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Abstract

We consider in this paper a general reaction-diffusion equation of the KPP (Kol-
mogorov, Petrovskii, Piskunov) type, posed on an infinite cylinder. Such a model
will have a family of pulsating waves of constant speed, larger than a critical speed
cx. The family of all supercritical waves attract a large class of initial data, and we
try to understand how. We describe in this paper the fate of an initial datum trapped
between two supercritical waves of the same velocity: the solution will converge to a
whole set of translates of the same wave, and we identify the convergence dynamics
as that of an effective drift, around which an effective diffusion process occurs. In
several nontrivial particular cases, we are able to describe the dynamics by an effective
equation.

1 Introduction
The question here is the large-time dynamics of the solutions of reaction-diffusion equations
on the whole line or in cylinders, the most general instance being

{ut —div(A(x,y)Du) + B(z,y).Du = f(z,y,u), ((z,y) € R x TN, (1.1)

lim wu(t,z,y) =0, lir+n u(t,z,y) = 1.

Here, T™ denotes the n-dimensional torus. The function f will always be supposed to be
smooth enough, and positive. Moreover it will be assumed to be concave in u, and moreover:

f(z,y,0) = f(x,y,1) =0, sup fu(z,y,1) <0< (inf) fulz,y,0).
x,y

(z,y)

Additional assumptions on A, B and f, such as periodicity in the variable x, are required,
and we will give a precise statement when needed. More general assumptions (such as less
smoothness on f, or a condition on the slope of f at 0 instead of the concavity assumption)
are possible, but will not be considered. In any case, such a nonlinearity f will be called a
KPP nonlinearity.

It is well-known [3] that there exists ¢, > 0 such that (1.1) has pulsating waves solutions
of speed c if and only if ¢ > ¢,. See the general definition in [3], here a pulsating wave
with speed ¢ will be a solution ¢, of (1.1) such that, for all (§,y) € R x TV~1, the function

t — ¢.(t,& —ct,y) is —-periodic. Note that existence results in the spirit of Theorem 0.3 are
c
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known, although less complete - see [1] or [9]. The family of all these travelling waves - but
not only, see [13] - provides an attractor for a large class of initial data to (1.1). The goal
of our work is to understand how this attractor traps the trajectories of (1.1). First we will
study the most basic model. Next, thanks to the informations given by this basic model,
we will consider the problem in the full generality. At last, we will consider a periodic one
dimensional case, for which we will be able to give precise answers.

1.1 The basic one dimensional model

What motivated this study is the following, seemingly innocent question. Consider the most
basic 1D model, namely

lim wu(t,z) =0, lim u(t,z)=1, (1.2)

Ir——00 T—-+00

{ut_uxx:f(u) (l‘GR)

with f concave, f(0) = f(1) = 0. Then - see, for instance, [17] - (1.2) has a family of

travelling waves; that is, for every ¢ > ¢, := 24/ f'(0), there is a unique - up to translation
in x - ¢, solving

c¢' —¢"=[f(¢), (xeR

{ (9), ( ) (1.3)

lim ¢(x) =0, ET o(z) = 1.

Tr——00

In other words ¢.(x + ct) solves (1.2). We ask the question of the stability, under large
perturbations, of the supercritical waves - those whose speed is > ¢,. Much is known in this
direction; let us extract the following two results.

Theorem 0.1 (Uchiyama [30], Bramson [7]) Let ug(x) be a Cauchy datum for (1.2) such
that there is ¢ > ¢, and r > 0 for which we have

up(z) = ¢(z)(1 + 0(e™)) as x — —o0.

Assume moreover that imsup ug(z) = 1. Then there is some w > 0 such that, we have, as
r——+00
t — +o0:

u(t, ) = ¢o(x + ct) + O(e™").

A much related, and more recent theorem is
Theorem 0.2 (Berestycki-Hamel [}]) Let u(t, x) be a time-global (that is, defined fort € R)
solution to (1.2) such that there is ¢ > ¢, and M > 0 for which we have

de(x +ct — M) < u(t,x) < ¢e(x + ct + M).

Then there is m € [—M, M| such that: u(t,z) = ¢.(x + ct +m).

In fact, the assumption that u(t,x) is trapped between two translates of a wave can be
considerably weakened under our assumptions on f, see [13].

At first sight, Theorem 0.2 seems to imply the convergence to a wave for any solution
starting from a datum trapped between two waves. Not quite, though: Theorem 0.1 only
allows perturbations which decay faster than the wave. And this seemingly unsignificant
gap between the two results signals in fact that initial data which are merely sandwiched
between two waves - and which do not select an asymptotic wave at —oo have a wilder
behavior. Here is what we can prove.
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Theorem 1.1 Let ug(x) be a Cauchy datum for (1.2). Assume the existence of ¢ > ¢, and
M > 0 such that ¢.(x — M) < ug(x) < ¢e(x + M). Denote r_(c) the smallest characteristic
exponents at —oo of (1.3), i.e

r(c) = c— /2 —4f"(0)

2

Then there is some initial condition mq (given explicitly in the proof), bounded between —M
and M, and such that, considering the solution s(t,§) of

St — See + /2 —c2se =0, (t>0, £ €R), 5(0,¢) = e~ (Imo(®) (1.4)

and setting

m(t,€) =

Ins(t, ) = E-\/E-Bt-p)/at - (mo(y) dy)’

=0 (L

we have, as t — +o0,

1
sup |u(t, ) — ¢e(x + ct + mPP(t,x + ct))| = O(—=
zeR \/E

Remark 1.2 e The “initial shift” myg is explicit: mo(z) = ¢, (uo(x)) — x if this is a C*

bounded and uniformly continuous function, or mo(z) = ¢. (u(1,2)) — x in any case.

).

e Up to our knowledge, this result is new, although the arguments used in [7] are very
close to proving our theorem.

e [n subsection 2.6, we give examples and applications of Theorem 1.1, that allow us to
extend in several directions Theorem 0.1:

— the case where the initial shift mg is periodic, hence when the initial condition
“oscillates” between two translates of the travelling wave;

— the case where the initial shift mg converges to some constant at —oo: then we
prove the convergence of the solution u to a travelling wave, with a precise con-
vergence rate;

— a case where the solution does not converge to any travelling wave. Indeed, it is
known - see [8], [31] - that very simple equations like (1.4) can exhibit complex
behaviours; in particular, the w-limit set (in the sense of uniform convergence
on every compact set) - can be a whole interval. A related phenomenon for two-
dimensional bistable equations was noticed in [26], the mechanism is somehow
different. See [24] for related results in nonlinear supercritical heat equations.

1.2 The general model (1.1)

Coming back to the general model (1.1), what we have is of course less precise. We assume
that A, B and f satisfy the following additional assumptions:

e A is symmetric, uniformly positive, 1-periodic with respect to x, and C3(R x TN-1),

e B is l-periodic with respect to x, C*(R x TN=!) and moreover div B = 0 and
f(O,l)x’H‘N* B; =0 (where By is the first component of B),
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e f is 1-periodic with respect to z.

Let us first state, under the form of a theorem, the basic result that we shall need:
Theorem 0.3 (Berestycki-Hamel [3], Hamel-Roques [14]) There is c. such that (1.1) has
no pulsating wave solution if ¢ < c., and a unique - up to translation in t - pulsating wave
solution if ¢ > c,. Moreover, for a pulsating wave ¢, we have Oyp. > 0.

Existence and monotonicity come from [3], uniqueness comes from [12] and [14]. The theorem
corresponding to Theorem 1.1 is:

Theorem 1.3 Let ug(z,y) be a Cauchy datum for (1.1). Assume the existence of ¢ > c.
and M > 0 such that ¢p.(—M,x,y) < ug(x,y) < ¢.(M,x,y). Then there exists a smooth
function m(t,x,y), solution a nonlinear parabolic equation with periodic coefficients, such
that tE+moo | (my, Dm, D*m)(t, .,.)||oc = 0, and such that

sSup ’U<t,l‘,y>—¢c(t+m<t,$,y>,$,y)| —0 as t — +00.
(z,y)ERXTN-1

As we will see, the shift m(¢, x, y) will satisfy - up to a Hopf-Cole transform - a linear diffusion
equation (with periodic coefficients). In order to have more insight into its dynamics, we
will interpret it in the light of general heat kernel estimates for operators with periodic
coefficients, that were proved by Norris [22] at this level of generality. We will see that the
underlying processes at work are

1. an effective drift V. (c) which can be computed explicitely (and which is, fortunately,
consistent with the 1D expression \/c? — ¢2 1),

2. an effective diffusion process around the drift.

Apart from Theorem 1.3, the only multi-dimensional stability results are those of [18] - there
we have A = [ and B(x,y) = (a(y),0) - and [14] - general A and B, which prove the
asymptotic stability of all the waves under fastly decaying perturbations.

1.3 More precise results concerning the general model (1.1) in one
space dimension
We are able to push Theorem 1.3 further for the 1D version of Problem (1.1). It reads - for

simplicity, the matrix A(z) has been set to identity, but our result would undoubtedly hold
without this assumption:

{ut — Uy = f(z,u), (z€R)

lim wu(t,z) =0, hril u(t,z) = 1.

T——00

(1.5)

Of course the pulsating wave solutions of (1.1) specialize to (1.5); Theorem 0.3 applies and
we denote by ¢, the minimal speed. The additional information of this section is an optimal
convergence rate of a solution to (1.5), initially trapped between two waves, to the shifted
wave.

Theorem 1.4 Let uy(z,y) be a Cauchy datum for (1.5). Assume the existence of ¢ > c¢. and
M > 0 such that p.(—M, z,y) < up(z,y) < ¢e(M,x,y). Then the smooth function m(t,z,y)

May 16 2010 5:49:18 EDT
4 Vers. 1 - Sub. to TRAN



solution of the nonlinear parabolic equation with periodic coefficients studied in Theorem 1.3

satisfies tliin | (mg, My, Mg ) (E, ) || oo = O(—2), and

Vit

sup |u(t, z) — ¢.(t + m(t,z),x)| = O(i) as t — 4o00.

zeR \/E

The proof of this result - announced in [2] - is long and nontrivial; the best part of it consists
in retrieving the precise expression of the heat kernel. But it is worth the effort, because it
really gives an insight into the heat kernel, and a precise description of the mechanisms at
work. It is therefore of independent interest. Needless to say, the effective drift is present
here, and V,(c) = /c? — ¢2 when f(x,u) does not depend on z.

1.4 Additional comments and open questions

We hope that the ideas developped here will not only provide a better understanding of
the dynamics of super-critical KPP waves, but will also help to understand how the critical
wave is attained from fastly decaying initial data. In a forthcoming work [20] we will see
how this works for the 1D homegeneous model - already proved by Bramson [7] but where
a deterministic proof is still unknown - and on the multi-D model with special cases of
advection. The general case is an important issue that goes far beyond scalar reaction-
diffusion equations, see [10].

There are several questions close to this work whose answers would be very interesting:

e Concerning the general model: we could not provide a decay rate estimate about the
derivatives of approximate shift, but just the fact that ltlim | (my, Dm, D*m)(t)]|s = 0,
— 400

using a contradiction argument. Any decay rate estimate would immediately provide
also a decay rate of the uniform convergence as t — +oo of the shifted wave ¢.(t +
m(t,x,y),x,y)) to the solution u of the Cauchy problem.

e Hence the problem of the convergence rate remains open in the general N-dimensional
case. However, in a forthcoming work [20], we will study the case A = I, B(z,y) =
(a(y),0) - thermo-diffusive model for flame propagation - where the techniques are
related to the ones used in this paper. We point out that, except in the case of self-
adjoint operators - where the heat kernel is known with a lot of precision, see [23] -
these are the only cases where we can go that far.

e We concentrated our study in the case where the initial condition of the Cauchy prob-
lem is trapped between two translates of the same pulsating wave. It would be very
interesting to investigate the behavior of the solutions under weakened assumptions on
the initial condition. An important first step is taken in Hamel-Nadirashvili [13], where
it is proved that (almost) every time-global solution of the N-dimensional homogeneous
model

u — Au = u(l — u), t>0, zeRY, 0O<u<l

is a (possibly uncountably infinite) convex combination of one-dimesional waves. See
also the later reference [32].

e The case of initial conditions trapped between two critical waves (¢ = ¢, ) is not treated
here. This will be studied in the forthcoming paper [19].
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1.5 Plan of the paper

The plan of the paper is the following. In Section 2 we prove Theorem 1.1; the argument,
although quite simple, will be explained at length because its main lines will always be the
same in the more complicated subsequent cases. We will also apply our method and result
on several natural examples. In Section 3 we prove the general theorem 1.3 for model (1.1).
This will allow us to prove a Liouville theorem very close in spirit to an ellipic result proved
by Rossi in his thesis [27]. We will also provide the interpretation of the nonlinear diffusion
equation for m in terms of the general heat kernel estimates. Finally, in Section 4 we deal
with the general 1D model (1.5). At this stage the reader will be supposed to know the
argument, and only the nonlinear diffusion equation for m will be treated. As said above
the argument is rather long, it will be broken into two parts with the hope that it will be
more amenable to the interested reader. Finally, an appendix describes some elementary but
useful - and not so easy - estimates on Gaussian type integrals.

Acknowledgements. The authors are indebted to Profs. T. Gallay and F. Hamel for
valuable comments on this work. A remark made by Prof. T. Gallay during the PhD thesis
defense of the first author, pointing out that the important issue was to really understand the
attraction dynamics of the family of waves, was influential in the preparation and orientation
of this work. They are also grateful to Prof. F. Hamel for making his work [14] accessible
to them. At last, the second author thanks Prof. P. Cannarsa and the University Roma Tor
Vergata, for an invitation that was helpful to complete this work.

2 The basic 1D model: proof of Theorem 1.1

This part is devoted to the proof of Theorem 1.1 and, although most of the tools displayed
here are quite standard, the chain of arguments is not.

2.1 The travelling wave of speed c

We consider the classical change of variables (t,z) — (¢, = x + ct). Now if u(t,x) is a
solution of the Cauchy Problem for (1.2), the function u defined by

a(ta g) = 'Lb(t,f - Ct)
satisfies u(t, z) = u(t, z + ct), and thus is solution of the Cauchy problem

?jt—i—Cﬂg—?j&:f(ﬂ), t>0,€€R,
Then consider the differential operator
NLC[[?] = [715 + Cﬁg - [755 - f(ﬁ)
(Hence w is solution of the differential equation of (2.1) if and only if NL.[u] = 0.) In the
whole section we assume that ¢ > ¢, = 2,/ f"(0). Let r+(c) be the characteristic exponents
at —oo of (1.3), i.e
ct /2 —4f'(0)

ry(c) = 5 .

We recall that, for a given wave ¢, there is ¢ > 0 and 6 > 0 such that, as £ — —oo,
oe(&) = ge’- 9% 4 O(e(’"‘(c)”)g), PL(E) = qrf(c)er—(C)é + O(e(r—(C)M)E),

c

#(€)) = qr(c)e"™ 95 4 O(elr= I+,

C
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2.2 Exact local shift

Given a sufficiently smooth function m : (0, +00) x R — R, consider

T (1, €) := gl +m(t,€)).

Of course when m is identically zero, we have T, (t,€) = ¢.(£), and TW¢, satisfies
NL[T®¢.] = 0. More generally, we would like to know what conditions on m imply that
T ¢, is solution of (2.1). We have

NL[T"™¢.] = (m; — mee — c(me +m))dL(E + m(t, €)) + (2me + mg) f(e(& + m(t,€))).

Since ¢, is strictly increasing, we could define the shift m as m*(t,&) = o7 (u(t,£)) — &,
that satisfies the following nonlinear parabolic equation

{(mif —mge — c(mg +mg?))gu(§ +m*(t,€)) + (2mg +me®) f(6e(€ +m*(t,€))) =
m*(0,€) = ¢ (uo(§)) — & =2 mg(§).

To study the properties of the solution of this problem seems impossible, hence our strategy
will be to find a parabolic problem that will be: as close as possible of the previous one, but
simpler. This will permit us to study the properties of its solution m; of course in this case
the functions @ and T™ ¢, will have no reason to coincide. Then consider the difference
u — T ¢,, and estimate its asymptotic behavior as t — 4+o00. What came as a surprise to
us is that this very simple and natural strategy actually enables us to say something about
very general models.

Even if we cannot say many things on the exact shift m*(t,£) = ¢ (u(t, £)) — £, we can
see that it has the following property: for all ¢ > 0, m*(¢,-) is of Class C '(R) and is bounded
in the natural C'-norm: indeed,

- first, it is clear that m* is bounded, and more precisely, m*(¢,&) € [—M, M]; this follows
from the assumption that uy(§) € [¢.(§—M), ¢.(E+ M)], using the weak maximum principle;

- next, from parabolic regularity, m*(t, ) is of class C'(R);

- at last,

Rt ) Tt 6©
GE+m (L) ) o+ m (t8)

hence m{(t,-) is bounded if and only if = , is bounded; and it follows from local parabolic
estimates that this is true, once again usmg the fact that the weak maximum principle
implies that ¢.(§ — M) < u(t,&) < ¢(§+ M) for all t > 0 and all £ € R.

Hence, in particular, m*(1,-) is of class C*(R) and is bounded in the natural C''-norm. We
will use this remark in the following.

mg(t §) = -1,

2.3 Approximate shift

If m is bounded, remark that the coefficients ¢.(§ +m(t,&)) and f(p.(§ +m(t,€)) appearing
in NL.[T"™ ¢.] decay like e™(9¢ as ¢ — —oo. Now let us ask if we can choose m so that
we get a better decay for NL.[T™ ¢.], a property that would help us a lot in estimating the
difference between u and the associated shifted wave, as will be clearer later (see subsection
2.5). For this purpose, we linearize the equation at —oo, studying the behavior of the

coefficients ¢ (& +m(t,€)) and f(¢.(€ +m(t,§)) as £ — —oo. Obviously we have
110 110
r_(c) r_(c)
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denote
1'(0)

() Pe(§ +mf(t,€)); (2.2)

g(ta g) = f(qbc(g + m(t7£))) -

then we have

NL [T ™ ] = (my — mee — c(me +mg))@L(E + m(t,€))

+ (g + m) (A€ + (e, )+ (2me + gt €.
e £(0) £(0)
_C+2r,(c) =4/ —c2 and _C+7L(c) = —r_(c),
we obtain

NL[T™ 6] = (my—mee+ /¢ — 2me —r_()ym) ¢ (€ +ml(t,€)) + (2me +mi)g(t,€). (2.3)

When £ — —o0, we have f(¢.(§)) — 1{:_((00))%(5) = O(el™-(979¢) with some § > 0; hence g has
the same property if m is bounded. This makes natural the choice of m: take it to solve

my — mee + /¢ — 2mg —r_(c)mg =0,

with a suitable initial condition:

o if m}(&) = o (ug(€)) — & is of class C'(R) and bounded in norm C', then we choose

m as the solution of

my — Mee + /¢ — 2me —r_(c)mZ = 0, t>0, £€R, (2.4)
m(0,8) =mg(§), & €R; ‘

e in the general case, as we noted that m*(1,-) is of class C*(R) and bounded in norm
C*, then we can choose m as the solution of

me — mee + /¢ — 2me —r_(c)mg = 0, t>1, £€R, (2.5)
m(L,§) =m*(L§), (eR; .

In the following we assume that we are in the first case, that is that m is solution of (2.4).
The study of the second case is the same, the only difference being that ¢ € (1,400) instead
of (0, +00).

2.4 The properties of the approximate shift

There is an easy expression for m: its Hopf-Cole transform s(t, &) = "~ (©m*9 solves

{st—555+\/02—c§s§:0, t>0, £€R,

5(0,6) = e (960 =i 50(¢), £ ER,
and thus the function S defined by

S(t,&) == s(t, &+ /2 — 2t)
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is solution of the heat equation

St—S&:O, t>0, £€R,
S<07§) = 80(5)7 f eR.

Hence, if G(t,€) is the heat kernel \/i%e_i, then
5(t.6) = [ Gt.¢ = o) dy (26)
R
s(t,§) = S(t,§ =/ —cit) = / G(t.§ — /2 —cit —y)so(y) dy, (2.7)
R

and finally

! ns Ln — /2 — 2t — e (©Omi(y)
(1,6 = s msie ) = —mf [ Gl %~ y) ). es)

This is exactly the expression in Theorem 1.1, choosing m®? = m. We deduce the following
properties, useful in the following:

- first, m is bounded, and more precisely, m(t,§) € [—-M, M| for all t > 0 and all £ € R:
indeed, this is true at ¢ = 0, and remains true thanks to the weak maximum principle or
directly from the formula (2.8);

- its spatial derivative satisfy: for all t > 0, |[|[me(?,.)||c = O( ) indeed,
1 Se(t,&— /2 =2t
mE(t>€) = E( )7
r_(c) S(t,& —\/c2 — c2t)
and, for all £ > 0 and £ € R, we have
|S¢(t, ) < Cllsplle  and  [Se(t,€)] < C\/—HSoHoo,

hence we obtain what we claimed;
- note that, in the same way, ||mt( Moo = O( =) and [[mee(t, )|l = O(3) for all £ > 0.

Now we denote ©*P the associated shifted wave:

WP(L,E) = TG, = (& +mlt,€)). (2.9)

It remains to prove that we have grabbed the correct shift, that is that [|u(t,.) —u™P(t,.)|lc =
O(\/%) as t — 400, and Theorem 1.1 will be proved.

2.5 The difference between the solution and the shifted wave

2.5.1 Solutions decaying sufficiently fast in space will decay exponentially in
time

The following (quite standard) lemma will be useful to estimate the difference between the
solution and the shifted wave.

May 16 2010 5:49:18 EDT
9 Vers. 1 - Sub. to TRAN



Lemma 2.1 Let v(t,§) solve
v — vge +cve — f(0)v=0 (>0, E€R),  v(0,§) = vp(§)

with vy bounded, uniformly continuous on R. Assume additionally the existence of & €
(0,74(c) —r_(c)) such that

vo(€) = O(e-O8) g5 & — —o0.
Then there is w(d) > 0 such that

lu(t,€)] < e(r=(e)+0)¢ ,—w(d)t Su£|€f(r—(c)+5)zvo(z)"
ze

Proof of Lemma 2.1. Fix d > 0 and consider V (¢,£) = v(t,£)e™%. Then V solves

Vi + (¢ — 2d)Ve — Vee + (cd — &2 — f'(0))V =0, ¢>0, €R,
V(0,€) = vo(&)e™*.

Now we note that ¢d — d* — f/(0) > 0 if d € (r_(c¢),r(c)), and V(0,.) is bounded if
r_(c)+0—d>0. Hence we choose d € (r_(c),r_(c) + d]: then ed — d* — f’(0) > 0, and the
Weak maximum principle implies that

IV (t, )] < [[V(0,.)]|ee 1O

which implies that

l(t, €)| < (sup |vo(2)e™%|)ee (4= ~F" O
z€R

which is Lemma 2.1 choosing d = r_(c) + ¢ and w(d) = c¢d — d* — f'(0). O

2.5.2 Application: proof of Theorem 1.1

With this in hand, we may complete the proof of Theorem 1.1, proving that |ju(t¢,.) —
uPP(t, )HOO—O( )ast—>+oo
First, note that (2.3) and the choice of the shift m imply that

NL[T] = (2me¢ +mg)g(t, §).

Denote

flult, &) — fu(t.€))

W)= = e —ww(n,6)

Since f is concave, we have

—f(0) < a(t,§) < —f(1). (2.10)
Of course, the interest in introducing this function a comes from the following fact:
NL[u] — NL[u*"] = (tiy + cig — tige — f(u)) — (W™ + cug™ — uge” — f(u™?))
= (@ =u"™); + c(u —u")e — (u—u)ee — (f(u) — f(u™))
= (T T, el TP — (T A )ge + alt, (T — 7).
Hence
(it — W), + ol — @) — (il — W) +alt, €)@ — @) = —NL @), (211)
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Let us denote by ¢1(¢, &) the right-hand side, and w the solution of the Cauchy problem
w(0,8) = [u—u[(0,£) = [uo(&) — ¢c(§ +mi(£))| = 0.
We are going to prove the following facts:

e Claim 2.2 : for allt >0 and all £ € R, we have |u — u™P|(t, &) < w(t,§);
1

e Claim 2.3 : for all{ € R, supw(t, &) = O ;
" §<o ( ) (1 + \/¥)
1
e Claim 2.4 : there exists & € R such that sup |u — u™P|(t,£) = O )
: sup [~ 77(1.6) = O~
It is clear that Claims 2.2-2.4 imply Theorem 1.1: by Claims 2.2 and 2.3,
1

sup |[u — u™P|(t,&) < supw(t, &) = O(
£<to £<é 1+t

and adding Claim 2.4, we obtain that

-~ 1
sup |u — u™”|(t, &) = O(
£eR 1+t
Hence it remains to prove these claims.
Claim 2.2 is a consequence of the weak maximum principle. Indeed, first w is nonnegative;
next, u — u®P? — w satisfies

).

(T — TP — @)y + (@ — T — @)e — (U — TP — @)ee

+al@— TP — @) =G — |G| - (a+ f/(0)@ < 0,

and
(u—u —w)(0,£) =0,

hence u — 4P — w < 0. In the same way, u — u®? + w > 0, hence Claim 2.2 is proved.
Claim 2.3 is a consequence of Lemma 2.1: by Duhamel’s formula:

t
@(t,g):/ e*(t*S)(*aéerCa&*f’(O))’gl(S’.)’ds;
0
since

91(t,§) = —NL[u"""] = —(2m¢ +mg)g(t, €)

!/ O ,
=—@m+mbww&+m@OD—28@@+mw©ﬁ
there is some 0 € (0,74(c) —r_(c)) and Cp > 0 such that, for > 0 and £ € R there holds
B9 < ot

1+ i1+ e -+

then Lemma 2.1 implies that

, C
—(t—5)(~Dge+cde—f(0)) V() < plr(@+0)E —w(@)(t—s) L0
e lg1(s,)[(§) < e e T+ Vs
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Then

t
@(t, €)] < C elr-(e+0) / —l)(t—s) 18
0 1+

B

Since
/t ew(5)5 J 1 ew(é)t
— =08 Yt ioo T TN T
o L+vs TR W) 1+ Vi

we obtain the following expression, valid for all (¢,&)inR, x R:

@(t, )] < —L_ -

_1+\/‘I_f )

hence Claim 2.3 is proved.

Claim 2.4 is a consequence of Claim 2.3, using the following classical argument: first,
there is some gy > 0 and 1 > 0 such that —f'(y) > qo for all y € (1 —n, 1); choose &, such
that ¢.(§o — M) > 1 — n; next, because uq is trapped between two waves of the same speed,
this order is preserved for all time; hence u(t,&) > ¢.(§ — M) for all t > 0 and all £ € R;
at last, since we already know that the shift m is bounded between —M and M, the mean
value theorem implies that a(t,£) > qo for all ¢ > 0 and £ > &. And thus the difference
u — u"PP satisfies

(@ = T), 4 (T — T — (7~ T) e +alt, &) (@ — T) = O(2y), £ 0,6 > &,

1+Vi
(@ — @m)(t, &) = O(Ly), >0,
(@ —u)(0,6) =0, &= &
c

e is a super-solution if C' and ¢ are well chosen (C' sufficiently large, € sufficiently small),
hence the weak maximum principle implies Claim 2.4, and the proof of Theorem 1.1 is
complete. O

2.6 Examples and comparison with the literature

The goal of this subsection is to study some typical examples. We are going to look to

e the case where mg is periodic, which is not covered by the existing literature; we will
prove that the associated solution u of (1.2) converges to a translate of the travelling
wave, but not the one that could be expected, see subsection 2.6.1 and Proposition
2.5;

e a case where mg oscillates between two values: we will see that my can be chosen
so that the associated solution u of (1.2) does not converge to any translate of the
travelling wave, see subsection 2.6.2 and Proposition 2.7;

e the typical case where my converges to some constant mg(—o0) as x — —oo: in this
case, Theorem 0.1 applies when additionally the convergence is exponentially fast.
We will prove that the associated solution u of (1.2) converges to a translate of the
travelling wave, and more precisely the one that is expected: ¢.(x + ct + mg(—00)),
with a precise rate of convergence, roughly speaking the rate of convergence of mg to
its limit mg(—o0), see subsections 2.6.3 and 2.6.4.

Everything is based on the fact that we have an explicit formula for the approximate shift
m(t,€), obtained in (2.8).
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2.6.1 The case where the initial shift m, is periodic

Assume that the initial shift is T-periodic, and denote by < mg > its mean value:

1 T
< >= — .
mo T /0 mo

Proposition 2.5 The solution u of (1.2) converges to the following translate of the travel-
ling wave:

In < e~@m > (213)

1
sup |u(t LE) o gﬁc(aj +ct + MO)‘ = O(_)7 where Ho =

1
z€R ’ \/¥ r_(c)

Remark 2.6 One could have expected the convergence of the solution u of (1.2) to the
the travelling wave ¢.(x + ct+ < mg >). However this is not the case, since in general

po #< mg >.

Proof of Proposition 2.5. Since the function Sp— < Sy > is periodic and has mean value
zero, the function

£
S1(€) = / (Soly)— < 5o >) dy

is bounded. Then, thanks to an integration by parts,

1 2
S(.6) = o= / e~ €V, () dy

1 2
=< S >+\/m/e<€y> M Sy(y)— < So >) dy
R
/ —(é—y) /4t5/( )d
1
:<SO>_\/H R§2ty {y/4tS(>dy

=<5y > +— /06051§+20\/_)

We obtain that

1S(t,8)— <S> | < \/—HSl”oo
This directly implies from
m(t,§) = (e )1115(15 £ =2 —clt)
that .
sup |m(t, &) — In< S5y >|=0(—),
feﬂgl ( 5) ’f‘_(C) 0 | (\/E)
and then

,&app(t’ 5) - gbc(g + ,UO) = ch(g + m(ta 5)) - ¢c(€ + [L()) = O(m(tv 5) - “O)a
which implies that

sup [a(t,§) — ¢e(§ + po)| = O(—),
£eR

and Theorem 1.1 implies (2.13). O
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2.6.2 An example where there is no convergence to some translate of the trav-
elling wave

We may deduce the following proposition from [31], but its proof is elementary enough to
be displayed here. Moreover - see the conclusion of Section 3 below - it goes through the
multi-D inhomogeneous case - not treated in [31].

Proposition 2.7 Assume that the initial shift mq is such that Sy = e~ (9™ oscillates slowly
at —

Ve >0,34>0,3n>0,Vz,2 < —-Aand 1 —n < 5 <1+n = |So(z) — So(2')|e.
Then the Hopf-Cole transform of the approrimate shift m satisfies the following:
s(t,0) = So(—+/c? — c2t) + o(1). (2.14)

As a consequence, if Sy slowly oscillates but does not have a limit at —oo, then neither
s(t,0) nor the approximate shift m(t,0) converge to a constant; and the solution u does not
converge to a translate of the travelling wave.

Remark 2.8 For example, the function
So(z) = cosIn(1 + z?)
oscillates slowly and does not have a limit at —

Proof of Proposition 2.7.
We recall that

m(t, &) = Ins(t, &) = InS(t,& —+/c? — c?t),

1 1
r_(c) r_(c)

and we fix £ = 0. We have

S(t,—/c? —c2t) =

02—0275 Y) /4tS d
i / o)ty

_ —(\/02—02\[ 2)2/4 P
\/E TS (2VE) d2

—(1—n)4/c2—c2/t

o 1 (1-n) —( 02_03\/{_’_2)2/45 \/g d

— eV 0(zVt)dz
V4 —(14n)y/2—c2/t

+ —/ e~ W=V g (/1) dz. (2.15)
VAT Jjz /@2 Vizn /22 Vi

The second integral goes exponentially fast to 0, since

- / e~ WE—VIE /g, 2\ /1) dof
AT J o\ JE= iz /=i

+oo
< 2H50Hoo/ 6712/4 dr — HSOHOO/ e*SMﬁ
A2V e-ae VS
= [|So|scO (e~ =Dt/4) - (2.16)
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Concerning the first integral, we use the fact that Sy oscillates slowly:

/02_62\/,5
(&

VAar / 1+7] c2702\/z
1 /—kmﬁzéﬁ
Vi e ya=ave

VARV, (V) de

e (VEAIE (S, (2v/T) — So(—V/¢* — ¢2t)) d=

—(1— 77 02—02

V 47T 1+77 02 —c2V/t

since for z € (—(1 +n)y/c2 — 2Vt, —(1 —1)/c2 — c2\/t), we have
2/t

2 _ 2
c:t

IRy (A ) d

I—n<
— C

<1l+n,

we obtain that
1So(2V/t) — So(—/c2 — 2t)| < e,

hence

1 _(1_77)@%
/ e~ VPV /A( (2 ff) — So(—+/P = 2t)) dz|

|_
VAT J-(14n)\ /2= Vi

<e— e_$2/4 dz; (2.17)

finally

—(1— 2 _ z\/{
1 ( 77)\/0 C ¢ 02_02\/Z+z)2/45 B — 2t d
I ( ) A € 0( c C*) z
Vv —(14m)\/c—ciVt
—(1=n)\/P—3VE
s(eyEmEay— [T vEavierny,
V 47T —(14n)y/2—c2/t
n/E—2Vi

= So(—v/? — e da
' \/47r NN

1 2 oo >
= So(— 02—c§t—</e”/4dx—2/ e””/‘ldx)
o N g e
= So(—/c = c2t) + O([|Sollowe ™™ “=1/1). (2.18)
Hence it follows from (2.15)-(2.18) that
S(t,—/c® — c2t) = So(—+/c® — c2t) + o(1), (2.19)

which proves (2.14). Hence S(t,—+/c? —c?t) oscillates between liminf, . . Sy and
limsup,_, ., So. The same oscillation property holds for m(t¢,0) = r%@ In S(t, —\/c® — c2t).
Since the solution u converges uniformly to the approximate solution, it cannot converge to
any translate of the travelling wave. ([l
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2.6.3 The typical case where the initial shift converges to some limit at —occ

Now we assume that the initial shift mg has some limit my(—o00) at —oo. We are going to
prove the convergence of the solution u of (1.2) to the the travelling wave ¢.(z+ct+my(—00)).
Thanks to Theorem 1.1, we have only to study the difference between the approximate
solution u™?(t,z) and ¢.(x + ct + mo(—o00)). Consider

mo(z) := Slip [mo(y) — mo(—00)|.
Yysx
The function my is nondecreasing and mg(x) — 0 as © — —oo. Then we are going to prove
the following

Lemma 2.9 There is some 3 >0 and C' > 0 such that

2 _ 2
sup [u®?(t, ) — @e(x + ¢t + mo(—00))| < Crmg(==——1) + C||mo||coe VA (2.20)
zeR

Moreover, this estimate is optimal in the following sense: assume, additionnally, that mg is

increasing in a neighborhood of —oo; then

sup [uP(t,x) — ¢c(x + ct + mo(—00))| > C(mo(—+/c® — c2t) — my(—0)). (2.21)

zeR
Remark 2.10 Lemma 2.9 gives an upper bound and a lower bound of the difference be-
tween the approximate solution u®? and the travelling wave ¢.(- + mo(—o0)): if mgy goes
exponentially fast (or faster) to mo(—o0), the difference u™P(t,x) — ¢.(x + ct + mo(—o0)
goes exponentially fast in time to 0. If mqy goes algebraically fast to mo(—o0) (as 1/|z|", with
some v > 0), the same occurs for the difference uPP(t,x) — ¢.(x + ct +mo(—o0), at the same
order, and not faster. Coupled with Theorem 1.1, we obtain a first result of convergence
of the solution u of the Cauchy problem (1.2) to the travelling wave ¢.(x + ct + my(—00),
with a rate of convergence that depends on the rate of convergence of mg to its limit. This
extends Theorem 0.1, since the initial condition does not have to go exponentially fast to the
travelling wave at —oo. We will give a sharp convergence result in the following subsection,
in particular to obtain exponential convergence when mg goes exponentially fast to its limit.

Proof of Lemma 2.9. First we note that for all ¢ > 0, m(t,&) — my(—o0) as t — +oc:
indeed, using the formula

s(t,§) =St 6 — /2 —cit) = % /Re“#So(f + 20Vt — /2 — 2t) do,

we obtain that s(t,&) — et~(m0(=>) a5 ¢ — 400 (using the Lebesgue convergence theorem),
and then m(t,&) — mo(—o00) as t — +oo. (However the convergence is non uniform in &.)

Now we are interested into the difference a*?(t, &) — ¢.(§ +mo(—00)). Since by the stable
manifold theorem we know that ¢ goes exponentially fast to 0 at +o00, there exists some
a > 0 such that

‘aapp(t’g) — ¢c(£ + mo(—OO))‘ = ’¢c(€ + m(t7£)) - ¢c(€ + mo(—OO))|
< Ce lmy(t, &) — mo(—00)|.

Of course

1 1 S(t, & —+/c—2t)
— S22 — e —o0) — *
e InS(t,¢ 2 —2t) —mo(—o0) = O In o (me(=)
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hence

[m(t,€) —mo(—00)| < CIS(t,€ — /& — Bt) — &~ Imol==)]

But
S(t,E— /2 —c2t)—e'- (e)mo(= \/_ / ~o* So(€+ 20Vt — — c2t)do — "~ (©)mo(—o0)
—o2 e (e)mo(E+20vt—/c2—c2t) (c)ymo(— oo)) do
f/ v
/ o |mo (€ + 20Vt — — c2t) — mo(—o0)| do
< C/ e~ (€ + 20Vt — /2 — 2t) do,
R
hence

7714,6) = €+ mo(—o0)| < Ce [ & my(e 4 20V~ IRy do. (222
R

It remains to estimate, uniformly in &, this last term. This can be done, separating the study
in three cases:

o if £ <0, then we have

e~k / e~ mo(& + 20Vt — /e — 2t) do
R

A/ 2—c2\/1/4 ,
< / e~ mg(€ + 20Vt — \/2 — 2t)do

o0

+oo
+ / 6_027’710(5 + 20Vt — /2 — 2t) do
VE—EVi/a

2 — 2 V=2 Vt/4 i +o00 ,
§m0(——*t)/ e do + Hm0||oo/ e do
2 —00 \/c2—c2+/t/4

*t) + C«HmOHooef(Cchf)t/lﬁ'

2__ .2
o if € > VI

, then we have

el / e mo(& + 20Vt — /P = Et)do < re VI E Img |,
R

e if £ € (0, —VC?C%), then we have
ekl / e~ mo(€ + 20Vt — /¢ — 2t) do
R
NEEENOE /2 _ 2
< / 6_027710(20\/% — %t) do

[ee]

+o00 /2 _ 2
+ e~ mo(20V/t — ut) do
A/ c2—c2/t/8 2

*t) + C¢||ﬁlo||0067(0270,2‘)15/647

May 16 2010 5:49:18 EDT
17 Vers. 1 - Sub. to TRAN



and these three estimates and (2.22)lead us to (2.20).
To obtain (2.21), we want to bound from below the difference ||a®P(t,-) — ¢.(- +
mo(—00))||oo; for this, we remark that, for £ = 0, there is some « > 0 such that

[ (t,0) = @e(1m0(=00))| = |Pe(m(l,0)) = ¢e(mo(—00)) = alm(t,0) = mo(—o0)]
« S(t,—/ct—ct)  « S(t,—\/2 — c3t) — er-(Imo(zea) v
r_ (C) er—(c)mo(—o0) - r_ (C) er—(c)mo(—o0) )’

1n<1 +

hence, for t large enough, we have

— — — er—(c)mo(=o0)
app B B a St 2—c2t)—e
[uP(t,0) — de(mo(—00))| > 2r_(c) or—()mo(—o)
v 1 2
- —02 ¢ r_(e)mo(20Vt—+/c2—c2t) _ _r_(c)mo(—o0)
> S (e /R e 7 (e e )do
(0% 1 ! 2
- —a?( r_(c)mo(20vt—4/c2—c2t) _ _r_(c)mo(—c0)
> 2 (e ﬁ/o e 7 (e e ) do
>C i%fl] Imo(20Vt — v/ — c2t) — mo(—00)|
ogll,
> C(mo(—+/¢* = ¢it) — mo(—00)).
This gives the bound from below (2.21), and concludes the proof of Lemma 2.9. L.

2.6.4 Sharp estimate of the convergence of the solution u to the travelling wave
when the initial shift has a limit at —oo

The goal of this subsection, the last on the study of the simple 1-D problem, is to give a sharp
estimate of the convergence of the solution u of the Cauchy problem (1.2) to the travelling
wave ¢.(x + ct + my(—0o0)) when the initial shift mg has a limit my(—o0) at —oo. We keep
the same notations as in the previous subsection. Since the function mg is nondecreasing,
and goes to 0 at —oo, there exists some nondecreasing function ng such that my < ng and
such that there is some constant Cy such that

ny < Conp.

The function 7y identically equal to ||mg||~ satisfies this property, but in the typical cases
there exists some ny that goes to zero at —oo with the same rate of decay as mg. Then we
are going to prove the following

Proposition 2.11 There is some 3 > 0 and C > 0 such that

ng(—0t
sup |u(t, z) — uP(t, z)| < cho=0 | C||o]|sce PV E L, (2.23)
z€R vV 1+ 6t
Remark 2.12 Proposition 2.11 gives an upper bound of the difference between the solution u
and the approzimate solution u™P: the convergence is at least as t~/2, as proved in Theorem
1.1; but the rate of convergence is in fact better:

e if mg goes exponentially fast (or faster) to mo(—o0), the difference uw — u®? goes ex-
ponentially fast in time to 0; thanks to Lemma 2.9, the same occurs for the difference
between the solution and the travelling wave ¢.(x + ct + mo(—00)), as already proved
wn Theorem 0.1;
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e if my goes algebraically fast to mo(—o0) (as 1/|z|", with some v > 0), then the dif-
ference u — u™P is of order t~VtY2) . coupled with Lemma 2.9, we obtain a sharp
description of what happens: the solution is close to the approximate solution, at
the order t=OtY2)  and the approzimate solution is close to the travelling wave
Ge(x + ct +my(—00)), at the order t=7 (and in some cases not better).

Proof of Lemma 2.11. It combines the arguments used in the proof of Lemma 2.9 with
the techniques used in subsection 2.5.2. First, from the formula (2.6) of S, we note that

—1 2
Se(t, & — /2 —c2t) = — / o€ (So(€ 4+ 20Vt — \/ — 2t) — e~ (Imo(=2)) g
5( 5 ) \/H R ( 0(£ ) )

hence o

|Se(t, & — /2 —c2t)| < —/ lole=" Mo (€ + 20Vt — /2 — ¢2t) do.

Vit Jr

Next, we have already noted that the function g(¢, &) that is defined in (2.2) satisfies:

g(t,€) = O(e= ") as € — —co,  g(t,€) = O(e™) as € — +o0,

with some a > 0. Then, reasoning as in the proof of Lemma 2.9, we see that the right-hand
side of (2.11) satisfies:

c2—c2
(Ot o] e VT )49 for ¢ <0,
INL ]| < = o

<0w + Cllmollooe ™ CQ_Cgt)e_ag/z fore=0

NG

Of course Claim 2.2 remains valid, and we have |a(t,§) — a?P(t,&)| < @(t,£). But thanks
to (2.24), we are in position to improve our estimate of Claim 2.3: the same proof leads to
the following: for all &, there exists some C' such that

oV

sup w(t, &) < C’mo(_ = 1) + ||| ce PV 45, (2.25)
£<t Vi
At last, reasoning as in Claim 2.4, we obtain (2.23). O

3 The general model (1.1): proof of Theorem 1.3

We use the same notation as in section 2 a(t,&,y) := u(t,§ — ct,y).

3.1 Pulsating waves with sharp asymptotic behavior

The behavior of a pulsating wave at —oo is now well-known: similarly to the simple ODE
case there are, for ¢ > ¢,, two characteristic exponents r,(c), corresponding to exponential
solutions of the linearized equation at —oo, and ¢, has a nontrivial component on the slowest
exponential. We will need something a bit more precise - i.e. a quantitative estimate on the
remainder, so it is worth recalling the main results of the theory.
For commodity let us denote X = (x,y) the generic element of TVV. Consider equation (1.1),
linearized at 0:

vy — div(ADv) + B.Dv — f,(X,0)v = 0. (3.1)
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An ezponential solution to (3.1) is a solution of the form
o(t, x,y) = A DY(X), X eTV,

where A > 0 is called a characteristic exponent. Denoting

and B; := B - e; the first component of B, we see that the function ¥(X) has to solve

where

LNt := —div(ADY)4+(B—2MAey).Dip+(—=N*Aey.eq —Adiv(Aey)+AB— f.(X,0))y, X € TV.

(3.3)
Because ¢, has to be positive, 9 has to be positive. And so, if we denote by p;(\) the first
eigenvalue of L(\), problem (3.2) amounts to solving

()
.

c=—

(3.4)

Because of Krein-Rutman’s Theorem, () is a simple, nondegenerate eigenvalue for L(\)
and Kato-Rellich’s Theorem implies the existence of an analytic extension of y; in a complex
domain containing the right half-line. In particular, A — p;()) is C'. More special features
of the function p; are summarized in the following

A
Theorem 3.1 (Berestycki-Hamel [3]). The function py is concave, and /i\n%(—%) > 0.
>
Then, defining

¢, := inf (-’“9)), (3.5)

A>0

equation (3.4) has solutions if and only if ¢ > c.; moreover, when ¢ > c,, there are two
solutions 0 < r_(c) < ry(c).

This implies, in particular:

Vi(e) i=c+ %(r(c)) > 0. (3.6)

Equation (3.6) will be useful to us at several places. Let 1, be the unique principal
eigenfunction of L(\) such that

Wy >0, and Y3 = 1.
TN

We will also denote
Te i=T- (C)a Yﬁn = wr_(c)-

The additional information that we need for ¢, is the
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Theorem 3.2 There is § > 0 such that the wave ¢, has the following asymptotic behavior
as & — —oo:

Gc(t: €, y) = &Py (€ — et y) (L + O(e%)). (3.7)

The equivalent éc(t, £,y) ~ ey, (¢ — ct,y) was proved by Hamel [12], what we need is
the exponential estimate on the difference between (50 and its equivalent. We could elaborate
on [12] to get hold of it, it will in fact be quicker to prove an existence result for ¢. with the
right behavior and invoke a uniqueness result. Here is the existence result:

Proposition 3.3 There exists § € (0,inf(r_(c),ry(c) —r_(c))) such that there is a pulsating
wave ¢. solution to (1.1) with speed c satisfying the asymptotic expansion (3.7). Moreover,
¢c 1S increasing in its first variable: Oyp. > 0 (or equivalently Oy + cﬁgqﬁc >0).

The proof of Proposition 3.3 follows from a fixed point argument. Before proving it, we
need a preliminary result, that will play the role of Lemma 2.1 in section 2.

3.1.1 Preliminary result: exponential decay in time of solutions decaying suffi-
ciently fast in space

Given § € (0,7, (c) —r_(c)), let Y5 be the space of all continuous functions @ on R x TN~!
such that

a(€,y) e "=(+)E s a bounded uniformly continuous function,

endowed with the natural norm ||y, := sup la(&,y)| e (r—(e)+0)¢
(&,y)ERXTN -1

Lemma 3.4 Consider the equation
— div(A(§ — ct,y) D) + (B(§ — ct,y) + ce1).Dv — f,(§ — ct,y,0)0 = 0. (3.8)

Then, given § € (0,7 (c) —r_(c)), there is Cs > 1 and ws > 0 such that, if ©(0,.) := ¥y is in
Ys, then the solution v of (3.8) emerging from vy satisfies: for allt >0, v(t,-,-) € Ys, and

H@(tv'f)HYa < O5e_w5t||60||y5' (39>

Proof of Lemma 3.4. 1t follows from the construction of a suitable positive super-solution
to (3.8), exponentially decaying in time. The construction of this positive super-solution rests
on the properties of the first eigenvalue of the elliptic operator L, (defined in (3.3)), that we
recalled in Theorem 3.1.

First, given A > 0 and w > 0, let us consider

VOO (L € y) = a(§ — ct,y)e? (3.10)

then some computations lead to

Vi) — div(A(€ — ct,y) DVO) + (B(E — et y) + cer).DVO)
— Jul& = ct,y, 0) V) = (13 (N) + eX — )V (3.11)

Since we want V) to be positive and we want it to be a super-solution to (3.8), we need
to find A and w such that
p1(A) + A —w > 0.
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This can be done, noting that it follows from Theorem 3.1 that, given ¢ € (0,r(c) —r_(c)),
we have
pi(r—(c) +6) 4+ c(r_(c) +90) > 0.

Hence consider
A=Xs:=r_(c)+9, and w=ws:=p(r_(c)+9)+clr_(c)+79).

Then we obtain that V9 := V%) is solution of (3.8):

V? — div(A(€ — ct,y)DV®) + (B(€ — ct,y) + ce1).DV°
— ful€ = ey, 00V = (1 (Ns) + s —ws)V? = 0. (3.12)

1

——7———, we have for
infoN Yr_(0)45

Now, since 1)y is positive on the compact TV, denoting Cs =
all 170 S )/5

1T0(&,y)| < éé¢r7(c)+6(§,y)e(rf(c)+6)§||?70||y(5 = 05||770HY5‘~/(07§,?J)-

And then, the weak maximum principle implies, for (¢,£,y) € Ry x R x TN-L:

|1~)(tafa?/)| < CN’&HﬁOHYaf/é(taga y) = C~’5||1~)0||Y5¢7‘_(C)+6(€ - Ctay)e(“(c)—i_é)g_wgta

which implies that o(¢,-,-) € Y5 for all ¢ > 0, and that (3.9) is satisfied with Cs5 =

suppN '[p'r_ (c)+6

MmN Or (g0 M
TN Yr_(c)+6

3.1.2 Application: proof of Proposition 3.3.

We want to prove that there is a pulsating wave solution of problem (1.1), that is a function
1

¢. satisfying (1.1) and the periodicity condition: t — ¢.(t,£—ct,y) is —-periodic. Translating
c

this into the moving frame (¢,& = x + ct), the function ¢.(t,&,y) = ¢.(t,& — ct,y) has to
solve the problem

(QgC)t _~d1V<A(£ - Ct? y)Déc) j_ (B(§ - Ctv y) + Cel)'Dqgc = f(g —ct, Y, &6)7
Jm oe(t,&,y) =0, lm ot §,y) =1, (3.13)

¢, is L-periodic in time.
C

To prove the existence of such a %—periodic solution ggc of this nonlinear problem, we are
going to use a fixed point argument. An alternative method would be by a sub/super-
solution argument, as for instance in [2], [15], or [21]. Our proof is divided into two steps:

e step 1: we will prove that there is a solution to the problem

(Qgc)t ile(A(g - Ctv y)DQEC) + (B(f - Ct> y) + Cel)'DQ;c = f(f - Cta Y, &0)7
Jm ¢e(t,€,y) =0, (3.14)

O 18 %—periodic in time,

e step 2: we will prove that this ¢, satisfies the limit condition 6lim ggc(t, &y) =1,
— 400
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e step 3: we will prove that ¢. is increasing in its first variable: d,¢. > 0.

Step 1: existence of a periodic solution, using a fixed point argument. Our strategy is
the following: considering the Cauchy problem

ty — div(A(§ — ct,y)Du) + (B(§ — ct,y) + cer).Du = f(& — ct,y,0),
ﬂ’(ovéa y) = ﬂ/Oy

(3.15)

we want to find a suitable initial condition @y such that @(2) = do; then the periodicity
assumptions on A, B and f will allow us to conclude that 4 is %—periodic in time. And to
prove the existence of such an initial condition uy, we are going to prove that the Poincaré
map Ty @ Uy ﬂ(%) is a contraction, if we choose sufficiently well the space of initial
conditions .

First, we remark that the function

V(t, & y) = V0000 —ap (€ — ct,y)e ¢

is solution of (3.8), as noted in (3.12). This ivites us to consider the following metric space:
given ¢ € (0,r4(c) —r_(c)), consider

Xs:={tgeYy: 0<iy<1, 0<ay<V(0), V(0) -1 € Ys};

the distance between two elements of X4 will be the Ys-norm of the difference. We are going
to prove the following:

Claim 3.5 : there is a ball of X5, centered at V(O), that is stable under T, ,.; and moreover
T1/c has a fized point in this ball.

To prove this, we have to study what we can say about the solution u of the Cauchy
problem (3.15) when @y € Xjs: first, the weak maximum principle implies that 0 < a < 1;
next, the concavity of f with respect to v implies that

(A( —ct y) ) + (B(f - Cta y) + 061).Da~: f(g —ct Y, U ) S~f (5 - Ct7y7 0)17’7
~( (& —ct,y)DV) + (B(& — ct,y) + cey).DV = fu(€ —ct,y,0)V,
(0) V(0),

— div

hence the weak maximum principle implies that @ < V. Finally, the difference V — @ satisfies

(V —4), — div(A(€ — ct,y)D(V — @) + (B(€ — ct,y) + ce1).D(V — @)
— ful& =y, 0)(V — @) = ful§ —ct,y,0)a — f(§ —ct,y, 0);

let us denote §(t,&,y) the right hand member of this equality: Duhamel’s formula tells us
that

(V = @)(t) = T(t 0)(V(0) — dig) + /0 (1, $)d(s, ) ds, (3.16)

where T'(t, s)0p is the solution at time ¢ of (3.8) starting from @, at time s. Let us see what
we can say about the right hand side of (3.16):

e first we note that, since V(0) — @iy € Y5, Lemma 3.4 gives that T'(¢,0)(V (0) — @) € Ys
and
I7°(¢,0)(V(0) — tio)lly; < Cse™ ' [[V/(0) — to]ly;;
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e concerning the integral term, we have to make two remarks:

— Claim 3.6 : if additionally § € (0,7_(c)), then for allt >0 g(t,-,-) € Ys.
Indeed, since 0 < @ < inf(1, f/), there is some C' > 0 independent of 4y such that

vt > 0,v¢ €RVy € TV |9(t,€,y)] = |f(E—ct,y, @) fu(§—ct,y, 0)a| < O (%,

hence, if additionally ¢ € (0,7_(c)), there is some C” > 0 independent of g such
that

V> 0,¥6 R,y € TV, [5(t,&,y)| < Cel P8 < Ol oy (E—ct, )= O,

which establishes 3.6.

— Claim 3.7 : T(t,s) (¥ _(0)+6(E—cs,y)el= O = o 5(E—ct, y)elr—(OFOE—wslt=s),

Indeed, this follows from (3.12).

Using Claims 3.6 and 3.7, we easily derive from the weak maximum principle that

t t
/ T(ta S)g(S, g) y) ds S / T(t, 3)(C/wr_ (c)+§(€ — CS, y)e“ﬂ* (C)—H;)g) ds
0 0

t
(a —Ww, - C T
=C / Ve (@wa(§ = et y)eOTVETHTN ds < == 115(€ = ety y)el IS,
0

hence fot T(t,s)g(s,-,-)ds € Y, and there is some C§ > 0 independent of i, such that
t
|| / T(tv S)g(S, K ) dS||y5 S C:;
0

then the Duhamel’s formula (3.16) tells us that (V — @)(1) € Y;. Since f/(%) = V(0), this
means that ﬂ(%) € X;. Hence Xj; is stable under 7y /..

To establish Claim 3.5, it remains to prove that 7;,. has a fixed point in Xj; this follows
easily from the previous remarks:

t
IV = a)(®)lly; < I 0)(V(0) = to)l[v; + H/O T(t,s)g(s,,) dslly;
< Cse™ [V (0) — olly; + C5;
choose p € N large enough such that Cse "/ < 1, and denote v := 1 — Cse~“*?/¢ and

Ry := 07{;; then
~ - p ~ -
IV =a)O)llys < (1 =)[[V(0) = dolly, + Rov,

which implies that the ball of X; centered in V(0) and of radius Ry:
B(V(0), Ro) = {to € X5, [[io — V(0)]| < Ro}

is stable under (7;,.)?. Moreover, (7;,.)" is a contraction on this ball: indeed, consider

g, wo € B(V(0), Ry)); then consider the solutions u and @ of the corresponding Cauchy
problems (3.15): the difference @ — w satisfies

(i—0)—div(A(E—ct, ) D(a—))+ (B(E—ct,y)+cer). D(i—b) = f(E—ct,y, @) —f(E—ct, y, ©);
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using the mean value theorem, there exists some a(t, &, y) such that

f(f - Ct,y,fb) - f<§ - Ct,y,’LlN)) = fu(f - Ct,g,&(t,g,y))(ﬁ - ’LD),

then consider the solution ¢ of the Cauchy problem (3.8) emerging from the initial condition
|ig — wWop|: © > 0, and the concavity of f implies that

Ju(€ = ct,y,0) = ful€ —ct,y.alt,& ) = 0;
then v satisfies
0y — div(A(€ — ct,y) D) + (B(§ — ct,y) + ce1). Do — f,(€ — ct,y,a(t, & y))v > 0,
and the maximum principle implies that
|t —w| < 0.
Now, thanks to Lemma 3.4, we obtain that
(@ — @) (t)llys < Coe™"[|iio — 1o |5

since Cse™“?/¢ < 1, (T;,.)P is a contraction on the ball B(V(0), Ry)), which implies that

(71c)? and then T7;/. have a unique fixed point in B(V(0), Ry)). This establishes Claim 3.5.
U

Step 2: the fixed point has the right limits at +o00. Now we prove that the fixed point gzNSC

satisfies the limit condition glim gz;c(t, &,y) = 1. The argument is based on the following:
— 400
Claim 3.8  liminf  ¢.(0,&,y) > 0.

§—+oo,yeTN 1

Indeed, assume by contradiction that there exists a sequence (&, Yn)n, & — +00, and
Yo € TN=1 such that ¢c(0,&n,9n) — 0 as n — oo. Let & > 0, then for some N, we have
ggc((), &nyYn) < e for all n > N. By Harnack inequality and parabolic estimates, there exists
C > 0 such that for all (¢,5) € [0,1/¢] x TN, ¢o(t, &n,y) < Ce and Doe(t, &n,y) < Ce. Take
¢ < 0. Then integrating the equation on [0,1/c] x [¢,&,] x TV~1, and using the periodicity
in ¢, we obtain

1/c ~ 1/c i
o /0 /']I*N—l[A<§ - Cta y)D¢c(t7€7y) ' el]gn + A /TN—l[B(g — Ct,y) . 61¢C]§"

- /01/0 /jn /TN_1 div B(§ — ct;y)qgc + c/ol/C /TN_I[QEC(t,&y)]?L
- // /,jn / F(€ = ct.y, delt.€,y)).

We take now the limit ¢ — —oo. Since ¢o(t, ¢, y), Doe(t, ,y) — 0, we get

- /0 - / ; /T e ety b Ey) — 0 asn— oo

On the other hand, since (50 is positive at least for £ close to —oo we get that z, is bounded
from below by some positive constant, which is in contradiction with z, — 0 as n — oc.
Hence Claim 3.8 is proved.
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Now we are ready to prove that §lim qgc(t,g,y) = 1: Claim 3.8 implies that quSC(O) is
——+00

bounded from below by a positive constant on some [X’, +00) x TV =1 since . is positive,
it is also bounded from below by a positive constant on [0, 1] x {X’} x T¥~! and then the
weak maximum principle implies that qgc is bounded from below by a positive constant ~
on [0, 2] x [X’, +00) x TN, Now consider ®:=1-¢. and f(z,y,u) = (1 —uw)h(z,y,u).

Since %(.ﬂ:,y, 1) < 0, there is some hy > 0 such that h(z,y,u) > hg > 0 for all (z,y,u) €
R x TN=! x [, 1]. Moreover the function ® satisfies the equation

P, — div(A(€ — ct, y)D®) + (B(& —ct,y) + cel).D(i) + h(§ — ct,y, he)® = 0.
In the domain R, x [X’, +00) x TN~ it is easy to check that the function
U(t,&,y) == || D(0)]|oce ! + Ce ¢

will be an upper solution if g > 0 is small enough. Then, if C' > e*X’, then the weak
maximum principle implies that ®(¢,&,y) < U(t, &, y) for all t > 0, € > X' and y € TN,
Since @ is 1 /c-periodic in time, we can evaluate the previous inequality for t = ¢ + N/c and
pass to the limit as N — 4o00. Thus we get ®(t,&,y) < Ce ™ Hence, ®(t,£,y) — 0 and
be(t,€,y) — 1 as € — +o0. This completes the proof of Step 2.

Step 3: the constructed pulsating wave is increasing in time.

To complete the proof of Proposition 3.3, it remains to prove that the constructed pul-
sating wave ¢, satisfies: 0;¢. > 0, or equivalently that 8tg56 + c@gﬁc > 0.

We are going to prove that

V' >0,¥t € R,Ve € R,Vy € TN, bo(t, 2,y) < ¢e(t + 1, 2,y). (3.17)
In the moving frame, this becomes
Vi >0Vt e R Ve e R Vy € TN Gult, x4 ct,y) < ot + 1,2+ ct +ct',y),
hence we want to prove that
V>0Vt e R VEER, Yy € TV @u(t,€,y) < de(t +t, &+t y). (3.18)
Fix ¢ > 0 and denote
d(t,€,y) = delt + 1,6 + et y) = de(t, €, y).

The function d satisfies

d, — div (A(€ — ct,y)Dd) + (B(€ — ct,y) + ce1).Dd
= (€ —cty, delt + 1, E+ct'y)) — F(E— ct,y, de(t,E,y)),
hence there exists some function b(¢, &, y,t’) such that
dy — div (A(€ — ct,y)Dd) + (B(§ — ct,y) + cer).Dd = fu(§ — ct,y,b(t, &y, t'))d.
Now note that d is bounded, and moreover
At € y) ~eooo (€707 = 1)y, (€ ct,y) > 0,
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hence there exists C' > 0 such that
VEER, Yy e TV!, d(0,6,y) + CV°(0,6,y) = d(0,&,y) + CVP(0,¢,y) > 0.

Finally, we note that

(d+CV°®), — div (A(€ — ct,y)D(d + CV?)) + (B(E — ct,y) + ce1).D(d + CV?)
- fu(§ _Ct7y7b(taf>yvt/))(cz+o‘~/6) - (fu(g_ ct,y,O) - fu(£—ct,y,b(t,f,y,t')))CV‘S Z 0.

We deduce from the weak maximum principle that, for all (¢,£,y) € R x R x TN,
(d+CVO)(t,&,y) = 0.

Now we use the fact that d is 1/c-periodic in time: we fix 7 € [0,1/c], and we evaluate this
inequality at t = 7+ N/¢; then letting N — 400, we obtain that d > 0. This implies (3.18),
hence (3.17), which obviously implies that d;¢. > 0. To obtain the stronger property that
we want: 0;¢. > 0, it is sufficient to note that 0;¢. is a nonnegative solution of the parabolic
equation

vy — div (A(z,y)Dv) + B(z,y).Dv = fu(z,y, dc)v,

hence the strong maximum principle implies that either 0;¢. > 0 or 0;¢. is identically zero.
But in this last case, ¢. does not depend on ¢, hence

¢(t,$,y) = ¢t(t + %,l‘,y) = gbc(tax + 1ay);

repeating this argument, we obtain that ¢(¢,z,y) = 1, thanks to the limit as the space
variable £ — +oo. But this violates the other limit condition ¢.(¢, —oo,y) = 0. Hence the
constructed pulsating wave satisfies 0;¢. > 0, and this concludes the proof of Step 3 and of
Proposition 3.3. U

3.2 Attractive dynamics

Now we are interested in the Cauchy problem associated to (1.1). We recall that we assume
that ¢ > ¢, ¢. is a pulsating wave propagating at speed ¢, and the initial condition ug is
trapped between two translates of ¢., as in Theorem 1.3. We denote

NL[u] = uy — div(ADu) + B.Du — f(z,y,u). (3.19)

Hence w is solution of (1.1) if and only if NL[u] = 0. The proof of Theorem 1.3 follows the
same strategy than the one of Theorem 1.1.

3.2.1 The exact shift

Given a sufficiently smooth function m : (0, +00) x R x TVN~! — R, consider

T(m)gbc(t, z,y) = ¢t + m(t, z,y), x,y).

Of course, when m is identically zero, we have T(V¢, = ¢., and NL[T©¢,] = 0. Let us
compute in the general case NL[T(™ ¢.]: some computations lead to

Dat qbc . 8tt ¢c
at gbc at gbc
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where, in the right handside, m and its derivatives are evaluated at (¢, x,y), the coefficients
A, B are evaluated at (z,y), and 0;¢. and its derivatives are evaluated at (t+m(t, x,y), z,y).
Hence T ¢, is solution of (1.1) if and only if

Dat ¢c att d)c
8t¢c 8t¢c

Since, given (x,y), the function ¢t — ¢. (¢, x,y) is strictly increasing, the (exact) shift

m*(t>$ay) = (¢c('>$ay))_l(u(t7x>y)) —1

satisfies u(t,x,y) = ¢.(t + m*(t,x,y),z,y) and (3.20). To be able to provide interesting
properties of u, we will not go further in this direction, the problem (3.20) being too compli-
cated to study; instead, we will consider an “approximate shift” as in the proof of Theorem
1.1. In the following:

—div(ADm) + (B — 24

).Dm —

ADm.Dm = 0. (3.20)

e first we choose an approximate shift, simplifying (3.20) thanks to the properties of the
pulsating wave ¢, proved in Proposition 3.3;

e next we study the properties of this approximate shift;

e at last, we study the difference between the exact solution u of the Cauchy problem
(1.1) and the shifted wave associated to the approximate shift, and we prove the
convergence result stated in Theorem 1.3

3.2.2 The approximate shift and the associated shifted wave

In Proposition 3.3 we proved that
ch(t,l’,y) — e (¢)(z+ct) wrp(x y) —|—O( (r—(c) +5)(w+ct)) V(t xr y> +O( (r—(c) +5)(w+ct))

Now, due to elliptic regularity, the exponential deviation of ¢. from V also holds for the
derivatives: indeed, ¢. and V satisfy

((bc)t - le(A(QZ, y>D¢C> + B(SC, y)D(bc = f(%, Y, (bc)?
Vi — div(A(z,y)DV) + B(x,y).DV = f.(z,y,0)V,

hence the difference ¢. — V' satisfies (in the variable (¢,&,y))

(G = V)i = div(A(€ = ct,y) D(de = V)) + (B(E = ct,y) + ce1).D(¢. = V)
- fu(£ - Ctayv 0)(&6 - ‘7) = f(£ - Ct??/y éc) - fu(£ - Ctay7 O)&c

Since

be—V =008 f(e —cty, b)) — f(E —ct,y,0)p. = O(er=(+IE),

we deduce that the derivatives of <bc — V satisfy the same estimates.
Hence, neglecting in a first approach the residual term, we obtain

Orde(t, 2, y) = cr_(c)e"~ DTN (z. ) + ...,

Onde(t, z,y) = c*r_(c)?e" DTNy (zy) +...,
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DO, @e(t, z,y) = er_(c)2e= Ot (1 y)ey + er_(c)e’ OO Dy, () + .. ..

This invites us to choose the approximate shift as the solution of the Cauchy problem

{mt —div(ADm) + (B — QA% —2r_(c)Aey).Dm — cr_(¢)ADm.Dm = 0, (3.21)

m(O,x,y) = m0($7y>7

the coefficients of this equation being the equivalents as x + ¢t — —oo of the coefficients
of (3.20), and where the initial condition mg is chosen as follows: as we did in subsection
2.3, we choose my = m*(0) if m*(0) is C'' and bounded in norm C'; in the general case, it
can be checked, as in subsection 2.3, that m*(1) is C! and bounded in norm C*, thanks to
the definition of the exact shift m* and the assumption on the initial condition ug (trapped
between two translates of ¢.); then we solve the Cauchy problem related to m on the time
interval (1,400), choosing m(1) = m*(1) as initial condition. In the following we assume
that m*(0) is C! and bounded, and thus mgo = m*(0).

Now we are ready to sum up the properties of the approximate shift m that will be of
interest for us:

Proposition 3.9 The solution m of the Cauchy problem (3.21) has the following properties:
(i) m is bounded on (0,+00) x R x TN~ and more precisely

Vt>0,Ve € R,Vy € TV, m(t,2,y) € [=[[m"(0)]|oc, [Im”(0)]oc];

(ii) m is Ct on (0, +00) x Rx TN=L and (t,z,y) — Dm(t,z,y) is bounded on (0, +00) x
R % ']I‘Nfl’.
(ZZZ) tilfrnoo ||(mt, Dm, DQm)(t, ')HLOO(RX']TN*l) =0.

Before proving Proposition 3.9, let us introduce the shifted wave associated to the ap-
proximate shift m solution of (3.21):

P (t,z,y) = T ho(t, z,9) = de(t +m(t,z,y), x,y). (3.22)

Of course u?(0, z,y) = up(x,y), but u™? is not solution of (1.1), since m is not solution of
(3.20). However, we can check that NL[u®?] decays faster than e’~ @+t as x4+ ct — —o0,
a property that was essential in the proof of Theorem 1.1: indeed, we already know that

NL[uP?] Do, B Ot P
(9tgz§c athC 8t¢c
where m and its derivatives are evaluated at (¢, x,y), the coefficients A, B are evaluated at

(x,y), and dy¢. and its derivatives are evaluated at (t + m(t, z,y), z,y); taking now care of
the residual term ¢, — V', it is easy to check that

D8t¢c(t + m(taxa y)7$7 y) — D¢Tc(xa y)
8t¢c(t + m(t7 Z, y)7 Z, y) wrc(‘ra y)

%;j: = cr_(c) + O(e2@Fet),

=my —div(ADm) + (B — 24

).Dm

ADm.Dm, (3.23)

+r_(c)eg + O(e‘;(”“)),

which yields that
NL[u?)

— = = 0(e°@+DY(|Dm| + ADm.Dm),
8t¢c
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hence
NL[u?] = O(’HN (| Dm| + | Dm|?)9y¢. = O(el"= (DD (| Dm| 4 |Dm|?).  (3.24)

This estimate and the results of Proposition 3.9 will be the main arguments to prove the
convergence result of Theorem 1.3 (the convergence of the shifted wave u®? to u), as ex-
plained in the following subsection. To conclude this subsection, we prove the properties of
m:

Proof of Proposition 3.9. The Hopf-Cole transform s(t, z,y) = e~ (©™&2) allows us to
transform the nonlinear problem (3.21) into a linear parabolic equation: p is solution of

{st — div(ADs) + (B — 245 — 2r_(c)Ae1).Ds = 0, (3.25)

S(O) — ecr_(c)m(O).

Then standard theory on linear parabolic equations imply (i) (weak maximum principle)
and (ii) (regularity) of Proposition 3.9. Concerning (iii): we generalize a result proved by
L. Rossi in the elliptic case (see [27]), and the idea is the same. The proof follows from the
following three assertions:

e Claim 3.10 : cvery element of the w limit set of the initial condition s(0) generates a
bounded and global solution - i.e. a solution defined for all real time - of the associated
Cauchy problem (3.25);

e Claim 3.11 : every bounded and global solution of the Cauchy problem (3.25) is con-
stant in space and time;

e Claim 3.12 : tliin (s, Ds, D*s)(t, oo @xrn-1y = 0.

Of course Claim 3.12 immediately implies (iii) of Proposition 3.9. Hence it remains to prove
these three claims.

Claim 3.10 is classical: {s(t),t > 0} is relatively compact in C°(R x TV~!). Choose
t, — +oo such that s(¢,) converges locally uniformly to s, and consider the solution S of
the Cauchy problem

{st — div(ADS) + (B — 2A%5 — 2r_(c) Aer).DS = 0, (3.26)

S(0) = See.

Of course S is well defined on [0, +00), but we are going to prove that S is also well defined
on [—1,1] and satisfies the problem on (—1,1):

- first, by continuity, we have that s(t, +t) — S(t) for all ¢ > 0;

- next, choose ny such that ¢, > 2 for all n > ny, and consider the sequence (s, ),
su(t,x,y) = s(t +t,, x,y): it is relatively compact in C°([—1,1] x R x TN=1), hence it has a
subsequence (s4(,)), that converges locally uniformly to some S;. Then S;(t) = S(t) for all
t € ]0,1], and we derive from parabolic estimates that S is solution of the Cauchy problem
(3.26) on the time interval (—1,1).

Hence this allows us to extend S on the time interval [—1,0], and then the same resoning
implies that it is a global solution, which proves Claim 3.10.

To prove Claim 3.11, we consider a global solution S of (3.26), and we are going to prove

that for all vector e of the canonical basis of RY

|t,x,5|r3+oo(5(t’ (x,y) +e)—S(t,xz,y)) =0. (3.27)
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Consider
m:= liminf (S(¢, (z,y) +e) — S(t, z,y)).

[t,2,y]—+o00

There exists (t,, Tn, Yn)n be such that

Hm (S(tn, (X0, yn) +€) — S(tn, Tn, yn)) = m. (3.28)

n—-+00

Up to the extraction of a subsequence we may assume that

lim S(t +tn, (z,y) + (Tn,yn) + €) exists in CF (R x R x TVN™1).

n—-+00

Call it Soo(t, x,y). Because we are dealing with a liminf in (3.28), we have
Seo(t, (2, y) + €) = Seo(t, 2, y) = m,

hence, because it is equal to m at (0,0, 0), it is equal to m everywhere by the strong maximum
principle. Therefore, for all k:

Soo(t, (,y) + ke) — Seo(t, x,y) = km,
a contradiction with the boundedness of S if m # 0, thus m = 0. In the same way,

limsup (S(t, (z,y) +e) — S(t,x,y)) =0,

[t,x,y|——+o0
hence (3.27) is proved. This implies that S(¢, (x,y) +€) — S(t,z,y) has a maximum and a
minimum. Thus, using twice the strong maximum principle, it is periodic in (x,y), hence
constant. Claim 3.11 is proved.

Claim 3.12 is now an easy consequence of Claims 3.10 and 3.11, using parabolic estimates.
Take the solution s of the Cauchy problem (3.25). The only possible limit for its space
derivatives is 0: indeed, assume Ds(t,,x,,y,) — ¢, and extract a subsequence of (s(t,)n
that converges locally uniformly; hence its limit is a global solution, thus a constant, and
parabolic estimates imply that Ds(t,) — 0, hence £ = 0. Then tEeroo | Ds(t, ) || Loo mxTn-1) =

0, and in the same way tliin | D?s(t, | oo mxrry-1y = 0; finally the equation shows that

tliin [5¢(t, ) || LoerxTv -1y = 0, which concludes the proof of Claim 3.12, and of Proposition
3.9. O

3.2.3 The difference between the solution and the shifted wave: proof of The-
orem 1.3

Now we have everything to study the difference u — u®?, and prove that it converges to 0
uniformly in space. The arguments are very close to the ones used in the proof of Theorem
1.1, subsection 2.5. We denote

U(t,l‘,y) = (u - uapp)(t’x,y)’ g(t,f,y) = NL[uapp](taxay)7

and w the solution of the Cauchy problem

{@t — div(A(§ — ct,y) D) + (B = ct,y) + cer)-Di — fulf = ety 0B =13, 50,

0(0) = 5(0) = 0
and we are going to prove the following facts (analog to Claims 2.2-2.4):
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e Claim 3.13 : forallt >0, all§ € R and ally € TV, we have |0(t, &, y)| < w(t, &, v);

e Claim 3.14 : for all { € R, sup  w(t,&y) — 0 ast — 4o00;
5§£0>y€TN71

e Claim 3.15 : there exists § € R such that  sup  |v(t,&,y)] — 0 as t — +oo.
62507y€TN_1

It is clear that Claims 3.13-3.15 imply Theorem 1.3: they imply that |[0(2)|| e @xrry-1) — 0
as t — 400, hence |[u(t) — u™P(t)||poomxrr-1y = [|V(f)|| poo(mxTN-1) — 0 as t — +o0. Hence
it remains to prove these claims.

Claim 3.13 is a consequence of the weak maximum principle: indeed, using the mean
value theorem, there exists b(t, z,y) such that

f(a:,y,u) - f(x’y7uapp> = fu('rvy7b(t7xay))<u - uapp>7

which implies that the difference v satisfies
675 - le(A(f - Cta y)Dij) + (B(f - Cta y) + Cel)-Dﬁ - fu(g - Cta Y, E(t, 57 y))ﬁ = _g

Then we note that the solution w of (3.29) satisfies w > 0, and the concavity of f implies
that

(0—2);—div(A(E—ct,y) D(w—0))+(B(§—ct, y)+ceq).D(w—0)— fu(E—ct, y, l;(t, &, y))(w—0) > 0;

since w(0) = ©(0), we obtain that ¢ < w; similarly —¢ < @, hence |0| < 1w, hence Claim 3.13
is proved.
Claim 3.14 is a consequence of Lemma 3.4: by Duhamel’s formula,

a(t) = / T(t, 5)l3(s)| ds:

thanks to (3.24),
()] = O(1)e" | Din(s) | oo exmv-1;

since |§(s)| € Y3, Lemma 3.4 says that ||T(, s)|ly, = O(1)e™“s#=%) hence we obtain that

t
[o(®)lly; < 0(1)/ e~ Dm(s)|| oo ey -1 ds;
0

finally, Proposition 3.9 and usual properties of convolution imply that ||@(t)]ly, — 0 as
t — 400, hence Claim 3.14 is proved.

Claim 3.15 is a consequence of Claim 3.14: since the initial condition is trapped between
¢e(—M) and ¢.(M), we know that for all ¢ > 0, u(t) is trapped between ¢.(t — M) and
¢c(t+ M), hence u(t, &, y) > ¢o(t — M, & —ct,y); choosing k € N such that % > M, we obtain
that

k -
ﬁ(tafay) 2 ¢C<t - Eag - Ctay) = (bC(taf —ct — kay) = ¢C(t7£ - kay)a

now, there exists go > 0, n > 0 such that —f,(z,y,s) > q for all z € R, all y € TV~ and
all s € (1 —n,1); since there exists & large enough such that ¢.(t,& — k,y) > 1 —n for all
t>0,all £ > & and all y € TV!, we see that @(t,&,y) > 1 —n for all t > 0, all £ > & and
all y € TN=1. The same property holds for u?, hence we obtain the following, valid for all
(t,&,y): . )

b(t7§7y) 2 1 -, and _fu(5_6t7y7 b<t’§7y)) Z qo > 0.
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Then the difference © satisfies, for all t > 0, £ > &, y € TV L
i)t - le(A(f - Ct? y)DQNJ) + (B(§ - Ct? y) + 061).D17 - fu(g - Ct? Y, g(ta 57 y))i} - ga

and 0(t, &, y) — 0 as t — +o0, and 9(0,€,y) = 0 as € > &,y € TVNL. Tt follows from (3.23)
that g(t,&,y) = O(1)||Dm(t)]| Lo mxrn-1); then there exists a super solution of this problem
of the form k(t), with k decaying sufficiently slowly to 0 as t — +o0 (k has to decay more
slowly than || Dm(t)|| erxTn5-1)), hence Claim 3.15 is proved, and the proof of Theorem 1.3
is complete. 0

3.3 Interpretation of Theorem 1.3

We have therefore an effective equation for the local shift, but the information provided so far
is rather scarse. In fact, one could very well ask about the point of developping the above
computations, all the more as the Berestycki-Hamel argument - see [4] - would probably
apply here with no real modifications. The extra information is provided by extracting from
Norris [22] the following facts. Let us consider the linear parabolic equation, with periodic
and without zero order coefficients

ur — div(a(X)Du) + b(X).Du =0 (3.30)

where a and b are reasonably - for instance Holder - smooth, with values from TV into,
respectively, the set of definite positive matrices and RY. There is - Krein-Rutman Theorem
plus some elementary functional analysis - a unique function e* € C?(TV) solving

—div(aDe* 4+ ¢€*b) =0, €* >0, / e =1: (3.31)

TN
indeed, denoting
Loyu : —div(a(X)Du) + b(X).Du,

we see that L,,(1) = 0, hence 0 is the principal eigenvalue of L,p; now denote Ly, the
adjoint of Lgp:
L yu* = —div(aDu* + u*b);

consider p* the principal eigenvalue of L ,, and e* an associated positive eigenfunction: since

M*<17€*> = <17 L:,,be*> = <La7b]_,€*> - O,

we obtain that p* = 0, which implies the existence of e* satisfying (3.31).
Now set

b= / (aDe* + €*b) dX. (3.32)
TN

Let 7(t, z,y) be the fundamental solution of (3.30) - here and only here, we denote by = and
y the generic variables of RY, in order to distinguish them from the generic variable of T*.
Then

Theorem 3.16 [22] There is a constant, symmetric definite positive matriz a, and C' > 0
such that

e VIV Gy (t, 2+ Bt —y) < 7(t,7,y) < CEN?eVEGy(t, 2+ Bt — y)

with the following notations:

1 azr.xr
e (G5 is the image of the usual Gaussian by a: Gg(t,x) = e 4t
ge of Y ( _) Vdeta(4mt)N/2 )
. _ ly —x — bt ly — x — bt|?
e V and E are corrective factors V =inf(l, =—— ), and E =1+ s
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In other words, the fundamental solution of (3.30), shifted by an amount bt, has a purely
diffusive behavior - it is quasi-Gaussian. This theorem does not imply Proposition 3.3, but
it makes it much clearer. Indeed, let us apply it and compute the effective shift b related to
the parabolic equation (3.25) with periodic coefficients satisfied by the Hopf-Cole transform
s of the approximate shift m. For this, come back to our usual notations, and set, for
p(x,y) € C*(R x TN-1):

Dy,

Tc

L.p = —div(ADp) + (B —2A —2r_(c)Aey).Dp. (3.33)

Let p? solve
Lip: =0, p:>0. (3.34)

Cc

We are going to find an expression of p; involving v, expression that will be useful to
compute the effective shift b. Consider the operator L(¥r<) defined by

L0g = Ll ). (3.35)

Some computations lead to

z/;TCLC(wi) = —div(ADg)+(B—2r_(c)Ae;).Dg— wq

Remember that 1, is an eigenfunction of L(r_(c)): L(r_(c)),. = p1(r—(c))e,.; the defini-
tion (3.3) of L(r_(c)) gives us that

(—div(ADwTC)—i—(B—Qr, (C)Ael).DwQ .

¢rch(wi) = —div(ADq) + (B — 2r_(c)Aey).Dq

+ q(—r, (€)*Aer.er — r_(e)div(Ae)) + () By — fu(X,0) — ul(r,@))),
hence we obtain that

Ll = . Lo(55) = (L0 () = ()

This implies that 0 is the principal eigenvalue of L(¥<), and v, is an associated eigenfunction.
The adjoint operator (L(¥r<))* is given by

1
wrc

Its principal eigenvalue is also 0; denote 1)) an associated (positive) eigenfunction:

(L(wrc)>*q*

Le(Yr,q").

(L(wrc)>*¢* =0, ; >0.

Tec

Then we obtain that
LZ (¢7‘C¢:c) = w’f'c (L(wTC)>*¢:p = 0

Since v, 1y is positive, up to a suitable normalization we have

Pz = ¢7"c ’QZ):C .
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Now call b; the first component of the effective drift b given by (3.32), we have:
A‘D77Z)7”c

by = / AD (W y,)-€1 + 7 (Br — 2r_(c) Aer.eg — 2 -61)) dX
TN

= / =29 Aey.Dipy, — P ) (= By + 2r_(c) Aey.e; + div(Ael))) dX
TN

Te

This seemingly hopeless expression has an interpretation. Indeed, differentiating the equality

LX) = pa(N)oa

with respect to A (recall that we have all the right to do it because A — puy(\) is real
analytic, 1, is a simple eigenfunction, hence an analytic function of \), multiplying by v}
and integrating over TV we obtain, using (3.2) and (3.6):

7 dpy
by = ﬁ(r_(c)) = Vi(c) —c.

And we know that V,(c) > 0.
Conclusion: In the reference frame of the pulsating wave - i.e. with horizontal drift —cey,
the dynamics of the local shift m(¢,z,y) can be decomposed into

1. an effective drift with horizontal component V,(c),
2. the dynamics of a pure diffusion equation.
Moreover, exactly as in Section 2, there is a nonconvergence result.

Proposition 3.17 Assume that the initial shift mgy is such that Sy = e~ (9™ oscillates
slowly at —oo:

Ve > 0,34 >0,3n>0,Vz,2' < —Aand 1 —n < 5 <14n = |So(z,y) — So(,y)le.
Then the Hopf-Cole transform of the approzimate shift m satisfies s(t,0) = So(—=Vi(c)t,y) +
o(1).

The proof consists in rewriting that of Proposition 2.7, the Gaussian heat kernel being
replaced by the lower or upper estimates provided by Theorem 3.16.

4 The general model (1.1) in one space dimension:
proof of Theorem 1.4

We are not going to recall the preliminary steps: the whole point is to compute, as explicitely
as possible, the solution of (3.21), that is now:

my — Mgy — 2(1/}_2 + Tc)mx - crcmi, ¢C<m0($),$> = UO(‘T)? (41>

where we have denoted, for short: r. := r_(c¢) and ¢, = ¥(.;;r_(c)). We consider the
Hopf-Cole transforms of (4.1):

S(t, ZE) — ecrcm(t,a?)7 q(t, I) — 1/}% (I)S(t, I) — ¢Tc (I)ecrcm(t,m)7 )
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With the notation a(z) = cr. —r.> — fu(x,0), since =) — 2reif. + a(x),, = 0, we get the
following linear equation on g:

{Qt + Ls := Gt — Qoo — QTCQJ»‘ + CL(ZE’)(] = 0’ (42)

9(0,2) = qo() := 1y, (w)eemo®

and go(x) is bounded. So, instructed by the preceding sections, everything amounts to
computing e *q,, with gy bounded and uniformly continuous.

Let us start by recalling that L is a sectorial operator in BUC(R) [29]. Thus —L generates
an analytic semigroup [16], and

q(t,x) = e gy(x) = L/et’\()\l + L) qo(x)d), (4.3)

2 .

where v is a wedge-like path bypassing a sector ¥ containing the spectrum of —L (see figure

1).

Figure 1: Integral path ~

Our main goal is to prove that ||[m,(, )|l = O(t~/?). To obtain such an estimate using
the expression of ¢ obtained in (4.3), first we are going to study the spectrum of L: we will
prove - this is not completely obvious - that if A € o(L), then A = 0 or Re(A) > 0. This
will allow us to to deform the path v into the axis iR, and then Fourier analysis will lead us
to a Gaussian integral. Then we estimate the Gaussian integral, this last part is - although
quite instructive about the heat kernel structure of e** - tedious and can be skipped at first
glance.

4.1 Preliminaries: basic Floquet theory

If A\I + L is invertible, then v(z,\) := (M + L) 'qo() is a bounded function of x, that
satisfies the linear differential equation of the second order

—v" = 2r" + a(x)v + M = qo. (4.4)

So we are so led to study the bounded solutions of (4.4) Equation (4.4) can be written under
the form

Vi=A@)V +Glo) = ( a(:z:)()+ A —érc ) ( 5((?) ) i < —q(?(:x) ) - (49)

Since A, (x) is 1-periodic, Floquet theory shows that
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e the resolvent of the system can be written Sy (z)e®™ where S is 1-periodic;

e since A, depends continuously on A, we have the same property for the resolvent R,
and the matrix F)\ can also be chosen so that it depends continuously on A (this remark
will be useful later; even if it is well known, we give an elementary proof of it in the
Appendix (section 5), see Lemma 5.1).

The Floquet exponents pi1 (), (M) are the eigenvalues of F)y; since F) depends continuously
on \, they also depend continuously on \; and when p;(\) # p2(A), a basis of C* composed
by eigenvectors of F) generates a fundamental system of (4.5) (with G = 0) of the form
(Vi(A,-) = (vi(A, ), V5(A, +)))ieqr,2y where the v;(A, -) are solutions of

» Ve

—0" = 2r + a(x)v+ Av =0 (4.6)
and are of the form
vi(\, 1) = wi(\, ) et iV, (4.7)
where the w; (), ) are 1-periodic functions. Hence the solutions of (4.6) are of the form
v(x) = Crwr (N, 2)e" N 4 Chwy (N, )et2 M7, (4.8)

At last, using the Wronskian, we see that
Re(pn () + Re(ua(N) = —2r..
This basic background implies:

Lemma 4.1 Assume that
Re(pi(N)) Re(pz(N)) < 0.

Then, given gy € BUC(R), the second order differential equation (4.4) has one and only one
bounded solution.

We leave the proof of Lemma 4.1 to the reader. It follows writing the solutions v of (4.4)
using the basis vy, ve of the homogeneous equation and the method of variation of the
constants.

Now, we need to know a precise localization of the spectrum of L; this is related to the
values of A\ for which the assumption Re(u1(A)) Re(pa(A)) < 0 will be satisfied, which will
help us to find an integral formula for v(\,-) = (A + L) 'qo.

4.2 The spectrum of L in BUC(R)

Since L is sectorial in BUC(R) - see [29], we know that there is some a € R and ¢ € (0, )
such that the sector S, , = {\, ¢ < |arg (A—a)| < 7, A # a} is in the resolvent set of A, and
(AT = L)|| < % for all A € S, ,. There is nothing really original in this section, see [28],
[5], [11]. However the chain of arguments is, once again, nontrivial. We are going to localize
more precisely the spectrum of L, and the goal of this subsection is to prove the following

Proposition 4.2 Let A € o(—L). Then A =0 or Re(\) < 0.

First, 0 is eigenvalue of L. Indeed, v, satisfies L., = 0. Another independent solution of
the equation
Lv=—v"=2rv' +a(x)v =0

is given by
+o00 e—2rcy

Yr(2) ’ o dy.

The proof is now divided in several steps.
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4.2.1 A link between the eigenvalues of L. and the Floquet exponents

As almost noted before, if Re(u1(A)) Re(puz2(N)) < 0, then A cannot be an eigenvalue of —L.
Indeed, if (A + L)v = 0, then v is given by (4.8), and the boundedness of v implies that the
two constants C; are equal to 0.

Hence the condition Re(ui(A)) Re(pa(A)) < 0 is important to localize the spectrum of
—L. A first step to know where the condition Re(p(A)) Re(ua(N)) < 0 is satisfied is the
following

Lemma 4.3 For all A # 0 such that ReX > 0, we have: Rep;(N) # 0.

This will not yet allow us to know if Re(p(A)) Re(uz2(A)) < 0 for all A # 0 such that
e\ > 0, but then it will be sufficient to know that Re(py(N)) Re(u2(N)) < 0 at just some
specific value of \.

Proof of Lemma 4.5. It follows the scheme of [5]. We argue by contradiction, assuming
that there exists such \ such that Res;(\) = 0. So the function U;(\, z) = w (A, )e M7 is
bounded and satisfies the equation Lu+Au = 0. We assume in the sequel that Rel; (A, ) # 0;
otherwise we replace Uy by ¢U;. Consider the Cauchy problem

Lv=0
{Ut+ (% s (49>

v(0,7) = ReU;(\, 7).

The solution of this equation is v(t,z) = Re(eMUy(X, z)). Since Uy (A, z) is bounded and
Yp, > 0, there exists C' > 0 such that

Ve €R, —C,,(r) < RelUy(\ x) < Ch, (2).

We distinguish then the two cases el > 0 and Re = 0.
The case ReX > 0: note that v, is a stationary solution of v; + Lv = 0. Hence, using
the maximum principle, we have that

Vi>0,Vz eR, —Ciy (z) < Re(MUL(N, z)) < Ciy, ().

Since Re\ > 0, we get a contradiction by sending t — +o0.
The case Rel = 0: we set A = i6 with & # 0. We assume, up to replace U; (A, x) by
—~Ui(\, z), that
o := inf{¢ > 0, RelU; (N, ) < (2, } > 0.

We distinguish another two cases: B
(ii’) Assume that here exists xy such that ReU; (A, x9) = (ot (z09). Then the strong
maximum principle implies that

Re(e'UL (N, x)) = oty ().
Then, by denoting U; = u + v, we have in one hand
Re(e7' U (N, x)) = Re((u + iv)(cos(at) + isin(at)) = ucos(at) — vsin(at).
On the other hand, we have the equality at ¢t =0

Re(Ur (A, 2)) = u = Gty (a).
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We deduce that for all ¢ > 0, we have
ucos(at) — vsin(at) = u;

this means that
cos(at) — 1 sin(at)
u = )
t t
By passing to the limit ¢ — 0, we get ov =0, so v =u = 0, i.e. U; = 0, which is absurd.
(ii”) There exists |x,| — +oo such that RelU; (A, x,) — ooy, (z,) — 0 as n — +oo. We

bring back this case to the previous one as follows. We consider the Cauchy problem

v — vl = 2rol + a,(z)v™ =0,
v"(0, ) = Reuy,(x),

with a,(z) = a(z 4 ) et u,(x) = Uy(\, 2 4 2,,). The solution is v™(t, z) = Re(eMu,(z)).
Since the sequence of functions a, is bounded in C!, we can extract from Ascoli theorem and
the diagonal extraction process a subsequence which converges uniformly on any compact.
We denote a., the limit function which is 1-periodic. We proceed in the same way for the
sequence uy,(x) which converges to u.(z) and v, (z + z,,) which converges to ¥ (). From
parabolic regularity, we can extract a subsequence of v™ which converges locally in C1? to
the solution v of the equation

Vp — Vgz — 2705 + Aoo(z)v = 0,
v(0,z) = Reus (),

which is v(t, z) = Re(eMuoo(x)). Moreover, since Rel (X, z,) — Cotbr, (2,,) — 0, we get that
Retoo (0) = o1 (0). We are so brought back to the case (ii’).

Hence in any case we get a contradiction, which implies that for all A # 0 such that
ReX > 0, we have: Rep;(A) # 0. Lemma 4.3 is proved. O

Now it remains to exhibit at least one value of A for which Re(p; (X)) Re(pa(N)) < 0: this
can be done studying the spectrum of L near the eigenvalue 0:
4.2.2 The spectrum of L near 0

First we use the fact that we know the eigenfunctions of L associated to the eigenvalue 0 to
determine a basis of solutions of (4.6) for A close to 0:

Lemma 4.4 For X close to 0, equation (4.6) has a solution uy (X, x) which has the following
(uniform in x) asymptotic expansion as X — 0:

ui(\, ) = 1y, (z)els Aer=AeatOO?) (4.10)

where 1 and @o are the following positive and 1-periodic functions:

x 2 (
Tc y) —2rc(z— ¢ 2 + Z‘ Tez

p1(x) = 02 )" Zrele=ild / ¥ *dz, (4.11)

T 2 ( 2

Te y) —2r-(xx— wrc(z + x) T2
o) = W Ty = W‘pﬂz +o)er 412)
Another element of the fundamental system is given by
+oo e—2rcy

A, x) = up (A dy. 4.13
Ug( ax) U1< ax)/m U%()\,y) Yy ( )
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The proof is classical and will be omitted: look for u;(A,x) under the form wuy(\ z) =
Uy, ()e?M®) with ¢ close to 0, then write the differential problem satisfied by ¢, apply
the Banach fixed point theorem to solve it, and finally apply the wronskian identity to get
us (A, ).

This allows us to localize the spectrum of L:

Lemma 4.5 For all A # 0 close enough to 0, and such that ReX > 0, we have
Re(u1(N)) Re(pa2(A)) < 0.

Proof of Lemma 4.5. We have already several informations: the real parts $e(u;(\)) are
never equal to 0 in {\ # 0, ReX > 0}; moreover their sum is constant equal to —2r,, hence
negative. Therefore the real parts Re(u;(\)) remain either positive or negative, but cannot
be both positive. Hence, there are only two possible cases:

e either both of them are negative,
e or one of them is positive and the other is negative.

Lemma 4.5 states that we are in the second case. This follows from the asymptotic de-
velopment obtained in Lemma 4.4: indeed, if both real parts Re(u;(\)) are negative, them
it follows from (4.8) that all the solutions of (4.6), in particular u;, go to 0 as x — +oc.
However, it follows from (4.10) that

lur (A, )| = . () exp elo ReGer=Aea+00%),

)

and if A = \; + 1Ay, we have
Re(Ap1 — Npa) = A1 + (A3 — Ay

hence, since ¢; and @y are positive and 1-periodic, if Ay > 0 or if Ay = 0 and Ay # 0, the
function Re(Ap; — A%py) is bounded from below by a positive constant if [A| is small enough,
hence the same occurs for Re(Ap; — A2y + O(A?)), and this implies that |u; (A, z)| — +o00
as ¢ — +00, in contradiction with the assumption that the real parts Re(u;(\)) are both
negative. Hence we are in the second case. 0

4.2.3 Conclusion: localization of the spectrum and integral expression for (A +
L) qo

Now, if ¥ is the sector bypassing o(—L), we wish to prove the

Lemma 4.6 In the two cases: (i) X # 0 such that Re(X) > 0, (ii) Re(A) < 0 and X ¢ X,
we have:

Re(p1(A)) Re(pz(A)) < 0.

As a consequence, we immediately obtain

Corollary 4.7 Given qy € BUC(R), there exists a unique bounded solution of (4.4), more-
over, if additionally X\ is close enough to 0, it is given by the relation

xT

+oo
v(\ ) = ul(/\,x)/ us (N, y)qo(y)e* Ydy + UQ()\,x)/ ur (N, y)qo(y)e?Vdy,  (4.14)

where uy and uy are given by (4.10) and (4.13).
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Note that the formula (4.14) is obtained using the basis u1 (\, ) and us(\, z) given by Lemma
4.4, and the method of variation of the constants. Hence it remains to prove Lemma 4.6.

Proof of Lemma 4.6. Combining Lemmas 4.3 and 4.5, we already know that
Re(pr(N)) Re(ua(N)) < 0 for all A # 0 such that Re(A) > 0. Now we want to prove
that this property holds also for all A ¢ ¥ such that Re(\) < 0. We can assume that
Re(p1) is positive on {feX > 0}, and then it is sufficient to prove that it remains positive
on {\ ¢ X, Re(\) < 0}, since then Re(uz(N)) = —2r. — Re(u1(A)) < 0. By contradiction,
assume that there is some Ay ¢ 3, Re; < 0, such that Re(ug(A1)) < 0: then

o if Re(u1(N1)) = 0, then there is some nonzero bounded solution of (A + L)v = 0
(remember (4.7)), which implies that \; is an eigenvalue of —L, which is contradiction
with the assumption A\; ¢ X;

o if Re(u1(N1)) < 0: choose Ay := iSmAy; then Re(ug(N2)) > 0, and since Re(py) is
continuous on A, $e(p;) has to vanish somewhere on [A;, A2], which is impossible, as
we have seen before.

Hence, Re(p1(A)) > 0 for all A ¢ 3, Re(A) < 0, and consequently Re(ua(A)) < —2r,. O

4.3 Application: another integral formula for s

Remember that the Hopf-Cole transform ¢ of the shift m is given by (4.3). We are going to
transform this formula in a more useful form:

Lemma 4.8 Denote
Ve 1= (—ioo, —ig] U C. U [ig, i00),

where C. == {z =¢ee” 0 € [-%,2]}. Then

1
q(t,z) = —/ ML+ L) o dA. (4.15)
247 ),

Proof of Lemma 4.8. Let us denote 3 := {\ # 0,ReX > 0} U{\ ¢ 3, ReX < 0}. We have
seen that AI + L is invertible for all A € ¥/. Moreover, Repa(N\) < —2r. < 0 < Repy(N) for
all A € ¥'; since pq and pg are continuous, there exists an open neighborhood %" of ¥’ (hence
that contains iR*) such that Reps(A) < —2r. < 0 < Rep;(A) remains true for all A € X",
which implies that AI 4+ L remains invertible in X", hence that (A + L)™' is holomorphic in
DI

This allows us to obtain another expression of the Hopf-Cole transform ¢ of the shift m:
indeed, consider (see figure 2):

Vs := Dy U [—id, —ie] U C. U [ig, 1] U Dy,

with
Dy ={=id +t(=1—wvi),t >0}, Dy ={id +t(=1+wvi),t >0}

the value v > 0 is such that this path bypass the spectrum and ¢ is a quantity intended to
tend to 0.
Then 5. is homotopic to the path v in ¥”, and the Cauchy theorem allows us to see

that
1 1
q(t,z) = 2*/6”(” + L) 'godr=— [ A+ L) 'gd
.,

s 2w Yo.e
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Figure 2: Integration contour ;.

But now, given R > §, denote zg the affix of the intersection between the horizontal line
passing through iR and Dj: since L is sectorial, we have

M

M
M+ L) ol o) < ——— oR) < — s
[(A + L) ol o) < ’)\_G‘HQOHL ® < 5 llaoll =

hence

/ M+ L) godh = O(0)  as R — +oo0.
[iR,2R]

The same property holds for Dy . Sending § to 0, the Cauchy theorem implies (4.15). 0

4.4 Approximation of the Hopf-Cole transform of the shift
4.4.1 A somewhat simplified expression of v(\, x) and gq.

In order to study the asymptotic properties of the expression of ¢ given by (4.15), we are
going to simplify as much as possible the integrand e*v(),z). Combining the expression
(4.14) of (M + L) 'qp, and the relation (4.13) between u; and us, we obtain that, for |\l
small enough,

=0 ([0 L)

Now, since for A close to 0, we have

qo(y)e? W) dzdy. (4.16)

u (A, ) =y, (x)elo Ce1= Ve tO0)
we can “approximate” u; by its truncated expression
U e(N, ) = @Drc(a:)ejbz(’\ﬂpl—vm)' (4.17)

This engages us to consider the following quantity, that we hope will be a good approximation
of v(x,\): for all z € R, all A # 0, ReX > 0,

—+o00o —+o00o
U re(A y) 2re(y—2)
d, ) = up (O W dzdy,  (4.18
vt( CE) UIt ! </ / / oo/z > ultc >\ Z)QO(y)e - ( )
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and the related quantities

1
@ (t,x) = % /% et’\vtc()\, x)dA, (4.19)
and
a 1 tA 1 o itw .
qPP(t,x) = ¢ (t, x) = — e e\, ) dN = — " ve(iw, ) dw (4.20)
227'( iR 27’(’ oo

Our hope is that
e v, will be a good approximation of v = (A + L)¢o for A close to 0,

e the behavior of ¢ is governed by the behavior of its integrand e*(Al + L)1y near
A =0, and hence ¢*? will be a good approximation of q.

Then we will study ¢*”P, in order to know some asymptotic properties of q.

First, we give the complete expression of v.: introducing the functions A;(z,y, z) and
As(z,y, z) defined by

(@, y, 2 /901+/ o1, As(z,y,2) /@2—1‘/ V2,

we derive the following expression:

+oo  p+too
Utc(/\ J,’ 77ch (/ / / / ) Q/Jrc )€_>\A1+>\2A262rc(y_z)d2dy. (421)

4.4.2 Convergence results.

For integrability reasons, we are going to consider the difference between the second time
derivatives of ¢ and ¢®"P, and we are going to prove the following

Lemma 4.9

. 1
HQtt(t7 ) - Qttpp@’ ')||L°°(]R) = O(;)

This will be sufficient to our purposes.
Proof of Lemma 4.9. 1t follows from the following claims:

e Claim 4.10

1" 1
dult, ) = / N + L) gy dh = 5 / WA + L) g dA +O():
v ) —is

2w

e Claim 4.11

1 1 0 1
G (t,2) = 5~ / Me (N, o) d\ = o~ Me v (N, x) d)\ + O(=);
1T JiR 1T J_is t
e Claim 4.12
1 (9 1 [
5 6)\2 e+ L) 'qo d)\—ﬂ Aze%tc(A r)d\ = 0( ).
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Let us give the ideas of the proof of these claims:
To prove Claim 4.10, first we decompose the integral on 7. in three integrals: Dy, D
and [—id, —ie]UC. Uig, id]. Tt is easy to see that the integrals on Dy and Dy are of the order

O($); concerning the last term, the presence of A makes the integral fjé N2eMAT+L) " Lqo dX
convergent, and

/ NN+ L) god\ — / NN+ L) 'god\  ase — 0,
[—i6,—ie]UC: Ulig,id] 16,10)

which implies that Claim 4.10 is true.
To prove Claim 4.11, we first note that since 1,,, @1 and ¢, are positive and 1-periodic,
there exist positive constants ag < by such that

ap(2z —y —x) < Ay(z,y, 2), Ae(x,y,2) < bo(22 —y — x). (4.22)

This implies that A2e'*v;.()\,x) is bounded and integrable on iR, and (/\Q’Utc()\ x)) €
LY ((—ioo, —id) U (id, +iocc)), hence an integration by parts (as for the Rlemann Lebesgue
lemma) shows that Claim 4.11 is true.

To prove Claim 4.12, we estimate the difference v(\, x) — v4.(A, x), and we immediately
see that, near A = 0 we have v(\, z) — vi(X, ) = O(3). Then, as previously, an integration
by parts (thanks to the additional A\?) proves that Claim 4.12 is true.

Combining Claims 4.10-4.12, we obviously obtain the validity of Lemma 4.9. 0

4.5 Study of ¢/”

4.5.1 New expression of ¢;/”

We begin by proving the following

Claim 4.13

—1
P (t,x) = 9 /w%”wvw(iw,x) dw
T

(t=Aq (z,,2))2

400  ptoo T 4Ag(zy,z)
1/}7*0 </ / / / ) 277Z)rc ) = ( € )eQrc(y*Z)dzdy.
27T —00 J 2z Te Z dt 2A2(x7 Y, Z)

(4.23)

The proof follows from the formula of ¢;/* given in Claim 4.11, the formula of v;. given in
(4.21), and the Fubini theorem: indeed, as it can be easily checked, the function

240 (y)¢Tc (y) e—iwAl—w2A2 e2'rc(y—z)€iwt
7.(2)

is integrable on the corresponding domains, hence we can integrate first in w, to obtain that

g7 (b, ) = w—ﬂ(—ﬂ) ( / Oo /:m+/ moo /m>

R

(w,y,2) »w

2 zwt —zwAl—wQAQ dw> 627’c(y—z) dZdy
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Inside the parenthesis appears a well-known Fourier inverse since, with the convention

1 .
Fyglw) = —= / e “'g(t)dw, we have

V2r Jr

e*(tlz)Q e e,(t;gﬂ
F w) = e—iaw—wa7 and F | — w) = _w2€—iaw—bw27
() (i)

which implies (4.23) and Claim 4.13. O

Claim 4.13 engages us to consider the function

(t—Aq (z,y,2))?

+oo +oo e AAy@uyz)
W(t, T ¢T¢ (/ / / / ) ¢Tc ) 2 62rc(y—z)d2dy :
V21 N - (2) 2A45(z,y, 2)

(4.24)
combining Lemma 4.9 and Claim 4.13, we have
1
qt = Wy + O(z)a
hence it remains to study Wy. To estimate it, we split in the sequel W as
W(tv CL’) - Wl(t7 ZL‘) + W?(t7 IL‘),
with
(t=Ay (2,y,2)?
+oo +oo T 4A5(z,y,2)
Wit z) _ ¥nl2) / / o f” ye o =2 dzdy, (4.25)
oY 2 ( 2A5(z,y, 2)
and
_(tzﬁl((zvyvz)))Q
2(z,y,2
Wa(t, x) ¢rc / / ¢T° v) W2 dzdy. (4.26)
V21 R - (2) 245(x,y, 2)

The reason is that the two integrals behave differently for large time.

4.5.2 Large time behaviour of W] and its time derivatives
To study Wi, we make the change of variables 2’ = z — y,y' = y — x. We get therefore

(t=A; (z,,2))2

—+00 +OO T 4A (z,y,2)
Wl< 7 w'f’c / / 'CC + y Q/)Tc (x + y) — 2 ! 6_27’czdzdy7
27T x+y—|—z) 2A2($7y7 Z)

with
- Tt+y+z Tt+y+z - r+y+z T+y+z
Ai(z,y,2) =/ 901+/ p1, As(z,y,2) =/ s02+/ 2.
x T+y x T+y
We make then another change of variables

- T+y+z T+y+z
Y =y, Z:Al(a:,y,z):/ <p1+/ 1.
T T+y
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Note that 21 is increasing with respect to z. We choose then F' a primitive of (; so that
Ai(z,y,2) =2F(x+y+2) — F(z) — F(z +y). Thus, we set

Z=2F(x+y+z)—F(x)- Flr+y), 2=F (%(Z—%F(x)—l—F(x—i—y))) —x—y.

And so
dz 1 1

Az~ 20(F1(Z/2+ (F(x) + F(z +9))/2)  2¢1(z +y+2)°

(4.27)

We get so

Ay (t—2)2

+o0 —2rcz A C4Ay, Z
27T A1 (2,,0) Pat+y+2) 20(x+y+2)\ 24, VZ

Avl (33, Y, Z)
As(,y, 2)
above. By inverting the formula A;(z,y,0) = F(z +vy) — F(x) intoy = F~Y(Z + F(z)) — =,
we obtain

We denote then ¢(z,y, z) = , which is a function bounded from below and from

- —7)?
o—lzy,2) 452

+oo
Wl(t,x):/o Vi(z, Z) 77

with - keep in mind formula (4.27) -:

dz,

-t T))—x —2rcz
Vite,z) = Lre®) / T @ty ty) e
’ 2/ V2(@+ty+z) 20i(z+y+2) '

Lemma 4.14 The function Vi(z, Z) is bounded.

PROOF. Since qq, 1., 1 and ¢ are bounded, we have
(Z+F(z))—a )
Vi(z, 2) < C / (2re(@+0) g2 P G (ZHF @)+ F(a+0) gy
0

The key point is that ¢; is 1-periodic and so we can write it as ¢
F(x

) = M + e(x), its
mean value plus a periodic function with zero mean value. Thus, =

(z
) + g(x), with
g bounded. By inverting, we get that F'~! can be written as F~(y) = % h(y), with h
bounded. Note then that

F Y Z+F@)—2 = FYZ+Mz+g)—x

_ %(z + Mz + g(z)) + M(Z + Mz + g(z)) —

A
= M—’_H(l"Z)’

with H bounded. In the same way, we have

F Y (YZ+F(z)+F(z+y)) = 1% LMz + g(z)) + %(M(:c+y)+g

1 —|—Mx—|—2y+%( () + g(x + )))

- %(5+M3«"+ Sy+3 (()+gx+y))§
_l’_

Z+ Mz+ 3y +3(9(x) + gz +y)))

F- (z+y)))
P
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So,
1 Z
-1 (2 __“
F (2(Z+F(x)+F(x+y))> 2M—|—x+2+G(xy, Z),
with G bounded. Thus,

2re(z+y) ,—2reF =1 (5 (Z+F(2)+F (z+y)))

e e = ¢"Ye

77"CZ/M672rCG(x,y,Z) S Cercyefcm/M.
Z/M+H(x,Z)
Finally, Vi(z,Z) < C’e""CZ/M/ e"Ydy = O(1), so V4 is bounded. O
0

Corollary 4.15 The function Wy is bounded. Moreover, ast — 400, we have O,W;(t,z) =

0 (%) and Oy Wi(t, z) = O G)

PROOF. Since V; is bounded and ¢ > m > 0, we have

0 vVZ
We deduce that the function W; is bounded from Lemma 5.2, that we also use for the time
derivatives. ([l

4.5.3 Large time behaviour of W, and its time derivatives

To study W,, we make the change of variables 2’ = z —x,y/ =y — x :

oo 4A9(x,y,z
W2 (t7 T wrc / / x + y w""c (x + y) — 2 €2Tc(y_z)dyd2',
27T $+2) QAQ(ZU,Z,/, Z)

with

- Ttz Ttz - z+z Ttz
Al(.T,y,Z) :/ ()01+/ ©1, A2<l’,y,2) :/ 902+/ P2-
T T+y x x+y

We make then another change of variables: Y =y, Z = Ai(z,y,2). Using the primitive F
of 1, we have Ay (x,y,2) =2F(x+ 2) — F(z) — F(z +y). We set

Z=2F(x+2z2)—F(x)—Flx+y), z=F" (%(Z—l— F(z)+ F(x +y))> -

We have
dz 1 1
Az~ 20(F1(Z)2+ (F(z) + F(z +9))/2))  2¢1(a +2)°

We get therefore:

2re(y—2) Z 1A Z
Wit z) = Lrel®) / / o+ y)ir(r +y) e L T gz,
27T A1 (z,y,0) TC(I‘+Z) 2@1<$+Z) 2A2 \/7

A1($,y,z)

Ay(x,y,2)
Thanks to the Fubini Theorem, we write W5 as

(4.28)

We denote then ¢(z,y,2) = which is bounded from below and from above.

2
—e(z,y,2) L2~

vZ

May 16 2010 5:49:18 EDT
47 Vers. 1 - Sub. to TRAN

+oo e
WQ(tax) = %(xaz) dZa
0



with

Vo(z, Z) = Vedy

Pr.(z) / ’ Go(z + ), (z + y) 2@y =2re(y=2)

Lemma 4.16 There exist C,a > 0 such that |Va(z, Z)| < Ce 7.

PROOF. Since qq, ¥,,, 1 and ¢ are bounded, we have

0
Vo(z,Z) < C / e2re(wty) o =2re P~ (G (ZHF@)+F(@+u)) gy
F-Y(F(z)-Z)—=x

We take again the same notations than for the study of V;. Here, we get

FYF(x)-Z2)—x= % + H(x,7),

1 Z
! (§(Z+F(:c')+F(:c+y))) 2M+x+y/2—|—G(x v, Z),
with H and G bounded. We have so

62rc(x+y)672rcF (%(Z+F(:p)+F(:p+y ) < Cle'Ye™ TCZ/M

Finally,
0

Vs(x, Z) < Ce~Te?IM / &Yy,

—Z/M+H (z,2)
SO
Ve, Z) < Ce me2/M (1 _ gmreZ/M reH(@2)) < (ereZ/M

O

Corollary 4.17 There exists C,a > 0 such that for t — +o0o, Wa(t,z), 0,Ws(t,x),
8ttW2(t,:E) = O(@iat).

PROOF. From the previous lemma and that ¢ > m > 0, we have

mt=2)2
4z

+o0
Ws(t, x §C/ e‘“Ze—dZ.
| 2( )l o \/7

The estimate on W5 result from Lemma 5.3, as well as the time derivatives. 0

4.6 Proof of Theorem 1.4

Now we can conclude the proof of Theorem 1.4. The consequence of Corollaries 4.15 and
4.17 is that ¢4 = O(%) Since ¢ is bounded (by the weak maximum principle), we obtain

that ¢, = O(\/%) This already implies that the approximate shift m satisfies: m; = O(\/%),

My = O(%) But we also need to estimate the spatial derivatives, and in particular m,. To
do this, we come back to

q(tVT) crem(t,x
(o) =y =7
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and we are going to prove that s, = O(-%). Indeed, we have seen that s is solution of

st—sm—2<rc+%>%:0.

Sl

Denote

()
ky (x):=2 <rc + —=

77D7"c (:L‘)
Then k,, is a 1-periodic function, and s, is solution of the nonhomogeneus first order differ-
ential equation w’ + k,_(z)w = s;, hence

) , and K, (x) := /l‘ k.. (y)dy = 2r.x + 21In, (z) — 2In,, (0).
0

salt0) = (sal0.0)+ [0y ) ko)
0

Since from parabolic estimates z +— s, (¢, -) is bounded, then s, (¢, z)e%® — 0 as x — —o0,

thus i
sz (t,x) = (/ eKrc(y)St(t’y)dy) e Kre()

C * (o
|s(t, )| < % (/ 6Krc(y)dy) e Krel®) < %7

which gives that s, = O(\/iz), and thus m, = O(\/iz) The equation on s gives also that
Spzx = O(\/%), hence m,, = O(\/%) This completes the proof of Theorem 1.4 O

We deduce that

5 Appendix: technical lemmas

5.1 Continuity of the Floquet decomposition

Lemma 5.1 In the representation of the resolvent Ry of the differential problem (4.5): Ry =
Sx(z)e*™ | the matriz Fy can be chosen so that it depends continuously on \.

Proof of Lemma 5.1. F) has to be chosen such that /> = R, (1), which depends continu-
ously on A. We are going to prove that there exists such a matrix F), depending continuously
on A: first consider the eigenvalues ki (\), k2(A) of Rx(1), and choose £1(\) an eigenvector
of norm equal to 1 associated to ki(A); k1(A) and ko(X) are continuous with respect to A, so
£1(A) can also be chosen continuously with respect to A. Now consider £5(\) obtained from
the rotation of £;(\) by the rotation of angle 7, and write the matrix P(X) = (£1(A) e2(N)).
Then there is a continuous function b(A) such that

PP = (9 ) —won (R )

Hence, it is sufficient to prove that there exists G depending continuously on A such that

e = (é OO ) - (é 0 )

0 71()\))
Gy = ,
A (0 Y2(A)
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we immediately obtain that v;(A) and 42(\) have to satisfy

e — 1
N = k(). N\ 5 = B0V);
72(A)
since k(A) # 0 and the function z — <= has no root, it is clear that there exists continuous
functions ~; and v, satisfying these conditions. Hence Lemma 5.1 is proved. 0

5.2 Estimates of the Gaussian integrals (useful for W, and W)

The study of the function W relies on elementary, but tedious integral estimates. Lemma 5.2
below is related to W (defined by (4.25)), and Lemma 5.3 below is related to the function
Wy (defined by (4.26)).

Lemma 5.2 Let a > 0,b > 0. We have the following estimates :

_(—a)?

Foo gal oo e e 1
I(t) := ———dz is bounded, Iy(t) := t—2|—7—dr =0 | —&
1( ) 0 \/E T 15 bounaea, 2( ) /0 | x| $3/2 2y <\/%) )

+o00o ) e—ai(t;z)z 1
Remark The first integral is even constant and equal to \/E :
a
Proof of Lemma 5.2. The idea to prove these estimates is to cut Rt as [0, t]U[t, +oo] and

(t — =)’

Xz

t — Vu? + 2ut
x=1t+u—Vu?+ 2ut, dxz( T vt u)du.

to make the change of variables u = . On the domain [0, ¢] the change of variables is

such that

vu? + 2ut

On [t, +o0], the change of variables is

t Vu? + 2ut
=1+ u-+ Vu®+ 2ut, Tut vt 2ul
Vu? + 2ut

(i) Estimate of I;. We have

_ _glt=2)®
+oc>6 JrOOeax

t:c) tr)
Ii(t) = i 7 dx—/ NG —dx + t Tdm
TVt u— ViE + 2ut + Vi u+ Vi + 2ut
: Vi T 2ul o
oo [lvuft = JB[E T 20t preey[1buft+ 2R 2uft
:/0 \/m e du+/0 \/m e
<2/*°°\/1+u+\/m
—Jo V2u

ey < C,

the last inequalities being true for all ¢ > 1.
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(i1) Estimate of Ir. We have

(tfz)Q (t z) (t—z)2

+oo e @ +oo e
L) = / PR L / -2 e +/ =l —da
0 t r
+oo Vu? +2ut —u oo Vu? +2ut +u

= e 2 du+ e 2y,

0 \/u2+2ut\/t+u—\/u2+2ut 0 \/u2+2ut\/t—|—u+\/u2+2ut

We prove the that the last two integrals behave as O <\/%> We detail the second case, the

first is less direct due to the minus sign in the denominator but we can bypass this difficulty

thanks to the estimate o
L4+ u/t — Ju?/t? +2u/t > T

u

valid for all ¢ > 1. In the second integral, if we factor t out, we get
L VEET N
Vido a1+ ujt + [Pt 2u |
where the remaining integral is bounded since for ¢t > 1
/*‘” VUt +2u+u/ViE g o [TV 2u
O T 2uy/1 4w/t + BT T 2 ~Jo V2u

(iii) Estimate of I. It is similar. O

e 2 dy < C.

Lemma 5.3 Let a > 0,b > 0, then there exists d > 0 such that

_plt=)? _pl=a)®

+o0 e 400 e =
Ji(t) == W dr =0(e "), ot ;:/ t—zle " ———dr=0(e "
1( ) /0 € \/E 2 (6 )7 2( ) 0 | J}|€ 23/2 x (6 )7

_pt=2)?

oo e
J3(t) = /0 ((t —x)* + x)e_“xwda: = O(e™ ™).

_ T e 2Vb(Wath—V)t
a+b

Proof of Lemma 5.3. To prove the exponential behaviour, we proceed as in the proof of
the previous lemma. Here, we just detail the estimate on .J;, since there are no particular
difficulties with the two other integrals.
We want so to get the estimate

Remark. We can prove in fact that Jy is equal to

_pt=2)?

Ji(t) :== /+OO e_‘w—e " dr = O(e_dt)
1(¢) - ; N )

We make for that the change of variables ©u = ax + b@. Note that the function = —

- . . . : [ b L
ax + bl . ) achieves its minimum at the point xz = n bt and the value of this minimum
a

/ b
is 2bt ( a;)i— — 1) . We cut so the integral J; in two parts:

Vst b= +o0 b=
Ji(t) = / i —— e ———dx.
0 VT Vst vV
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For the integral on [0, 4/ a%bt], the change of variables can be rewritten as

1 dr 1 2t
x:§(25t+u—\/u2+4but—4abt2), —x——(1 vt )).

du 2\ a2 + dbut — 4abt?
Thus,
/\/ st —az b p
e x
0 VT

B /+oo < u+ 2bt B ) e “du
2e(y/TF-1) \Vu? + 4but — dabt? V2 (2btu — u? + dbut — dabi2)*

a+b

We make then a further change of variables v = u — 2bt ( — 1) . By setting a :=

%>O 8::1/1+%—1>0, we get 2u + 4bt = 2v 4 4bv/1 + at. Thus,

b (t—x)?
\/ atst eV
e dx
0

VT
B /+oo v+ 4btV/1 + a . e Ve 2betdy
— — 1/2°
0 \/v(v+4bt\/1+oz) \/§(U+2bt\/1+o¢—\/v(v—i—élbt\/l—i—a))

Then we factor out the exponential term e~2%!, the last step is to prove that the remaining
integral is bounded. We have

/+°° v+ 4btv/1 + « ] e Vdv
o 1/2
0 \/U(U+4bt\/1+a) \/§(v—|—2bt\/1+a—\/v(v+4bt\/1+a)>

(U +4btv/1 + o — \/v(v + 4bt\/1 + a)> e dv

) /0 V2yfolv + bty a) <v +2btv/I T a —y/ov+ 4bt\/H—a)) v
oo t (v/t +4byV/1 + o — \/v/t(v/t + 4b\/1+—a)> e ’dv

1/2
T VIVIVE oo/t + 4T a) (v/t +2bVTF o — \Jo/t(o/t + 4DV T a)>
The previous integral is convergent at v = 0, because of the estimate

C
1+5—vVs2+2s5> )

1+s

Thus, the integral on [0, a%bt] decreases exponentially with respect to t.

We follow then the same way for the integral on the domain | a%bt, +o0] by using the
change of variables

1
T=3 <2bt+u+ Vu2 4 dbut — 4abt2) .
The estimates are direct here since there is no minus sign in the denominator. 0
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