pullback via FX of a section of OX and

hence also the pullback via F of a section of OX′ . Thus ρ sends the p-th powers

of certain local generators of I/I2 to zero. But in Section 2 we have seen that

JI/I2 is locally generated by the p-th powers of any local generators of I/I2.

Therefore ρ(JI/I2) = 0, and so ρ factors through a morphism of OX-algebras

ρ̄ : τ(I/I2)→ Gr(F ∗F∗OX).

From the definition of Gr(F ∗F∗OX) we see that ρ and hence ρ̄ is surjective.

On the other hand the smoothness assumption on f implies that I/I2 ∼= Ωf

is locally free of rank r. Thus Lemma 2.1 shows that τ(I/I2) is locally free of

rank pr.

We shall now prove2 that Gr(F ∗F∗OX) is locally free of the same rank as τ(I/I2)

as an OX′-module. By Nakayama’s lemma, this will imply that ρ̄ is an isomor-

phism, thus proving (b).

Let x ∈ X and let x′ = F (x). A local computation shows thatOx ' X ×X′ Spec Ox′ .

Thus, in the natural morphisms of rings

OFX(x) → Ox′ → Ox

the morphism on the right-hand side is injective and makes Ox a finite Ox′-

algebra. Furthermore, the image of OFX(x) in Ox is Op
x by construction. This

allows us to apply [8, Prop. 6.18, p.107], which implies that Ox has a p-basis of

order r over Ox′ . By definition, this means that there exist x1, . . . xr ∈ Ox and

ξ1, . . . ξr ∈ Ox′ such that

Ox ' Ox′ [T1, . . . Tr]/(T
p
1 − ξ1, . . . , T

p
r − ξr)

2This argument is a variant of an argument communicated to us by Reinhold Hübl.
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via the Ox′-algebra morphism sending Ti on xi. With this identification, the ideal

I is given by the equations

(Ti − Si)i∈{1,...,r}

in the ring

Ox⊗Ox′
Ox ' Ox′ [T1, . . . Tr, S1, . . . Sr]/(T

p
1 − ξ1, . . . , T

p
r − ξr, S

p
1 − ξ1, . . . , S

p
r − ξr).

If we apply the Ox′-algebra automorphism given by the formulae

Ti 7→ Ti + Si, Si 7→ Si

to the ringOx′ [T1, . . . Tr, S1, . . . Sr], we obtain the following equivalent description:

the ideal I is given by the equations (Ti)i∈{1,...,r} in the ring

Ox′ [T1, . . . Tr, S1, . . . Sr]/(T
p
1 + Sp

1 − ξ1, . . . , T
p
r + Sp

r − ξr, S
p
1 − ξ1, . . . , S

p
r − ξr)

= Ox′ [T1, . . . Tr, S1, . . . Sr]/(T
p
1 , . . . , T

p
r , S

p
1 − ξ1, . . . , S

p
r − ξr)

Furthermore, the Ox′-modules I l/I l+1 (l ∈ N∗) then have a Ox′-basis given by

the monomials

T l1
1 · · ·T lr

r · S
s1
1 · · ·Ssr

r

with l1+· · ·+lr = l and li, si < p. This shows that Gr(F ∗F∗OX)x is free as an Ox′-

module. Its rank as an Ox′-module must coincide with the rank of (F ∗F∗OX)x

as an Ox′-module, which is p2r by construction. This is also the rank of τ(I/I2)x

as a Ox′-module.

Remark. The assumption that f is projective was not used in the proof of

Proposition 3.2.

Lemma 3.3. Let Z be a quasi-compact scheme, which is endowed with an ample

line bundle. Let z be an element of rank r in K0(Z). Then the class of z is

invertible in the ring K0(Z)[1
r
].

Proof. The infinite sum in K0(Z)[1
r
]

1/r + (r − z)/r2 + (r − z)⊗2/r3 + . . .

only has a finite number of non-vanishing terms (see [5, VI, Prop. 6.1]). A

direct calculation with geometric series shows that this sum is an inverse of z in

K0(Z)[1
r
].
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Remark. In [6, Question 5.2], B. Köck asks the following question: is the

equation

F∗(θ
p(Ωf )−1) = 1

valid in K0(Y )[1
p
] (see also the end of the introduction and the appendix about

this). Proposition 3.2 implies that the answer to this question is positive. Indeed,

using the projection formula in K0-theory, we compute

F∗(θ
p(Ωg)

−1) = F∗((F
∗F∗OZ)−1) = F∗(F

∗(F∗OZ)−1) = (F∗OZ)⊗ (F∗OZ)−1 = 1.

This computation is partially repeated below.

We now come to the proof of the Adams-Riemann-Roch formula, which results

from the following calculation in K0(X)[1
p
]. This calculation is in essence already

in [6, Prop. 5.5]. It did not lead to a proof of the formula (1) there, because

Proposition 3.2 was missing.

ψp(R•f∗(E)) = F ∗Y R•f∗(E)

= R•f ′∗(J
∗(E))

= R•f ′∗
(
(F∗OX)⊗ (F∗OX)−1 ⊗ J∗(E)

)
= R•f ′∗F∗

(
F ∗(F∗OX)−1 ⊗ F ∗J∗(E)

)
= R•f∗

(
(F ∗F∗OX)−1 ⊗ F ∗X(E)

)
= R•f∗

(
θp(Ωf )−1 ⊗ ψp(E)

)
.

Here the first equality uses the fact that ψp = F ∗Y in K0(Y ). The second equality

follows from the base-change formula [5, IV, Prop. 3.1.1]. The third equality

follows from the definition of (F∗OX)−1 in K0(X ′)[1
p
], using Lemmata 3.1 and

3.3. The fourth equality is justified by the projection formula in K0-theory (see

[5, III, Prop. 3.7]). The fifth equality is just a simplification. Finally, Proposition

3.2 and Proposition 2.6 imply that

F ∗F∗OX = Gr(F ∗F∗OX) = τ(I/I2) = θp(I/I2) = θp(Ωf ) = θp(Lf )

as elements of K0(X). This and the fact that ψp = F ∗X in K0(X) prove the last

equality, and we are done.

Appendix I : Another formula for the Bott element
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by Bernhard Köck3

The object of this appendix is to give another formula for the Bott element of a

smooth morphism. This formula is analogous to the final displayed formula in the

main part of this paper and extends a list of miraculous analogies explained in

Section 5 of [6]. It is probably needless to say that this appendix is inspired by the

elegant approach to the Adams-Riemann-Roch theorem in positive characteristic

developed by Richard Pink and Damian Rössler in the main part of this paper.

We begin by setting up the context. Let l be a prime and let f : X → Y

be a smooth quasi-projective morphism between Noetherian schemes of relative

dimension d. We furthermore assume that there exists an ample invertible OX-

module. Let Ωf denote the locally free sheaf of relative differentials and let

θl(Ωf ) ∈ K0(X) denote the l-th Bott element associated with Ωf (see Introduc-

tion). Furthermore let ∆ : X → X l denote the diagonal morphism from X into

the l-fold cartesian product X l := X×Y . . .×Y X. We view ∆ as a Cl-equivariant

morphism where the cyclic group Cl of order l acts trivially on X and by per-

muting the factors on X l. In particular we have a pull-back homomorphism

∆∗ : K0(Cl, X
l) → K0(Cl, X) between the corresponding Grothendieck groups

of equivariant locally free sheaves on X l and X, respectively. As the closed im-

mersion ∆ is also regular we furthermore have a push-forward homomorphism

∆∗ : K0(Cl, X)→ K0(Cl, X
l) (see Section 3 in [7]). Let finally ([OX [Cl]]) denote

the principal ideal of K0(Cl, X) generated by the regular representation [OX [Cl]].

We have a natural map K0(X) → K0(Cl, X) → K0(Cl, X)/([OX [Cl]]) which is

in fact injective under certain rather general assumption (see Corollary 4.4 in

[6]). The following theorem should be viewed as an analogue of the formula

θp(Ωf ) = F ∗F∗(OX) proved at the very end of the main part of this paper.

Theorem. We have

θl(Ωf ) = ∆∗(∆∗(OX))) in K0(Cl, X)/([OX [Cl]]).

Proof. Let I∆ denote the ideal sheaf corresponding to the regular closed immer-

sion ∆ : X → X l. Then we have

∆∗(∆∗(OX)) = λ−1(I∆/I2
∆) in K0(Cl, X)

3School of Mathematics, University of Southampton, SO17 1BJ, United Kingdom. e-mail:

B.Koeck@soton.ac.uk

12



by the equivariant self-intersection formula (see Corollary (3.9) in [7]); here

λ−1(E) denotes the alternating sum [OX ] − [E ] + [Λ2(E)] ± . . . for any locally

free Cl-sheaf E on X. Furthermore we know that I∆/I2
∆ is Cl-isomorphic to

Ωf ⊗ HX,l where HX,l := ker(OX [Cl]
sum−→ OX) denotes the augmentation rep-

resentation (see Lemma 3.5 in [6]). Finally we have λ−1(E ⊗ HX,l) = θl(E) in

K0(Cl, X)/([OX [Cl]]) for any locally free Cl-module E on X (see Proposition 3.2

and Remark 3.9 in [6]). Putting these three facts together we obtain the desired

equality of classes in K0(Cl, X)/([OX [Cl]]).

Remark. The statements used in the above proof can also be found in Nori’s

paper [9].

The following table summarizes the astounding analogies mentioned at the be-

ginning of this appendix. While the left hand column refers to the situation of

the main part of this paper, the right hand column refers to the situation of this

appendix and of Section 4 in [6]. The entries in the table are of a very sym-

bolic nature; more detailed explanations can be found in Section 5 of [6]. For

instance, τ l : K0(X)→ K0(Cl, X) and τ lext : K0(X)→ K0(Cl, X
l) denote the l-th

tensor-power operation and l-th external-tensor-power operation, respectively.

ψp = F ∗X ψl = τ l

relative Frobenius F : X → X ′ diagonal ∆ : X → X l

f is smooth f is smooth

⇒ F is flat ⇒ ∆ is regular

⇒ We have F∗ : K0(X)→ K0(X ′) ⇒ We have ∆∗ : K0(Cl, X)→ K0(Cl, X
l)

f ′ : X ′ → Y f l : X l → Y

J∗ : K0(X)→ K0(X ′) τ lext : K0(X)→ K0(Cl, X
l)

Base change: F ∗Y f∗ = (f ′)∗J
∗ Künneth formula: τ lf∗ = f l

∗τ
l
ext

F ∗X = F ∗J∗ τ l = ∆∗τ lext

θp(Ωf ) = F ∗(F∗(OX)) θl(Ωf ) = ∆∗(∆∗(OX))

F∗(θ
p(Ωf )−1) = 1 ∆∗ (θp(Ωf )−1) = 1

The statements displayed in each of the two columns imply the Adams-Riemann-

Roch theorem, see Section 3 of this paper and Section 4 of [6]. These two im-

plications are entirely analogous to each other (see also [6, Proposition 5.5]) and

they are purely formal, i.e. no further ingredients are needed.
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All these analogies suggest that there should be a common reason or a general

framework both of the two situations are special cases of. This hope is however

tarnished by a certain discrepancy we are now going to explain.

While it is fairly easy to prove that F∗(OX) is invertible in K0(X)[p−1] (see

Lemmas 3.1 and 3.3), the corresponding statement that ∆∗(OX) is invertible in

K0(Cl, X
l)[l−1]/(OXl [C l]) follows in the absolute case (i.e. when Y = Spec(k),

k a perfect field) from rather involved K-theoretical results (see Section 2 of

Nori’s paper [9]) which unfortunately don’t have a counterpart in the situation of

the left hand column and which seem not to generalize to the general (relative)

case. While the last statement in the left hand column of the above table is an

immediate consequence of the penultimate formula and of the fact that F∗(OX)

is invertible in K0(X)[p−1] (see Remark after Lemma 3.3), the analogous proof of

the last formula in the right hand column (see [6, Theorem 3.1]) is in particular

not (yet?) available in general.
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