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Abstract

We study the qualitative properties of the generalized transition fronts for the reaction-
diffusion equations with the spatially inhomogeneous nonlinearity of the ignition type. We show
that transition fronts are unique up to translation in time and are globally exponentially stable
for the solutions of the Cauchy problem. The results hold for reaction rates that have arbitrary
spatial variations provided that the rate is uniformly positive and bounded from above.

1 Introduction and main results

Generalized transition fronts

Scalar reaction-diffusion equations of the form

ut = uxx + f(u) (1.1)

often admit special solutions of the form u(t, x) = Φ(x−ct) called traveling waves. These waves play
an important role in the behavior of other solutions to (1.1) – they are attractors for solutions of the
Cauchy problem for (1.1) with a large class of initial data. This was observed first by Kolmogorov,
Petrvoskii and Piskunov in [15] and by Fisher in [8] in the 1930’s in the case when f(u) = u(1− u).
Later in [11, 12, 13, 14], existence and stability of traveling waves was established for the ignition
nonlinearities f(u) which are non-negative for u ∈ [0, 1] and vanish on an interval 0 ≤ u ≤ θ0 with
some ignition temperature θ0 ∈ (0, 1).

More recently, there have been many studies of reaction-diffusion equations when the reaction rate
(or the diffusivity matrix) varies periodically in space (see [1, 25] for detailed references), with similar
existence and stability results established both for the Fisher-KPP and ignition type nonlinearities.
When the reaction rate is spatially periodic, the role of planar fronts is played by pulsating fronts,
which are global in time solutions of (1.1) that vary periodically in time when observed in a reference
frame moving with a constant speed.

A natural extension of the aforementioned studies is the question of existence and stability of
special solutions of reaction-diffusion equations of the form

ut = uxx + f(x, u) (1.2)

without any structural assumptions on the spatial variations of the reaction f(x, u) such as period-
icity, almost periodicity, etc. The first definition of the notion of a generalized front without the
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periodicity assumption was given by Matano [16] and was later formalized by Shen in [24]. The
idea of that definition is that the shape of a generalized front is a continuous function of the current
environment. Shen has established in [24] some general criteria for the existence of such special
solutions.

In [2], Berestycki and Hamel give an alternative definition of generalized traveling fronts which
is somewhat easier to use in practice. In the context of the present paper it can be stated as follows.
Consider a reaction-diffusion equation

ut = uxx + f(x, u), x ∈ R, t ∈ R (1.3)

with a function f(x, u) = g(x)f0(u). Here g(x), x ∈ R, is a uniformly bounded, Lipschitz continuous,
uniformly positive function:

0 < gmin ≤ g(x) ≤ gmax < +∞ (1.4)

and f0(u) is an ignition type nonlinearity. This means that f0(s) is a Lipschitz function which
vanishes outside an interval (θ0, 1), θ0 ∈ (0, 1) and is positive for s ∈ (θ0, 1):

f0(s) = 0 for s ∈ [0, θ0]; f0(s) > 0 for s ∈ (θ0, 1); f ′0(1) < −β < 0. (1.5)

According to Berestycki and Hamel [2, 24], a global in time solution u(t, x) of (1.3) is a transition
front if 0 < u(t, x) < 1, and there exists a continuous function (the interface) X(t), such that for
any ε > 0 there exists a distance Nε so that for all t ∈ R we have

u(t, x) > 1− ε for x < X(t)−Nε and u(t, x) < ε for x > X(t) +Nε. (1.6)

A similar notion of a wave-like solution was used by Shen in [24]. Roughly speaking, this means that
the width of the interface connecting the limit values u− = 1 and u+ = 0 is uniformly bounded in
time. In the present situation X(t) is the position of the right-moving interface, that is, the largest
real number satisfying u(t,X(t)) = θ0:

X(t) = sup{x ∈ R : u(t, x) = θ0}. (1.7)

The definition of a transition front in [2] is actually much more general than what we described above
and applies to other problems. In particular, it applies to domains with non-periodic boundaries,
and it has been shown in [3] that bistable reaction-diffusion equation in a domain with a star-shaped
obstacle admits transition fronts.

Existence of the transition fronts for (1.3) has been proved in [19, 20] – to the best of our
knowledge, this is the only example of an equation with spatially variable non-periodic coefficients
where such a result was obtained so far. The transition front solution of (1.3) constructed in [19, 20],
in addition, has the following properties:

P1. The transition front is monotonic in time: ut(t, x) > 0 for all (t, x) ∈ R× R.

P2. The interface speed is bounded from above and from below: there exist two constants Cmin
and Cmax so that

0 < Cmin ≤ Ẋ(t) ≤ Cmax <∞ for all t ∈ R. (1.8)

P3. For ΣR(t) = {x : |x−X(t)| ≤ R}, the constant

δR = inf
t∈R

inf
x∈ΣR(t)

ut(t, x) > 0 (1.9)

is positive for all R > 0.
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P4. The transition front u(t, x) is exponentially decaying ahead of the interface: it satisfies

u(t, x+X(t)) ≤ v(x) ≤ θ0e
−cx ∀ x > 0, t ∈ R, (1.10)

and
u(t, x+X(t)) ≥ v(x) ∀ x < 0, t ∈ R. (1.11)

Here c > 0 is a constant, and v(x) is a monotonically decreasing function such that

0 < v(x) < 1 and v′(x) < 0 for all x ∈ R, v(+∞) = 0, v(−∞) = 1,

while at the origin we have v′(0) < −p < 0 for some constant p > 0.

Stability of generalized transition fronts

The main results of the present paper are the global stability and uniqueness of the transition fronts
constructed in [19, 20]. Let z(t, x) be the solution of the Cauchy problem for (1.3):

zt = zxx + f(x, z), x ∈ R, t ≥ 0, (1.12)
z(0, x) = z0(x).

We will consider the cases when the initial data z0(x) is either front-like or compactly supported.

Front-like initial data

The first theorem concerns solutions of (1.12) which are a perturbation of the transition front. We
define Pα to be the class of admissible perturbations:

Pα =
{
ρ ∈ C(R) | lim

x→±∞
ρ(x) = 0, ρ(x) ≤ Ce−αx for some C > 0

}
(1.13)

with some α > 0.

Theorem 1.1 Let u(t, x) be a transition front solution of (1.3) satisfying (P.1-P.4) above, and let
z(t, x) satisfy (1.12) with the initial data z0(x) of the form z0(x) = u(t0, x) + ρ(x) with ρ(x) ∈ Pα0,
for some α0 > 0, and such that 0 ≤ z0(x) ≤ 1. There exist ω > 0 and C > 0 such that: there exists
a phase shift τ̄ ∈ R so that

sup
x∈R

|z(t, x)− u(t+ τ̄ , x)| ≤ Ce−ωt for t > 0. (1.14)

Here the constants C and τ̄ depend on the initial data z0, while the rate ω depends only on the
parameter α0.

We prove this result in two steps: (i) trapping the solution between two large translates in time of
the transition front, modulo small corrections, (ii) showing that the difference between the required
translates converges to zero exponentially in time, first with a rate dependent on the initial data,
and, finally, after getting the translates close to each other, proving a local exponential convergence
result with a uniform rate.

Here, step (i) is essentially inspired from Fife-McLeod [7], modified in [21] to take the degeneracy
of f as x → +∞ into account. Also, because the wave is now monotonic in t rather than x the
shifts become time-shifts rather than space shifts. For all time, the solution is therefore sandwiched
between two large translates of the wave, up to an exponentially decreasing error. Some extra care
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has to be given to the fact that the nonlinear term is zero to the right of the front: this is why we
work in the class Pα.

Step (ii) is a quantitative version of [21]: the inspiration is the same as the proof of ”the Harnack
inequality implies Hölder regularity” in the theory of elliptic equations. This is a classical elliptic
argument which can be found, for instance in [9]. See also a (much more elaborate) version of this
argument to prove C1,α regularity of free boundaries in [5]. It was used to prove some exponential
behavior in elliptic equations in [4], and a version of this argument was used to prove exponential
stability of waves in nonlocal equations in [6]. The argument is easy to understand: once the trapping
step (i) is available, the Harnack inequality enables us to trap, at each time T , 2T , ..., nT ,... (T large
and chosen in terms of the Harnack constant of the equation) the solution between two translates
of the wave, the shifts being at each time step diminished by a fixed factor q ∈ (0, 1). This yields
the exponential convergence. An alternative proof of exponential convergence could go through first
showing convergence along a sub-sequence of times, as in [21] or [1], at the expense of replacing
space shifts by time shifts. The next step would be proving some local exponential stability result
in the spirit of [23] and [18], the time-dervative of the wave playing the role of the slow bundle.

Compactly supported initial data

The second stability result concerns convergence to travelling fronts of solutions with compactly
supported initial data. As in the homogeneous case, as soon as the part of the initial data z0 above
the ignition temperature θ0 is large enough, the solution develops a pair of travelling fronts. Let us
denote, in this result only, by ur(t, x) the transition front (traveling from left to right) of (1.3), and
by ul(t, x) the transition front traveling from right to left, that is, ul tends to 0 as x→ −∞, and to
1 as x→ +∞. The result is then

Theorem 1.2 Let ul(t, x) and ur(t, x) be the left- and right-going transition front solutions of (1.3)
satisfying (P.1-P.4) (redefined appropriately for the left-going front), and let z(t, x) satisfy (1.12)
with the initial data z0(x) that is compactly supported. There exists L > 0 so that if z0(x) > (1+θ0)/2
on an interval (a, a+ L) with some a ∈ R, then there exist τ̄ l ∈ R and τ̄ r ∈ R so that

sup
x>0

|z(t, x)− ul(t+ τ̄ l, x)− ur(t+ τ̄ r, x) + 1| ≤ Ce−ωt for t > 0. (1.15)

Once Theorem 1.1 is available, Theorem 1.2 is an adaptation of [21], Theorem 2.3 (construction of
sub/super-solutions) combined with Theorem 1.1. In order to keep the length of the paper reasonable
we omit its proof.

Uniqueness of the transition fronts

Uniqueness of transition fronts in general is presented as an open question in [2]. Let us explain
why it is nontrivial. Theorem 1.1 seems, at first sight, sufficient to imply uniqueness immediately.
It would, indeed, be so if the coefficients of the equation had some kind of recurrence, such as
periodicity, or ergodicity. We could then take two possibe transition fronts, show that both satisfy
properties P.1-P.4 (a non-trivial exercise in itself), and look at them as solutions of the Cauchy
problem emanating from each of them. As both are stable, according to Theorem 1.1, this would
tell us that, at t = +∞, one wave is a time-translate of the other. The trouble is that if we
take a sequence of times tn → +∞, pass to the reference frame centered to the front position at
t = tn, and let n → +∞, the coefficients of the equation in this reference frame obtained in the
limit may become very different from those of the original one. In the end we would conclude that
one wave of some asymptotic equation is a time-translate of the other, which is information that
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we do not really know how to use. Another natural attempt, shifting the starting times tn for the
Cauchy problem for the two transition fronts backward in time, tn → −∞, and hoping to have them
approach each other arbitrarily closely by a fixed time t0 will not help to immediately resolve the
issue. That would require a control over the constants in the exponential convergence rate which
may potentially ”worsen” as we shift the starting time (and hence the interface location) back. We
were able to carry out this approach in an ergodic random medium, but not in general.

The above explains why we are going to spend some time on uniqueness of the transition fronts,
which, despite aforementioned difficulties, holds in general, without the ergodicity assumption or
randomness:

Theorem 1.3 Let φ(t, x) and ψ(t, x) be two transition front solutions of (1.3). Then there exists
h ∈ R so that we have φ(t, x) = ψ(t− h, x) for all t ∈ R and x ∈ R.

The proof of Theorem 1.3 proceeds in three steps. First, we show that any transition front solution
of (1.3) is monotonic in time – this is known, of course, for the fronts that were constructed in
[19, 20] but not in general. Monotonicity of transition fronts in time was also announced in [2], we
present an alternative proof for the convenience of the reader. The next step is to show that time
monotonicity leads to a uniform exponential decay to zero ahead of the front. Finally, we show
that monotonicity in time, exponential decay estimates and stability of the transition front imply
uniqueness.

We remark that we denote by the same letter C various constants appearing throughout the
paper.

The main results of this paper may be generalized to nonlinearities f(x, u) of ignition type,
not of the form g(x)f0(u), provided that the ignition temperature (that may be allowed to vary in
space) stays away from u = 0 and u = 1, and bounds similar to (1.4) hold. We do not pursue such
generalization here to keep the presentation simple.

Acknowledgment. J.N. was supported by a postdoctoral fellowship from NSF. LR was partially
supported by NSF grant DMS-0604687 and ONR.

2 Global exponential stability

In this section we prove Theorem 1.1. Section 2.1 contains the proof of Proposition 2.1 which
sandwiches solution of the Cauchy problem between two time translates of the transition front
modulo small exponential corrections. It also provides an important control of the ”total needed
shifts” in terms of the ”initially needed shifts” in estimate (2.11). Section 2.2 contains the core of
the proof of Theorem 1.1. This part itself consists of two steps. First, we use an induction argument
to establish a version of local stability: there exists a time T which depends on the initial data so
that at the time t = T the difference between the necessary ”sandwiching” shifts is smaller than
a fixed number M0 (we set M0 = 1 for simplicity). After that we use the same induction to show
that, with an appropriately chosen time-step T ′, which no longer depends on the initial data, the
difference between the forward and backward in time shifts needed to sandwich the solution at the
time tn = T +nT ′ decays exponentially in n. Exponential convergence to a time-shift of a transition
front follows from this easily.

2.1 Sub and super-solutions

We begin with a proposition similar to an argument found in the work of Fife and McLeod [7]. As
we wish to use this result iteratively in the next section, we take some extra care in formulating the
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precise statement. Let u(t, x) be a generalized front. Consider L0 > 1 sufficiently large so that:

∀x ≤ X(t)− L0/2, u(t, x) ≥ (1 + θ1)/2
∀x ≥ X(t) + L0/2, u(t, x) ≤ θ0/2

(2.1)

where θ1 is chosen so that f ′0(u) ≤ f ′0(1)/2 if u ≥ θ1. Recall that X(t) is the position of the
interface of u(t, x) at time t. Given such L0, which will remain fixed from now on, and will not
depend on the initial data, we let ΓL0,α(x) be a monotonically decreasing smooth function such that
0 ≤ ΓL0,α(x) ≤ 1, and

ΓL0,α(x) =
{

1, for x ∈ (−∞, L0 − 1],
e−α(x−L0), for x ∈ [L0 + 1,+∞],

(2.2)

with the constant α = min(α0/2, Cmin/4). Here α0 is the exponential decay rate of the initial data
z0 in Theorem 1.1 and the constant Cmin is as in property P.2 of the transition front. We will drop
below the subscripts in the notation for Γ(x) to make notation less cumbersome.

Consider now z0(x), an initial datum for the Cauchy problem (1.12), such that the difference
z0−u(0, .) ∈ P. As ut is uniformly positive around the interface and z0−u(0, ·) vanishes exponentially
fast away from the interface, we may find two shifts ξ+0 > ξ−0 and a correction

ε ≤ ε0 = min (θ0/4, (1− θ1)/4, γ0) (2.3)

such that
u(ξ−0 , x)− εΓ(x−X(ξ−0 )) ≤ z(0, x) ≤ u(ξ+0 , x) + εΓ(x−X(ξ+0 )). (2.4)

(Later it will be apparent that the difference ξ+0 − ξ
−
0 controls the size of the constant C in Theorem

1.1.) Let us now explain what the constant γ0 in (2.3) is. Given L0, find δ2L0 as in (1.9), and set

B = (2Kf + CΓ)/δ2L0 ,with CΓ = ‖Γ‖C2(R). (2.5)

Here Kf is the Lipschitz constant for f :

Kf = sup
x∈R

sup
a,b∈[0,1]
a 6=b

|f(x, a)− f(x, b)|
|a− b|

. (2.6)

Then, we define γ0 = 1/(4B), which ensures that

ε0B ≤ 1/4. (2.7)

Without loss of generality we may assume that ξ−0 ≤ 0 ≤ ξ+0 . Moreover we impose

0 ≤ ε ≤ ξ+0 − ξ−0 , (2.8)

something that we may easily get by enlarging |ξ+0 | and |ξ−0 |.
We will make use of the following quantities below: a constant β > 0 chosen so that

β ≤ inf
x∈R

inf
s∈(θ1,1)

|∂sf(x, s)| ≤ gmin|f ′0(1)|/2, (2.9)

and ν > 0 and ω > 0 defined as

ν :=
αCmin

2
− α2 > 0, ω = min(β, ν,Kf ). (2.10)

The following proposition establishes uniform bounds trapping z(t, x) between two translates of
the front modulo small corrections.
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Proposition 2.1 Assume that (2.3)-(2.8) hold. There exists a constant K0 > 0 which depends on
the initial data z0 only via α0 such that if ε ∈ (0, ε0), then we can find two real numbers ξ−1 < ξ+1
with the following properties:

ξ+1 ≤ ξ+0 + εK0, ξ−1 ≥ ξ−0 − εK0, (2.11)

and for all t ≥ 0, x ∈ R,

u(t+ ξ−1 , x)− q(t)Γ(x−X(t+ ξ−1 )) ≤ z(t, x) ≤ u(t+ ξ+1 , x) + q(t)Γ(x−X(t+ ξ+1 )), (2.12)

with q(t) = εe−ωt.

Proof. As usual, each side of (2.12) results from the construction of a sub/super solution.

Supersolution

We will construct a super-solution for z(t, x) of the form

ū(t, x) = u(t+ ζ(t), x) + q(t)Γ(x−X(t+ ζ(t))). (2.13)

Here the function q(t) is
q(t) = εe−ωt (2.14)

with the constant ω as in (2.10), and the function ζ(t) is set to be

ζ(t) = ξ+0 +
Bε(1− e−ωt)

ω
≤ ξ+0 +K0ε, (2.15)

with the constant B given by (2.5), and K0 = B/ω.
Now, we verify that with the above choice of parameters ū(t, x) is a super-solution for z(t, x).

Initially, at t = 0, we have

ū(0, x) = u(ξ+0 , x) + εΓ(x−X(ξ+0 )) ≥ z0(x),

according to (2.4).
Next, we check that our choice of the parameters turns ū(t, x) into a super-solution for (1.12).

To this end we compute

N (ū) := ūt − ūxx − f(x, ū),

and show that this is non-negative for all t ≥ 0 and x ∈ R wherever ū ≤ 1.
Step 1. Behind the front. Behind the front, for x < X(t+ ζ(t))− L0 we have

Γ(x−X(t+ ζ(t))) ≡ 1,

so in this region

N (ū) := ūt − ūxx − f(x, ū) = ut − uxx + ζ̇ut + q̇ − f(x, u+ q) (2.16)
= ζ̇ut + q̇ + f(x, u)− f(x, u+ q) ≥ ζ̇ut + q̇ + βq ≥ ζ̇ut + q̇ + ωq ≥ 0.

The next to last inequality above holds as long as ū ≤ 1, due to our definition of L0 since u(t +
ζ(t), x) ∈ ((1 + θ1)/2, 1) for x < X(t + ζ(t)) − L0 and q(t) ≥ 0. The last inequality in (2.16) holds
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because ut > 0, and ζ̇(t) > 0 as can be seen immediately from (2.15) while (2.14) implies that
q̇ + ωq = 0.

Step 2. Ahead of the front. Ahead of the front, in the region where x > X(t+ ζ(t))+L0 +1
we have

Γ(x−X(t+ ζ(t))) = e−α(x−X(t+ζ(t))−L0).

We also note that by definitions of L0 and ε0 ((2.1) and (2.3)), we have both u(t+ζ(t), x) ≤ θ0/2 ≤ θ0
and ū(t, x) ≤ u(t+ ζ(t), x) + ε ≤ θ0 in the region where x > X(t+ ζ(t)) + L0 + 1 and thus

f(x, ū(t, x)) = f(x, u(t+ ζ(t), x)) = 0 (2.17)

is satisfied in this region.
With (2.17) in hand we compute

N (ū) = ūt − ūxx − f(x, ū) = ut − uxx + ζ̇ut + q̇(t)e−α(x−X(t+ζ(t))−L0)

+ α(1 + ζ̇)Ẋ(t+ ζ(t))q(t)e−α(x−X(t+ζ(t))−L0) − q(t)α2e−α(x−X(t+ζ(t))−L0)

= ζ̇ut + e−α(x−X(t+ζ(t))−L0)
[
q̇(t) + α(1 + ζ̇)Ẋ(t)q − q(t)α2

]
≥ 0.

The last inequality above holds because ζ̇(t) > 0, ut > 0 and we also have

q̇(t) + α(1 + ζ̇)Ẋ(t)q − qα2 ≥
[
−ω + αẊ(t)− α2

]
q ≥

[
αCmin − ν − α2

]
q ≥ 0, (2.18)

due to our choice of the constant ν in (2.10), the definition of ω and the fact that ζ̇ > 0.
Step 3. The middle region. Finally, we look at the region around the interface where

|x−X(t+ ζ(t))| < 2L0. There we have

N (ū) = ūt − ūxx − f(x, ū) = ut − uxx − f(x, u) + ζ̇ut + f(x, u)− f(x, ū) (2.19)
+q̇(t)Γ(x−X(t+ ζ(t)))− q(t)(1 + ζ̇)Ẋ(t+ ζ(t))Γx(x−X(t+ ζ(t)))− q(t)Γxx(x−X(t+ ζ(t))).

The right side above can be bounded from below as follows: the first three terms on the right vanish,
the term ζ̇ut is bounded from below using (1.9) by ζ̇δ2L0 , while |f(x, u)− f(x, ū)| ≤ Kfq(t), where
Kf is the Lipschitz constant for f defined in (2.6). The second line of (2.19) is treated as follows:
we can estimate the first term from below by (−ωq(t)), the second term is non-negative because
ζ̇ > 0 while Γx ≤ 0, and, finally, the last term is bounded from below by (−CΓq(t)), where CΓ is as
in (2.5). Putting these considerations together we arrive at

N (ū) ≥ ζ̇δ2L0 −Kfq(t)− ωq(t)− CΓq(t) (2.20)

The right side of (2.20) is non-negative under the condition

ζ̇ ≥
Kf + ω + CΓ

δ2L0

q(t). (2.21)

This condition is ensured by our choice of the constant B in (2.5) and the requirement that ω ≤ Kf

in (2.10), as B ≥ (Kf + ω +CΓ)/δ2L0 . It follows now that z(t, x) ≤ ū(t, x) for all t ≥ 0 and thus, in
particular, (2.12) holds with ξ+1 = limt→+∞ ζ(t). Moreover, (2.15) implies that ξ+1 satisfies

ξ+1 ≤ ξ+0 +K0ε. (2.22)
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Sub-solution

Now, we construct a sub-solution for z(t, x) of the form

ũ(t, x) = u(t− ζ(t), x)− q(t)Γ(x−X(t− ζ(t))).

Here the functions q(t) and ζ(t) are as in the super-solution construction, except that ζ(t) is now
defined as

ζ(t) = −ξ−0 +
Bε(1− e−ωt)

ω
.

We will compute

N (ũ) := ũt − ũxx − f(x, ũ),

and show that this is non-positive for our choice of the parameters defining ũ. The computation is
very similar to that for the super-solution, we provide the details for the convenience of the reader.

First, at t = 0, as before we have z0(t, x) ≥ ũ(t, x). Therefore, we only need to verify that
N (ũ) ≤ 0 for all t ≥ 0 and x ∈ R, wherever ũ ≥ 0.

Step 1. Behind the front. Behind the front, for x < X(t − ζ(t)) − L0 the function Γ is
constant:

Γ(x−X(t− ζ(t))) ≡ 1.

We also observe that, due to the definition of L0, we have

u(t− ζ(t), x) ≥ ũ(t, x) ≥ u(t− ζ(t), x)− ε ≥ 1 + θ1
2

− ε ≥ θ1 (2.23)

is satisfied for x < X(t− ζ(t))− L0, since ε < ε0 ≤ (1− θ1)/4 by (2.3). Therefore, we have

f(x, u)− f(x, ũ) ≤ −βq (2.24)

and thus

N (ũ) := ũt − ũxx − f(x, ũ) = ut − uxx − f(x, u)− ζ̇ut − q̇(t) + f(x, u)− f(x, ũ)
= −ζ̇ut − q̇(t) + f(x, u)− f(x, ũ) ≤ −ζ̇ut − q̇(t)− βq ≤ −ζ̇ut − q̇(t)− ωq = −ζ̇ut ≤ 0,

due to our choice of ζ(t) and q(t).
Step 2. Ahead of the front. Ahead of the front, for x > X(t− ζ(t)) + L0 + 1 we have

Γ(x−X(t− ζ(t))) = e−α(x−X(t−ζ(t))−L0).

The definition of L0 implies that ũ(t, x) ≤ u(t− ζ(t), x) ≤ θ0/2 and thus

f(ũ(t, x)) = f(x, u(t− ζ(t), x)) = 0 (2.25)

is satisfied for x > X(t) + L0 + 1. With this condition we compute

N (ũ) = ũt − ũxx − f(x, ũ) = ut − uxx − ζ̇ut(t− ζ(t), x)
−q̇(t)e−α(x−X(t−ζ(t))−L0) − α(1− ζ̇)Ẋ(t)q(t)e−α(x−X(t−ζ(t))−L0) + q(t)α2e−α(x−X(t−ζ(t))−L0)

= −ζ̇ut − e−α(x−X(t)−L0)
[
q̇(t) + α(1− ζ̇)Ẋ(t)q(t)− q(t)α2

]
≤ −e−α(x−X(t)−L0)

[
−ω + α(1− ζ̇)Ẋ(t)− α2

]
q(t)

≤ −e−α(x−X(t)−L0)
[
−ω + α(1−Bε)Cmin − α2

]
q(t)

≤ −e−α(x−X(t)−L0)

[
−ω +

3αCmin
4

− α2

]
q(t) ≤ 0,
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due to the requirement that ω ≤ ν in (2.10) and condition (2.7) on B and ε.
Step 3. The middle region. In the region near the interface −2L0 < x−X(t− ζ(t)) < 2L0,

we compute

N (ũ) = ũt − ũxx − f(x, ũ) = ut − uxx − f(x, u)− ζ̇ut + f(x, u)− f(x, ũ) (2.26)
−q̇(t)Γ(x−X(t− ζ(t))) + q(t)(1− ζ̇)Ẋ(t)Γx(x−X(t− ζ(t))) + q(t)Γxx(x−X(t− ζ(t))).

As in (2.20) we may bound this sum from above as follows: in the first line we note that ut ≥ δ2L0

in the region of interest, while |f(x, u) − f(x, ũ)| ≤ Kfq(t). In the second line of (2.26) we use the
definition of q(t), the non-positivity of Γx and the fact that ζ̇ ≤ 1 to deduce that

N (ũ) ≤ −ζ̇δ2L0 +Kfq(t) + ωq(t) + CΓq(t), (2.27)

with δ2L0 as in (1.9) and CΓ defined in (2.5). The sum (2.27) will be non-positive under the condition

ζ̇ ≥
Kf + ω + CΓ

δ2L0

q(t), (2.28)

that is, provided that

B ≥
Kf + ω + CΓ

δ2L0

,

which is ensured by our choice of B in (2.5). Therefore, ũ(t, x) is a sub-solution for z(t, x). Moreover,
ξ−1 = − supt→+∞ |ζ(t)| satisfies

ξ−1 ≥ ξ−0 −K0ε.

This finishes the proof of Proposition 2.1. �

2.2 Convergence to a transition front: proof of Theorem 1.1

As we have mentioned, proving Theorem 1.1 now amounts to improving the distance between the
waves controlling the solution z(t, x) from below and above in (2.12). This is done in two steps
described in the following proposition. In the first step one brings the two bounding fronts sufficiently
close, and in the second one shows that after that they are within a fixed distance from each other,
the shifts converge exponentially.

Proposition 2.2 Assume that the initial data z0(x) is as in Theorem 1.1 and that ξ+0 > ξ−0 are
defined by (2.4). Let ε0 > 0 be as in Proposition 2.1. Then the following hold:
(i) There exists a time T > 0 and two shifts ξ+T > ξ−T so that |ξ+T − ξ−T | ≤ 1, and

u(T + ξ−T , x)− q0Γ(x−X(T + ξ−T )) ≤ z(T, x) ≤ u(T + ξ+T , x) + q0Γ(x−X(T + ξ+T )), (2.29)

with 0 ≤ q0 ≤ min(ε0, ξ+0 − ξ−0 ) and the function Γ(x) defined in (2.2) . The time T depends on the
initial data z0(x) only through the decay rate α0 and the difference ξ+0 − ξ−0 .
(ii) There exists a time step T ′ > 0 and constants K1 > 0 and γ ∈ (0, 1) which do not depend on z0,
so that for t ≥ tn = T + nT ′ we have

u(t+ ξ−n , x)− qne
−ω(t−tn) ≤ z(t, x) ≤ u(t+ ξ+n , x) + qne

−ω(t−tn), (2.30)

with the sequences ξ+n ≥ ξ−n such that 0 ≤ qn ≤ min(ε0, ξ+n − ξ−n ),

0 ≤ ξ+n − ξ−n ≤ K1γ
n, (2.31)

and
ξ+n+1 ≤ ξ+n +K1(ξ+n − ξ−n ), ξ−n+1 ≥ ξ−n −K1(ξ+n − ξ−n ). (2.32)
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The main point here is (2.31): the difference between the shifts goes down by a fixed factor after each
time step T ′, which, of course, is the core of the exponential convergence. The reason why we need
to split this proposition in two steps is that unless we know that the ”starting” difference ξ+0 − ξ

−
0 at

the time t = T is sufficiently small, we can not get the exponential rate of convergence independent
of the initial data. This, of course, is common in such situations: first, solutions have to get in a
prescribed ball and then they start approaching each other at what essentially is a ”linearized” rate.
Because the time T depends only on the difference ξ+0 − ξ−0 and the decay rate α0, the constant C
in Theorem 1.1 depends on the initial data only through the difference ξ+0 − ξ−0 and the decay rate
α0.

It is easy to see from (2.31) and (2.32) that the sequence ξ+n is bounded from above and the
sequence ξ−n is bounded from below. As ξ−n ≤ ξ+n , both sequences are bounded from above and
below. It is also easy to see that (2.31) and (2.32) preclude each of the sequences ξ−n and ξ+n from
having two different limit points. Hence, each of them converges, and (2.31) implies that the limits
ξ̄+ and ξ̄− of ξ+n and ξ−n , respectively, coincide: ξ̄+ = ξ̄−. We set τ̄ = ξ̄+ and observe from (2.31),
(2.32) that

ξ−n − Cγn ≤ ξ−n+1 ≤ ξ+n+1 ≤ ξ+n + Cγn, (2.33)

with a constant C which depends only on K1. This together with (2.31), in turn implies that
|ξ−n+1 − ξ−n | ≤ Cγn. It follows that |τ̄ − ξ−n | ≤ Cγn and, similarly |τ̄ − ξ+n | ≤ Cγn. Finally, we note
that 0 ≤ qn ≤ ξ+n − ξ−n ≤ Cγn.

Therefore, we have the following situation for t ≥ tn = T + nT ′:

u(t+ ξ−n , x)− Cγne−ω(t−tn) ≤ z(t, x) ≤ u(t+ ξ+n , x) + Cγne−ω(t−tn).

As |τ̄ − ξ±n | ≤ Cγn, we deduce that for t ≥ T + nT ′ the following bound holds:

u(t+ τ̄ , x)− Cγn
[
1 + e−ω(t−tn)

]
≤ z(t, x) ≤ u(t+ τ̄ , x) + Cγn

[
1 + e−ω(t−tn)

]
,

and thus |z(t, x) − u(t + τ̄ , x)| ≤ Cγn for t ≥ T + nT ′. This proves the exponential convergence
stated in Theorem 1.1. �

Proof of Proposition 2.2(i)

It remains to prove Proposition 2.2 to finish the proof of Theorem 1.1. The proofs of the two parts
in this proposition are very similar, the difference being that in the proof of the first part constants
depend on the initial data z0 while in the second part they do not.

Given the initial data z0 we use Proposition 2.1 to find two shifts ξ±0 so that

u(t+ ξ−0 , x)− q0e
−ωtΓ(x−X(t+ ξ−0 )) ≤ z(t, x) ≤ u(t+ ξ+0 , x) + q0Γ(x−X(t+ ξ+0 )) (2.34)

for all t ≥ 0. We are going to find a time-step s0 which depends on the function z0(x) so that for
t ≥ sn = ns0 we have

u(t+ξ−n , x)−qne−ω(t−sn)Γ(x−X(t+ξ−n )) ≤ z(t, x) ≤ u(t+ξ+n , x)+qne
−ω(t−sn)Γ(x−X(t+ξ+n )), (2.35)

with the constants ξ+n ≥ ξ−n satisfying

ξ−0 − 1 ≤ ξ−n ≤ ξ+n ≤ ξ+0 + 1, 0 ≤ ξ+n − ξ−n ≤ Dγn0 , 0 ≤ qn ≤ ξ+n − ξ−n , (2.36)

and with a constant γ0 ∈ (0, 1) which depends on z0. Then we will take T0 = Ns0 and ξ±T = ξ±N
with a sufficiently large N to satisfy the conditions in part (i) of Proposition 2.2.
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The induction is initialized with (2.34) and Proposition 2.1. Let us assume now that (2.35) holds
and try to do the induction step from n to n+ 1. We first consider the set

ΩR = {(t, x) ∈ R2 : |x−X(t+ (ξ+0 + ξ−0 )/2)| ≤ R} (2.37)

with R > 2L0 > 0 chosen sufficiently large so that ΩR contains all points (t, x) where both u(t +
ξ−0 − 1, x) ≤ (1 + θ1)/2 and u(t + ξ+0 + 1, x) ≥ θ0/2 hold. Due to property P4, R depends only on
the difference ξ+0 − ξ−0 . By the induction assumption, ξ±n satisfies ξ−0 − 1 ≤ ξ−n ≤ ξ+n ≤ ξ+0 + 1 so
that either

u(t+ ξ−n , x) ≥
(1 + θ1)

2
or u(t+ ξ+n , x) ≤

θ0
2

(2.38)

holds for all (t, x) ∈ R2 \ ΩR, for all n.
We will use u+

n (t, x) and u−n (t, x) to denote the functions u(t+ξ+n , x) and u(t+ξ−n , x), respectively.
From Property P3, we know that for all (t, x) ∈ Ω3R we have

u+
n (t, x)− u−n (t, x) ≥ K2(ξ+n − ξ−n ) (2.39)

with the constant K2 = δ3R being independent of n. Define s̄n = sn + s̄ with s̄ = (log(p/K2))/ω so
that the exponentially in time decaying terms in (2.35) are small compared to K2(ξ+n − ξ−n ) in Ω3R

for t ≥ s̄n. Here p > 1 is a large constant that we will set later. Then, if εn = (ξ+n − ξ−n )/(pδ3R),

u+
n (t+ εn, x) ≥ u(t+ ξ+n , x) + εnδ3R ≥ z(t, x)

and
u−n (t− εn, x) ≤ u(t+ ξ−n , x)− εnδ3R ≤ z(t, x)

if t ≥ s̄n and (t, x) ∈ Ω3R. So, the functions u+
n (t + εn, x) − z(t, x) and u−n (t − εn, x) − z(t, x) are

strictly positive and strictly negative, respectively, within the region Ω3R wherever t ≥ s̄n. This
enables us to apply the Harnack inequality, since u+

n (t+ εn, x), u−n (t− εn, x), and z satisfy the same
equation.

Equation (2.39) implies that for any t ≥ s̄n, either

sup
Ω2R∩{t}×R

(u+
n (t+ εn, x)− z(t, x)) ≥ K2

2
(ξ+n − ξ−n ) (2.40)

or
sup

Ω2R∩{t}×R
(z(t, x))− u−n (t− εn, x)) ≥

K2

2
(ξ+n − ξ−n ). (2.41)

must hold. For some constants σ ≥ 1 and τ ≥ 1 to be chosen later, we apply the Harnack inequality
to obtain a constant q0 ∈ (0, 1) – maybe extremely small, and depending on the initial data z0 via
the shifts ξ±0 , and on the parameter τ – such that

inf
ΩR∩[s̄n+σ,s̄n+σ+τ ]×R

(u+
n (t+ εn, x)− z(t, x)) ≥ q0K2

2
(ξ+n − ξ−n ) (2.42)

if (2.40) holds at s = s̄n + σ/2, and

inf
ΩR∩[s̄n+σ,s̄n+σ+τ ]×R

(z(t, x))− u−n (t− εn, x)) ≥
q0K2

2
(ξ+n − ξ−n ) (2.43)

if (2.41) holds at s = s̄n+σ/2. It is important to observe here that the Harnack constant q0 depends
on σ and τ , but it does not depend on the factor p or on sn. Assume from now on that (2.40) and
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(2.42) hold, the other case can be treated in a similar fashion. Set r0 = q0K2/2. Due to property
P3, we know that for t ∈ [s̄n + σ, s̄n + σ + τ ], d ∈ (0, 1), and (t, x) ∈ ΩR:

u+
n (t− dr0(ξ+n − ξ−n ), x)− z(t, x) ≥ u+

n (t+ εn, x)− z(t, x)− C(εn + dr0(ξ+n − ξ−n ))

= u+
n (t+ εn, x)− z(t, x)− C(ξ+n − ξ−n )(

1
pδ3R

+ dr0)

≥ (ξ+n − ξ−n )
(
r0 − C(

1
pδ3R

+ dr0)
)
,

with C = supt,x ut. Since r0 is independent of the factor p, we may choose p large and d small,
independently of n, so that the right hand side is positive for (t, x) ∈ ΩR and t ∈ [s̄n+σ, s̄n+σ+ τ ]:

u+
n (t− dr0(ξ+n − ξ−n ), x)− z(t, x) ≥ 0 (2.44)

Now, let us consider what happens when (t, x) /∈ ΩR.
1. Behind the front. We first look at the part of R \ ΩR which is behind the front:

Ω̃−
R :=

{
(t, x) : x ≤ X(t+ (ξ+0 + ξ−0 )/2)−R, t ∈ [s̄n + σ, s̄n + σ + τ ]

}
.

By our choice of R, u(t+ ξ−0 − 1, x) ≥ (1 + θ1)/2 in this region. Because dr0 < 1/2, we have

ξ−0 − 1 ≤ ξ−n ≤ ξ+n − dr0(ξ+n − ξ−n ),

and thus
u+
n (t− dr0(ξ+n − ξ−n ), x) ≥ u(t+ ξ−n , x) ≥ u(t+ ξ−0 − 1, x) ≥ (1 + θ1)/2

in Ω̃−
R. Moreover, for (t, x) ∈ Ω̃−

R we have

z(t, x) ≥ u(t+ ξ−n , x)− qne
−ω(t−sn) ≥ (1 + θ1)/2− (ξ+0 − ξ−0 )e−ωσ ≥ θ1,

provided that we choose σ sufficiently large, independently of n. Hence, the function

v(t, x) := u+
n (t− dr0(ξ+n − ξ−n ), x)− z(t, x)

satisfies

vt − vxx = f(u(t+ ξ+n − dr0(ξ+n − ξ−n ), x)− f(z(t, x)) = a(t, x)v, (2.45)

with a(t, x) ≤ −β in Ω̃−
R.

Moreover, because ut > 0, the boundary of Ω̃−
R is a smooth curve. The function v(t, x) is non-

negative on this curve because of (2.44). Initially, at time t = s̄n + σ we have, with C = supt,x ut:

v(s̄n + σ, x) = u(s̄n + σ + ξ+n − dr0(ξ+n − ξ−n ), x)− z(s̄n + σ, x)
≥ −qne−ωσ − Cdr0(ξ+n − ξ−n ) ≥ −(ξ+n − ξ−n )e−ωσ − Cdr0(ξ+n − ξ−n )

for all x ∈ R. We used here the induction assumption 0 ≤ qn ≤ ξ+n − ξ−n . Consequently, applying
the comparison principle to (2.45) in the temporal-spatial domain Ω̃−

R we conclude that

v(t, x) ≥ −C
[
e−ωσ + dr0

]
(ξ+n − ξ−n )e−β(t−s̄n−σ) for (t, x) ∈ Ω̃−

R. (2.46)

2. Ahead of the front. Consider next the region in R \ ΩR ahead of front:

Ω̃+
R :=

{
(t, x) : x ≥ X(t+ (ξ+0 + ξ−0 )/2) +R, t ∈ [s̄n + σ, s̄n + σ + τ ]

}
.
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By our choice of R, u(t+ ξ+0 + 1, x) ≤ θ0/2 in this region. Again, we define the difference

v(t, x) = u+
n (t− dr0(ξ+n − ξ−n ), x)− z(t, x)

and bound it from below as follows. Note that both u+
n (t − dr0(ξ+n − ξ−n ), x) and z(t, x) are below

the ignition threshold in Ω̃+
R, for a sufficiently large time-step σ:

u+
n (t− dr0(ξ+n − ξ−n ), x) ≤ u(t+ ξ+n , x) ≤ u(t+ ξ+0 + 1, x) ≤ θ0/2

in Ω̃+
R, and

z(t, x) ≤ u(t+ ξ+n , x) + (ξ+n − ξ−n )e−ω(t−sn) ≤ u(t+ ξ+0 + 1, x) + (ξ+0 − ξ−0 )e−ωσ ≤ θ0

if σ > 0 is large enough (depending on the difference ξ+0 − ξ−0 ) and (t, x) ∈ Ω̃+
R. Therefore, we have

vt − vxx = 0 in Ω̃+
R. (2.47)

Moreover, at the time t = s̄n + σ we have

v(s̄n + σ, x) = u(s̄n + ξ+n + σ − dr0(ξ+n − ξ−n ), x)− z(s̄n + σ, x)

≥ −qne−ωσ−α(x−X(s̄n+σ+ξ+n )−L0) − Cdr0(ξ+n − ξ−n )e−α(x−X(s̄n+σ+ξ+n ))

≥ −C
[
e−ωσ + dr0

]
(ξ+n − ξ−n )e−α(x−X(s̄n+σ+ξ+n ))

for all x ∈ R. We used above the exponential decay estimate for the time derivative of u(t, x):

|u(t, x)− u(t− s, x)| = sut(t− s′, x) ≤ Cse−α(x−X(t−s′)) ≤ Cse−α(x−X(t)),

for s ≥ 0, with some s′ ∈ (0, s). The boundary of Ω̃+
R is a smooth curve in R2 on which the function

v(t, x) is non-negative because of (2.44). Furthermore, just as in the proof of Proposition 2.1, we
notice that the function q(t, x) = −e−α(x−X(t+ξ+n ))−νt is a sub-solution to the equation (2.47) for v,
where ν is defined in (2.10). It follows that

v(t, x) ≥ −C(ξ+n − ξ−n )(e−ωσ + dr0)e−α(x−X(t+ξ+n ))−ν(t−s̄n−σ) for (t, x) ∈ Ω̃+
R. (2.48)

Shrinking ξ+n − ξ−n

Let us now summarize the above computation and put together the estimates (2.44), (2.46) and
(2.48). We have shown that if (2.40) holds (rather than (2.41)) then at times t ∈ (s̄n+σ, s̄n+σ+ τ)
we have

u(t+ ξ+n − dr0(ξ+n − ξ−n ), x) ≥ z(t, x)

for (t, x) ∈ ΩR,

u(t+ ξ+n − dr0(ξ+n − ξ−n ), x) + C
(
e−ωσ + dr0

)
(ξ+n − ξ−n )e−β(t−s̄n−σ) ≥ z(t, x) (2.49)

for (t, x) ∈ Ω̃−
R, and

u(t+ ξ+n − dr0(ξ+n − ξ−n ), x) + C(e−ωσ + dr0)(ξ+n − ξ−n )e−α(x−X(t+ξ+n ))−ν(t−s̄n−σ) ≥ z(t, x) (2.50)

for (t, x) ∈ Ω̃+
R. Of course, we also still have the lower bound intact:

z(t, x) ≥ u(t+ ξ−n , x)− qne
−ω(t−sn)Γ(x−X(t+ ξ−n )) (2.51)
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for all t ≥ sn and x ∈ R.
We may now set sn+1 = s̄n + σ + τ , and the new shifts as

ξ+n+1/2 = ξ+n − dr0(ξ+n − ξ−n ), ξ−n+1/2 = ξ−n ,

and the new correction

qn+1/2 = [(ξ+n − ξ−n )e−ωσ + C(ξ+n − ξ−n )(e−ωσ + dr0)]e−ωτ .

The first term in the parentheses above comes from the lower bound in (2.51), using also the induction
assumption 0 ≤ qn ≤ ξ+n − ξ−n , while the second accounts for the terms appearing in the left side of
(2.49) and (2.50). Then at t = sn+1 we have

u(sn+1 + ξ−n+1/2, x)− qn+1/2Γ(x−X(sn+1 + ξ−n+1/2)) ≤ z(sn+1, x) (2.52)

≤ u(sn+1 + ξ+n+1/2, x) + qn+1/2Γ(x−X(sn+1 + ξ+n )).

In order to correct the argument of the function Γ in the right side above, observe that X(sn+1 +
ξ+n ) −X(sn+1 + ξ+n+1/2) ≤ Cdr0(ξ+n − ξ−n ). This and the fact that Γ is non-increasing implies that
for x < X(sn+1 + ξ+n ) + L0 + 1,

Γ(x−X(sn+1 + ξ+n ))

≤
[
Γ(X(sn+1 + ξ+n ) + L0 + 1−X(sn+1 + ξ+n+1/2))

]−1
Γ(x−X(sn+1 + ξ+n+1/2))

= e
α(X(sn+1+ξ+n )−X(sn+1+ξ+

n+1/2
)+1)Γ(x−X(sn+1 + ξ+n+1/2))

≤ eαeαCdr0(ξ+n−ξ−n )Γ(x−X(sn+1 + ξ+n+1/2)) ≤ CΓ(x−X(sn+1 + ξ+n+1/2)),

as dr0(ξ+n − ξ−n ) < 1/2. For x ≥ X(sn+1 + ξ+n ) + L0 + 1 the definition of Γ implies

Γ(x−X(sn+1 + ξ+n )) = e−α(x−X(sn+1+ξ+n )−L0)

≤ eαCdr0(ξ+n−ξ−n )e
−α(x−X(sn+1+ξ+

n+1/2
)−L0)

= eαCdr0(ξ+n−ξ−n )Γ(x−X(sn+1 + ξ+n+1/2)) ≤ CΓ(x−X(sn+1 + ξ+n+1/2)).

With these bounds (2.52) takes the form

u(sn+1 + ξ−n+1/2, x)− q′n+1/2Γ(x−X(sn+1 + ξ−n+1/2)) ≤ z(sn+1, x) (2.53)

≤ u(sn+1 + ξ+n+1/2, x) + q′n+1/2Γ(x−X(sn+1 + ξ+n+1/2)).

Here we have defined q′n+1/2 = Cqn+1/2.
We also have ξ+n+1/2 − ξ−n+1/2 = (1− dr0)(ξ+n − ξ−n ) with dr0 ∈ (0, 1), and, finally,

q′n+1/2 ≤ C(ξ+n − ξ−n )
[
e−ωσ + dr0)

]
e−ωτ ≤ C(ξ+n − ξ−n )e−ωτ = (ξ+n+1/2 − ξ−n+1/2)

e−ωτ

1− dr0
≤ ξ+n+1/2 − ξ−n+1/2,

provided that τ is sufficiently large. Therefore, we are in a position to apply Proposition 2.1 which
implies that for t ≥ sn+1 we have

u(t+ ξ−n+1, x)− qn+1e
−ω(t−sn+1)Γ(x−X(t+ ξ−n+1)) ≤ z(t, x)

≤ u(t+ ξ+n+1, x) + qn+1e
−ω(t−sn+1)Γ(x−X(t+ ξ+n+1)).
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with
qn+1 = q′n+1/2, ξ

+
n+1 = ξ+n+1/2 +K0q

′
n+1/2 and ξ−n+1 = ξ−n+1/2 −K0q

′
n+1/2.

The new shift ξ+n+1 can be estimated as follows:

ξ+n+1 = ξ+n − dr0(ξ+n − ξ−n ) + C(ξ+n − ξ−n )(e−ωσ + dr0)e−ωτ (2.54)
≤ ξ+n − (ξ+n − ξ−n )

[
dr0 − C(e−ωσ + dr0)e−ωτ

]
,

while the other shift, ξ−n+1, is bounded as

ξ−n+1 = ξ−n+1/2 − Cq′n+1/2 = ξ−n − Cqn+1/2 ≥ ξ−n − C(ξ+n − ξ−n )(e−ωσ + dr0)e−ωτ . (2.55)

We conclude that

ξ+n+1 − ξ−n+1 ≤ (ξ+n − ξ−n )(1− dr0 + C(e−ωσ + dr0)e−ωτ ).

Recall that r0 depends on the Harnack constant over the time interval of length τ – therefore, we
have no explicit control on how it depends on τ . Nevertheless, by taking first τ sufficiently large and
then choosing σ large enough (probably, ”extremely” large so that the term e−ωσ would be smaller
than Cr0, which is already very small for τ large), we can ensure that

ξ+n+1 − ξ−n+1 ≤ (1− ε)(ξ+n − ξ−n ) (2.56)

with ε = dr0/10 > 0. While (2.54) and (2.55) were obtained under the assumption that (2.40) rather
than (2.41) holds, the geometric bound (2.56) holds in either case. Moreover, in either case we have
the following bounds modifying (2.54) and (2.55), implied by (2.58):

ξ−n − ε(ξ−n − ξ+n ) ≤ ξ−n+1 ≤ ξ+n+1 ≤ ξ+n + ε(ξ+n − ξ−n ), (2.57)

provided that τ and σ are sufficiently large. As ε < (ξ+0 − ξ−0 )/100, it follows that the induction
assumption ξ−n+1 ≥ ξ−0 − 1 and ξ+n+1 ≤ ξ+0 + 1 holds at each step, and, eventually, we obtain a
sequence of shifts ξ+n and ξ−n so that

0 ≤ ξ+n − ξ−n ≤ D(1− ε)n. (2.58)

This proves part (i) of Proposition 2.2.

Proof of Proposition 2.2(ii)

Part (ii) of Proposition 2.2 is proved using exactly the same induction procedure as in the proof of
the first part of this proposition. Namely, we stop the original iteration process at the time T and
start it completely anew, with a new time-step T ′. The main difference is that this time we start
the iteration after the time T so that ”initially” we have |ξ+T − ξ−T | ≤ 1. Therefore, all constants
appearing in the estimates of the preceding step are now independent of ξ+T and ξ−T , as they depended
only on α0 and the initial separation ξ+0 − ξ−0 . In particular, the parameters τ ′ and σ′, as well as r′0
can be now chosen independent of z0. Hence, the time step T ′ = τ ′ + σ′ required to do the iteration
after t = T is independent of the initial data z0. Therefore, the new sequence of shifts ξ̃+n and ξ̃−n
obtained at times s′n = T + nT ′ satisfies

ξ−n − Cγn ≤ ξ−n+1 ≤ ξ+n+1 ≤ ξ+n + Cγn, 0 ≤ ξ+n − ξ−n ≤ Cγn (2.59)

with the constants C > 0 and γ ∈ (0, 1) independent of the initial data z0. This finishes the proof
of Proposition 2.2. �
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3 Uniqueness of the transition front

As we have mentioned in the introduction, the proof of uniqueness proceeds in three steps. First,
we show that any transition front (and not only those constructed in [19] and [20]) are monotonic
in time. Second, we show that such a front solution is exponentially decaying in x ahead of the
interface. Finally, we use these two properties together with global in time stability of the fronts to
establish uniqueness.

Monotonicity of transition fronts

We recall that monotonicity in time of the transition fronts has been announced in [2]. We present
the proof for the convenience of the reader.

Proposition 3.1 Let ψ(t, x) be a transition front solution of (1.3). Then ψt(t, x) > 0 for all t ∈ R
and x ∈ R.

Proof. We begin with the following lemma.

Lemma 3.2 Let ψ(t, x) be a transition front solution of (1.3). There exists h0 > 0 so that for any
h ≥ h0 we have ψ(t+ h, x) ≥ ψ(t, x) for all t ∈ R and x ∈ R.

Proof of Lemma 3.2. We recall that θ1 ∈ (0, 1) is such that f ′0(u) ≤ f ′0(1)/2 for all u ∈ [θ1, 1] and
we set

Ω =
{
(t, x) ∈ R2 : θ0/2 ≤ ψ(t, x) ≤ (1 + θ1)/2

}
. (3.1)

Let
Ωt = {x ∈ R : (t, x) ∈ Ω} (3.2)

be the cross-section of Ω with t fixed. The definition of the transition front implies that the width of
Ωt is uniformly bounded in time: there exists l ≥ 0 so that for all t ∈ R we have sup Ωt − inf Ωt ≤ l.
We will consider separately the points in Ωt, those with x > supΩt or x < inf Ωt, and, finally, ”the
bad points in the middle”, that is, x ∈ (inf Ωt, supΩt) \ Ωt.

The middle region – good points. Let us first show that the conclusion of lemma holds in
the set Ω: there exists h1 > 0 so that we have

ψ(t, x) ≤ ψ(t+ h, x) for all (t, x) ∈ Ω and any h ≥ h1. (3.3)

Assume that this is false. Then there exist a sequence of real numbers hn such that hn → +∞ as
n→ +∞ and a sequence of points (tn, xn) ∈ Ω so that

ψ(tn + hn, xn) ≤ ψ(tn, xn) ≤ (1 + θ1)/2. (3.4)

As ψ(tn, xn) ≥ θ0/2, it follows from the definition of the transition front that there exists M > 0
so that for all x ≤ xn −M we have ψ(tn, x) ≥ θ1. Consider the function q(t, x) which solves the
following Cauchy problem for t ≥ 0:

qt − qxx = gminf0(q), q(0, x) =
{
θ1, x ≤ 0
0, x ≥ 0.

Thus ψ(tn, x) ≥ q(0, x − xn + M) for all x and ψ(tn + h, x) ≥ q(h, x − xn + M) for all h ≥ 0 and
x ∈ R. There exists a time η0 > 0 so that for all t ≥ η0 we have

inf
x≤M

q(t, x) ≥ 2 + θ1
3

.
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In particular, for hn ≥ η0 we have

ψ(tn + hn, xn) ≥ q(hn,M) ≥ 2 + θ1
3

>
1 + θ1

2
,

which contradicts (3.4). Therefore, we can find h1 > 0 so that (3.3) holds.
Next, we analyze what happens outside the set Ω. An argument similar to the one above shows

that there exists h2 ≥ h1 so that we have

ψ(t+ h, x) ≥ (1 + θ1)/2 if h ≥ h2 and x ≤ supΩt. (3.5)

This is seen as follows: from the definition of the transition front there exists l1 so that ψ(t, x) ≥ θ1
for all x ≤ supΩt − l1 and all t ∈ R. Then we have ψ(t+ h, x) ≥ q(h, x+ l1 − supΩt) for all h ≥ 0.
Hence, in order to ensure that (3.5) holds it suffices to choose a time h2 so that q(h2, y) ≥ (1+ θ1)/2
for all y ≤ l1.

We will show below that the function

r(t, x) = ψ(t+ h2, x)− ψ(t, x) (3.6)

is positive for all x ∈ R and t ∈ R. It would then follow immediately from (3.6) that

ψ(t+ h, x)− ψ(t, x) ≥ 0 for all h ≥ h2.

Note that the preceding argument proves that r(t, x) ≥ 0 for x ∈ Ωt, hence we have to deal only
with x /∈ Ωt.

The region on the left. Consider now what happens to the left of Ω, that is, on the set of
points (t, x) such that x ≤ inf Ωt. The function r(t, x) satisfies

rt − rxx + a(t, x)r = 0, t ∈ R, x ≤ inf Ωt, (3.7)
r(t, x) ≥ 0 on the set {t ∈ R, x = inf Ωt},

with the function
a(t, x) = −g(x)f0(ψ(t+ h2, x))− f0(ψ(t, x))

ψ(t+ h2, x)− ψ(t, x)
. (3.8)

Notice that (3.5) implies ψ(t + h2, x) ≥ θ1 for x ≤ inf Ωt. Also, ψ(t, x) ≥ (1 + θ1)/2 in this region.
Thus, a(t, x) ≥ β for all t ∈ R and x ≤ inf Ωt, with β > 0 defined by (2.9). Assume that there exist
t ∈ R and x ∈ Ωt so that r(t, x) < 0 and thus

η1 := inf
t∈R

x≤inf Ωt

r(t, x) < 0.

In this case, there exists a sequence of points (tn, xn), with tn ∈ R and xn ≤ inf Ωtn , such that

r(tn, xn) < η1 +
|η1|
2n

.

The definition of the transition front implies that r(t, x) → 0 as (x− inf Ωt) → −∞, uniformly in t.
Hence, |xn − inf Ωtn | ≤ l2 for some l2 > 0 fixed. On the other hand, since r(t, x) ≥ 0 for x = inf Ωt,
standard regularity estimates imply that xn are separated away from the boundary {x = inf Ωt}:
there exists l′2 ∈ (0, l2) so that |xn − inf Ωt| ≥ l′2 for all n ∈ N. Moreover, r(t, x) is uniformly small
in a ball of fixed radius around (tn, xn):

r(t, x) < η1/2 < 0
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for all (t, x) in the ball Bn = {(t, x) : |x− xn|2 + |t− tn|2 < l′2}. Hence, the function r(t, x) satisfies

rt − rxx ≥ β|η1|/2 > 0 for (t, x) ∈ Bn, n ∈ N.

However, we may find a subsequence nk → +∞ so that the family of shifted functions

rk(t, x) = r(t+ tnk
, x+ xnk

)

converges to a limit r̄(t, x) uniformly in the ball B0 := {(t, x) : |x|2 + |t|2 < l′2}. The function r̄(t, x)
satisfies

r̄t − r̄xx ≥ β|η1|/2 > 0 for (t, x) ∈ B0

and attains its minimum r̄(0, 0) = η1, inside B0. Due to the maximum principle, this is a contradic-
tion. Hence, we have r(t, x) ≥ 0 for all x ≤ inf Ωt.

The region on the right. Now, let us consider what happens to the right of the set Ωt, where
x ≥ supΩt (and thus ψ(t, x) ≤ θ0/2). There the function r(t, x) satisfies

rt − rxx = g0(x)[f0(ψ(t+ h2, x))− f0(ψ(t, x))] = g0(x)f0(ψ(t+ h2, x)) ≥ 0. (3.9)

Moreover r(t, x) ≥ 0 on the boundary {t ∈ R, x = supΩt}, due to (3.3). Now, we argue as before:
assume that

η2 := inf
t∈R

x≥sup Ωt

r(t, x) < 0.

Then we can find a sequence of points (tn, xn) such that tn ∈ R, xn ≥ supΩtn , and

r(tn, xn) < η2 +
|η2|
2n

.

Let dn = dist((tn, xn),Ω). For each n, we have r(tn, xn) < η2/2 and thus ψ(tn, xn) ≥ |η2|/2.
Therefore, we see from the definition of the transition front that the distance |xn − supΩtn | must
stay bounded as n → ∞. That is, there exists l3 > 0 such that dn ≤ l3 for all n. Also, regularity
estimates for ψ (and thus for r) imply that there exists l′3 ∈ (0, l3) so that dn ≥ l′3. Now, consider
the balls Bn = {(t, x) : |x− xn|2 + |t− tn|2 < d2

n}. Inside each such ball, r(t, x) satisfies

rt − rxx ≥ 0 for (t, x) ∈ Bn.

Again, we choose a subsequence nk → +∞ so that dnk
→ d0 ∈ [l′3, l3] and the shifted functions

rk(t, x) = r(t+ tnk
, x+ xnk

) converge to a limit r̄(t, x) uniformly in B0 := {(t, x) : |x|2 + |t|2 < d2
0}.

The function r̄(t, x) satisfies
r̄t − r̄xx ≥ 0 for (t, x) ∈ B0

and attains its minimum r̄(0, 0) = η2, inside B0. The maximum principle implies r̄(x, t) ≡ η2

throughout B̄0. However, this cannot happen. Indeed, by the definition of dn there is a sequence
of points (t̂n, x̂n) ∈ ∂Bn such that (t̂n, x̂n) ∈ Ω and thus r(t̂n, x̂n) ≥ 0. Hence, r̄(t, x) ≥ 0 at some
point on the boundary of B0, so r̄(t, x) cannot be equal to η2 < 0 throughout B̄0. Thus, r(t, x) ≥ 0
for x ≤ supΩt.

The middle region – the bad points. Finally, consider the set D of points (t, x) such that
inf Ωt < x < supΩt but (t, x) /∈ Ω. Recall from (3.5) that ψ(t + h2, x) ≥ (1 + θ1)/2 for all (t, x) in
this region. So, if r(t, x) < 0 at some point (t, x) ∈ D, then we still have ψ(t, x) > (1 + θ1)/2 at this
point, as well. Assume that

η3 := inf
(t,x)∈D

r(t, x) < 0
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and choose a sequence (tn, xn) ∈ D so that

r(tn, xn) < η3 +
|η3|
2n

.

We may now proceed in the same way we treated the case x < inf Ωt. Indeed, as r(t, x) ≥ 0 for
x ∈ Ωt, we may find balls Bn of a fixed radius l4 around the points (tn, xn) which are contained in
the set D, and in which r(t, x) < η3/2, but ψ(t, x) ≥ θ1 (and hence ψ(t+h2, x) ≥ θ1 as well). Inside
each ball Bn = {(t, x) : |x− xn|2 + |t− tn|2 < l4}, the function r(t, x) satisfies

rt − rxx ≥ β|η3|/2 > 0 for (t, x) ∈ Bn.

By taking an appropriate subsequence we derive a contradiction to the maximum principle, as before.
This shows that r(t, x) ≥ 0 for all t and x, and concludes the proof of Lemma 3.2. �

The end of the proof of Proposition 3.1. We may now define h̄ as the smallest h ≥ 0
such that for any k ≥ h̄ we have ψ(t + k, x) ≥ ψ(t, x). In order to show that h̄ = 0 (and thus
conclude the proof of Proposition 3.1) assume that h̄ > 0. The maximum principle implies that
ψ(t+ h̄, x) > ψ(t, x) for all t ∈ R and x ∈ R. Define the set Ω̃

Ω̃ =
{
(t, x) ∈ R2 : inf Ωt ≤ x ≤ supΩt

}
(3.10)

where Ωt is still defined by (3.1)-(3.2). We claim that

inf
(t,x)∈Ω̃

ψ(t+ h̄, x)− ψ(t, x) > 0, (3.11)

Indeed, otherwise, there would exist a sequence (tn, xn) ∈ Ω̃ so that r(tn, xn) → 0, while we also
have

r(t, x) = ψ(t+ h̄, x)− ψ(t, x) ≥ 0

everywhere. Consider the function

rn(t, x) = ψ(t+ tn + h̄, x+ xn)− ψ(t+ tn, x+ xn) ≥ 0.

Then rn(0, 0) → 0 as n → +∞. The Harnack inequality and the regularity of rn implies that
rn(t, x) → 0 locally uniformly on R × R. However, there exists a subsequence nk → +∞ so that
both ψnk

(t, x) = ψ(t − tnk
, x − xnk

) and gnk
(x) = g(x − xnk

) converge locally uniformly to the
corresponding limits ψ̄(t, x) and ḡ(x), which satisfy ḡ(x) ≥ gmin, and

ψ̄t − ψ̄xx = ḡ(x)f0(ψ̄), (t, x) ∈ R2. (3.12)

Moreover, as (xn, tn) ∈ Ω̃, we have infx ψ̄(t, x) ≤ θ0/2 and supx ψ̄(t, x) ≥ (1 + θ1)/2 for all t ∈ R.
Finally, as rn(t, x) → 0, we have ψ̄(t + h̄, x) = ψ̄(t, x) for all t and x. Therefore, if h̄ > 0 then
ψ̄(t, x) is actually a non-constant, space-time global and periodic in time solution of (3.12). This is
impossible, however, since ψ̄(0, x) ≥ θ1 for x ≤ x0, with a suitable shift x0 and thus ψ̄(t, x) → 1 as
t→∞. Hence, (3.11) holds.

We deduce from (3.11) and uniform a priori bounds on ψt that if γ > 0 is sufficiently small, then

inf
(t,x)∈Ω̃

ψ(t+ h̄− γ, x)− ψ(t, x) > 0. (3.13)

However, we may now use the same argument as in the proof of Lemma 3.2 to show that if γ is small
enough, then (3.13) also holds for the points (t, x) satisfying either x < inf Ωt or x > supΩt. Notice

20



that the “bad points in the middle” no longer need a special treatment as they are included in the
set Ω̃. To show that (3.13) holds for the points on the left, we need to take γ small enough so that

ψ(t+ h̄− γ, x) ≥ θ1 (3.14)

for x < inf Ωt. Since ψ(t + h̄, x) > ψ(t, x) ≥ (1 + θ1)/2 for all (t, x) satisfying x < inf Ωt, uniform
bounds on ψt imply that (3.14) holds if γ is small. Then we apply the argument as before. For the
points on the right, x > supΩt, the argument applies without modification. Hence (3.13) holds for
all points (t, x) ∈ R2 if γ is sufficiently small. This contradicts the minimality of h̄. Hence, h̄ = 0
and thus ψ(t, x) is monotonic in t. �

We now obtain a global lower bound on the interface speed from Proposition 3.1:

Corollary 3.3 There exists δ > 0 such that Ẋ(t) ≥ δ for all t ∈ R.

Proof. We already proved that ψt > 0. We claim that for every ε > 0 there exists cε > 0 so
that ψt(t, x) ≥ cε for all (t, x) such that ψ(t, x) ∈ (ε, 1− ε). This is shown by the argument we used
to establish (3.11) at the end of the proof of Proposition 3.1. If there were no such cε then we would
find a sequence of points (tn, xn) such that ψ(tn, xn) ∈ (ε, 1 − ε) and ψt(tn, xn) ≤ 1/n. Then we
could extract a subsequence of functions ψk(t, x) = ψ(t+ tnk

, x+ xnk
) converging locally uniformly

to a function ψ̄(t, x) which satisfies the equation

ψ̄t − ψ̄xx = ḡ(x)f0(ψ̄),

with a function ḡ(x) ≥ gmin > 0 and ψ̄(t, x) being nonconstant in x. Since

∂ψk(0, 0)
∂t

→ 0,

and ψt > 0, we may apply the Harnack inequality to ψt and conclude that ψ̄t(t, x) = 0 for all t and
x. Thus, the function ψ̄ = ψ̄(x) satisfies

−ψ̄xx = ḡ(x)f0(ψ̄).

However, due to the properties of f0, there can be no non-constant solution to this equation with
ψ̄ ∈ [0, 1]. So, there exists such a cε, as claimed.

Since |ψx| is bounded uniformly in t and x, and ψx(t,X(t)) ≤ 0, the lower bound on ψt at the
point (t,X(t)) implies that

Ẋ(t) = −ψt(t,X(t))
ψx(t,X(t)

≥ δ

with some δ > 0 independent of t ∈ R. �

The exponential decay

The time-monotonicity of the transition fronts implies exponential decay ahead of the front.

Proposition 3.4 Let ψ(t, x) be a transition front solution of (1.3) and let ξ(t) = sup{x : ψ(t, x) =
θ0/2}. There exists r > 0 so that for all t ∈ R and x > ξ(t) we have

ψ(t, x) ≤ θ0
2
e−r(x−ξ(t)).
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Proof. The same argument used to prove Corollary 3.3 shows that ξ̇(t) ≥ r for some r > 0
independent of t ∈ R. The function s(t, x) = 2ψ(t, x+ ξ(t))/θ0 satisfies

st − ξ̇sx − sxx = 0, s(t, 0) = 1,

and s(t, x) → 0 as x → +∞, uniformly in t ∈ R. We claim that s(t, x) ≤ e−rx for all t ∈ R and
x ≥ 0. Indeed, consider the difference

p(t, x) = e−rx − s(t, x),

which satisfies
pt − ξ̇px − pxx ≥ 0, p(t, 0) = 0, (3.15)

and p(t, x) → 0 as x → +∞, uniformly in t ∈ R. Given ε > 0, consider an interval [0,M ], with
M = M(ε) > 0 such that p(t,M) > −ε for all t ∈ R. There exists a time T (M, ε) > 0 so that any
solution of (3.15) on the interval 0 ≤ x ≤ M with the Cauchy data p(t0, x) such that |p(t0, x)| ≤ 1
and the boundary condition p(t,M) ≥ −ε, satisfies p(t0 + T (M, ε), x) ≥ −2ε. Thus, as p(t, x) is a
global in time solution of (3.15) and ε may be chosen arbitrarily small, we have p(t, x) ≥ 0 for all
t ∈ R and x ≥ 0. �

The proof of uniqueness

We may now finish the proof of Theorem 1.3. Let φ(t, x) be the transition front satisfying properties
P.1-P.4., and assume that there exists another transition front ψ(t, x). Without loss of generality
we may assume that φ(0, 0) = ψ(0, 0) = θ0. We will prove that this normalization implies ψ(t, x) =
φ(t, x) for all (t, x) ∈ R2. Let us denote by Xφ(t) and Xψ(t) the interface positions corresponding
to φ and ψ, respectively: φ(t,Xφ(t)) = θ0 and ψ(t,Xψ(t)) = θ0. The key steps are the following
lemmas.

Lemma 3.5 There is M > 0 such that

|Xφ(t)−Xψ(t)| ≤M, for all t ∈ R. (3.16)

Lemma 3.6 There exists h0 > 0 so that for all (t, x) ∈ R2 we have φ(t− h0, x) ≤ ψ(t, x).

Proof of Lemma 3.5

We first prove the result for t ≤ 0. Suppose that there is a sequence tn ≤ 0 such that tn → −∞ and

|Xφ(tn)−Xψ(tn)| → +∞

as n→∞. Assume first that Xφ(tn)−Xψ(tn) → +∞. It follows from property P.2 bounding Ẋφ(t)
that Xφ(tn− τ)−Xψ(tn) → +∞ as well, for any fixed number τ > 0. Now, if ξ(t) = ξψ(t) is defined
as in Proposition 3.4, the difference Xφ(tn− τ)− ξψ(tn) also diverges, since ξψ(t) must stay within a
bounded distance from Xψ(t) because ψ(t, x) is a transition front. Therefore, due to the exponential
decay of ψ(tn, x) beyond the point x = ξψ(tn), we see that for any ε > 0 we may take n large enough
so that

ψ(tn, x) ≤
{

φ(tn − τ, x) + ε, for x ≤ Xφ(tn − τ) + L0

φ(tn − τ, x) + εe−α(x−Xφ(tn−τ)) for x ≥ Xφ(tn − τ) + L0,
(3.17)

if α < r/2 and L0 is defined as in Proposition 2.1. Therefore, Proposition 2.1 implies that if n is
sufficiently large we have

Xψ(t) ≤ Xφ(t− τ) + 1 for all t > tn.
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Using this condition and Corollary 3.3, and normalization Xφ(0) = 0, we see that

Xψ(0) ≤ Xφ(−τ) + 1 ≤ −τδ + 1 < Xφ(0)

if τ > δ−1. This contradicts the normalization Xψ(0) = Xφ(0).
On the other hand, if Xφ(tn)−Xψ(tn) → −∞, then Xφ(tn + τ)−Xψ(tn) → −∞ as well for all

τ ∈ R fixed. Then for any ε > 0 we may use Proposition 2.1 to bound ψ below as

ψ(tn, x) ≥
{

φ(tn + τ, x)− ε, for x ≤ Xφ(tn + τ) + L0

φ(tn + τ, x)− εe−α(x−Xφ(tn+τ)) for x ≥ Xφ(tn + τ) + L0,
(3.18)

for n sufficiently large. It follows that Xψ(0) ≥ Xφ(τ) − 1 ≥ δτ − 1 > Xφ(0), if τ > δ−1, which
contradicts the normalization Xψ(0) = Xφ(0). This establishes (3.16) for t ≤ 0.

For t ≥ 0, the normalization Xψ(0) = Xφ(0) and the exponential decay of ψ implies that for any
ε > 0,

ψ(0, x) ≤
{

φ(τ, x) + ε, for x ≤ Xφ(τ) + L0

φ(τ, x) + εe−α(x−Xφ(τ)) for x ≥ Xφ(τ) + L0,
(3.19)

if τ is sufficiently large. Hence, Proposition 2.1 implies that by choosing ε small and then τ large,
we get

Xψ(t) ≤ Xφ(t+ τ) + 1 ≤ Xφ(t) + 1 + τCmax

for all t > 0. Similarly, for ε > 0,

ψ(0, x) ≥
{

φ(−τ, x)− ε, for x ≤ Xφ(−τ) + L0

φ(−τ, x)− εe−α(x−Xφ(−τ)) for x ≥ Xφ(−τ) + L0,
(3.20)

if τ is sufficiently large. Again, Proposition 2.1 implies that by choosing ε small and τ large we
obtain

Xψ(t) ≥ Xφ(t− τ)− 1 ≥ Xφ(t)− 1− τCmax

for all t > 0. This establishes (3.16) for t ≥ 0 and completes the proof of Lemma 3.5. �

Proof of Lemma 3.6

As in the proof of Proposition 3.1 we first establish the claim in the domain

Ω =
{

(t, x) ∈ R2 :
θ0
2
≤ φ(t, x) ≤ 1 + θ1

2

}
.

We let Ωt = {x ∈ R : (t, x) ∈ Ω} be the cross-section of Ω with t fixed, which must have uniformly
bounded width: supΩt − inf Ωt ≤ w. From Lemma 3.5, we know that |Xφ(t) −Xψ(t)| < M for all
t ∈ R. Since Xφ(t) ∈ Ωt for all t ∈ R, this implies that that

inf
(t,x)∈Ω

ψ(t, x) ≥ inf
t

(
inf

|x|≤w+M
ψ(t, x+Xψ(t))

)
> ε (3.21)

for some ε > 0. The strict lower bound follows from the Harnack inequality applied to ψ. If this
were not so, there would be a sequence of points (tn, xn) with |xn| uniformly bounded such that
ψ(tn, xn + Xψ(tn)) < 1/n as n → ∞. Then the Harnack inequality and the regularity of ψ imply
that the functions ζn(t, x) = ψ(t+ tn, x+ xn +Xψ(tn)) converge to zero locally uniformly on R×R.
In particular, it would follow that ψ(tn, Xψ(tn)) → 0, a contradiction. Thus, (3.21) has to hold for
some ε > 0.
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The lower bound Ẋφ(t) ≥ δ implies that Xφ(t− h) ≤ Xφ(t)− δh for all h > 0. Hence, as φ is a
transition front, we may take h sufficiently large so that φ(t − h, x) < ε for all (t, x) ∈ Ω. We now
see from (3.21) that

φ(t− h, x) < ε < ψ(t, x) for all (t, x) ∈ Ω

if h is large enough.
The rest of the argument proceeds as in the proof of Lemma 3.2. We claim that there exists h1

such that ψ(t + h1, x) ≥ (1 + θ1)/2 for all x ≤ supΩt and all t ∈ R. The lower bound Ẋψ(t) ≥ δ
implies that Xψ(t+ h1)− δh1 ≥ Xψ(t). Therefore, if x ≤ supΩt, we must have

x ≤ Xψ(t+ h1)− δh1 + w +M,

which implies that

inf
x≤sup Ωt

ψ(t+ h1, x) ≥ inf
x<−δh1+w+M

ψ(t+ h1, Xψ(t+ h1) + x) (3.22)

If h1 is sufficiently large, the right hand side is larger than (1 + θ1)/2, since ψ is a transition front.
We choose now h̄ = max(h0, h1) and set r(t, x) = ψ(t+ h̄, x)− φ(t, x). This function satisfies

rt − rxx = a(t, x)r

at all points (t, x) where x < inf Ωt, with

a(t, x) = g(x)
f(ψ(t+ h̄, x))− f(φ(t, x))

ψ(t+ h̄, x)− φ(t, x)
≤ −β.

in this region. Now, r(t, x) can not have a negative infimum in the region x < inf Ωt for the same
reason as in the proof of Lemma 3.2 for the “region on the left”. The regions “on the right” and
“bad points in the middle” are also treated in exactly the same way as in the aforementioned lemma.
We conclude that r(t, x) ≥ 0 for all t and x. �

End of the proof of Theorem 1.3

Using Lemma 3.6 we find h̄ which is the smallest of all h so that φ(t, x) ≤ ψ(t+h, x) for all t and x.
We will now show that h̄ = 0. As we have φ(t, x) ≤ ψ(t+ h̄, x), if there exists a point (t, x) so that
φ(t, x) = ψ(t + h̄, x) then φ(t, x) ≡ ψ(t + h̄, x) by the maximum principle. Then Xφ(0) = Xψ(0)
implies that h̄ = 0. Hence, unless h̄ = 0 we must have φ(t, x) < ψ(t+ h̄, x) everywhere.

Now, by using an argument similar to that which proved (3.13) we deduce that if h̄ > 0 then
there exists γ > 0 so that

inf
(t,x)∈Ω̃−

ψ(t+ h̄− γ, x)− φ(t, x) > 0 (3.23)

where
Ω̃− = {t ≤ 0, x ∈ R, inf Ωt ≤ x ≤ supΩt} .

Indeed, suppose that (3.23) fails for all γ > 0. Then we may find a sequence of points (tn, xn) ∈ Ω̃−

such that
lim
n→∞

ψ(tn + h̄, xn)− φ(tn, xn) = 0,

and tn → −∞. Because (tn, xn) ∈ Ω̃−, the difference |Xφ(tn) − xn| is uniformly bounded. The
functions

rn(t, x) = ψ(t+ tn + h̄, x+ xn)− φ(t+ tn, x+ xn) > 0
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satisfy an equation of the form
rt − rxx + a(t, x)r = 0.

Since rn(0, 0) → 0 as n → ∞, the Harnack inequality and the regularity of rn implies that rn(t, x)
converges to zero locally uniformly as n→∞. This and the fact that ψ decays exponentially ahead
of the interface Xψ(tn) implies that for any ε > 0,

ψ(tn + h̄, x) ≤
{

φ(tn, x) + ε, for x ≤ Xφ(tn) + L0

φ(tn, x) + εe−α(x−Xφ(tn)) for x ≥ Xφ(tn) + L0,
(3.24)

holds if n is sufficiently large and α < r/2. In this case Proposition 2.1 would imply that Xψ(t+ h̄) ≤
Xφ(t) + Cε for all t > tn if n is sufficiently large. Since tn → −∞, we may let ε be arbitrarily
small and conclude that Xψ(0) < Xψ(h̄) ≤ Xφ(0), which is a contradiction to the normalization
Xψ(0) = Xφ(0) if h̄ > 0. Thus, there exists γ > 0 such that (3.23) holds.

However, we now may argue as at the end of the proof of Proposition 3.1 to show that actually
ψ(t + h̄ − γ, x) > φ(t, x) for all (t, x) ∈ (−∞, 0] × R if γ > 0 is small enough. That is, (3.23) also
holds for the points (t, x) satisfying t ≤ 0 and either x < inf Ωt or x > supΩt. The only difference
now is that we treat Ω̃− instead of Ω̃. As before, the “bad points in the middle” are included in the
set Ω̃−. To show that (3.23) holds for the points on the left, we need to take γ small enough so that

ψ(t+ h̄− γ, x) ≥ θ1 (3.25)

for x < inf Ωt and t ≤ 0. Since ψ(t+ h̄, x) > φ(t, x) ≥ (1 + θ1)/2 for all (t, x) in this region, uniform
bounds on ψt imply that (3.25) holds if γ is small for x < inf Ωt and t ≤ 0. Then we apply the
argument as before, considering the function r(t, x) = ψ(t+ h̄− γ, x)− φ(t, x). If

η1 := inf
t≤0

x<inf Ωt

r(t, x) < 0, (3.26)

then we find a sequence of points (tn, xn) such that r(tn, xn) → η1. Taking an appropriate subse-
quence nk, the functions rk(t, x) = r(t+ tnk

, x+xnk
) converge locally uniformly to a function r̄(t, x)

which satisfies r̄(0, 0) = η1 and

r̄t − r̄xx > 0, x ∈ B−
0 = {(t, x) ∈ R2 | t ≤ 0, |t|2 + |x|2 ≤ l} (3.27)

with l ≥ 0 a sufficiently small constant. Since r̄ attains its minimum at (0, 0), we obtain a contra-
diction, by the maximum principle.

For the points on the right, x > supΩt, the previous argument also applies with little modifica-
tion. The only difference is that we define the constants dn = dist((tn, xn), Ω̃−) and the half-balls
B−
n = {(t, x) : t ≤ 0, |x − xn|2 + |t − tn|2 ≤ d2

n}. The same argument as before produces a
subsequence (tnk

, xnk
) such that dnk

→ d0 > 0 and the functions

rk(t, x) := ψ(t+ tnk
+ h̄− γ, x+ xnk

)− φ(t+ tnk
, x+ xnk

)

converge locally uniformly to a function r̄(t, x) satisfying

r̄t − r̄xx ≥ 0, for (t, x) ∈ B−
0 (3.28)

where B−
0 = {(t, x) : t ≤ h0, |x|2 + |t|2 ≤ d2

0} and h0 = min(d0,− lim supk tnk
) ≥ 0. Since we have

minB−
0
r̄(t, x) = r̄(0, 0) < 0, the function r̄ must be constant over B̄−

0 . However, this contradicts the
fact that r̄ ≥ 0 at some point on the boundary ∂B−

0 , by definition of dn.
Hence (3.23) holds for all points (t, x) ∈ (−∞, 0] × R if γ is sufficiently small. The maximum

principle then implies that (3.23) holds for all points (t, x) ∈ R2. This contradicts the minimality
of h̄. Therefore, h̄ = 0 and ψ(t, x) ≥ φ(t, x). Since ψ(0, 0) = φ(0, 0), the maximum principle implies
uniqueness: φ(t, x) = ψ(t, x) for all (t, x) ∈ R2. �
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