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Abstract

We consider in this paper a general reaction-diffusion equation of the KPP (Kol-
mogorov, Petrovskii, Piskunov) type, posed on an infinite cylinder. Such a model
will have a family of pulsating waves of constant speed, larger than a critical speed
c∗. The family of all supercritical waves attract a large class of initial data, and we
try to understand how. We describe in this paper the fate of an initial datum trapped
between two supercritical waves of the same velocity: the solution will converge to a
whole set of translates of the same wave, and we identify the convergence dynamics
as that of an effective drift, around which an effective diffusion process occurs. In
several nontrivial particular cases, we are able to describe the dynamics by an effective
equation.

1 Introduction

The question here is the large-time dynamics of the solutions of reaction-diffusion equations
on the whole line or in cylinders, the most general instance being

{
ut − div(A(x, y)Du) +B(x, y).Du = f(x, y, u), ((x, y) ∈ R × T

N−1),

lim
x→−∞

u(t, x, y) = 0, lim
x→+∞

u(t, x, y) = 1.
(1.1)

Here, T
n denotes the n-dimensional torus. The function f will always be supposed to be

smooth enough, and positive. Moreover it will be assumed to be concave in u, and moreover:

f(x, y, 0) = f(x, y, 1) = 0, sup
(x,y)

fu(x, y, 1) < 0 < inf
(x,y)

fu(x, y, 0).

Additional assumptions on A, B and f , such as periodicity in the variable x, are required,
and we will give a precise statement when needed. More general assumptions (such as less
smoothness on f , or a condition on the slope of f at 0 instead of the concavity assumption)
are possible, but will not be considered. In any case, such a nonlinearity f will be called a
KPP nonlinearity.

It is well-known [3] that there exists c∗ > 0 such that (1.1) has pulsating waves solutions
of speed c if and only if c ≥ c∗. See the general definition in [3], here a pulsating wave
with speed c will be a solution φc of (1.1) such that, for all (ξ, y) ∈ R × T

N−1, the function

t 7→ φc(t, ξ− ct, y) is
1

c
-periodic. Note that existence results in the spirit of Theorem 0.3 are
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known, although less complete - see [1] or [9]. The family of all these travelling waves - but
not only, see [13] - provides an attractor for a large class of initial data to (1.1). The goal
of our work is to understand how this attractor traps the trajectories of (1.1). First we will
study the most basic model. Next, thanks to the informations given by this basic model,
we will consider the problem in the full generality. At last, we will consider a periodic one
dimensional case, for which we will be able to give precise answers.

1.1 The basic one dimensional model

What motivated this study is the following, seemingly innocent question. Consider the most
basic 1D model, namely

{
ut − uxx = f(u) (x ∈ R)

lim
x→−∞

u(t, x) = 0, lim
x→+∞

u(t, x) = 1,
(1.2)

with f concave, f(0) = f(1) = 0. Then - see, for instance, [17] - (1.2) has a family of
travelling waves; that is, for every c ≥ c∗ := 2

√
f ′(0), there is a unique - up to translation

in x - φc, solving {
cφ′ − φ′′ = f(φ), (x ∈ R)

lim
x→−∞

φ(x) = 0, lim
x→+∞

φ(x) = 1.
(1.3)

In other words φc(x + ct) solves (1.2). We ask the question of the stability, under large
perturbations, of the supercritical waves - those whose speed is > c∗. Much is known in this
direction; let us extract the following two results.
Theorem 0.1 (Uchiyama [30], Bramson [7]) Let u0(x) be a Cauchy datum for (1.2) such
that there is c > c∗ and r > 0 for which we have

u0(x) = φc(x)(1 +O(erx)) as x→ −∞.

Assume moreover that lim sup
x→+∞

u0(x) = 1. Then there is some ω > 0 such that, we have, as

t→ +∞:
u(t, x) = φc(x+ ct) +O(e−ωt).

A much related, and more recent theorem is
Theorem 0.2 (Berestycki-Hamel [4]) Let u(t, x) be a time-global (that is, defined for t ∈ R)
solution to (1.2) such that there is c > c∗ and M > 0 for which we have

φc(x+ ct−M) ≤ u(t, x) ≤ φc(x+ ct+M).

Then there is m ∈ [−M,M ] such that: u(t, x) = φc(x+ ct+m).
In fact, the assumption that u(t, x) is trapped between two translates of a wave can be
considerably weakened under our assumptions on f , see [13].
At first sight, Theorem 0.2 seems to imply the convergence to a wave for any solution
starting from a datum trapped between two waves. Not quite, though: Theorem 0.1 only
allows perturbations which decay faster than the wave. And this seemingly unsignificant
gap between the two results signals in fact that initial data which are merely sandwiched
between two waves - and which do not select an asymptotic wave at −∞ have a wilder
behavior. Here is what we can prove.
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Theorem 1.1 Let u0(x) be a Cauchy datum for (1.2). Assume the existence of c > c∗ and
M > 0 such that φc(x−M) ≤ u0(x) ≤ φc(x+M). Denote r−(c) the smallest characteristic
exponents at −∞ of (1.3), i.e

r−(c) =
c−

√
c2 − 4f ′(0)

2
.

Then there is some initial condition m0 (given explicitly in the proof), bounded between −M
and M , and such that, considering the solution s(t, ξ) of

st − sξξ +
√
c2 − c2∗sξ = 0, (t > 0, ξ ∈ R), s(0, ξ) = er−(c)m0(ξ) (1.4)

and setting

mapp(t, ξ) =
1

r−(c)
ln s(t, ξ) =

1

r−(c)
ln

(
1√
4πt

∫

R

e(ξ−
√
c2−c2

∗
t−y)/4t er−(c)m0(y) dy

)
,

we have, as t→ +∞,

sup
x∈R

|u(t, x) − φc(x+ ct+mapp(t, x+ ct))| = O(
1√
t
).

Remark 1.2 • The “initial shift” m0 is explicit: m0(x) = φ−1
c (u0(x))−x if this is a C1

bounded and uniformly continuous function, or m0(x) = φ−1
c (u(1, x)) − x in any case.

• Up to our knowledge, this result is new, although the arguments used in [7] are very
close to proving our theorem.

• In subsection 2.6, we give examples and applications of Theorem 1.1, that allow us to
extend in several directions Theorem 0.1:

– the case where the initial shift m0 is periodic, hence when the initial condition
“oscillates” between two translates of the travelling wave;

– the case where the initial shift m0 converges to some constant at −∞: then we
prove the convergence of the solution u to a travelling wave, with a precise con-
vergence rate;

– a case where the solution does not converge to any travelling wave. Indeed, it is
known - see [8], [31] - that very simple equations like (1.4) can exhibit complex
behaviours; in particular, the ω-limit set (in the sense of uniform convergence
on every compact set) - can be a whole interval. A related phenomenon for two-
dimensional bistable equations was noticed in [26], the mechanism is somehow
different. See [24] for related results in nonlinear supercritical heat equations.

1.2 The general model (1.1)

Coming back to the general model (1.1), what we have is of course less precise. We assume
that A, B and f satisfy the following additional assumptions:

• A is symmetric, uniformly positive, 1-periodic with respect to x, and C3(R × T
N−1),

• B is 1-periodic with respect to x, C1+δ(R × T
N−1), and moreover div B = 0 and∫

(0,1)×TN−1 B1 = 0 (where B1 is the first component of B),
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• f is 1-periodic with respect to x.

Let us first state, under the form of a theorem, the basic result that we shall need:
Theorem 0.3 (Berestycki-Hamel [3], Hamel-Roques [14]) There is c∗ such that (1.1) has
no pulsating wave solution if c < c∗, and a unique - up to translation in t - pulsating wave
solution if c ≥ c∗. Moreover, for a pulsating wave φc we have ∂tφc > 0.
Existence and monotonicity come from [3], uniqueness comes from [12] and [14]. The theorem
corresponding to Theorem 1.1 is:

Theorem 1.3 Let u0(x, y) be a Cauchy datum for (1.1). Assume the existence of c > c∗
and M > 0 such that φc(−M,x, y) ≤ u0(x, y) ≤ φc(M,x, y). Then there exists a smooth
function m(t, x, y), solution a nonlinear parabolic equation with periodic coefficients, such
that lim

t→+∞
‖(mt, Dm,D

2m)(t, ., .)‖∞ = 0, and such that

sup
(x,y)∈R×TN−1

|u(t, x, y) − φc(t+m(t, x, y), x, y)| → 0 as t→ +∞.

As we will see, the shift m(t, x, y) will satisfy - up to a Hopf-Cole transform - a linear diffusion
equation (with periodic coefficients). In order to have more insight into its dynamics, we
will interpret it in the light of general heat kernel estimates for operators with periodic
coefficients, that were proved by Norris [22] at this level of generality. We will see that the
underlying processes at work are

1. an effective drift V∗(c) which can be computed explicitely (and which is, fortunately,
consistent with the 1D expression

√
c2 − c2∗ !),

2. an effective diffusion process around the drift.

Apart from Theorem 1.3, the only multi-dimensional stability results are those of [18] - there
we have A = I and B(x, y) = (α(y), 0) - and [14] - general A and B, which prove the
asymptotic stability of all the waves under fastly decaying perturbations.

1.3 More precise results concerning the general model (1.1) in one
space dimension

We are able to push Theorem 1.3 further for the 1D version of Problem (1.1). It reads - for
simplicity, the matrix A(x) has been set to identity, but our result would undoubtedly hold
without this assumption:

{
ut − uxx = f(x, u), (x ∈ R)

lim
x→−∞

u(t, x) = 0, lim
x→+∞

u(t, x) = 1.
(1.5)

Of course the pulsating wave solutions of (1.1) specialize to (1.5); Theorem 0.3 applies and
we denote by c∗ the minimal speed. The additional information of this section is an optimal
convergence rate of a solution to (1.5), initially trapped between two waves, to the shifted
wave.

Theorem 1.4 Let u0(x, y) be a Cauchy datum for (1.5). Assume the existence of c > c∗ and
M > 0 such that φc(−M,x, y) ≤ u0(x, y) ≤ φc(M,x, y). Then the smooth function m(t, x, y)
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solution of the nonlinear parabolic equation with periodic coefficients studied in Theorem 1.3

satisfies lim
t→+∞

‖(mt,mx,mxx)(t, .)‖∞ = O(
1√
t
), and

sup
x∈R

|u(t, x) − φc(t+m(t, x), x)| = O(
1√
t
) as t→ +∞.

The proof of this result - announced in [2] - is long and nontrivial; the best part of it consists
in retrieving the precise expression of the heat kernel. But it is worth the effort, because it
really gives an insight into the heat kernel, and a precise description of the mechanisms at
work. It is therefore of independent interest. Needless to say, the effective drift is present
here, and V∗(c) =

√
c2 − c2∗ when f(x, u) does not depend on x.

1.4 Additional comments and open questions

We hope that the ideas developped here will not only provide a better understanding of
the dynamics of super-critical KPP waves, but will also help to understand how the critical
wave is attained from fastly decaying initial data. In a forthcoming work [20] we will see
how this works for the 1D homegeneous model - already proved by Bramson [7] but where
a deterministic proof is still unknown - and on the multi-D model with special cases of
advection. The general case is an important issue that goes far beyond scalar reaction-
diffusion equations, see [10].

There are several questions close to this work whose answers would be very interesting:

• Concerning the general model: we could not provide a decay rate estimate about the
derivatives of approximate shift, but just the fact that lim

t→+∞
‖(mt, Dm,D

2m)(t)‖∞ = 0,

using a contradiction argument. Any decay rate estimate would immediately provide
also a decay rate of the uniform convergence as t → +∞ of the shifted wave φc(t +
m(t, x, y), x, y)) to the solution u of the Cauchy problem.

• Hence the problem of the convergence rate remains open in the general N -dimensional
case. However, in a forthcoming work [20], we will study the case A = I, B(x, y) =
(α(y), 0) - thermo-diffusive model for flame propagation - where the techniques are
related to the ones used in this paper. We point out that, except in the case of self-
adjoint operators - where the heat kernel is known with a lot of precision, see [23] -
these are the only cases where we can go that far.

• We concentrated our study in the case where the initial condition of the Cauchy prob-
lem is trapped between two translates of the same pulsating wave. It would be very
interesting to investigate the behavior of the solutions under weakened assumptions on
the initial condition. An important first step is taken in Hamel-Nadirashvili [13], where
it is proved that (almost) every time-global solution of theN -dimensional homogeneous
model

ut − ∆u = u(1 − u), t > 0, x ∈ R
N , 0 < u < 1

is a (possibly uncountably infinite) convex combination of one-dimesional waves. See
also the later reference [32].

• The case of initial conditions trapped between two critical waves (c = c∗) is not treated
here. This will be studied in the forthcoming paper [19].
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1.5 Plan of the paper

The plan of the paper is the following. In Section 2 we prove Theorem 1.1; the argument,
although quite simple, will be explained at length because its main lines will always be the
same in the more complicated subsequent cases. We will also apply our method and result
on several natural examples. In Section 3 we prove the general theorem 1.3 for model (1.1).
This will allow us to prove a Liouville theorem very close in spirit to an ellipic result proved
by Rossi in his thesis [27]. We will also provide the interpretation of the nonlinear diffusion
equation for m in terms of the general heat kernel estimates. Finally, in Section 4 we deal
with the general 1D model (1.5). At this stage the reader will be supposed to know the
argument, and only the nonlinear diffusion equation for m will be treated. As said above
the argument is rather long, it will be broken into two parts with the hope that it will be
more amenable to the interested reader. Finally, an appendix describes some elementary but
useful - and not so easy - estimates on Gaussian type integrals.

Acknowledgements. The authors are indebted to Profs. T. Gallay and F. Hamel for
valuable comments on this work. A remark made by Prof. T. Gallay during the PhD thesis
defense of the first author, pointing out that the important issue was to really understand the
attraction dynamics of the family of waves, was influential in the preparation and orientation
of this work. They are also grateful to Prof. F. Hamel for making his work [14] accessible
to them. At last, the second author thanks Prof. P. Cannarsa and the University Roma Tor
Vergata, for an invitation that was helpful to complete this work.

2 The basic 1D model: proof of Theorem 1.1

This part is devoted to the proof of Theorem 1.1 and, although most of the tools displayed
here are quite standard, the chain of arguments is not.

2.1 The travelling wave of speed c

We consider the classical change of variables (t, x) 7→ (t, ξ = x + ct). Now if u(t, x) is a
solution of the Cauchy Problem for (1.2), the function ũ defined by

ũ(t, ξ) := u(t, ξ − ct)

satisfies u(t, x) = ũ(t, x+ ct), and thus is solution of the Cauchy problem
{
ũt + cũξ − ũξξ = f(ũ), t > 0, ξ ∈ R,

ũ(0, ξ) = u(0, ξ) = u0(ξ).
(2.1)

Then consider the differential operator

NLc[Ũ ] = Ũt + cŨξ − Ũξξ − f(Ũ).

(Hence ũ is solution of the differential equation of (2.1) if and only if NLc[ũ] = 0.) In the
whole section we assume that c > c∗ = 2

√
f ′(0). Let r±(c) be the characteristic exponents

at −∞ of (1.3), i.e

r±(c) =
c±

√
c2 − 4f ′(0)

2
.

We recall that, for a given wave φc, there is q > 0 and δ > 0 such that, as ξ → −∞,

φc(ξ) = qer−(c)ξ +O(e(r−(c)+δ)ξ), φ′
c(ξ) = qr−(c)er−(c)ξ +O(e(r−(c)+δ)ξ),

φ′′
c (ξ)) = qr2

−(c)er−(c)ξ +O(e(r−(c)+δ)ξ).
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2.2 Exact local shift

Given a sufficiently smooth function m : (0,+∞) × R → R, consider

T (m)φc(t, ξ) := φc(ξ +m(t, ξ)).

Of course when m is identically zero, we have T (0)φc(t, ξ) := φc(ξ), and T (0)φc satisfies
NLc[T

(0)φc] = 0. More generally, we would like to know what conditions on m imply that
T (m)φc is solution of (2.1). We have

NLc[T
(m)φc] = (mt −mξξ − c(mξ +m2

ξ))φ
′
c(ξ +m(t, ξ)) + (2mξ +m2

ξ)f(φc(ξ +m(t, ξ))).

Since φc is strictly increasing, we could define the shift m as m∗(t, ξ) := φ−1
c (ũ(t, ξ)) − ξ,

that satisfies the following nonlinear parabolic equation
{

(m∗
t −m∗

ξξ − c(m∗
ξ +m∗

ξ
2))φ′

c(ξ +m∗(t, ξ)) + (2m∗
ξ +m∗

ξ
2)f(φc(ξ +m∗(t, ξ))) = 0,

m∗(0, ξ) = φ−1
c (u0(ξ)) − ξ =: m∗

0(ξ).

To study the properties of the solution of this problem seems impossible, hence our strategy
will be to find a parabolic problem that will be: as close as possible of the previous one, but
simpler. This will permit us to study the properties of its solution m; of course in this case
the functions ũ and T (m)φc will have no reason to coincide. Then consider the difference
ũ− T (m)φc, and estimate its asymptotic behavior as t → +∞. What came as a surprise to
us is that this very simple and natural strategy actually enables us to say something about
very general models.

Even if we cannot say many things on the exact shift m∗(t, ξ) = φ−1
c (ũ(t, ξ))− ξ, we can

see that it has the following property: for all t > 0, m∗(t, ·) is of class C1(R) and is bounded
in the natural C1-norm: indeed,

- first, it is clear that m∗ is bounded, and more precisely, m∗(t, ξ) ∈ [−M,M ]; this follows
from the assumption that u0(ξ) ∈ [φc(ξ−M), φc(ξ+M)], using the weak maximum principle;

- next, from parabolic regularity, m∗(t, ·) is of class C1(R);
- at last,

m∗
ξ(t, ξ) =

ũξ(t, ξ)

φ′
c(ξ +m∗(t, ξ))

− 1 =
ũξ(t, ξ)

φ′
c(ξ)

φ′
c(ξ)

φ′
c(ξ +m∗(t, ξ))

− 1,

hence m∗
ξ(t, ·) is bounded if and only if

ũξ

φ′c
is bounded; and it follows from local parabolic

estimates that this is true, once again using the fact that the weak maximum principle
implies that φc(ξ −M) ≤ ũ(t, ξ) ≤ φc(ξ +M) for all t > 0 and all ξ ∈ R.
Hence, in particular, m∗(1, ·) is of class C1(R) and is bounded in the natural C1-norm. We
will use this remark in the following.

2.3 Approximate shift

If m is bounded, remark that the coefficients φ′
c(ξ+m(t, ξ)) and f(φc(ξ+m(t, ξ)) appearing

in NLc[T
(m)φc] decay like er−(c)ξ as ξ → −∞. Now let us ask if we can choose m so that

we get a better decay for NLc[T
(m)φc], a property that would help us a lot in estimating the

difference between ũ and the associated shifted wave, as will be clearer later (see subsection
2.5). For this purpose, we linearize the equation at −∞, studying the behavior of the
coefficients φ′

c(ξ +m(t, ξ)) and f(φc(ξ +m(t, ξ)) as ξ → −∞. Obviously we have

f(φc(ξ)) = f ′(0)φc(ξ) + (f(φc(ξ)) − f ′(0)φc(ξ)) =
f ′(0)

r−(c)
φ′
c(ξ) + (f(φc(ξ)) −

f ′(0)

r−(c)
φ′
c(ξ));
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denote

g(t, ξ) := f(φc(ξ +m(t, ξ))) − f ′(0)

r−(c)
φ′
c(ξ +m(t, ξ)); (2.2)

then we have

NLc[T
(m)φc] = (mt −mξξ − c(mξ +m2

ξ))φ
′
c(ξ +m(t, ξ))

+ (2mξ +m2
ξ)(

f ′(0)

r−(c)
φ′
c(ξ +m(t, ξ)) + (2mξ +m2

ξ)g(t, ξ).

Since

−c+ 2
f ′(0)

r−(c)
=
√
c2 − c2∗ and − c+

f ′(0)

r−(c)
= −r−(c),

we obtain

NLc[T
(m)φc] = (mt−mξξ+

√
c2 − c2∗mξ−r−(c)m2

ξ)φ
′
c(ξ+m(t, ξ))+(2mξ+m2

ξ)g(t, ξ). (2.3)

When ξ → −∞, we have f(φc(ξ))− f ′(0)
r−(c)

φ′
c(ξ) = O(e(r−(c)+δ)ξ) with some δ > 0; hence g has

the same property if m is bounded. This makes natural the choice of m: take it to solve

mt −mξξ +
√
c2 − c2∗mξ − r−(c)m2

ξ = 0,

with a suitable initial condition:

• if m∗
0(ξ) = φ−1

c (u0(ξ)) − ξ is of class C1(R) and bounded in norm C1, then we choose
m as the solution of

{
mt −mξξ +

√
c2 − c2∗mξ − r−(c)m2

ξ = 0, t > 0, ξ ∈ R,

m(0, ξ) = m∗
0(ξ), ξ ∈ R;

(2.4)

• in the general case, as we noted that m∗(1, ·) is of class C1(R) and bounded in norm
C1, then we can choose m as the solution of

{
mt −mξξ +

√
c2 − c2∗mξ − r−(c)m2

ξ = 0, t > 1, ξ ∈ R,

m(1, ξ) = m∗(1, ξ), ξ ∈ R;
(2.5)

In the following we assume that we are in the first case, that is that m is solution of (2.4).
The study of the second case is the same, the only difference being that t ∈ (1,+∞) instead
of (0,+∞).

2.4 The properties of the approximate shift

There is an easy expression for m: its Hopf-Cole transform s(t, ξ) = er−(c)m(t,ξ) solves

{
st − sξξ +

√
c2 − c2∗sξ = 0, t > 0, ξ ∈ R,

s(0, ξ) = er−(c)m∗

0(ξ) =: s0(ξ), ξ ∈ R,

and thus the function S defined by

S(t, ξ) := s(t, ξ +
√
c2 − c2∗t)
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is solution of the heat equation

{
St − Sξξ = 0, t > 0, ξ ∈ R,

S(0, ξ) = s0(ξ), ξ ∈ R.

Hence, if G(t, ξ) is the heat kernel
1√
4πt

e−
ξ2

4t , then

S(t, ξ) =

∫

R

G(t, ξ − y)s0(y) dy, (2.6)

s(t, ξ) = S(t, ξ −
√
c2 − c2∗t) =

∫

R

G(t, ξ −
√
c2 − c2∗t− y)s0(y) dy, (2.7)

and finally

m(t, ξ) =
1

r−(c)
ln s(t, ξ) =

1

r−(c)
ln

(∫

R

G(t, ξ −
√
c2 − c2∗t− y)er−(c)m∗

0(y) dy

)
. (2.8)

This is exactly the expression in Theorem 1.1, choosing mapp = m. We deduce the following
properties, useful in the following:

- first, m is bounded, and more precisely, m(t, ξ) ∈ [−M,M ] for all t ≥ 0 and all ξ ∈ R:
indeed, this is true at t = 0, and remains true thanks to the weak maximum principle or
directly from the formula (2.8);

- its spatial derivative satisfy: for all t > 0, ‖mξ(t, .)‖∞ = O( 1
1+

√
t
); indeed,

mξ(t, ξ) =
1

r−(c)

Sξ(t, ξ −
√
c2 − c2∗t)

S(t, ξ −
√
c2 − c2∗t)

,

and, for all t > 0 and ξ ∈ R, we have

|Sξ(t, ξ)| ≤ C‖s′0‖∞ and |Sξ(t, ξ)| ≤ C
1√
t
‖s0‖∞,

hence we obtain what we claimed;
- note that, in the same way, ‖mt(t, .)‖∞ = O( 1√

t
) and ‖mξξ(t, .)‖∞ = O(1

t
) for all t > 0.

Now we denote ũapp the associated shifted wave:

ũapp(t, ξ) := T (m)φc = φc(ξ +m(t, ξ)). (2.9)

It remains to prove that we have grabbed the correct shift, that is that ‖ũ(t, .)−ũapp(t, .)‖∞ =
O( 1√

t
) as t→ +∞, and Theorem 1.1 will be proved.

2.5 The difference between the solution and the shifted wave

2.5.1 Solutions decaying sufficiently fast in space will decay exponentially in
time

The following (quite standard) lemma will be useful to estimate the difference between the
solution and the shifted wave.
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Lemma 2.1 Let v(t, ξ) solve

vt − vξξ + cvξ − f ′(0)v = 0 (t > 0, ξ ∈ R), v(0, ξ) = v0(ξ)

with v0 bounded, uniformly continuous on R. Assume additionally the existence of δ ∈
(0, r+(c) − r−(c)) such that

v0(ξ) = O(e(r−(c)+δ)ξ) as ξ → −∞.

Then there is ω(δ) > 0 such that

|v(t, ξ)| ≤ e(r−(c)+δ)ξ e−ω(δ)t sup
z∈R

|e−(r−(c)+δ)zv0(z)|.

Proof of Lemma 2.1. Fix d > 0 and consider V (t, ξ) = v(t, ξ)e−dξ. Then V solves

{
Vt + (c− 2d)Vξ − Vξξ + (cd− d2 − f ′(0))V = 0, t > 0, ξ ∈ R,

V (0, ξ) = v0(ξ)e
−dξ.

Now we note that cd − d2 − f ′(0) > 0 if d ∈ (r−(c), r+(c)), and V (0, .) is bounded if
r−(c) + δ− d ≥ 0. Hence we choose d ∈ (r−(c), r−(c) + δ]: then cd− d2 − f ′(0) > 0, and the
weak maximum principle implies that

|V (t, ξ)| ≤ ‖V (0, .)‖∞e−(cd−d2−f ′(0))t,

which implies that
|v(t, ξ)| ≤ (sup

z∈R

|v0(z)e
−dz|)edξe−(cd−d2−f ′(0))t,

which is Lemma 2.1 choosing d = r−(c) + δ and ω(δ) = cd− d2 − f ′(0). �

2.5.2 Application: proof of Theorem 1.1

With this in hand, we may complete the proof of Theorem 1.1, proving that ‖ũ(t, .) −
ũapp(t, .)‖∞ = O( 1√

t
) as t→ +∞.

First, note that (2.3) and the choice of the shift m imply that

NLc[ũ
app] = (2mξ +m2

ξ)g(t, ξ).

Denote

a(t, ξ) := −f(ũ(t, ξ)) − f(ũapp(t, ξ))

ũ(t, ξ) − ũapp(t, ξ)
.

Since f is concave, we have
−f ′(0) ≤ a(t, ξ) ≤ −f ′(1). (2.10)

Of course, the interest in introducing this function a comes from the following fact:

NLc[ũ] −NLc[ũ
app] = (ũt + cũξ − ũξξ − f(ũ)) − (ũappt + cũappξ − ũappξξ − f(ũapp))

= (ũ− ũapp)t + c(ũ− ũapp)ξ − (ũ− ũapp)ξξ − (f(ũ) − f(ũapp))

= (ũ− ũapp)t + c(ũ− ũapp)ξ − (ũ− ũapp)ξξ + a(t, ξ)(ũ− ũapp).

Hence

(ũ− ũapp)t + c(ũ− ũapp)ξ − (ũ− ũapp)ξξ + a(t, ξ)(ũ− ũapp) = −NLc[ũapp]. (2.11)
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Let us denote by g1(t, ξ) the right-hand side, and w̃ the solution of the Cauchy problem
{
w̃t + cw̃ξ − w̃ξξ − f ′(0)w̃ = |g1(t, ξ)|,
w̃(0, ξ) = |ũ− ũapp|(0, ξ) = |u0(ξ) − φc(ξ +m∗

0(ξ))| = 0.
(2.12)

We are going to prove the following facts:

• Claim 2.2 : for all t > 0 and all ξ ∈ R, we have |ũ− ũapp|(t, ξ) ≤ w̃(t, ξ);

• Claim 2.3 : for all ξ0 ∈ R, sup
ξ≤ξ0

w̃(t, ξ) = O(
1

1 +
√
t
);

• Claim 2.4 : there exists ξ0 ∈ R such that sup
ξ≥ξ0

|ũ− ũapp|(t, ξ) = O(
1

1 +
√
t
).

It is clear that Claims 2.2-2.4 imply Theorem 1.1: by Claims 2.2 and 2.3,

sup
ξ≤ξ0

|ũ− ũapp|(t, ξ) ≤ sup
ξ≤ξ0

w̃(t, ξ) = O(
1

1 +
√
t
),

and adding Claim 2.4, we obtain that

sup
ξ∈R

|ũ− ũapp|(t, ξ) = O(
1

1 +
√
t
).

Hence it remains to prove these claims.
Claim 2.2 is a consequence of the weak maximum principle. Indeed, first w̃ is nonnegative;

next, ũ− ũapp − w̃ satisfies

(ũ− ũapp − w̃)t + c(ũ− ũapp − w̃)ξ − (ũ− ũapp − w̃)ξξ

+ a(ũ− ũapp − w̃) = G− |G| − (a+ f ′(0))w̃ ≤ 0,

and
(ũ− ũapp − w̃)(0, ξ) = 0,

hence ũ− ũapp − w̃ ≤ 0. In the same way, ũ− ũapp + w̃ ≥ 0, hence Claim 2.2 is proved.
Claim 2.3 is a consequence of Lemma 2.1: by Duhamel’s formula:

w̃(t, ξ) =

∫ t

0

e−(t−s)(−∂ξξ+c∂ξ−f ′(0))|g1(s, .)| ds;

since

g1(t, ξ) = −NLc[ũapp] = −(2mξ +m2
ξ)g(t, ξ)

= −(2mξ +m2
ξ)
(
f(φc(ξ +m(t, ξ))) − f ′(0)

r−(c)
φ′
c(ξ +m(t, ξ))

)
,

there is some δ ∈ (0, r+(c) − r−(c)) and C0 > 0 such that, for > 0 and ξ ∈ R there holds

|g1(t, ξ)| ≤
C0

1 +
√
t

1

1 + e−(r−(c)+δ)ξ
;

then Lemma 2.1 implies that

e−(t−s)(−∂ξξ+c∂ξ−f ′(0))|g1(s, .)|(ξ) ≤ e(r−(c)+δ)ξe−ω(δ)(t−s) C0

1 +
√
s
.
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Then

|w̃(t, ξ)| ≤ C0 e
(r−(c)+δ)ξ

∫ t

0

e−ω(δ)(t−s) ds

1 +
√
s
.

Since ∫ t

0

eω(δ)s

1 +
√
s
ds ∼t→+∞

1

ω(δ)

eω(δ)t

1 +
√
t
,

we obtain the following expression, valid for all (t, ξ)inR+ × R:

|w̃(t, ξ)| ≤ C1

1 +
√
t
e(r−(c)+δ)ξ,

hence Claim 2.3 is proved.
Claim 2.4 is a consequence of Claim 2.3, using the following classical argument: first,

there is some q0 > 0 and η > 0 such that −f ′(y) ≥ q0 for all y ∈ (1 − η, 1); choose ξ0 such
that φc(ξ0 −M) > 1− η; next, because u0 is trapped between two waves of the same speed,
this order is preserved for all time; hence ũ(t, ξ) ≥ φc(ξ −M) for all t > 0 and all ξ ∈ R;
at last, since we already know that the shift m is bounded between −M and M , the mean
value theorem implies that a(t, ξ) ≥ q0 for all t ≥ 0 and ξ ≥ ξ0. And thus the difference
ũ− ũapp satisfies





(ũ− ũapp)t + c(ũ− ũapp)ξ − (ũ− ũapp)ξξ + a(t, ξ)(ũ− ũapp) = O( 1
1+

√
t
), t > 0, ξ ≥ ξ0,

(ũ− ũapp)(t, ξ0) = O( 1
1+

√
t
), t > 0,

(ũ− ũapp)(0, ξ) = 0, ξ ≥ ξ0.

C√
1+εt

is a super-solution if C and ε are well chosen (C sufficiently large, ε sufficiently small),
hence the weak maximum principle implies Claim 2.4, and the proof of Theorem 1.1 is
complete. �

2.6 Examples and comparison with the literature

The goal of this subsection is to study some typical examples. We are going to look to

• the case where m0 is periodic, which is not covered by the existing literature; we will
prove that the associated solution u of (1.2) converges to a translate of the travelling
wave, but not the one that could be expected, see subsection 2.6.1 and Proposition
2.5;

• a case where m0 oscillates between two values: we will see that m0 can be chosen
so that the associated solution u of (1.2) does not converge to any translate of the
travelling wave, see subsection 2.6.2 and Proposition 2.7;

• the typical case where m0 converges to some constant m0(−∞) as x → −∞: in this
case, Theorem 0.1 applies when additionally the convergence is exponentially fast.
We will prove that the associated solution u of (1.2) converges to a translate of the
travelling wave, and more precisely the one that is expected: φc(x + ct + m0(−∞)),
with a precise rate of convergence, roughly speaking the rate of convergence of m0 to
its limit m0(−∞), see subsections 2.6.3 and 2.6.4.

Everything is based on the fact that we have an explicit formula for the approximate shift
m(t, ξ), obtained in (2.8).
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2.6.1 The case where the initial shift m0 is periodic

Assume that the initial shift is T -periodic, and denote by < m0 > its mean value:

< m0 >=
1

T

∫ T

0

m0.

Proposition 2.5 The solution u of (1.2) converges to the following translate of the travel-
ling wave:

sup
x∈R

|u(t, x) − φc(x+ ct+ µ0)| = O(
1√
t
), where µ0 =

1

r−(c)
ln < er−(c)m0 > . (2.13)

Remark 2.6 One could have expected the convergence of the solution u of (1.2) to the
the travelling wave φc(x + ct+ < m0 >). However this is not the case, since in general
µ0 6=< m0 >.

Proof of Proposition 2.5. Since the function S0− < S0 > is periodic and has mean value
zero, the function

S1(ξ) :=

∫ ξ

0

(S0(y)− < S0 >) dy

is bounded. Then, thanks to an integration by parts,

S(t, ξ) =
1√
4πt

∫

R

e−(ξ−y)2/4tS0(y) dy

=< S0 > +
1√
4πt

∫

R

e−(ξ−y)2/4t(S0(y)− < S0 >) dy

=< S0 > +
1√
4πt

∫

R

e−(ξ−y)2/4tS ′
1(y) dy

=< S0 > − 1√
4πt

∫

R

ξ − y

2t
e−(ξ−y)2/4tS1(y) dy

=< S0 > +
1√
πt

∫

R

σe−σ
2

S1(ξ + 2σ
√
t) dσ.

We obtain that

|S(t, ξ)− < S0 > | ≤ 1√
πt

‖S1‖∞.

This directly implies from

m(t, ξ) =
1

r−(c)
lnS(t, ξ −

√
c2 − c2∗t)

that

sup
ξ∈R

|m(t, ξ) − 1

r−(c)
ln < S0 > | = O(

1√
t
),

and then

ũapp(t, ξ) − φc(ξ + µ0) = φc(ξ +m(t, ξ)) − φc(ξ + µ0) = O(m(t, ξ) − µ0),

which implies that

sup
ξ∈R

|ũapp(t, ξ) − φc(ξ + µ0)| = O(
1√
t
),

and Theorem 1.1 implies (2.13). �

13
May 16 2010 5:49:18 EDT
Vers. 1 - Sub. to TRAN



2.6.2 An example where there is no convergence to some translate of the trav-
elling wave

We may deduce the following proposition from [31], but its proof is elementary enough to
be displayed here. Moreover - see the conclusion of Section 3 below - it goes through the
multi-D inhomogeneous case - not treated in [31].

Proposition 2.7 Assume that the initial shift m0 is such that S0 = er−(c)m0 oscillates slowly
at −∞:

∀ε > 0,∃A > 0,∃η > 0,∀z, z′ ≤ −A and 1 − η ≤ z

z′
≤ 1 + η =⇒ |S0(z) − S0(z

′)|ε.

Then the Hopf-Cole transform of the approximate shift m satisfies the following:

s(t, 0) = S0(−
√
c2 − c2∗t) + o(1). (2.14)

As a consequence, if S0 slowly oscillates but does not have a limit at −∞, then neither
s(t, 0) nor the approximate shift m(t, 0) converge to a constant; and the solution u does not
converge to a translate of the travelling wave.

Remark 2.8 For example, the function

S0(x) = cos ln(1 + x2)

oscillates slowly and does not have a limit at −∞.

Proof of Proposition 2.7.
We recall that

m(t, ξ) =
1

r−(c)
ln s(t, ξ) =

1

r−(c)
lnS(t, ξ −

√
c2 − c2∗t),

and we fix ξ = 0. We have

S(t,−
√
c2 − c2∗t) =

1√
4πt

∫
e−(−

√
c2−c2

∗
t−y)2/4tS0(y) dy

=
1√
4π

∫
e−(

√
c2−c2

∗

√
t+z)2/4S0(z

√
t) dz

=
1√
4π

∫ −(1−η)
√
c2−c2

∗

√
t

−(1+η)
√
c2−c2

∗

√
t

e−(
√
c2−c2

∗

√
t+z)2/4S0(z

√
t) dz

+
1√
4π

∫

|z+
√
c2−c2

∗

√
t|≥η

√
c2−c2

∗

√
t

e−(
√
c2−c2

∗

√
t+z)2/4S0(z

√
t) dz. (2.15)

The second integral goes exponentially fast to 0, since

| 1√
4π

∫

|z+
√
c2−c2

∗

√
t|≥η

√
c2−c2

∗

√
t

e−(
√
c2−c2

∗

√
t+z)2/4S0(z

√
t) dz|

≤ 2‖S0‖∞
∫ +∞

η
√
c2−c2

∗

√
t

e−x
2/4 dx = ‖S0‖∞

∫

η2(c2−c2
∗
)t

e−s/4
ds√
s

= ‖S0‖∞O(e−η
2(c2−c2

∗
)t/4). (2.16)
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Concerning the first integral, we use the fact that S0 oscillates slowly:

1√
4π

∫ −(1−η)
√
c2−c2

∗

√
t

−(1+η)
√
c2−c2

∗

√
t

e−(
√
c2−c2

∗

√
t+z)2/4S0(z

√
t) dz

=
1√
4π

∫ −(1−η)
√
c2−c2

∗

√
t

−(1+η)
√
c2−c2

∗

√
t

e−(
√
c2−c2

∗

√
t+z)2/4(S0(z

√
t) − S0(−

√
c2 − c2∗t)) dz

+
1√
4π

∫ −(1−η)
√
c2−c2

∗

√
t

−(1+η)
√
c2−c2

∗

√
t

e−(
√
c2−c2

∗

√
t+z)2/4S0(−

√
c2 − c2∗t) dz;

since for z ∈ (−(1 + η)
√
c2 − c2∗

√
t,−(1 − η)

√
c2 − c2∗

√
t), we have

1 − η ≤ z
√
t

−
√
c2 − c2∗t

≤ 1 + η,

we obtain that
|S0(z

√
t) − S0(−

√
c2 − c2∗t)| ≤ ε,

hence

| 1√
4π

∫ −(1−η)
√
c2−c2

∗

√
t

−(1+η)
√
c2−c2

∗

√
t

e−(
√
c2−c2

∗

√
t+z)2/4(S0(z

√
t) − S0(−

√
c2 − c2∗t)) dz|

≤ ε
1√
4π

∫

R

e−x
2/4 dx; (2.17)

finally

1√
4π

∫ −(1−η)
√
c2−c2

∗

√
t

−(1+η)
√
c2−c2

∗

√
t

e−(
√
c2−c2

∗

√
t+z)2/4S0(−

√
c2 − c2∗t) dz

= S0(−
√
c2 − c2∗t)

1√
4π

∫ −(1−η)
√
c2−c2

∗

√
t

−(1+η)
√
c2−c2

∗

√
t

e−(
√
c2−c2

∗

√
t+z)2/4 dz

= S0(−
√
c2 − c2∗t)

1√
4π

∫ η
√
c2−c2

∗

√
t

−η
√
c2−c2

∗

√
t

e−x
2/4 dx

= S0(−
√
c2 − c2∗t)

1√
4π

(∫

R

e−x
2/4 dx− 2

∫ +∞

η
√
c2−c2

∗

√
t

e−x
2/4 dx

)

= S0(−
√
c2 − c2∗t) +O(‖S0‖∞e−η

2(c2−c2
∗
)t/4). (2.18)

Hence it follows from (2.15)-(2.18) that

S(t,−
√
c2 − c2∗t) = S0(−

√
c2 − c2∗t) + o(1), (2.19)

which proves (2.14). Hence S(t,−
√
c2 − c2∗t) oscillates between lim infx→−∞ S0 and

lim supx→−∞ S0. The same oscillation property holds for m(t, 0) = 1
r−(c)

lnS(t,−
√
c2 − c2∗t).

Since the solution u converges uniformly to the approximate solution, it cannot converge to
any translate of the travelling wave. �
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2.6.3 The typical case where the initial shift converges to some limit at −∞
Now we assume that the initial shift m0 has some limit m0(−∞) at −∞. We are going to
prove the convergence of the solution u of (1.2) to the the travelling wave φc(x+ct+m0(−∞)).
Thanks to Theorem 1.1, we have only to study the difference between the approximate
solution uapp(t, x) and φc(x+ ct+m0(−∞)). Consider

m̄0(x) := sup
y≤x

|m0(y) −m0(−∞)|.

The function m̄0 is nondecreasing and m̄0(x) → 0 as x→ −∞. Then we are going to prove
the following

Lemma 2.9 There is some β > 0 and C > 0 such that

sup
x∈R

|uapp(t, x) − φc(x+ ct+m0(−∞))| ≤ Cm̄0(−
√
c2 − c2∗

4
t) + C‖m̄0‖∞e−β

√
c2−c2

∗
t. (2.20)

Moreover, this estimate is optimal in the following sense: assume, additionnally, that m0 is
increasing in a neighborhood of −∞; then

sup
x∈R

|uapp(t, x) − φc(x+ ct+m0(−∞))| ≥ C(m0(−
√
c2 − c2∗t) −m0(−∞)). (2.21)

Remark 2.10 Lemma 2.9 gives an upper bound and a lower bound of the difference be-
tween the approximate solution uapp and the travelling wave φc(· + m0(−∞)): if m0 goes
exponentially fast (or faster) to m0(−∞), the difference uapp(t, x) − φc(x + ct + m0(−∞)
goes exponentially fast in time to 0. If m0 goes algebraically fast to m0(−∞) (as 1/|x|γ, with
some γ > 0), the same occurs for the difference uapp(t, x)−φc(x+ ct+m0(−∞), at the same
order, and not faster. Coupled with Theorem 1.1, we obtain a first result of convergence
of the solution u of the Cauchy problem (1.2) to the travelling wave φc(x + ct + m0(−∞),
with a rate of convergence that depends on the rate of convergence of m0 to its limit. This
extends Theorem 0.1, since the initial condition does not have to go exponentially fast to the
travelling wave at −∞. We will give a sharp convergence result in the following subsection,
in particular to obtain exponential convergence when m0 goes exponentially fast to its limit.

Proof of Lemma 2.9. First we note that for all t > 0, m(t, ξ) → m0(−∞) as t → +∞:
indeed, using the formula

s(t, ξ) = S(t, ξ −
√
c2 − c2∗t) =

1√
π

∫

R

e−σ
2

S0(ξ + 2σ
√
t−
√
c2 − c2∗t) dσ,

we obtain that s(t, ξ) → et−(c)m0(−∞) as t→ +∞ (using the Lebesgue convergence theorem),
and then m(t, ξ) → m0(−∞) as t→ +∞. (However the convergence is non uniform in ξ.)

Now we are interested into the difference ũapp(t, ξ)−φc(ξ+m0(−∞)). Since by the stable
manifold theorem we know that φ′

c goes exponentially fast to 0 at ±∞, there exists some
α > 0 such that

|ũapp(t, ξ) − φc(ξ +m0(−∞))| = |φc(ξ +m(t, ξ)) − φc(ξ +m0(−∞))|
≤ Ce−α|ξ||m(t, ξ) −m0(−∞)|.

Of course

m(t, ξ)−m0(−∞) =
1

r−(c)
lnS(t, ξ−

√
c2 − c2∗t)−m0(−∞) =

1

r−(c)
ln
S(t, ξ −

√
c2 − c2∗t)

er−(c)m0(−∞)
,
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hence
|m(t, ξ) −m0(−∞)| ≤ C|S(t, ξ −

√
c2 − c2∗t) − er−(c)m0(−∞)|.

But

S(t, ξ−
√
c2 − c2∗t)− er−(c)m0(−∞) =

1√
π

∫

R

e−σ
2

S0(ξ+2σ
√
t−
√
c2 − c2∗t) dσ− er−(c)m0(−∞)

=
1√
π

∫

R

e−σ
2

(er−(c)m0(ξ+2σ
√
t−
√
c2−c2

∗
t) − er−(c)m0(−∞)) dσ

≤ C

∫

R

e−σ
2|m0(ξ + 2σ

√
t−
√
c2 − c2∗t) −m0(−∞)| dσ

≤ C

∫

R

e−σ
2

m̄0(ξ + 2σ
√
t−
√
c2 − c2∗t) dσ,

hence

|ũapp(t, ξ) − φc(ξ +m0(−∞))| ≤ Ce−α|ξ|
∫

R

e−σ
2

m̄0(ξ + 2σ
√
t−
√
c2 − c2∗t) dσ. (2.22)

It remains to estimate, uniformly in ξ, this last term. This can be done, separating the study
in three cases:

• if ξ ≤ 0, then we have

e−α|ξ|
∫

R

e−σ
2

m̄0(ξ + 2σ
√
t−
√
c2 − c2∗t) dσ

≤
∫ √

c2−c2
∗

√
t/4

−∞
e−σ

2

m̄0(ξ + 2σ
√
t−
√
c2 − c2∗t) dσ

+

∫ +∞

√
c2−c2

∗

√
t/4

e−σ
2

m̄0(ξ + 2σ
√
t−
√
c2 − c2∗t) dσ

≤ m̄0(−
√
c2 − c2∗

2
t)

∫ √
c2−c2

∗

√
t/4

−∞
e−σ

2

dσ + ‖m̄0‖∞
∫ +∞

√
c2−c2

∗

√
t/4

e−σ
2

dσ

≤
√
πm̄0(−

√
c2 − c2∗

2
t) + C‖m̄0‖∞e−(c2−c2

∗
)t/16.

• if ξ ≥
√
c2−c2

∗
t

2
, then we have

e−α|ξ|
∫

R

e−σ
2

m̄0(ξ + 2σ
√
t−
√
c2 − c2∗t) dσ ≤

√
πe−α

√
c2−c2

∗
t/2‖m̄0‖∞,

• if ξ ∈ (0,

√
c2−c2

∗
t

2
), then we have

e−α|ξ|
∫

R

e−σ
2

m̄0(ξ + 2σ
√
t−
√
c2 − c2∗t) dσ

≤
∫ √

c2−c2
∗

√
t/8

−∞
e−σ

2

m̄0(2σ
√
t−

√
c2 − c2∗

2
t) dσ

+

∫ +∞

√
c2−c2

∗

√
t/8

e−σ
2

m̄0(2σ
√
t−

√
c2 − c2∗

2
t) dσ

≤
√
πm̄0(−

√
c2 − c2∗

4
t) + C‖m̄0‖∞e−(c2−c2

∗
)t/64,
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and these three estimates and (2.22)lead us to (2.20).
To obtain (2.21), we want to bound from below the difference ‖ũapp(t, ·) − φc(· +

m0(−∞))‖∞; for this, we remark that, for ξ = 0, there is some α > 0 such that

|uapp(t, 0) − φc(m0(−∞))| = |φc(m(t, 0)) − φc(m0(−∞)) ≥ α|m(t, 0) −m0(−∞)|

=
α

r−(c)
ln
S(t,−

√
c2 − c2∗t)

er−(c)m0(−∞)
=

α

r−(c)
ln
(
1 +

S(t,−
√
c2 − c2∗t) − er−(c)m0(−∞)

er−(c)m0(−∞)

)
;

hence, for t large enough, we have

|uapp(t, 0) − φc(m0(−∞))| ≥ α

2r−(c)

S(t,−
√
c2 − c2∗t) − er−(c)m0(−∞)

er−(c)m0(−∞)

≥ α

2r−(c)er−(c)m0(−∞)

1√
π

∫

R

e−σ
2

(er−(c)m0(2σ
√
t−
√
c2−c2

∗
t) − er−(c)m0(−∞)) dσ

≥ α

2r−(c)er−(c)m0(−∞)

1√
π

∫ 1

0

e−σ
2

(er−(c)m0(2σ
√
t−
√
c2−c2

∗
t) − er−(c)m0(−∞)) dσ

≥ C inf
σ∈[0,1]

|m0(2σ
√
t−
√
c2 − c2∗t) −m0(−∞)|

≥ C(m0(−
√
c2 − c2∗t) −m0(−∞)).

This gives the bound from below (2.21), and concludes the proof of Lemma 2.9. �.

2.6.4 Sharp estimate of the convergence of the solution u to the travelling wave
when the initial shift has a limit at −∞

The goal of this subsection, the last on the study of the simple 1-D problem, is to give a sharp
estimate of the convergence of the solution u of the Cauchy problem (1.2) to the travelling
wave φc(x+ ct+m0(−∞)) when the initial shift m0 has a limit m0(−∞) at −∞. We keep
the same notations as in the previous subsection. Since the function m̄0 is nondecreasing,
and goes to 0 at −∞, there exists some nondecreasing function n̄0 such that m̄0 ≤ n̄0 and
such that there is some constant C0 such that

n̄′
0 ≤ C0n̄0.

The function n̄0 identically equal to ‖m̄0‖∞ satisfies this property, but in the typical cases
there exists some n̄0 that goes to zero at −∞ with the same rate of decay as m̄0. Then we
are going to prove the following

Proposition 2.11 There is some β > 0 and C > 0 such that

sup
x∈R

|u(t, x) − uapp(t, x)| ≤ C
n̄0(−βt)√

1 + βt
+ C‖m̄0‖∞e−β

√
c2−c2

∗
t. (2.23)

Remark 2.12 Proposition 2.11 gives an upper bound of the difference between the solution u
and the approximate solution uapp: the convergence is at least as t−1/2, as proved in Theorem
1.1; but the rate of convergence is in fact better:

• if m0 goes exponentially fast (or faster) to m0(−∞), the difference u − uapp goes ex-
ponentially fast in time to 0; thanks to Lemma 2.9, the same occurs for the difference
between the solution and the travelling wave φc(x + ct + m0(−∞)), as already proved
in Theorem 0.1;
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• if m0 goes algebraically fast to m0(−∞) (as 1/|x|γ, with some γ > 0), then the dif-
ference u − uapp is of order t−(γ+1/2); coupled with Lemma 2.9, we obtain a sharp
description of what happens: the solution is close to the approximate solution, at
the order t−(γ+1/2), and the approximate solution is close to the travelling wave
φc(x+ ct+m0(−∞)), at the order t−γ (and in some cases not better).

Proof of Lemma 2.11. It combines the arguments used in the proof of Lemma 2.9 with
the techniques used in subsection 2.5.2. First, from the formula (2.6) of S, we note that

Sξ(t, ξ −
√
c2 − c2∗t) =

−1√
πt

∫

R

σe−σ
2

(S0(ξ + 2σ
√
t−
√
c2 − c2∗t) − er−(c)m0(−∞)) dσ,

hence

|Sξ(t, ξ −
√
c2 − c2∗t)| ≤

C√
t

∫

R

|σ|e−σ2

m̄0(ξ + 2σ
√
t−
√
c2 − c2∗t) dσ.

Next, we have already noted that the function g(t, ξ) that is defined in (2.2) satisfies:

g(t, ξ) = O(er−(c)+δ)ξ) as ξ → −∞, g(t, ξ) = O(e−αξ) as ξ → +∞,

with some α > 0. Then, reasoning as in the proof of Lemma 2.9, we see that the right-hand
side of (2.11) satisfies:

|NLc[ũapp]| ≤





(
C
m̄0(−

√
c2−c2

∗

4
t)√

t
+ C‖m̄0‖∞e−β

√
c2−c2

∗
t
)
er−(c)+δ)ξ for ξ ≤ 0,

(
C
m̄0(−

√
c2−c2

∗

4
t)√

t
+ C‖m̄0‖∞e−β

√
c2−c2

∗
t
)
e−αξ/2 for ξ ≥ 0.

(2.24)

Of course Claim 2.2 remains valid, and we have |ũ(t, ξ) − ũapp(t, ξ)| ≤ w̃(t, ξ). But thanks
to (2.24), we are in position to improve our estimate of Claim 2.3: the same proof leads to
the following: for all ξ0, there exists some C such that

sup
ξ≤ξ0

w̃(t, ξ) ≤ C
m̄0(−

√
c2−c2

∗

8
t)√

t
+ C‖m̄0‖∞e−β

√
c2−c2

∗
t. (2.25)

At last, reasoning as in Claim 2.4, we obtain (2.23). �

3 The general model (1.1): proof of Theorem 1.3

We use the same notation as in section 2 ũ(t, ξ, y) := u(t, ξ − ct, y).

3.1 Pulsating waves with sharp asymptotic behavior

The behavior of a pulsating wave at −∞ is now well-known: similarly to the simple ODE
case there are, for c > c∗, two characteristic exponents r±(c), corresponding to exponential
solutions of the linearized equation at −∞, and φc has a nontrivial component on the slowest
exponential. We will need something a bit more precise - i.e. a quantitative estimate on the
remainder, so it is worth recalling the main results of the theory.
For commodity let us denote X = (x, y) the generic element of T

N . Consider equation (1.1),
linearized at 0:

vt − div(ADv) +B.Dv − fu(X, 0)v = 0. (3.1)
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An exponential solution to (3.1) is a solution of the form

v(t, x, y) = eλ(x+ct)ψ(X), X ∈ T
N ,

where λ > 0 is called a characteristic exponent. Denoting

e1 =




1
0
...
0


 ,

and B1 := B · e1 the first component of B, we see that the function ψ(X) has to solve

L(λ)ψ = −cλψ, (3.2)

where

L(λ)ψ := −div(ADψ)+(B−2λAe1).Dψ+(−λ2Ae1.e1−λdiv(Ae1)+λB1−fu(X, 0))ψ, X ∈ T
N .

(3.3)
Because φc has to be positive, ψ has to be positive. And so, if we denote by µ1(λ) the first
eigenvalue of L(λ), problem (3.2) amounts to solving

c = −µ1(λ)

λ
. (3.4)

Because of Krein-Rutman’s Theorem, µ1(λ) is a simple, nondegenerate eigenvalue for L(λ)
and Kato-Rellich’s Theorem implies the existence of an analytic extension of µ1 in a complex
domain containing the right half-line. In particular, λ 7→ µ1(λ) is C1. More special features
of the function µ1 are summarized in the following

Theorem 3.1 (Berestycki-Hamel [3]). The function µ1 is concave, and inf
λ>0

(
−µ1(λ)

λ

)
> 0.

Then, defining

c∗ := inf
λ>0

(
−µ1(λ)

λ

)
, (3.5)

equation (3.4) has solutions if and only if c ≥ c∗; moreover, when c > c∗, there are two
solutions 0 < r−(c) < r+(c).

This implies, in particular:

V∗(c) := c+
dµ1

dλ
(r−(c)) > 0. (3.6)

Equation (3.6) will be useful to us at several places. Let ψλ be the unique principal
eigenfunction of L(λ) such that

ψλ > 0, and

∫

TN

ψ2
λ = 1.

We will also denote
rc := r−(c), ψrc := ψr−(c).

The additional information that we need for φc is the
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Theorem 3.2 There is δ > 0 such that the wave φ̃c has the following asymptotic behavior
as ξ → −∞:

φ̃c(t, ξ, y) = er−(c)ξψrc(ξ − ct, y)(1 +O(eδξ)). (3.7)

The equivalent φ̃c(t, ξ, y) ∼ er−(c)ξψrc(ξ − ct, y) was proved by Hamel [12], what we need is
the exponential estimate on the difference between φ̃c and its equivalent. We could elaborate
on [12] to get hold of it, it will in fact be quicker to prove an existence result for φc with the
right behavior and invoke a uniqueness result. Here is the existence result:

Proposition 3.3 There exists δ ∈ (0, inf(r−(c), r+(c)−r−(c))) such that there is a pulsating
wave φc solution to (1.1) with speed c satisfying the asymptotic expansion (3.7). Moreover,
φc is increasing in its first variable: ∂tφc > 0 (or equivalently ∂tφ̃c + c∂ξφ̃c > 0).

The proof of Proposition 3.3 follows from a fixed point argument. Before proving it, we
need a preliminary result, that will play the role of Lemma 2.1 in section 2.

3.1.1 Preliminary result: exponential decay in time of solutions decaying suffi-
ciently fast in space

Given δ ∈ (0, r+(c) − r−(c)), let Yδ be the space of all continuous functions ũ on R × T
N−1

such that

ũ(ξ, y) e−(r−(c)+δ)ξ is a bounded uniformly continuous function,

endowed with the natural norm ‖ũ‖Yδ
:= sup

(ξ,y)∈R×TN−1

|ũ(ξ, y)| e−(r−(c)+δ)ξ.

Lemma 3.4 Consider the equation

ṽt − div(A(ξ − ct, y)Dṽ) + (B(ξ − ct, y) + ce1).Dṽ − fu(ξ − ct, y, 0)ṽ = 0. (3.8)

Then, given δ ∈ (0, r+(c)− r−(c)), there is Cδ ≥ 1 and ωδ > 0 such that, if ṽ(0, .) := ṽ0 is in
Yδ, then the solution ṽ of (3.8) emerging from ṽ0 satisfies: for all t > 0, ṽ(t, ·, ·) ∈ Yδ, and

‖ṽ(t, ·, ·)‖Yδ
≤ Cδe

−ωδt‖ṽ0‖Yδ
. (3.9)

Proof of Lemma 3.4. It follows from the construction of a suitable positive super-solution
to (3.8), exponentially decaying in time. The construction of this positive super-solution rests
on the properties of the first eigenvalue of the elliptic operator Lλ (defined in (3.3)), that we
recalled in Theorem 3.1.

First, given λ > 0 and ω ≥ 0, let us consider

Ṽ (λ,ω)(t, ξ, y) := ψλ(ξ − ct, y)eλξ−ωt. (3.10)

then some computations lead to

Ṽ
(λ,ω)
t − div(A(ξ − ct, y)DṼ (λ,ω)) + (B(ξ − ct, y) + ce1).DṼ

(λ,ω)

− fu(ξ − ct, y, 0)Ṽ (λ,ω) = (µ1(λ) + cλ− ω)Ṽ (λ,ω). (3.11)

Since we want Ṽ (λ,ω) to be positive and we want it to be a super-solution to (3.8), we need
to find λ and ω such that

µ1(λ) + cλ− ω ≥ 0.
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This can be done, noting that it follows from Theorem 3.1 that, given δ ∈ (0, r+(c)− r−(c)),
we have

µ1(r−(c) + δ) + c(r−(c) + δ) > 0.

Hence consider

λ = λδ := r−(c) + δ, and ω = ωδ := µ1(r−(c) + δ) + c(r−(c) + δ).

Then we obtain that Ṽ δ := Ṽ (λδ,ωδ) is solution of (3.8):

Ṽ δ
t − div(A(ξ − ct, y)DṼ δ) + (B(ξ − ct, y) + ce1).DṼ

δ

− fu(ξ − ct, y, 0)Ṽ δ = (µ1(λδ) + cλδ − ωδ)Ṽ
δ = 0. (3.12)

Now, since ψλ is positive on the compact T
N , denoting C̃δ := 1

inf
TN ψr

−
(c)+δ

, we have for

all ṽ0 ∈ Yδ

|ṽ0(ξ, y)| ≤ C̃δψr−(c)+δ(ξ, y)e
(r−(c)+δ)ξ‖ṽ0‖Yδ

= C̃δ‖ṽ0‖Yδ
Ṽ (0, ξ, y).

And then, the weak maximum principle implies, for (t, ξ, y) ∈ R+ × R × T
N−1:

|ṽ(t, ξ, y)| ≤ C̃δ‖ṽ0‖Yδ
Ṽ δ(t, ξ, y) = C̃δ‖ṽ0‖Yδ

ψr−(c)+δ(ξ − ct, y)e(r−(c)+δ)ξ−ωδt,

which implies that ṽ(t, ·, ·) ∈ Yδ for all t > 0, and that (3.9) is satisfied with Cδ =
sup

TN ψr
−

(c)+δ

inf
TN ψr

−
(c)+δ

. �

3.1.2 Application: proof of Proposition 3.3.

We want to prove that there is a pulsating wave solution of problem (1.1), that is a function

φc satisfying (1.1) and the periodicity condition: t 7→ φc(t, ξ−ct, y) is
1

c
-periodic. Translating

this into the moving frame (t, ξ = x + ct), the function φ̃c(t, ξ, y) := φc(t, ξ − ct, y) has to
solve the problem





(φ̃c)t − div(A(ξ − ct, y)Dφ̃c) + (B(ξ − ct, y) + ce1).Dφ̃c = f(ξ − ct, y, φ̃c),

lim
ξ→−∞

φ̃c(t, ξ, y) = 0, lim
ξ→+∞

φ̃c(t, ξ, y) = 1,

φ̃c is 1
c
-periodic in time.

(3.13)

To prove the existence of such a 1
c
-periodic solution φ̃c of this nonlinear problem, we are

going to use a fixed point argument. An alternative method would be by a sub/super-
solution argument, as for instance in [2], [15], or [21]. Our proof is divided into two steps:

• step 1: we will prove that there is a solution to the problem





(φ̃c)t − div(A(ξ − ct, y)Dφ̃c) + (B(ξ − ct, y) + ce1).Dφ̃c = f(ξ − ct, y, φ̃c),

lim
ξ→−∞

φ̃c(t, ξ, y) = 0,

φ̃c is 1
c
-periodic in time,

(3.14)

• step 2: we will prove that this φ̃c satisfies the limit condition lim
ξ→+∞

φ̃c(t, ξ, y) = 1,
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• step 3: we will prove that φc is increasing in its first variable: ∂tφc > 0.

Step 1: existence of a periodic solution, using a fixed point argument. Our strategy is
the following: considering the Cauchy problem

{
ũt − div(A(ξ − ct, y)Dũ) + (B(ξ − ct, y) + ce1).Dũ = f(ξ − ct, y, ũ),

ũ(0, ξ, y) = ũ0,
(3.15)

we want to find a suitable initial condition ũ0 such that ũ(1
c
) = ũ0; then the periodicity

assumptions on A, B and f will allow us to conclude that ũ is 1
c
-periodic in time. And to

prove the existence of such an initial condition ũ0, we are going to prove that the Poincaré
map T1/c : ũ0 7→ ũ(1

c
) is a contraction, if we choose sufficiently well the space of initial

conditions ũ0.
First, we remark that the function

Ṽ (t, ξ, y) = Ṽ (λ0,ω0) = ψr−(c)(ξ − ct, y)er−(c)ξ

is solution of (3.8), as noted in (3.12). This ivites us to consider the following metric space:
given δ ∈ (0, r+(c) − r−(c)), consider

Xδ := {ũ0 ∈ Y0 : 0 ≤ ũ0 ≤ 1, 0 ≤ ũ0 ≤ Ṽ (0), Ṽ (0) − ũ0 ∈ Yδ};

the distance between two elements of Xδ will be the Yδ-norm of the difference. We are going
to prove the following:

Claim 3.5 : there is a ball of Xδ, centered at Ṽ (0), that is stable under T1/c; and moreover
T1/c has a fixed point in this ball.

To prove this, we have to study what we can say about the solution ũ of the Cauchy
problem (3.15) when ũ0 ∈ Xδ: first, the weak maximum principle implies that 0 ≤ ũ ≤ 1;
next, the concavity of f with respect to u implies that




ũt − div(A(ξ − ct, y)Dũ) + (B(ξ − ct, y) + ce1).Dũ = f(ξ − ct, y, ũ) ≤ fu(ξ − ct, y, 0)ũ,

Ṽt − div(A(ξ − ct, y)DṼ ) + (B(ξ − ct, y) + ce1).DṼ = fu(ξ − ct, y, 0)Ṽ ,

ũ(0) ≤ Ṽ (0),

hence the weak maximum principle implies that ũ ≤ Ṽ . Finally, the difference Ṽ − ũ satisfies

(Ṽ − ũ)t − div(A(ξ − ct, y)D(Ṽ − ũ)) + (B(ξ − ct, y) + ce1).D(Ṽ − ũ)

− fu(ξ − ct, y, 0)(Ṽ − ũ) = fu(ξ − ct, y, 0)ũ− f(ξ − ct, y, ũ);

let us denote g̃(t, ξ, y) the right hand member of this equality: Duhamel’s formula tells us
that

(Ṽ − ũ)(t) = T (t, 0)(Ṽ (0) − ũ0) +

∫ t

0

T (t, s)g̃(s, ·, ·) ds, (3.16)

where T (t, s)ṽ0 is the solution at time t of (3.8) starting from ṽ0 at time s. Let us see what
we can say about the right hand side of (3.16):

• first we note that, since Ṽ (0)− ũ0 ∈ Yδ, Lemma 3.4 gives that T (t, 0)(Ṽ (0)− ũ0) ∈ Yδ
and

‖T (t, 0)(Ṽ (0) − ũ0)‖Yδ
≤ Cδe

−ωδt‖Ṽ (0) − ũ0‖Yδ
;
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• concerning the integral term, we have to make two remarks:

– Claim 3.6 : if additionally δ ∈ (0, r−(c)), then for all t > 0 g̃(t, ·, ·) ∈ Yδ.

Indeed, since 0 ≤ ũ ≤ inf(1, Ṽ ), there is some C > 0 independent of ũ0 such that

∀t ≥ 0,∀ξ ∈ R,∀y ∈ T
N−1, |g̃(t, ξ, y)| = |f(ξ−ct, y, ũ)−fu(ξ−ct, y, 0)ũ| ≤ Ce2r−(c)ξ,

hence, if additionally δ ∈ (0, r−(c)), there is some C ′ > 0 independent of ũ0 such
that

∀t ≥ 0,∀ξ ∈ R,∀y ∈ T
N−1, |g̃(t, ξ, y)| ≤ Ce(r−(c)+δ)ξ ≤ C ′ψr−(c)+δ(ξ−ct, y)e(r−(c)+δ)ξ,

which establishes 3.6.

– Claim 3.7 : T (t, s)(ψr−(c)+δ(ξ−cs, y)e(r−(c)+δ)ξ) = ψr−(c)+δ(ξ−ct, y)e(r−(c)+δ)ξ−ωδ(t−s).

Indeed, this follows from (3.12).

Using Claims 3.6 and 3.7, we easily derive from the weak maximum principle that

∫ t

0

T (t, s)g̃(s, ξ, y) ds ≤
∫ t

0

T (t, s)(C ′ψr−(c)+δ(ξ − cs, y)e(r−(c)+δ)ξ) ds

= C ′
∫ t

0

ψr−(c)+δ(ξ − ct, y)e(r−(c)+δ)ξ−ωδ(t−s) ds ≤ C ′

ωδ
ψr−(c)+δ(ξ − ct, y)e(r−(c)+δ)ξ,

hence
∫ t
0
T (t, s)g̃(s, ·, ·) ds ∈ Yδ, and there is some C ′

δ > 0 independent of ũ0 such that

‖
∫ t

0

T (t, s)g̃(s, ·, ·) ds‖Yδ
≤ C ′

δ.

then the Duhamel’s formula (3.16) tells us that (Ṽ − ũ)(1
c
) ∈ Yδ. Since Ṽ (1

c
) = Ṽ (0), this

means that ũ(1
c
) ∈ Xδ. Hence Xδ is stable under T1/c.

To establish Claim 3.5, it remains to prove that T1/c has a fixed point in Xδ; this follows
easily from the previous remarks:

‖(Ṽ − ũ)(t)‖Yδ
≤ ‖T (t, 0)(Ṽ (0) − ũ0)‖Yδ

+ ‖
∫ t

0

T (t, s)g̃(s, ·, ·) ds‖Yδ

≤ Cδe
−ωδt‖Ṽ (0) − ũ0‖Yδ

+ C ′
δ;

choose p ∈ N large enough such that Cδe
−ωδp/c < 1, and denote ν := 1 − Cδe

−ωδp/c, and

R0 :=
C′

δ

ν
; then

‖(Ṽ − ũ)(
p

c
)‖Yδ

≤ (1 − ν)‖Ṽ (0) − ũ0‖Yδ
+R0ν,

which implies that the ball of Xδ centered in Ṽ (0) and of radius R0:

B(Ṽ (0), R0) = {ũ0 ∈ Xδ, ‖ũ0 − Ṽ (0)‖ ≤ R0}

is stable under (T1/c)
p. Moreover, (T1/c)

p is a contraction on this ball: indeed, consider

ũ0, w̃0 ∈ B(Ṽ (0), R0)); then consider the solutions ũ and w̃ of the corresponding Cauchy
problems (3.15): the difference ũ− w̃ satisfies

(ũ−w̃)t−div(A(ξ−ct, y)D(ũ−w̃))+(B(ξ−ct, y)+ce1).D(ũ−w̃) = f(ξ−ct, y, ũ)−f(ξ−ct, y, w̃);
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using the mean value theorem, there exists some a(t, ξ, y) such that

f(ξ − ct, y, ũ) − f(ξ − ct, y, w̃) = fu(ξ − ct, y, a(t, ξ, y))(ũ− w̃);

then consider the solution ṽ of the Cauchy problem (3.8) emerging from the initial condition
|ũ0 − w̃0|: ṽ ≥ 0, and the concavity of f implies that

fu(ξ − ct, y, 0) − fu(ξ − ct, y, a(t, ξ, y)) ≥ 0;

then ṽ satisfies

ṽt − div(A(ξ − ct, y)Dṽ) + (B(ξ − ct, y) + ce1).Dṽ − fu(ξ − ct, y, a(t, ξ, y))ṽ ≥ 0,

and the maximum principle implies that

|ũ− w̃| ≤ ṽ.

Now, thanks to Lemma 3.4, we obtain that

‖(ũ− w̃)(t)‖Yδ
≤ Cδe

−ωδt‖ũ0 − w̃0‖Yδ
;

since Cδe
−ωδp/c < 1, (T1/c)

p is a contraction on the ball B(Ṽ (0), R0)), which implies that

(T1/c)
p and then T1/c have a unique fixed point in B(Ṽ (0), R0)). This establishes Claim 3.5.

�

Step 2: the fixed point has the right limits at +∞. Now we prove that the fixed point φ̃c

satisfies the limit condition lim
ξ→+∞

φ̃c(t, ξ, y) = 1. The argument is based on the following:

Claim 3.8 lim inf
ξ→+∞,y∈TN−1

φ̃c(0, ξ, y) > 0.

Indeed, assume by contradiction that there exists a sequence (ξn, yn)n, ξn → +∞, and
yn ∈ T

N−1 such that φ̃c(0, ξn, yn) → 0 as n → ∞. Let ε > 0, then for some N , we have
φ̃c(0, ξn, yn) ≤ ε for all n ≥ N . By Harnack inequality and parabolic estimates, there exists
C > 0 such that for all (t, y) ∈ [0, 1/c]×T

N−1, φ̃c(t, ξn, y) ≤ Cε and Dφ̃c(t, ξn, y) ≤ Cε. Take
ζ < 0. Then integrating the equation on [0, 1/c] × [ζ, ξn] × T

N−1, and using the periodicity
in t, we obtain

−
∫ 1/c

0

∫

TN−1

[A(ξ − ct, y)Dφ̃c(t, ξ, y) · e1]ξnζ +

∫ 1/c

0

∫

TN−1

[B(ξ − ct, y) · e1φ̃c]
ξn
ζ

−
∫ 1/c

0

∫ ξn

ζ

∫

TN−1

div B(ξ − ct, y)φ̃c + c

∫ 1/c

0

∫

TN−1

[φ̃c(t, ξ, y)]
ξn
ζ

=

∫ 1/c

0

∫ ξn

ζ

∫

TN−1

f(ξ − ct, y, φ̃c(t, ξ, y)).

We take now the limit ζ → −∞. Since φ̃c(t, ζ, y), Dφ̃c(t, ζ, y) → 0, we get

zn :=

∫ 1/c

0

∫ ξn

−∞

∫

TN−1

f(ξ − ct, y, φ̃c(t, ξ, y)) → 0 as n→ +∞.

On the other hand, since φ̃c is positive at least for ξ close to −∞ we get that zn is bounded
from below by some positive constant, which is in contradiction with zn → 0 as n → ∞.
Hence Claim 3.8 is proved.
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Now we are ready to prove that lim
ξ→+∞

φ̃c(t, ξ, y) = 1: Claim 3.8 implies that φ̃c(0) is

bounded from below by a positive constant on some [X ′,+∞) × T
N−1; since φ̃c is positive,

it is also bounded from below by a positive constant on [0, 1
c
] × {X ′} × T

N−1, and then the

weak maximum principle implies that φ̃c is bounded from below by a positive constant γ
on [0, 1

c
] × [X ′,+∞) × T

N−1. Now consider Φ̃ := 1 − φ̃c and f(x, y, u) = (1 − u)h(x, y, u).

Since ∂f
∂u

(x, y, 1) < 0, there is some h0 > 0 such that h(x, y, u) ≥ h0 > 0 for all (x, y, u) ∈
R × T

N−1 × [γ, 1]. Moreover the function Φ̃ satisfies the equation

Φ̃t − div(A(ξ − ct, y)DΦ̃) + (B(ξ − ct, y) + ce1).DΦ̃ + h(ξ − ct, y, φ̃c)Φ̃ = 0.

In the domain R+ × [X ′,+∞) × T
N−1, it is easy to check that the function

Ψ(t, ξ, y) := ‖Φ̃(0)‖∞e−h0t + Ce−µξ

will be an upper solution if µ > 0 is small enough. Then, if C ≥ eµX
′

, then the weak
maximum principle implies that Φ̃(t, ξ, y) ≤ Ψ(t, ξ, y) for all t ≥ 0, ξ ≥ X ′ and y ∈ T

N−1.
Since Φ̃ is 1/c-periodic in time, we can evaluate the previous inequality for t = t+N/c and
pass to the limit as N → +∞. Thus we get Φ̃(t, ξ, y) ≤ Ce−µξ Hence, Φ̃(t, ξ, y) → 0 and
φ̃c(t, ξ, y) → 1 as ξ → +∞. This completes the proof of Step 2.

Step 3: the constructed pulsating wave is increasing in time.
To complete the proof of Proposition 3.3, it remains to prove that the constructed pul-

sating wave φc satisfies: ∂tφc > 0, or equivalently that ∂tφ̃c + c∂ξφ̃c > 0.
We are going to prove that

∀t′ > 0,∀t ∈ R,∀x ∈ R,∀y ∈ T
N−1, φc(t, x, y) ≤ φc(t+ t′, x, y). (3.17)

In the moving frame, this becomes

∀t′ > 0,∀t ∈ R,∀x ∈ R,∀y ∈ T
N−1, φ̃c(t, x+ ct, y) ≤ φ̃c(t+ t′, x+ ct+ ct′, y),

hence we want to prove that

∀t′ > 0,∀t ∈ R,∀ξ ∈ R,∀y ∈ T
N−1, φ̃c(t, ξ, y) ≤ φ̃c(t+ t′, ξ + ct′, y). (3.18)

Fix t′ > 0 and denote

d̃(t, ξ, y) = φ̃c(t+ t′, ξ + ct′, y) − φ̃c(t, ξ, y).

The function d̃ satisfies

d̃t − div (A(ξ − ct, y)Dd̃) + (B(ξ − ct, y) + ce1).Dd̃

= f(ξ − ct, y, φ̃c(t+ t′, ξ + ct′, y)) − f(ξ − ct, y, φ̃c(t, ξ, y)),

hence there exists some function b(t, ξ, y, t′) such that

d̃t − div (A(ξ − ct, y)Dd̃) + (B(ξ − ct, y) + ce1).Dd̃ = fu(ξ − ct, y, b(t, ξ, y, t′))d̃.

Now note that d̃ is bounded, and moreover

d̃(t, ξ, y) ∼ξ→−∞ (er−(c)ct′ − 1)er−(c)ξψrc(ξ − ct, y) > 0,
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hence there exists C ≥ 0 such that

∀ξ ∈ R,∀y ∈ T
N−1, d̃(0, ξ, y) + CṼ δ(0, ξ, y) = d̃(0, ξ, y) + CṼ (λδ ,ωδ)(0, ξ, y) ≥ 0.

Finally, we note that

(d̃+ CṼ δ)t − div (A(ξ − ct, y)D(d̃+ CṼ δ)) + (B(ξ − ct, y) + ce1).D(d̃+ CṼ δ)

− fu(ξ− ct, y, b(t, ξ, y, t′))(d̃+CṼ δ) = (fu(ξ− ct, y, 0)− fu(ξ− ct, y, b(t, ξ, y, t′)))CṼ δ ≥ 0.

We deduce from the weak maximum principle that, for all (t, ξ, y) ∈ R × R × T
N−1,

(d̃+ CṼ δ)(t, ξ, y) ≥ 0.

Now we use the fact that d̃ is 1/c-periodic in time: we fix τ ∈ [0, 1/c], and we evaluate this
inequality at t = τ +N/c; then letting N → +∞, we obtain that d̃ ≥ 0. This implies (3.18),
hence (3.17), which obviously implies that ∂tφc ≥ 0. To obtain the stronger property that
we want: ∂tφc > 0, it is sufficient to note that ∂tφc is a nonnegative solution of the parabolic
equation

vt − div (A(x, y)Dv) +B(x, y).Dv = fu(x, y, φc)v,

hence the strong maximum principle implies that either ∂tφc > 0 or ∂tφc is identically zero.
But in this last case, φc does not depend on t, hence

φ(t, x, y) = φt(t+
1

c
, x, y) = φc(t, x+ 1, y);

repeating this argument, we obtain that φ(t, x, y) = 1, thanks to the limit as the space
variable x → +∞. But this violates the other limit condition φc(t,−∞, y) = 0. Hence the
constructed pulsating wave satisfies ∂tφc > 0, and this concludes the proof of Step 3 and of
Proposition 3.3. �

3.2 Attractive dynamics

Now we are interested in the Cauchy problem associated to (1.1). We recall that we assume
that c > c∗, φc is a pulsating wave propagating at speed c, and the initial condition u0 is
trapped between two translates of φc, as in Theorem 1.3. We denote

NL[u] = ut − div(ADu) +B.Du− f(x, y, u). (3.19)

Hence u is solution of (1.1) if and only if NL[u] = 0. The proof of Theorem 1.3 follows the
same strategy than the one of Theorem 1.1.

3.2.1 The exact shift

Given a sufficiently smooth function m : (0,+∞) × R × T
N−1 → R, consider

T (m)φc(t, x, y) := φc(t+m(t, x, y), x, y).

Of course, when m is identically zero, we have T (0)φc = φc, and NL[T (0)φc] = 0. Let us
compute in the general case NL[T (m)φc]: some computations lead to

NL[T (m)φc] =
(
mt − div(ADm) + (B − 2A

D∂tφc
∂tφc

).Dm− ∂ttφc
∂tφc

ADm.Dm
)
∂tφc,
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where, in the right handside, m and its derivatives are evaluated at (t, x, y), the coefficients
A, B are evaluated at (x, y), and ∂tφc and its derivatives are evaluated at (t+m(t, x, y), x, y).
Hence T (m)φc is solution of (1.1) if and only if

mt − div(ADm) + (B − 2A
D∂tφc
∂tφc

).Dm− ∂ttφc
∂tφc

ADm.Dm = 0. (3.20)

Since, given (x, y), the function t 7→ φc(t, x, y) is strictly increasing, the (exact) shift

m∗(t, x, y) := (φc(·, x, y))−1(u(t, x, y)) − t

satisfies u(t, x, y) = φc(t + m∗(t, x, y), x, y) and (3.20). To be able to provide interesting
properties of u, we will not go further in this direction, the problem (3.20) being too compli-
cated to study; instead, we will consider an “approximate shift”, as in the proof of Theorem
1.1. In the following:

• first we choose an approximate shift, simplifying (3.20) thanks to the properties of the
pulsating wave φc proved in Proposition 3.3;

• next we study the properties of this approximate shift;

• at last, we study the difference between the exact solution u of the Cauchy problem
(1.1) and the shifted wave associated to the approximate shift, and we prove the
convergence result stated in Theorem 1.3

3.2.2 The approximate shift and the associated shifted wave

In Proposition 3.3 we proved that

φc(t, x, y) = er−(c)(x+ct)ψrc(x, y) +O(e(r−(c)+δ)(x+ct)) = V (t, x, y) +O(e(r−(c)+δ)(x+ct)).

Now, due to elliptic regularity, the exponential deviation of φc from V also holds for the
derivatives: indeed, φc and V satisfy

{
(φc)t − div(A(x, y)Dφc) +B(x, y).Dφc = f(x, y, φc),

Vt − div(A(x, y)DV ) +B(x, y).DV = fu(x, y, 0)V,

hence the difference φc − V satisfies (in the variable (t, ξ, y))

(φ̃c − Ṽ )t − div(A(ξ − ct, y)D(φ̃c − Ṽ )) + (B(ξ − ct, y) + ce1).D(φ̃c − Ṽ )

− fu(ξ − ct, y, 0)(φ̃c − Ṽ ) = f(ξ − ct, y, φ̃c) − fu(ξ − ct, y, 0)φ̃c.

Since

φ̃c − Ṽ = O(e(r−(c)+δ)ξ), f(ξ − ct, y, φ̃c) − f(ξ − ct, y, 0)φ̃c = O(e(r−(c)+δ)ξ),

we deduce that the derivatives of φ̃c − Ṽ satisfy the same estimates.
Hence, neglecting in a first approach the residual term, we obtain

∂tφc(t, x, y) = cr−(c)er−(c)(x+ct)ψrc(x, y) + . . . ,

∂ttφc(t, x, y) = c2r−(c)2er−(c)(x+ct)ψrc(x, y) + . . . ,
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D∂tφc(t, x, y) = cr−(c)2er−(c)(x+ct)ψrc(x, y)e1 + cr−(c)er−(c)(x+ct)Dψrc(x, y) + . . . .

This invites us to choose the approximate shift as the solution of the Cauchy problem

{
mt − div(ADm) + (B − 2ADψrc

ψrc
− 2r−(c)Ae1).Dm− cr−(c)ADm.Dm = 0,

m(0, x, y) = m0(x, y),
(3.21)

the coefficients of this equation being the equivalents as x + ct → −∞ of the coefficients
of (3.20), and where the initial condition m0 is chosen as follows: as we did in subsection
2.3, we choose m0 = m∗(0) if m∗(0) is C1 and bounded in norm C1; in the general case, it
can be checked, as in subsection 2.3, that m∗(1) is C1 and bounded in norm C1, thanks to
the definition of the exact shift m∗ and the assumption on the initial condition u0 (trapped
between two translates of φc); then we solve the Cauchy problem related to m on the time
interval (1,+∞), choosing m(1) = m∗(1) as initial condition. In the following we assume
that m∗(0) is C1 and bounded, and thus m0 = m∗(0).

Now we are ready to sum up the properties of the approximate shift m that will be of
interest for us:

Proposition 3.9 The solution m of the Cauchy problem (3.21) has the following properties:
(i) m is bounded on (0,+∞) × R × T

N−1, and more precisely

∀t > 0,∀x ∈ R,∀y ∈ T
N−1, m(t, x, y) ∈ [−‖m∗(0)‖∞, ‖m∗(0)‖∞];

(ii) m is C1 on (0,+∞)×R×T
N−1, and (t, x, y) 7→ Dm(t, x, y) is bounded on (0,+∞)×

R × T
N−1;

(iii) lim
t→+∞

‖(mt, Dm,D
2m)(t, .)‖L∞(R×TN−1) = 0.

Before proving Proposition 3.9, let us introduce the shifted wave associated to the ap-
proximate shift m solution of (3.21):

uapp(t, x, y) := T (m)φc(t, x, y) = φc(t+m(t, x, y), x, y). (3.22)

Of course uapp(0, x, y) = u0(x, y), but uapp is not solution of (1.1), since m is not solution of
(3.20). However, we can check that NL[uapp] decays faster than er−(c)(x+ct) as x+ ct→ −∞,
a property that was essential in the proof of Theorem 1.1: indeed, we already know that

NL[uapp]

∂tφc
= mt − div(ADm) + (B − 2A

D∂tφc
∂tφc

).Dm− ∂ttφc
∂tφc

ADm.Dm, (3.23)

where m and its derivatives are evaluated at (t, x, y), the coefficients A, B are evaluated at
(x, y), and ∂tφc and its derivatives are evaluated at (t +m(t, x, y), x, y); taking now care of
the residual term φc − V , it is easy to check that

D∂tφc(t+m(t, x, y), x, y)

∂tφc(t+m(t, x, y), x, y)
=
Dψrc(x, y)

ψrc(x, y)
+ r−(c)e1 +O(eδ(x+ct)),

∂ttφc
∂tφc

= cr−(c) +O(eδ(x+ct)),

which yields that
NL[uapp]

∂tφc
= O(eδ(x+ct))(|Dm| + ADm.Dm),
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hence

NL[uapp] = O(eδ(x+ct))(|Dm| + |Dm|2)∂tφc = O(e(r−(c)+δ)(x+ct))(|Dm| + |Dm|2). (3.24)

This estimate and the results of Proposition 3.9 will be the main arguments to prove the
convergence result of Theorem 1.3 (the convergence of the shifted wave uapp to u), as ex-
plained in the following subsection. To conclude this subsection, we prove the properties of
m:

Proof of Proposition 3.9. The Hopf-Cole transform s(t, x, y) = ecr−(c)m(t,x,y) allows us to
transform the nonlinear problem (3.21) into a linear parabolic equation: p is solution of

{
st − div(ADs) + (B − 2ADψrc

ψrc
− 2r−(c)Ae1).Ds = 0,

s(0) = ecr−(c)m(0).
(3.25)

Then standard theory on linear parabolic equations imply (i) (weak maximum principle)
and (ii) (regularity) of Proposition 3.9. Concerning (iii): we generalize a result proved by
L. Rossi in the elliptic case (see [27]), and the idea is the same. The proof follows from the
following three assertions:

• Claim 3.10 : every element of the ω limit set of the initial condition s(0) generates a
bounded and global solution - i.e. a solution defined for all real time - of the associated
Cauchy problem (3.25);

• Claim 3.11 : every bounded and global solution of the Cauchy problem (3.25) is con-
stant in space and time;

• Claim 3.12 : lim
t→+∞

‖(st, Ds,D2s)(t, .)‖L∞(R×TN−1) = 0.

Of course Claim 3.12 immediately implies (iii) of Proposition 3.9. Hence it remains to prove
these three claims.

Claim 3.10 is classical: {s(t), t ≥ 0} is relatively compact in C0(R × T
N−1). Choose

tn → +∞ such that s(tn) converges locally uniformly to s∞, and consider the solution S of
the Cauchy problem

{
St − div(ADS) + (B − 2ADψrc

ψrc
− 2r−(c)Ae1).DS = 0,

S(0) = s∞.
(3.26)

Of course S is well defined on [0,+∞), but we are going to prove that S is also well defined
on [−1, 1] and satisfies the problem on (−1, 1):

- first, by continuity, we have that s(tn + t) → S(t) for all t ≥ 0;
- next, choose n1 such that tn ≥ 2 for all n ≥ n1, and consider the sequence (sn)n,

sn(t, x, y) = s(t+ tn, x, y): it is relatively compact in C0([−1, 1]×R×T
N−1), hence it has a

subsequence (sϕ(n))n that converges locally uniformly to some S1. Then S1(t) = S(t) for all
t ∈ [0, 1], and we derive from parabolic estimates that S1 is solution of the Cauchy problem
(3.26) on the time interval (−1, 1).
Hence this allows us to extend S on the time interval [−1, 0], and then the same resoning
implies that it is a global solution, which proves Claim 3.10.

To prove Claim 3.11, we consider a global solution S of (3.26), and we are going to prove
that for all vector e of the canonical basis of R

N

lim
|t,x,y|→+∞

(S(t, (x, y) + e) − S(t, x, y)) = 0. (3.27)
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Consider
m := lim inf

|t,x,y|→+∞
(S(t, (x, y) + e) − S(t, x, y)).

There exists (tn, xn, yn)n be such that

lim
n→+∞

(S(tn, (xn, yn) + e) − S(tn, xn, yn)) = m. (3.28)

Up to the extraction of a subsequence we may assume that

lim
n→+∞

S(t+ tn, (x, y) + (xn, yn) + e) exists in C2
loc(R × R × T

N−1).

Call it S∞(t, x, y). Because we are dealing with a liminf in (3.28), we have

S∞(t, (x, y) + e) − S∞(t, x, y) ≥ m,

hence, because it is equal tom at (0, 0, 0), it is equal tom everywhere by the strong maximum
principle. Therefore, for all k:

S∞(t, (x, y) + ke) − S∞(t, x, y) = km,

a contradiction with the boundedness of S if m 6= 0, thus m = 0. In the same way,

lim sup
|t,x,y|→+∞

(S(t, (x, y) + e) − S(t, x, y)) = 0,

hence (3.27) is proved. This implies that S(t, (x, y) + e) − S(t, x, y) has a maximum and a
minimum. Thus, using twice the strong maximum principle, it is periodic in (x, y), hence
constant. Claim 3.11 is proved.

Claim 3.12 is now an easy consequence of Claims 3.10 and 3.11, using parabolic estimates.
Take the solution s of the Cauchy problem (3.25). The only possible limit for its space
derivatives is 0: indeed, assume Ds(tn, xn, yn) → ℓ, and extract a subsequence of (s(tn)n
that converges locally uniformly; hence its limit is a global solution, thus a constant, and
parabolic estimates imply that Ds(tn) → 0, hence ℓ = 0. Then lim

t→+∞
‖Ds(t, .)‖L∞(R×TN−1) =

0, and in the same way lim
t→+∞

‖D2s(t, .)‖L∞(R×TN−1) = 0; finally the equation shows that

lim
t→+∞

‖st(t, .)‖L∞(R×TN−1) = 0, which concludes the proof of Claim 3.12, and of Proposition

3.9. �

3.2.3 The difference between the solution and the shifted wave: proof of The-
orem 1.3

Now we have everything to study the difference u − uapp, and prove that it converges to 0
uniformly in space. The arguments are very close to the ones used in the proof of Theorem
1.1, subsection 2.5. We denote

v(t, x, y) := (u− uapp)(t, x, y), g(t, x, y) := NL[uapp](t, x, y),

and w̃ the solution of the Cauchy problem
{
w̃t − div(A(ξ − ct, y)Dw̃) + (B(ξ − ct, y) + ce1).Dw̃ − fu(ξ − ct, y, 0)w̃ = |g̃|,
w̃(0) = ṽ(0) = 0;

(3.29)

and we are going to prove the following facts (analog to Claims 2.2-2.4):
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• Claim 3.13 : for all t > 0, all ξ ∈ R and all y ∈ T
N−1, we have |ṽ(t, ξ, y)| ≤ w̃(t, ξ, y);

• Claim 3.14 : for all ξ0 ∈ R, sup
ξ≤ξ0,y∈TN−1

w̃(t, ξ, y) → 0 as t→ +∞;

• Claim 3.15 : there exists ξ0 ∈ R such that sup
ξ≥ξ0,y∈TN−1

|ṽ(t, ξ, y)| → 0 as t→ +∞.

It is clear that Claims 3.13-3.15 imply Theorem 1.3: they imply that ‖ṽ(t)‖L∞(R×TN−1) → 0
as t → +∞, hence ‖u(t) − uapp(t)‖L∞(R×TN−1) = ‖v(t)‖L∞(R×TN−1) → 0 as t → +∞. Hence
it remains to prove these claims.

Claim 3.13 is a consequence of the weak maximum principle: indeed, using the mean
value theorem, there exists b(t, x, y) such that

f(x, y, u) − f(x, y, uapp) = fu(x, y, b(t, x, y))(u− uapp),

which implies that the difference v satisfies

ṽt − div(A(ξ − ct, y)Dṽ) + (B(ξ − ct, y) + ce1).Dṽ − fu(ξ − ct, y, b̃(t, ξ, y))ṽ = −g̃.

Then we note that the solution w̃ of (3.29) satisfies w̃ ≥ 0, and the concavity of f implies
that

(w̃−ṽ)t−div(A(ξ−ct, y)D(w̃−ṽ))+(B(ξ−ct, y)+ce1).D(w̃−ṽ)−fu(ξ−ct, y, b̃(t, ξ, y))(w̃−ṽ) ≥ 0;

since w̃(0) = ṽ(0), we obtain that ṽ ≤ w̃; similarly −ṽ ≤ w̃, hence |ṽ| ≤ w̃, hence Claim 3.13
is proved.

Claim 3.14 is a consequence of Lemma 3.4: by Duhamel’s formula,

w̃(t) =

∫ t

0

T (t, s)|g̃(s)| ds;

thanks to (3.24),
|g̃(s)| = O(1)e(r−(c)+δ)ξ‖Dm(s)‖L∞(R×TN−1);

since |g̃(s)| ∈ Yδ, Lemma 3.4 says that ‖T (t, s)‖Yδ
= O(1)e−ωδ(t−s), hence we obtain that

‖w̃(t)‖Yδ
≤ O(1)

∫ t

0

e−ωδ(t−s)‖Dm(s)‖L∞(R×TN−1) ds;

finally, Proposition 3.9 and usual properties of convolution imply that ‖w̃(t)‖Yδ
→ 0 as

t→ +∞, hence Claim 3.14 is proved.
Claim 3.15 is a consequence of Claim 3.14: since the initial condition is trapped between

φc(−M) and φc(M), we know that for all t > 0, u(t) is trapped between φc(t −M) and
φc(t+M), hence ũ(t, ξ, y) ≥ φc(t−M, ξ− ct, y); choosing k ∈ N such that k

c
≥M , we obtain

that

ũ(t, ξ, y) ≥ φc(t−
k

c
, ξ − ct, y) = φc(t, ξ − ct− k, y) = φ̃c(t, ξ − k, y);

now, there exists q0 > 0, η > 0 such that −fu(x, y, s) ≥ q0 for all x ∈ R, all y ∈ T
N−1 and

all s ∈ (1 − η, 1); since there exists ξ0 large enough such that φ̃c(t, ξ − k, y) ≥ 1 − η for all
t > 0, all ξ ≥ ξ0 and all y ∈ T

N−1, we see that ũ(t, ξ, y) ≥ 1 − η for all t > 0, all ξ ≥ ξ0 and
all y ∈ T

N−1. The same property holds for uapp, hence we obtain the following, valid for all
(t, ξ, y):

b̃(t, ξ, y) ≥ 1 − η, and − fu(ξ − ct, y, b̃(t, ξ, y)) ≥ q0 > 0.

32
May 16 2010 5:49:18 EDT
Vers. 1 - Sub. to TRAN



Then the difference ṽ satisfies, for all t > 0, ξ ≥ ξ0, y ∈ T
N−1:

ṽt − div(A(ξ − ct, y)Dṽ) + (B(ξ − ct, y) + ce1).Dṽ − fu(ξ − ct, y, b̃(t, ξ, y))ṽ = g̃,

and ṽ(t, ξ0, y) → 0 as t→ +∞, and ṽ(0, ξ, y) = 0 as ξ ≥ ξ0, y ∈ T
N−1. It follows from (3.23)

that g̃(t, ξ, y) = O(1)‖Dm(t)‖L∞(R×TN−1); then there exists a super solution of this problem
of the form k(t), with k decaying sufficiently slowly to 0 as t → +∞ (k has to decay more
slowly than ‖Dm(t)‖L∞(R×TN−1)), hence Claim 3.15 is proved, and the proof of Theorem 1.3
is complete. �

3.3 Interpretation of Theorem 1.3

We have therefore an effective equation for the local shift, but the information provided so far
is rather scarse. In fact, one could very well ask about the point of developping the above
computations, all the more as the Berestycki-Hamel argument - see [4] - would probably
apply here with no real modifications. The extra information is provided by extracting from
Norris [22] the following facts. Let us consider the linear parabolic equation, with periodic
and without zero order coefficients

ut − div(a(X)Du) + b(X).Du = 0 (3.30)

where a and b are reasonably - for instance Hölder - smooth, with values from T
N into,

respectively, the set of definite positive matrices and R
N . There is - Krein-Rutman Theorem

plus some elementary functional analysis - a unique function e∗ ∈ C2(TN) solving

−div(aDe∗ + e∗b) = 0, e∗ > 0,

∫

TN

e∗ = 1 : (3.31)

indeed, denoting
La,bu : −div(a(X)Du) + b(X).Du,

we see that La,b(1) = 0, hence 0 is the principal eigenvalue of La,b; now denote L∗
a,b the

adjoint of La,b:
L∗
a,bu

∗ = −div(aDu∗ + u∗b);

consider µ∗ the principal eigenvalue of L∗
a,b, and e∗ an associated positive eigenfunction: since

µ∗〈1, e∗〉 = 〈1, L∗
a,be

∗〉 = 〈La,b1, e∗〉 = 0,

we obtain that µ∗ = 0, which implies the existence of e∗ satisfying (3.31).
Now set

b̄ =

∫

TN

(aDe∗ + e∗b) dX. (3.32)

Let π(t, x, y) be the fundamental solution of (3.30) - here and only here, we denote by x and
y the generic variables of R

N , in order to distinguish them from the generic variable of T
N .

Then

Theorem 3.16 [22] There is a constant, symmetric definite positive matrix ā, and C > 0
such that

e−C(V E+
√
E))Gā(t, x+ b̄t− y) ≤ π(t, x, y) ≤ CEN/2eCV EGā(t, x+ b̄t− y)

with the following notations:

• Gā is the image of the usual Gaussian by ā: Gā(t, x) =
1√

detā(4πt)N/2
e−

āx.x
4t ,

• V and E are corrective factors V = inf(1,
|y − x− b̄t|

t
), and E = 1 +

|y − x− b̄t|2
t

.
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In other words, the fundamental solution of (3.30), shifted by an amount b̄t, has a purely
diffusive behavior - it is quasi-Gaussian. This theorem does not imply Proposition 3.3, but
it makes it much clearer. Indeed, let us apply it and compute the effective shift b̄ related to
the parabolic equation (3.25) with periodic coefficients satisfied by the Hopf-Cole transform
s of the approximate shift m. For this, come back to our usual notations, and set, for
p(x, y) ∈ C2(R × T

N−1):

Lcp := −div(ADp) + (B − 2A
Dψrc
ψrc

− 2r−(c)Ae1).Dp. (3.33)

Let p∗c solve
L∗
cp

∗
c = 0, p∗c > 0. (3.34)

We are going to find an expression of p∗c involving ψrc , expression that will be useful to
compute the effective shift b̄. Consider the operator L(ψrc ) defined by

L(ψrc )q := ψrcLc(
q

ψrc
). (3.35)

Some computations lead to

ψrcLc(
q

ψrc
) = −div(ADq)+(B−2r−(c)Ae1).Dq−

q

ψrc

(
−div(ADψrc)+(B−2r−(c)Ae1).Dψrc

)
.

Remember that ψrc is an eigenfunction of L(r−(c)): L(r−(c))ψrc = µ1(r−(c))ψrc ; the defini-
tion (3.3) of L(r−(c)) gives us that

ψrcLc(
q

ψrc
) = −div(ADq) + (B − 2r−(c)Ae1).Dq

+ q
(
−r−(c)2Ae1.e1 − r−(c)div(Ae1) + r−(c)B1 − fu(X, 0) − µ1(r−(c))

)
,

hence we obtain that

L(ψrc )q = ψrcLc(
q

ψrc
) = (L(r−(c)) − µ1(r−(c)))q.

This implies that 0 is the principal eigenvalue of L(ψrc ), and ψrc is an associated eigenfunction.
The adjoint operator (L(ψrc ))∗ is given by

(L(ψrc ))∗q∗ =
1

ψrc
L∗
c(ψrcq

∗).

Its principal eigenvalue is also 0; denote ψ∗
rc an associated (positive) eigenfunction:

(L(ψrc ))∗ψ∗
rc = 0, ψ∗

rc > 0.

Then we obtain that
L∗
c(ψrcψ

∗
rc) = ψrc(L

(ψrc ))∗ψ∗
rc = 0.

Since ψrcψ
∗
rc is positive, up to a suitable normalization we have

p∗c = ψrcψ
∗
rc .
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Now call b̄1 the first component of the effective drift b̄ given by (3.32), we have:

b̄1 =

∫

TN

(
AD(ψrcψ

∗
rc).e1 + ψrcψ

∗
rc(B1 − 2r−(c)Ae1.e1 − 2

ADψrc
ψrc

.e1)

)
dX

=

∫

TN

(
−2ψ∗

rcAe1.Dψrc − ψrcψ
∗
rc(−B1 + 2r−(c)Ae1.e1 + div(Ae1))

)
dX

This seemingly hopeless expression has an interpretation. Indeed, differentiating the equality

L(λ)ψλ = µ1(λ)ψλ

with respect to λ (recall that we have all the right to do it because λ 7→ µ1(λ) is real
analytic, ψλ is a simple eigenfunction, hence an analytic function of λ), multiplying by ψ∗

λ

and integrating over T
N we obtain, using (3.2) and (3.6):

b̄1 =
dµ1

dλ
(r−(c)) = V∗(c) − c.

And we know that V∗(c) > 0.
Conclusion: In the reference frame of the pulsating wave - i.e. with horizontal drift −ce1,
the dynamics of the local shift m(t, x, y) can be decomposed into

1. an effective drift with horizontal component V∗(c),

2. the dynamics of a pure diffusion equation.

Moreover, exactly as in Section 2, there is a nonconvergence result.

Proposition 3.17 Assume that the initial shift m0 is such that S0 = er−(c)m0 oscillates
slowly at −∞:

∀ε > 0,∃A > 0,∃η > 0,∀z, z′ ≤ −A and 1 − η ≤ z

z′
≤ 1 + η =⇒ |S0(z, y) − S0(z

′, y)|ε.

Then the Hopf-Cole transform of the approximate shift m satisfies s(t, 0) = S0(−V∗(c)t, y)+
o(1).

The proof consists in rewriting that of Proposition 2.7, the Gaussian heat kernel being
replaced by the lower or upper estimates provided by Theorem 3.16.

4 The general model (1.1) in one space dimension:

proof of Theorem 1.4

We are not going to recall the preliminary steps: the whole point is to compute, as explicitely
as possible, the solution of (3.21), that is now:

mt −mxx − 2(
ψ′
c

ψc
+ rc)mx − crcm

2
x, φc(m0(x), x) = u0(x), (4.1)

where we have denoted, for short: rc := r−(c) and ψrc = ψ(.; r−(c)). We consider the
Hopf-Cole transforms of (4.1):

s(t, x) = ecrcm(t,x), q(t, x) = ψrc(x)s(t, x) = ψrc(x)e
crcm(t,x), .
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With the notation a(x) = crc − rc
2 − fu(x, 0), since −ψ′′

rc − 2rcψ
′
rc + a(x)ψrc = 0, we get the

following linear equation on q:
{
qt + Ls := qt − qxx − 2rcqx + a(x)q = 0,

q(0, x) = q0(x) := ψrc(x)e
crcm0(x)

(4.2)

and q0(x) is bounded. So, instructed by the preceding sections, everything amounts to
computing e−tLq0, with q0 bounded and uniformly continuous.

Let us start by recalling that L is a sectorial operator in BUC(R) [29]. Thus −L generates
an analytic semigroup [16], and

q(t, x) = e−tLq0(x) =
1

2iπ

∫

γ

etλ(λI + L)−1q0(x)dλ, (4.3)

where γ is a wedge-like path bypassing a sector Σ containing the spectrum of −L (see figure
1).

Figure 1: Integral path γ

Our main goal is to prove that ‖mx(t, ·)‖∞ = O(t−1/2). To obtain such an estimate using
the expression of q obtained in (4.3), first we are going to study the spectrum of L: we will
prove - this is not completely obvious - that if λ ∈ σ(L), then λ = 0 or ℜe(λ) > 0. This
will allow us to to deform the path γ into the axis iR, and then Fourier analysis will lead us
to a Gaussian integral. Then we estimate the Gaussian integral, this last part is - although
quite instructive about the heat kernel structure of e−tL - tedious and can be skipped at first
glance.

4.1 Preliminaries: basic Floquet theory

If λI + L is invertible, then v(x, λ) := (λI + L)−1q0(x) is a bounded function of x, that
satisfies the linear differential equation of the second order

−v′′ − 2rcv
′ + a(x)v + λu = q0. (4.4)

So we are so led to study the bounded solutions of (4.4) Equation (4.4) can be written under
the form

V ′ = Aλ(x)V +G(x) =

(
0 1

a(x) + λ −2rc

)(
v(x)
v′(x)

)
+

(
0

−q0(x)

)
. (4.5)

Since Aλ(x) is 1-periodic, Floquet theory shows that
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• the resolvent of the system can be written Sλ(x)e
xFλ where Sλ is 1-periodic;

• since Aλ depends continuously on λ, we have the same property for the resolvent Rλ,
and the matrix Fλ can also be chosen so that it depends continuously on λ (this remark
will be useful later; even if it is well known, we give an elementary proof of it in the
Appendix (section 5), see Lemma 5.1).

The Floquet exponents µ1(λ), µ2(λ) are the eigenvalues of Fλ; since Fλ depends continuously
on λ, they also depend continuously on λ; and when µ1(λ) 6= µ2(λ), a basis of C

2 composed
by eigenvectors of Fλ generates a fundamental system of (4.5) (with G = 0) of the form
(Vi(λ, ·) = (vi(λ, ·), v′i(λ, ·)))i∈{1,2} where the vi(λ, ·) are solutions of

−v′′ − 2rcv
′ + a(x)v + λv = 0 (4.6)

and are of the form
vi(λ, x) = wi(λ, x)e

µi(λ)x, (4.7)

where the wi(λ, ·) are 1-periodic functions. Hence the solutions of (4.6) are of the form

v(x) = C1w1(λ, x)e
µ1(λ)x + C2w2(λ, x)e

µ2(λ)x. (4.8)

At last, using the Wronskian, we see that

ℜe(µ1(λ)) + ℜe(µ2(λ)) = −2rc.

This basic background implies:

Lemma 4.1 Assume that
ℜe(µ1(λ))ℜe(µ2(λ)) < 0.

Then, given q0 ∈ BUC(R), the second order differential equation (4.4) has one and only one
bounded solution.

We leave the proof of Lemma 4.1 to the reader. It follows writing the solutions v of (4.4)
using the basis v1, v2 of the homogeneous equation and the method of variation of the
constants.

Now, we need to know a precise localization of the spectrum of L; this is related to the
values of λ for which the assumption ℜe(µ1(λ))ℜe(µ2(λ)) < 0 will be satisfied, which will
help us to find an integral formula for v(λ, ·) = (λI + L)−1q0.

4.2 The spectrum of L in BUC(R)

Since L is sectorial in BUC(R) - see [29], we know that there is some a ∈ R and ϕ ∈ (0, π
2
)

such that the sector Sa,ϕ = {λ, ϕ ≤ |arg (λ−a)| ≤ π, λ 6= a} is in the resolvent set of A, and
‖(λI − L)‖ ≤ M

|λ−a| for all λ ∈ Sa,ϕ. There is nothing really original in this section, see [28],

[5], [11]. However the chain of arguments is, once again, nontrivial. We are going to localize
more precisely the spectrum of L, and the goal of this subsection is to prove the following

Proposition 4.2 Let λ ∈ σ(−L). Then λ = 0 or ℜe(λ) < 0.

First, 0 is eigenvalue of L. Indeed, ψrc satisfies Lψrc = 0. Another independent solution of
the equation

Lv = −v′′ − 2rcv
′ + a(x)v = 0

is given by

ψrc(x)

∫ +∞

x

e−2rcy

ψ2
rc(y)

dy.

The proof is now divided in several steps.
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4.2.1 A link between the eigenvalues of L and the Floquet exponents

As almost noted before, if ℜe(µ1(λ))ℜe(µ2(λ)) < 0, then λ cannot be an eigenvalue of −L.
Indeed, if (λI +L)v = 0, then v is given by (4.8), and the boundedness of v implies that the
two constants Ci are equal to 0.

Hence the condition ℜe(µ1(λ))ℜe(µ2(λ)) < 0 is important to localize the spectrum of
−L. A first step to know where the condition ℜe(µ1(λ))ℜe(µ2(λ)) < 0 is satisfied is the
following

Lemma 4.3 For all λ 6= 0 such that ℜeλ ≥ 0, we have: ℜeµi(λ) 6= 0.

This will not yet allow us to know if ℜe(µ1(λ))ℜe(µ2(λ)) < 0 for all λ 6= 0 such that
ℜeλ ≥ 0, but then it will be sufficient to know that ℜe(µ1(λ))ℜe(µ2(λ)) < 0 at just some
specific value of λ.

Proof of Lemma 4.3. It follows the scheme of [5]. We argue by contradiction, assuming
that there exists such λ̄ such that ℜeµ1(λ̄) = 0. So the function U1(λ̄, x) = w1(λ̄, x)e

µ1(λ̄)x is
bounded and satisfies the equation Lu+λ̄u = 0.We assume in the sequel that ℜeU1(λ̄, x) 6= 0;
otherwise we replace U1 by iU1. Consider the Cauchy problem

{
vt + Lv = 0,

v(0, x) = ℜeU1(λ̄, x).
(4.9)

The solution of this equation is v(t, x) = ℜe(eλ̄tU1(λ̄, x)). Since U1(λ̄, x) is bounded and
ψrc > 0, there exists C > 0 such that

∀x ∈ R, −Cψrc(x) ≤ ℜeU1(λ̄, x) ≤ Cψrc(x).

We distinguish then the two cases ℜeλ̄ > 0 and ℜeλ̄ = 0.
The case ℜeλ̄ > 0: note that ψrc is a stationary solution of vt + Lv = 0. Hence, using

the maximum principle, we have that

∀t ≥ 0,∀x ∈ R, −Cψrc(x) ≤ ℜe(eλ̄tU1(λ̄, x)) ≤ Cψrc(x).

Since ℜeλ̄ > 0, we get a contradiction by sending t→ +∞.
The case ℜeλ̄ = 0: we set λ̄ = iσ̄ with σ̄ 6= 0. We assume, up to replace U1(λ̄, x) by

−U1(λ̄, x), that
ζ0 := inf{ζ > 0, ℜeU1(λ̄, ·) ≤ ζψrc} > 0.

We distinguish another two cases:
(ii’) Assume that here exists x0 such that ℜeU1(λ̄, x0) = ζ0ψrc(x0). Then the strong

maximum principle implies that

ℜe(eiσ̄tU1(λ̄, x)) = ζ0ψrc(x).

Then, by denoting U1 = u+ iv, we have in one hand

ℜe(eiσ̄tU1(λ̄, x)) = ℜe((u+ iv)(cos(σ̄t) + i sin(σ̄t)) = u cos(σ̄t) − v sin(σ̄t).

On the other hand, we have the equality at t = 0

ℜe(U1(λ̄, x)) = u = ζ0ψrc(x).

38
May 16 2010 5:49:18 EDT
Vers. 1 - Sub. to TRAN



We deduce that for all t > 0, we have

u cos(σ̄t) − v sin(σ̄t) = u;

this means that

u
cos(σ̄t) − 1

t
= v

sin(σ̄t)

t
.

By passing to the limit t→ 0, we get σ̄v = 0, so v = u = 0, i.e. U1 = 0, which is absurd.
(ii”) There exists |xn| → +∞ such that ℜeU1(λ̄, xn) − ζ0ψrc(xn) → 0 as n → +∞. We

bring back this case to the previous one as follows. We consider the Cauchy problem
{
vnt − vnxx − 2rcv

n
x + an(x)v

n = 0,
vn(0, x) = ℜeun(x),

with an(x) = a(x + xn) et un(x) = U1(λ̄, x + xn). The solution is vn(t, x) = ℜe(eλ̄tun(x)).
Since the sequence of functions an is bounded in C1, we can extract from Ascoli theorem and
the diagonal extraction process a subsequence which converges uniformly on any compact.
We denote a∞ the limit function which is 1-periodic. We proceed in the same way for the
sequence un(x) which converges to u∞(x) and ψrc(x+ xn) which converges to ψ∞(x). From
parabolic regularity, we can extract a subsequence of vn which converges locally in C1,2 to
the solution v of the equation

{
vt − vxx − 2rcvx + a∞(x)v = 0,
v(0, x) = ℜeu∞(x),

which is v(t, x) = ℜe(eλ̄tu∞(x)). Moreover, since ℜeU1(λ̄, xn) − ζ0ψrc(xn) → 0, we get that
ℜeu∞(0) = ζ0ψ∞(0). We are so brought back to the case (ii’).

Hence in any case we get a contradiction, which implies that for all λ 6= 0 such that
ℜeλ ≥ 0, we have: ℜeµi(λ) 6= 0. Lemma 4.3 is proved. �

Now it remains to exhibit at least one value of λ for which ℜe(µ1(λ))ℜe(µ2(λ)) < 0: this
can be done studying the spectrum of L near the eigenvalue 0:

4.2.2 The spectrum of L near 0

First we use the fact that we know the eigenfunctions of L associated to the eigenvalue 0 to
determine a basis of solutions of (4.6) for λ close to 0:

Lemma 4.4 For λ close to 0, equation (4.6) has a solution u1(λ, x) which has the following
(uniform in x) asymptotic expansion as λ→ 0:

u1(λ, x) = ψrc(x)e
∫ x

0 (λϕ1−λ2ϕ2+O(λ3)) (4.10)

where ϕ1 and ϕ2 are the following positive and 1-periodic functions:

ϕ1(x) =

∫ x

−∞

ψ2
rc(y)

ψ2
rc(x)

e−2rc(x−y)dy =

∫ 0

−∞

ψ2
rc(z + x)

ψ2
rc(x)

e2rczdz, (4.11)

ϕ2(x) =

∫ x

−∞

ψ2
rc(y)

ψ2
rc(x)

ϕ2
1(y)e

−2rc(x−y)dy =

∫ 0

−∞

ψ2
rc(z + x)

ψ2
rc(x)

ϕ2
1(z + x)e2rczdz. (4.12)

Another element of the fundamental system is given by

u2(λ, x) = u1(λ, x)

∫ +∞

x

e−2rcy

u2
1(λ, y)

dy. (4.13)
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The proof is classical and will be omitted: look for u1(λ, x) under the form u1(λ, x) =
ψrc(x)e

ϕ(λ,x) with ϕ close to 0, then write the differential problem satisfied by ϕ, apply
the Banach fixed point theorem to solve it, and finally apply the wronskian identity to get
u2(λ, .).

This allows us to localize the spectrum of L:

Lemma 4.5 For all λ 6= 0 close enough to 0, and such that ℜeλ ≥ 0, we have
ℜe(µ1(λ))ℜe(µ2(λ)) < 0.

Proof of Lemma 4.5. We have already several informations: the real parts ℜe(µi(λ)) are
never equal to 0 in {λ 6= 0,ℜeλ ≥ 0}; moreover their sum is constant equal to −2rc, hence
negative. Therefore the real parts ℜe(µi(λ)) remain either positive or negative, but cannot
be both positive. Hence, there are only two possible cases:

• either both of them are negative,

• or one of them is positive and the other is negative.

Lemma 4.5 states that we are in the second case. This follows from the asymptotic de-
velopment obtained in Lemma 4.4: indeed, if both real parts ℜe(µi(λ)) are negative, them
it follows from (4.8) that all the solutions of (4.6), in particular u1, go to 0 as x → +∞.
However, it follows from (4.10) that

|u1(λ, x)| = ψrc(x) exp e
∫ x

0 ℜe(λϕ1−λ2ϕ2+O(λ3));

and if λ = λ1 + iλ2, we have

ℜe(λϕ1 − λ2ϕ2) = λ1ϕ1 + (λ2
2 − λ2

1)ϕ2;

hence, since ϕ1 and ϕ2 are positive and 1-periodic, if λ1 > 0 or if λ1 = 0 and λ2 6= 0, the
function ℜe(λϕ1−λ2ϕ2) is bounded from below by a positive constant if |λ| is small enough,
hence the same occurs for ℜe(λϕ1 − λ2ϕ2 + O(λ3)), and this implies that |u1(λ, x)| → +∞
as x → +∞, in contradiction with the assumption that the real parts ℜe(µi(λ)) are both
negative. Hence we are in the second case. �

4.2.3 Conclusion: localization of the spectrum and integral expression for (λI+
L)−1q0

Now, if Σ is the sector bypassing σ(−L), we wish to prove the

Lemma 4.6 In the two cases: (i) λ 6= 0 such that ℜe(λ) ≥ 0, (ii) ℜe(λ) < 0 and λ /∈ Σ,
we have:

ℜe(µ1(λ))ℜe(µ2(λ)) < 0.

As a consequence, we immediately obtain

Corollary 4.7 Given q0 ∈ BUC(R), there exists a unique bounded solution of (4.4), more-
over, if additionally λ is close enough to 0, it is given by the relation

v(λ, x) = u1(λ, x)

∫ +∞

x

u2(λ, y)q0(y)e
2rcydy + u2(λ, x)

∫ x

−∞
u1(λ, y)q0(y)e

2rcydy, (4.14)

where u1 and u2 are given by (4.10) and (4.13).
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Note that the formula (4.14) is obtained using the basis u1(λ, x) and u2(λ, x) given by Lemma
4.4, and the method of variation of the constants. Hence it remains to prove Lemma 4.6.

Proof of Lemma 4.6. Combining Lemmas 4.3 and 4.5, we already know that
ℜe(µ1(λ))ℜe(µ2(λ)) < 0 for all λ 6= 0 such that ℜe(λ) ≥ 0. Now we want to prove
that this property holds also for all λ /∈ Σ such that ℜe(λ) < 0. We can assume that
ℜe(µ1) is positive on {ℜeλ > 0}, and then it is sufficient to prove that it remains positive
on {λ /∈ Σ,ℜe(λ) < 0}, since then ℜe(µ2(λ)) = −2rc − ℜe(µ1(λ)) < 0. By contradiction,
assume that there is some λ1 /∈ Σ, ℜeλ1 < 0, such that ℜe(µ1(λ1)) ≤ 0: then

• if ℜe(µ1(λ1)) = 0, then there is some nonzero bounded solution of (λ1I + L)v = 0
(remember (4.7)), which implies that λ1 is an eigenvalue of −L, which is contradiction
with the assumption λ1 /∈ Σ;

• if ℜe(µ1(λ1)) < 0: choose λ2 := iℑmλ1; then ℜe(µ1(λ2)) > 0, and since ℜe(µ1) is
continuous on λ, ℜe(µ1) has to vanish somewhere on [λ1, λ2], which is impossible, as
we have seen before.

Hence, ℜe(µ1(λ)) > 0 for all λ /∈ Σ, ℜe(λ) < 0, and consequently ℜe(µ2(λ)) < −2rc. �

4.3 Application: another integral formula for s

Remember that the Hopf-Cole transform q of the shift m is given by (4.3). We are going to
transform this formula in a more useful form:

Lemma 4.8 Denote
γε := (−i∞,−iε] ∪ Cε ∪ [iε, i∞),

where Cε := {z = εeiθ, θ ∈ [−π
2
, π

2
]}. Then

q(t, x) =
1

2iπ

∫

γε

etλ(λI + L)−1q0 dλ. (4.15)

Proof of Lemma 4.8. Let us denote Σ′ := {λ 6= 0,ℜeλ ≥ 0}∪{λ /∈ Σ,ℜeλ < 0}. We have
seen that λI + L is invertible for all λ ∈ Σ′. Moreover, ℜeµ2(λ) < −2rc < 0 < ℜeµ1(λ) for
all λ ∈ Σ′; since µ1 and µ2 are continuous, there exists an open neighborhood Σ′′ of Σ′ (hence
that contains iR∗) such that ℜeµ2(λ) < −2rc < 0 < ℜeµ1(λ) remains true for all λ ∈ Σ′′,
which implies that λI +L remains invertible in Σ′′, hence that (λI +L)−1 is holomorphic in
Σ′′.

This allows us to obtain another expression of the Hopf-Cole transform q of the shift m:
indeed, consider (see figure 2):

γδ,ε := D−
δ ∪ [−iδ,−iε] ∪ Cε ∪ [iε, iδ] ∪D+

δ ,

with
D−
δ = {−iδ + t(−1 − νi), t ≥ 0}, D+

δ = {iδ + t(−1 + νi), t ≥ 0};
the value ν > 0 is such that this path bypass the spectrum and ε is a quantity intended to
tend to 0.

Then γδ,ε is homotopic to the path γ in Σ′′, and the Cauchy theorem allows us to see
that

q(t, x) =
1

2iπ

∫

γ

etλ(λI + L)−1q0 dλ =
1

2iπ

∫

γδ,ε

etλ(λI + L)−1q0 dλ.
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Figure 2: Integration contour γδ,ε

But now, given R > δ, denote zR the affix of the intersection between the horizontal line
passing through iR and D+

δ : since L is sectorial, we have

‖(λI + L)−1q0‖L∞(R) ≤
M

|λ− a|‖q0‖L∞(R) ≤
M

R
‖q0‖L∞(R);

hence ∫

[iR,zR]

etλ(λI + L)−1q0 dλ = O(δ) as R → +∞.

The same property holds for D−
δ . Sending δ to 0, the Cauchy theorem implies (4.15). �

4.4 Approximation of the Hopf-Cole transform of the shift

4.4.1 A somewhat simplified expression of v(λ, x) and q.

In order to study the asymptotic properties of the expression of q given by (4.15), we are
going to simplify as much as possible the integrand etλv(λ, x). Combining the expression
(4.14) of (λI + L)−1q0, and the relation (4.13) between u1 and u2, we obtain that, for |λ|
small enough,

v(λ, x) = u1(λ, x)

(∫ +∞

y=x

∫ +∞

z=y

+

∫ x

y=−∞

∫ +∞

z=x

)
u1(λ, y)

u2
1(λ, z)

q0(y)e
2rc(y−z)dzdy. (4.16)

Now, since for λ close to 0, we have

u1(λ, x) = ψrc(x)e
∫ x

0 (λϕ1−λ2ϕ2+O(λ3)),

we can “approximate” u1 by its truncated expression

u1,tc(λ, x) = ψrc(x)e
∫ x

0 (λϕ1−λ2ϕ2). (4.17)

This engages us to consider the following quantity, that we hope will be a good approximation
of v(x, λ): for all x ∈ R, all λ 6= 0, ℜeλ ≥ 0,

vtc(λ, x) := u1,tc(λ, x)

(∫ +∞

y=x

∫ +∞

z=y

+

∫ x

y=−∞

∫ +∞

z=x

)
u1,tc(λ, y)

u2
1,tc(λ, z)

q0(y)e
2rc(y−z)dzdy, (4.18)
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and the related quantities

qappε (t, x) :=
1

2iπ

∫

γε

etλvtc(λ, x) dλ, (4.19)

and

qapp(t, x) := qapp0 (t, x) =
1

2iπ

∫

iR

etλvtc(λ, x) dλ =
1

2π

∫ +∞

−∞
eitωvtc(iω, x) dω (4.20)

Our hope is that

• vtc will be a good approximation of v = (λI + L)−1q0 for λ close to 0,

• the behavior of q is governed by the behavior of its integrand etλ(λI + L)−1q0 near
λ = 0, and hence qapp will be a good approximation of q.

Then we will study qapp, in order to know some asymptotic properties of q.
First, we give the complete expression of vtc: introducing the functions A1(x, y, z) and

A2(x, y, z) defined by

A1(x, y, z) =

∫ z

x

ϕ1 +

∫ z

y

ϕ1, A2(x, y, z) =

∫ z

x

ϕ2 +

∫ z

y

ϕ2,

we derive the following expression:

vtc(λ, x) = ψrc(x)

(∫ +∞

y=x

∫ +∞

z=y

+

∫ x

y=−∞

∫ +∞

z=x

)
q0(y)ψrc(y)

ψ2
rc(z)

e−λA1+λ2A2e2rc(y−z)dzdy. (4.21)

4.4.2 Convergence results.

For integrability reasons, we are going to consider the difference between the second time
derivatives of q and qapp, and we are going to prove the following

Lemma 4.9

‖qtt(t, ·) − qapptt (t, ·)‖L∞(R) = O(
1

t
).

This will be sufficient to our purposes.
Proof of Lemma 4.9. It follows from the following claims:

• Claim 4.10

qtt(t, x) =
1

2iπ

∫

γδ,ε

λ2etλ(λI + L)−1q0 dλ =
1

2iπ

∫ iδ

−iδ
λ2etλ(λI + L)−1q0 dλ+O(

1

t
);

• Claim 4.11

qapptt (t, x) =
1

2iπ

∫

iR

λ2etλvtc(λ, x) dλ =
1

2iπ

∫ iδ

−iδ
λ2etλvtc(λ, x) dλ+O(

1

t
);

• Claim 4.12

1

2iπ

∫ iδ

−iδ
λ2etλ(λI + L)−1q0 dλ− 1

2iπ

∫ iδ

−iδ
λ2etλvtc(λ, x) dλ = O(

1

t
).

.
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Let us give the ideas of the proof of these claims:
To prove Claim 4.10, first we decompose the integral on γδ,ε in three integrals: D−

δ , D+
δ

and [−iδ,−iε]∪Cε∪ [iε, iδ]. It is easy to see that the integrals on D−
δ and D+

δ are of the order

O(1
t
); concerning the last term, the presence of λ2 makes the integral

∫ iδ
−iδ λ

2etλ(λI+L)−1q0 dλ
convergent, and

∫

[−iδ,−iε]∪Cε∪[iε,iδ]

λ2etλ(λI + L)−1q0 dλ→
∫

[−iδ,iδ]
λ2etλ(λI + L)−1q0 dλ as ε→ 0,

which implies that Claim 4.10 is true.
To prove Claim 4.11, we first note that since ψrc , ϕ1 and ϕ2 are positive and 1-periodic,

there exist positive constants a0 < b0 such that

a0(2z − y − x) ≤ A1(x, y, z), A2(x, y, z) ≤ b0(2z − y − x). (4.22)

This implies that λ2etλvtc(λ, x) is bounded and integrable on iR, and d
dλ

(λ2vtc(λ, x)) ∈
L1((−i∞,−iδ) ∪ (iδ,+i∞)), hence an integration by parts (as for the Riemann-Lebesgue
lemma) shows that Claim 4.11 is true.

To prove Claim 4.12, we estimate the difference v(λ, x) − vtc(λ, x), and we immediately
see that, near λ = 0 we have v(λ, x) − vtc(λ, x) = O( 1

λ
). Then, as previously, an integration

by parts (thanks to the additional λ2) proves that Claim 4.12 is true.
Combining Claims 4.10-4.12, we obviously obtain the validity of Lemma 4.9. �

4.5 Study of qapp

tt

4.5.1 New expression of qapptt

We begin by proving the following

Claim 4.13

qapptt (t, x) =
−1

2π

∫

R

ω2eitωvtc(iω, x) dω

=
ψrc(x)√

2π

(∫ +∞

y=x

∫ +∞

z=y

+

∫ x

y=−∞

∫ +∞

z=x

)
q0(y)ψrc(y)

ψ2
rc(z)

d2

dt2

( e−
(t−A1(x,y,z))2

4A2(x,y,z)

√
2A2(x, y, z)

)
e2rc(y−z)dzdy.

(4.23)

The proof follows from the formula of qapptt given in Claim 4.11, the formula of vtc given in
(4.21), and the Fubini theorem: indeed, as it can be easily checked, the function

(ω, y, z) 7→ ω2 q0(y)ψrc(y)

ψ2
rc(z)

e−iωA1−ω2A2e2rc(y−z)eiωt

is integrable on the corresponding domains, hence we can integrate first in ω, to obtain that

qapptt (t, x) =
ψrc(x)√

2π

(∫ +∞

y=x

∫ +∞

z=y

+

∫ x

y=−∞

∫ +∞

z=x

)

q0(y)ψrc(y)

ψ2
rc(z)

( 1√
2π

∫

R

−ω2eiωte−iωA1−ω2A2 dω
)
e2rc(y−z) dzdy.
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Inside the parenthesis appears a well-known Fourier inverse since, with the convention

Fg(ω) =
1√
2π

∫

R

e−iωtg(t)dω, we have

F
(
e−

(t−a)2

4b

√
2b

)
(ω) = e−iaω−bω

2

, and F
(
d2

dt2
e−

(t−a)2

4b

√
2b

)
(ω) = −ω2e−iaω−bω

2

,

which implies (4.23) and Claim 4.13. �

Claim 4.13 engages us to consider the function

W (t, x) =
ψrc(x)√

2π

(∫ +∞

y=x

∫ +∞

z=y

+

∫ x

y=−∞

∫ +∞

z=x

)
q0(y)ψrc(y)

ψ2
rc(z)

e
− (t−A1(x,y,z))2

4A2(x,y,z)

√
2A2(x, y, z)

e2rc(y−z)dzdy :

(4.24)
combining Lemma 4.9 and Claim 4.13, we have

qtt = Wtt +O(
1

t
),

hence it remains to study Wtt. To estimate it, we split in the sequel W as

W (t, x) = W1(t, x) +W2(t, x),

with

W1(t, x) =
ψrc(x)√

2π

∫ +∞

y=x

∫ +∞

z=y

q0(y)ψrc(y)

ψ2
rc(z)

e
− (t−A1(x,y,z))2

4A2(x,y,z)

√
2A2(x, y, z)

e2rc(y−z)dzdy, (4.25)

and

W2(t, x) =
ψrc(x)√

2π

∫ x

y=−∞

∫ +∞

z=x

q0(y)ψrc(y)

ψ2
rc(z)

e
− (t−A1(x,y,z))2

4A2(x,y,z)

√
2A2(x, y, z)

e2rc(y−z)dzdy. (4.26)

The reason is that the two integrals behave differently for large time.

4.5.2 Large time behaviour of W1 and its time derivatives

To study W1, we make the change of variables z′ = z − y, y′ = y − x. We get therefore

W1(t, x) =
ψrc(x)√

2π

∫ +∞

0

∫ +∞

0

q0(x+ y)ψrc(x+ y)

ψ2
rc(x+ y + z)

e
− (t−Ã1(x,y,z))2

4Ã2(x,y,z)

√
2Ã2(x, y, z)

e−2rczdzdy,

with

Ã1(x, y, z) =

∫ x+y+z

x

ϕ1 +

∫ x+y+z

x+y

ϕ1, Ã2(x, y, z) =

∫ x+y+z

x

ϕ2 +

∫ x+y+z

x+y

ϕ2.

We make then another change of variables

Y = y, Z = Ã1(x, y, z) =

∫ x+y+z

x

ϕ1 +

∫ x+y+z

x+y

ϕ1.
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Note that Ã1 is increasing with respect to z. We choose then F a primitive of ϕ1 so that
Ã1(x, y, z) = 2F (x+ y + z) − F (x) − F (x+ y). Thus, we set

Z = 2F (x+ y + z) − F (x) − F (x+ y), z = F−1

(
1

2
(Z + F (x) + F (x+ y))

)
− x− y.

And so
dz

dZ
=

1

2ϕ1(F−1(Z/2 + (F (x) + F (x+ y))/2))
=

1

2ϕ1(x+ y + z)
. (4.27)

We get so

W1(t, x) =
ψrc(x)√

2π

∫ +∞

0

∫ +∞

Ã1(x,y,0)

q0(x+ y)ψrc(x+ y)

ψ2
rc(x+ y + Z)

e−2rcz

2ϕ1(x+ y + z)

√
Ã1

2Ã2

e
− Ã1

4Ã2

(t−Z)2

Z

√
Z

dydZ.

We denote then c̃(x, y, z) =
Ã1(x, y, z)

Ã2(x, y, z)
, which is a function bounded from below and from

above. By inverting the formula Ã1(x, y, 0) = F (x+ y)−F (x) into y = F−1(Z +F (x))− x,
we obtain

W1(t, x) =

∫ +∞

0

V1(x, Z)
e−c̃(x,y,Z)

(t−Z)2

4Z

√
Z

dZ,

with - keep in mind formula (4.27) -:

V1(x, Z) =
ψrc(x)

2
√
π

∫ F−1(Z+F (x))−x

0

q0(x+ y)ψrc(x+ y)

ψ2
rc(x+ y + z)

e−2rcz

2ϕ1(x+ y + z)

√
c̃dy.

Lemma 4.14 The function V1(x, Z) is bounded.

Proof. Since q0, ψrc , ϕ1 and c̃ are bounded, we have

V1(x, Z) ≤ C

∫ F−1(Z+F (x))−x

0

e2rc(x+y)e−2rcF−1( 1
2
(Z+F (x)+F (x+y)))dy.

The key point is that ϕ1 is 1-periodic and so we can write it as ϕ1(x) = M + ε(x), its
mean value plus a periodic function with zero mean value. Thus, F (x) = Mx + g(x), with

g bounded. By inverting, we get that F−1 can be written as F−1(y) =
y

M
+ h(y), with h

bounded. Note then that

F−1(Z + F (x)) − x = F−1(Z +Mx+ g(x)) − x

=
1

M
(Z +Mx+ g(x)) + h(Z +Mx+ g(x)) − x

=
Z

M
+H(x, Z),

with H bounded. In the same way, we have

F−1
(

1
2
(Z + F (x) + F (x+ y))

)
= F−1

(
Z
2

+ 1
2
(Mx+ g(x)) + 1

2
(M(x+ y) + g(x+ y))

)

= F−1
(
Z
2

+Mx+ M
2
y + 1

2
(g(x) + g(x+ y))

)

= 1
M

(
Z
2

+Mx+ M
2
y + 1

2
(g(x) + g(x+ y))

)

+h
(
Z
2

+Mx+ M
2
y + 1

2
(g(x) + g(x+ y))

)
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So,

F−1

(
1

2
(Z + F (x) + F (x+ y))

)
=

Z

2M
+ x+

y

2
+G(x, y, Z),

with G bounded. Thus,

e2rc(x+y)e−2rcF−1( 1
2
(Z+F (x)+F (x+y))) = ercye−rcZ/Me−2rcG(x,y,Z) ≤ Cercye−rcZ/M .

Finally, V1(x, Z) ≤ Ce−rcZ/M
∫ Z/M+H(x,Z)

0

ercydy = O(1), so V1 is bounded. �

Corollary 4.15 The function W1 is bounded. Moreover, as t→ +∞, we have ∂tW1(t, x) =

O

(
1√
t

)
and ∂ttW1(t, x) = O

(
1

t

)
.

Proof. Since V1 is bounded and c̃ ≥ m > 0, we have

|W1(t, x)| ≤ C

∫ +∞

0

e−m
(t−Z)2

4Z

√
Z

dZ.

We deduce that the function W1 is bounded from Lemma 5.2, that we also use for the time
derivatives. �

4.5.3 Large time behaviour of W2 and its time derivatives

To study W2, we make the change of variables z′ = z − x, y′ = y − x :

W2(t, x) =
ψrc(x)√

2π

∫ 0

−∞

∫ +∞

0

q0(x+ y)ψrc(x+ y)

ψ2
rc(x+ z)

e
− (t−A1(x,y,z))2

4A2(x,y,z)

√
2A2(x, y, z)

e2rc(y−z)dydz,

with

A1(x, y, z) =

∫ x+z

x

ϕ1 +

∫ x+z

x+y

ϕ1, A2(x, y, z) =

∫ x+z

x

ϕ2 +

∫ x+z

x+y

ϕ2.

We make then another change of variables: Y = y, Z = A1(x, y, z). Using the primitive F
of ϕ1, we have A1(x, y, z) = 2F (x+ z) − F (x) − F (x+ y). We set

Z = 2F (x+ z) − F (x) − F (x+ y), z = F−1

(
1

2
(Z + F (x) + F (x+ y))

)
− x.

We have
dz

dZ
=

1

2ϕ1(F−1(Z/2 + (F (x) + F (x+ y))/2))
=

1

2ϕ1(x+ z)
. (4.28)

We get therefore:

W2(t, x) =
ψrc(x)√

2π

∫ 0

−∞

∫ +∞

A1(x,y,0)

q0(x+ y)ψrc(x+ y)

ψ2
rc(x+ z)

e2rc(y−z)

2ϕ1(x+ z)

√
A1

2A2

e
− A1

4A2

(t−Z)2

Z

√
Z

dydZ.

We denote then c(x, y, z) =
A1(x, y, z)

A2(x, y, z)
, which is bounded from below and from above.

Thanks to the Fubini Theorem, we write W2 as

W2(t, x) =

∫ +∞

0

V2(x, Z)
e−c(x,y,Z)

(t−Z)2

4Z

√
Z

dZ,
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with

V2(x, Z) =
ψrc(x)

2
√
π

∫ 0

F−1(F (x)−Z)−x

q0(x+ y)ψrc(x+ y)

φ2
c(x+ z)

e2rc(x+y)e−2rc(y−z)

2ϕ1(x+ z)

√
cdy.

Lemma 4.16 There exist C,α > 0 such that |V2(x, Z)| ≤ Ce−aZ.

Proof. Since q0, ψrc , ϕ1 and c are bounded, we have

V2(x, Z) ≤ C

∫ 0

F−1(F (x)−Z)−x
e2rc(x+y)e−2rcF−1( 1

2
(Z+F (x)+F (x+y)))dy.

We take again the same notations than for the study of V1. Here, we get

F−1(F (x) − Z) − x =
Z

M
+H(x, Z),

F−1

(
1

2
(Z + F (x) + F (x+ y))

)
=

Z

2M
+ x+ y/2 +G(x, y, Z),

with H and G bounded. We have so

e2rc(x+y)e−2rcF−1( 1
2
(Z+F (x)+F (x+y))) ≤ Cercye−rcZ/M .

Finally,

V2(x, Z) ≤ Ce−rcZ/M
∫ 0

−Z/M+H(x,Z)

ercydy,

so
V2(x, Z) ≤ Ce−rcZ/M(1 − e−rcZ/MercH(x,Z)) ≤ Ce−rcZ/M .

�

Corollary 4.17 There exists C, a > 0 such that for t → +∞, W2(t, x), ∂tW2(t, x),
∂ttW2(t, x) = O(e−at).

Proof. From the previous lemma and that c ≥ m > 0, we have

|W2(t, x)| ≤ C

∫ +∞

0

e−aZ
e−m

(t−Z)2

4Z

√
Z

dZ.

The estimate on W2 result from Lemma 5.3, as well as the time derivatives. �

4.6 Proof of Theorem 1.4

Now we can conclude the proof of Theorem 1.4. The consequence of Corollaries 4.15 and
4.17 is that qtt = O(1

t
). Since q is bounded (by the weak maximum principle), we obtain

that qt = O( 1√
t
). This already implies that the approximate shift m satisfies: mt = O( 1√

t
),

mtt = O(1
t
). But we also need to estimate the spatial derivatives, and in particular mx. To

do this, we come back to

s(t, x) =
q(t, x)

ψrc(x)
= ecrcm(t,x),
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and we are going to prove that sx = O( 1√
t
). Indeed, we have seen that s is solution of

st − sxx − 2

(
rc +

ψ′
rc(x)

ψrc(x)

)
sx = 0.

Denote

krc(x) := 2

(
rc +

ψ′
rc(x)

ψrc(x)

)
, and Krc(x) :=

∫ x

0

krc(y) dy = 2rcx+ 2 lnψrc(x) − 2 lnψrc(0).

Then krc is a 1-periodic function, and sx is solution of the nonhomogeneus first order differ-
ential equation w′ + krc(x)w = st, hence

sx(t, x) =

(
sx(t, 0) +

∫ x

0

eKrc (y)st(t, y)dy

)
e−Krc (x).

Since from parabolic estimates x 7→ sx(t, ·) is bounded, then sx(t, x)e
Krc (x) → 0 as x→ −∞,

thus

sx(t, x) =

(∫ x

−∞
eKrc (y)st(t, y)dy

)
e−Krc (x).

We deduce that

|sx(t, x)| ≤
C√
t

(∫ x

−∞
eKrc (y)dy

)
e−Krc (x) ≤ C ′

√
t
,

which gives that sx = O( 1√
t
), and thus mx = O( 1√

t
). The equation on s gives also that

sxx = O( 1√
t
), hence mxx = O( 1√

t
). This completes the proof of Theorem 1.4 �

5 Appendix: technical lemmas

5.1 Continuity of the Floquet decomposition

Lemma 5.1 In the representation of the resolvent Rλ of the differential problem (4.5): Rλ =
Sλ(x)e

xFλ, the matrix Fλ can be chosen so that it depends continuously on λ.

Proof of Lemma 5.1. Fλ has to be chosen such that eFλ = Rλ(1), which depends continu-
ously on λ. We are going to prove that there exists such a matrix Fλ, depending continuously
on λ: first consider the eigenvalues k1(λ), k2(λ) of Rλ(1), and choose ε1(λ) an eigenvector
of norm equal to 1 associated to k1(λ); k1(λ) and k2(λ) are continuous with respect to λ, so
ε1(λ) can also be chosen continuously with respect to λ. Now consider ε2(λ) obtained from
the rotation of ε1(λ) by the rotation of angle π

2
, and write the matrix P (λ) = (ε1(λ) e2(λ)).

Then there is a continuous function b(λ) such that

P (λ)−1Rλ(1)P (λ) =

(
k1(λ) b(λ)

0 k2(λ)

)
= k1(λ)

(
1 b(λ)/k1(λ)
0 k2(λ)/k1(λ)

)
.

Hence, it is sufficient to prove that there exists Gλ depending continuously on λ such that

eGλ =

(
1 b(λ)/k1(λ)
0 k2(λ)/k1(λ)

)
=:

(
1 β(λ)
0 k(λ)

)
.

Searching Gλ under the form

Gλ =

(
0 γ1(λ)
0 γ2(λ)

)
,
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we immediately obtain that γ1(λ) and γ2(λ) have to satisfy

eγ2(λ) = k(λ), γ1(λ)
eγ2(λ) − 1

γ2(λ)
= β(λ);

since k(λ) 6= 0 and the function z 7→ ez−1
z

has no root, it is clear that there exists continuous
functions γ1 and γ2 satisfying these conditions. Hence Lemma 5.1 is proved. �

5.2 Estimates of the Gaussian integrals (useful for W1 and W2)

The study of the function W relies on elementary, but tedious integral estimates. Lemma 5.2
below is related to W1 (defined by (4.25)), and Lemma 5.3 below is related to the function
W2 (defined by (4.26)).

Lemma 5.2 Let a > 0, b > 0. We have the following estimates :

I1(t) :=

∫ +∞

0

e−a
(t−x)2

x

√
x

dx is bounded, I2(t) :=

∫ +∞

0

|t− x|e
−a (t−x)2

x

x3/2
dx = O

(
1√
t

)
,

I3(t) :=

∫ +∞

0

((t− x)2 + x)
e−a

(t−x)2

x

x5/2
dx = O

(
1

t

)
.

Remark The first integral is even constant and equal to

√
π

a
.

Proof of Lemma 5.2. The idea to prove these estimates is to cut R
+ as [0, t]∪ [t,+∞[ and

to make the change of variables u =
(t− x)2

2x
. On the domain [0, t] the change of variables is

such that

x = t+ u−
√
u2 + 2ut, dx =

(
t+ u−

√
u2 + 2ut√

u2 + 2ut

)
du.

On [t,+∞], the change of variables is

x = t+ u+
√
u2 + 2ut, dx =

(
t+ u+

√
u2 + 2ut√

u2 + 2ut

)
du.

(i) Estimate of I1. We have

I1(t) =

∫ +∞

0

e−a
(t−x)2

x

√
x

dx =

∫ t

0

e−a
(t−x)2

x

√
x

dx+

∫ +∞

t

e−a
(t−x)2

x

√
x

dx

=

∫ +∞

0

√
t+ u−

√
u2 + 2ut+

√
t+ u+

√
u2 + 2ut√

u2 + 2ut
e−2audu

=

∫ +∞

0

√
1 + u/t−

√
u2/t2 + 2u/t

√
u2/t+ 2u

e−2audu+

∫ +∞

0

√
1 + u/t+

√
u2/t2 + 2u/t

√
u2/t+ 2u

e−2audu

≤ 2

∫ +∞

0

√
1 + u+

√
u2 + 2u√

2u
e−2audu ≤ C,

the last inequalities being true for all t ≥ 1.
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(ii) Estimate of I2. We have

I2(t) =

∫ +∞

0

|t− x|e
−a (t−x)2

x

x3/2
dx =

∫ t

0

|t− x|e
−a (t−x)2

x

x3/2
dx+

∫ +∞

t

|t− x|e
−a (t−x)2

x

x3/2
dx

=

∫ +∞

0

√
u2 + 2ut− u

√
u2 + 2ut

√
t+ u−

√
u2 + 2ut

e−2audu+

∫ +∞

0

√
u2 + 2ut+ u

√
u2 + 2ut

√
t+ u+

√
u2 + 2ut

e−2audu.

We prove the that the last two integrals behave as O
(

1√
t

)
. We detail the second case, the

first is less direct due to the minus sign in the denominator but we can bypass this difficulty
thanks to the estimate

1 + u/t−
√
u2/t2 + 2u/t ≥ C

1 + u
,

valid for all t ≥ 1. In the second integral, if we factor t out, we get

1√
t

∫ +∞

0

√
u2/t+ 2u+ u/

√
t

√
u2/t+ 2u

√
1 + u/t+

√
u2/t2 + 2u

e−2audu,

where the remaining integral is bounded since for t ≥ 1
∫ +∞

0

√
u2/t+ 2u+ u/

√
t

√
u2/t+ 2u

√
1 + u/t+

√
u2/t2 + 2u

e−2audu ≤
∫ +∞

0

√
u2 + 2u+ u√

2u
e−2audu ≤ C.

(iii) Estimate of I3. It is similar. �

Lemma 5.3 Let a > 0, b > 0, then there exists d > 0 such that

J1(t) :=

∫ +∞

0

e−ax
e−b

(t−x)2

x

√
x

dx = O(e−dt), J2(t) :=

∫ +∞

0

|t− x|e−ax e
−b (t−x)2

x

x3/2
dx = O(e−dt),

J3(t) :=

∫ +∞

0

((t− x)2 + x)e−ax
e−b

(t−x)2

x

x5/2
dx = O(e−dt).

Remark. We can prove in fact that J1 is equal to

√
π

a+ b
e−2

√
b(
√
a+b−

√
b)t.

Proof of Lemma 5.3. To prove the exponential behaviour, we proceed as in the proof of
the previous lemma. Here, we just detail the estimate on J1, since there are no particular
difficulties with the two other integrals.
We want so to get the estimate

J1(t) :=

∫ +∞

0

e−ax
e−b

(t−x)2

x

√
x

dx = O(e−dt).

We make for that the change of variables u = ax + b (t−x)2
x

. Note that the function x 7→

ax+ b (t−x)2
x

achieves its minimum at the point x =

√
b

a+ b
t and the value of this minimum

is 2bt

(√
a+ b

b
− 1

)
. We cut so the integral J1 in two parts:

J1(t) =

∫ √
b

a+b
t

0

e−ax
e−b

(t−x)2

x

√
x

dx+

∫ +∞

√
b

a+b
t

e−ax
e−b

(t−x)2

x

√
x

dx.
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For the integral on [0,
√

b
a+b

t], the change of variables can be rewritten as

x =
1

2

(
2bt+ u−

√
u2 + 4but− 4abt2

)
,
dx

du
=

1

2

(
1 − u+ 2bt√

u2 + 4but− 4abt2
)

)
.

Thus,

∫ √
b

a+b
t

0

e−ax
e−b

(t−x)2

x

√
x

dx

=

∫ +∞

2bt
(√

a+b
b

−1
)

(
u+ 2bt√

u2 + 4but− 4abt2
− 1

)
e−udu

√
2
(
2btu−

√
u2 + 4but− 4abt2

)1/2 .

We make then a further change of variables v = u − 2bt

(√
a+ b

b
− 1

)
. By setting α :=

a

b
> 0 ε :=

√
1 +

a

b
− 1 > 0, we get 2u+ 4bt = 2v + 4b

√
1 + αt. Thus,

∫ √
b

a+b
t

0

e−ax
e−b

(t−x)2

x

√
x

dx

=

∫ +∞

0


 v + 4bt

√
1 + α√

v(v + 4bt
√

1 + α)
− 1


 e−ve−2bεtdv

√
2

(
v + 2bt

√
1 + α−

√
v(v + 4bt

√
1 + α)

)1/2
.

Then we factor out the exponential term e−2bεt, the last step is to prove that the remaining
integral is bounded. We have

∫ +∞

0


 v + 4bt

√
1 + α√

v(v + 4bt
√

1 + α)
− 1


 e−vdv

√
2

(
v + 2bt

√
1 + α−

√
v(v + 4bt

√
1 + α)

)1/2

=

∫ +∞

0

(
v + 4bt

√
1 + α−

√
v(v + 4bt

√
1 + α)

)
e−vdv

√
2
√
v(v + 4bt

√
1 + α)

(
v + 2bt

√
1 + α−

√
v(v + 4bt

√
1 + α)

)1/2

=

∫ +∞

0

t

(
v/t+ 4b

√
1 + α−

√
v/t(v/t+ 4b

√
1 + α)

)
e−vdv

√
t
√
t
√

2
√
v(v/t+ 4b

√
1 + α)

(
v/t+ 2b

√
1 + α−

√
v/t(v/t+ 4b

√
1 + α)

)1/2

The previous integral is convergent at v = 0, because of the estimate

1 + s−
√
s2 + 2s ≥ C

1 + s
.

Thus, the integral on [0,
√

b
a+b

t] decreases exponentially with respect to t.

We follow then the same way for the integral on the domain [
√

b
a+b

t,+∞] by using the

change of variables

x =
1

2

(
2bt+ u+

√
u2 + 4but− 4abt2

)
.

The estimates are direct here since there is no minus sign in the denominator. �
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