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Abstract

We propose here a new model of accelerating fronts, consisting of one equation with
non-local diffusion on a line, coupled via the boundary condition with a reaction-
diffusion equation in the upper half-plane. The underlying biological question is
to understand how transportation networks may enhance biological invasions. We
show that the line accelerates the propagation in the direction of the line and en-
hances the overall propagation in the plane and that the propagation is directed by
diffusion on the line, where it is exponentially fast in time. We also describe com-
pletely the invasion in the upper half-plane. This work is a non-local version of the
model introduced in [16], where the line had a strong but local diffusion described
by the classical Laplace operator.
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1 Introduction
This work is a continuation of a program of investigation started in [16, 15, 17] aiming at
understanding the influence of a line with its own diffusion embedded in a region where a
classical reaction-diffusion process takes place. The underlying biological motivation is to
understand how a line or a network of roads, lines and streams, may enhance biological
invasions. Besides its obvious motivation from ecology for invading biological species, this
type of questions, also arises in many other contexts, in cellular biology (for cell division
mechanisms, see e.g. [30] for numerical methods , [5] for mathematical study by entropy
methods), chemical engineering (crystal growth processes, see [43]) or biophysics (see e.g.
[45] for a linear stability analysis) and medicine, sometimes in three dimensional regions
bounded by a surface having certain properties different from the ones in the bulk.
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There are many situations where networks of lines play a major role. In epidemiology,
the spreading of certain diseases is known to be strongly dependent on the communication
network. In the classical example of the “Black death” plague in the middle of the 14th
century, the roads connecting trade fair cities allowed the epidemics to expand Northward
at a fast pace. The account by [56] describes how it then further spread inwards from
these roads to eventually cover whole territories. A recent invasive species in Europe,
related to climate change, the Pine processionary moth has progressed at a faster rate
than anticipated. An hypothesis in this context is the role played by roads in allowing
jumps. See the update in the interdisciplinary volume [29] on this issue and the related
public health concerns. Another example of the effect of lines on propagation in open
space comes from the influence of seismic lines on movements of wolves in the Western
Canadian Forest. These are straight lines dug across territories by oil companies for
the purpose of exploring and monitoring oil reservoirs. The study in [47] reports the
observation that populations of wolves tend to move and concentrate on seismic lines,
allowing them to move along larger distances.

In [16], [17], three of the authors introduced and studied a new model to describe
invasions in the plane when a fast diffusion takes place on a straight line. In this model,
the line {x = 0} in the plane R2 - referred to as “the road” - carries a density u(x, t)
of the population. The rest of the plane is called “the field”, and the density there is
denoted by v(x, y, t). By symmetry, the problem may be restricted to the upper half-
plane Ω := R× (0,+∞), where the dynamics is assumed to be represented by a standard
Fisher-KPP equation with diffusivity d. There is no reproduction on the road, where the
diffusivity coefficient is another constant D. The road and the field exchange individuals.
The flux condition results from the road yielding a proportion µ of u to the field, and a
proportion ν of v

∣∣
y=0

jumping from the field on the road. The opposite of the flux for v
appears as a source term in the equation for u.

The system thus reads as follows:
∂tu−D∂xxu = νv

∣∣
y=0
− µu, x ∈ R, t > 0

∂tv − d∆v = f(v), (x, y) ∈ Ω, t > 0

−d∂yv
∣∣
y=0

= µu− νv
∣∣
y=0

, x ∈ R, t > 0,

(1.1)

where d,D, µ, ν are positive constants and the function f is smooth and satisfies the
Fisher-KPP condition:

f(0) = f(1) = 0, f > 0 in (0, 1), f < 0 in (1,+∞), f(s) 6 f ′(0)s for s > 0.

The initial conditions are:

v
∣∣
t=0

= v0 in Ω, u
∣∣
t=0

= u0 in R.

Let cK denote the classical Fisher–KPP spreading velocity (or invasion speed) in the field:

cK := 2
√
df ′(0).

The fundamental paper [40] analyzed the solution to the problem

ut − ∂xxu = f(u), u(x, 0) = H(x) (the Heaviside function).
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Among other things, [40] shows that, modulo a shift in time, the solution converges to a
travelling wave of speed cK . This is also the asymptotic speed at which the population
would spread in any direction in the open space - in the absence of the road - starting
from a confined distribution, i.e. with compact support (see [2], [3]).

The main result of [16] is the following

Theorem 1.1 ([16]). There exists c∗(D) > cK such that, if (v, u) is the solution of
(1.1) emanating from an arbitrary nonnegative, compactly supported, initial condition
(v0, u0) 6≡ (0, 0), it holds that

∀c > c∗, lim
t→+∞

sup
|x|>ct
y>0

|(v(x, y, t), u(x, t))| = 0,

∀c < c∗, a > 0, lim
t→+∞

sup
|x|<ct
06y<a

|(v(x, y, t), u(x, t))− (ν/µ, 1)| = 0.
(1.2)

Moreover, c∗(D) > cK if and only if D > 2d, and

c∗(D) ∼ c∞
√
D as D → +∞, with c∞ > 0. (1.3)

In other words, the solution spreads at velocity c∗ in the direction of the road, and the
propagation is strongly enhanced when D is large, even though there is no reproduction
on the road. This theorem is completed in [17] by a precise study of the expansion in the
field and the determination of the asymptotic speed of propagation in every direction.

Theorem 1.2 ([17]). There exists w∗ ∈ C1([−π/2, π/2]) such that

∀γ > w∗(ϑ), lim
t→+∞

v(x0 + γt sinϑ, y0 + γt cosϑ, t) = 0,

∀0 6 γ < w∗(ϑ), lim
t→+∞

v(x0 + γt sinϑ, y0 + γt cosϑ, t) = 1,

locally uniformly in (x0, y0) ∈ Ω and uniformly on sets (γ, ϑ) ∈ {R+ × [−π/2, π/2], |γ −
w∗(ϑ)| > η}, for any given η > 0.

Moreover, w∗ > cK and, if D > 2d, there is ϑ0 ∈ (0, π/2) such that w∗(ϑ) > cK if
and only if |ϑ| > ϑ0.

This theorem provides the spreading velocity in every direction (sinϑ, cosϑ), and
reveals a critical angle phenomenon: the road influences the propagation on the field not
only in the horizontal direction, but rather up to an angle π/2− ϑ0 from it. It is further
shown in [17] that ϑ0 → 0 as D → +∞. The theorem is illustrated by the numerical
simulation of Figure 1, reported from the second author’s PhD thesis [25]. See also the
review [7] for a discussion of some of these aspects, as well as some open questions.

Model (1.1) is an example of propagation guided by a set of lower dimension, a topic
that has recently attracted much interest. See for instance [1] and [12] for non-local
models for front propagation guided by favored genetic traits, and [6] for the study of
fronts guided by a line. In the case of interest here, the scenario depicted by Theorems 1.1-
1.2 displays a propagation speed-up, or propagation enhancement: the spreading velocity
can be much larger than the reference speed cK , but remains asymptotically constant.
One may wonder if different conditions may lead, not only to speed-up, but acceleration:
in other words, the front velocity increases in time. In (1.1) we have only considered
standard, local diffusion. So, it is natural to ask if non-local diffusion will accelerate the
propagation, rather than only speed it up.

The goal of this paper is to investigate this question.
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Figure 1: Level sets of v

2 Model with non-local dispersal on the road

2.1 Description of the model and question

To account for the possibility that individuals on the road may move much faster than in
the field, we will consider a non-local diffusion on the road: this means that the underlying
processes modelling the displacement of individuals are jump processes. When those are
stable Lévy processes, the corresponding diffusion operator is the fractional Laplacian:
this is the choice we make here. Thus the system under study is

∂tv −∆v = f(v), x ∈ R, y > 0, t > 0

∂tu+ (−∂xx)αu = −µu+ νv − ku, x ∈ R, y = 0, t > 0

−∂yv = µu− νv, x ∈ R, y = 0, t > 0.

(2.1)

We assume that the reaction term f is strictly concave and smooth, with f(0) = f(1) = 0.
This assumption will always be understood in the following without further reference.
Note that the second equation, representing the evolution of the density on the road,
does not involve a reproduction term, but only possibly a mortality term −ku, with
k > 0 constant. The exchange factor µ is a positive constant and we assume, without
loss of generality, that ν = 1. The operator (−∂xx)α, 0 < α < 1, is the fractional
Laplacian

(−∂xx)αu(x) := cα

∫
R

u(x)− u(y)

|x− y|1+2α
dy.
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The constant cα is adjusted so that (−∂xx)α is a pseudo-differential operator with symbol
|ξ|2α. Note that, when α < 1/2 this has to be taken in the sense of convergent integrals,
while when α > 1/2 this definition should be understood in the principal values sense.
We complete the system with bounded, continuous initial conditions v(·, ·, 0) = v0 and
u(·, 0) = u0.

The goal of the present paper is to understand how, and at what speed, the level sets
of u and v will spread for large times. We will see that, in this system, propagation takes
advantage of both the fast diffusion on the road and the mass creation term in the field.

2.2 Main results and interpretation

The first step is to identify a unique steady state of the system and to show that it is the
global attractor of the evolution problem.

Theorem 2.1. Problem (2.1) admits a unique positive, bounded stationary solution
(Vs, Us). Moreover, (Vs, Us) is x-independent, and solutions (v, u) to (2.1) starting from
nonnegative, bounded initial data (v0, u0) 6≡ (0, 0) satisfy

(v(x, y, t), u(x, t)) −→
t→+∞

(Vs(y), Us),

locally uniformly in (x, y) ∈ R× [0,+∞).

This Liouville-type result is a consequence of [15] (see also [14]). Indeed, it is shown
in Lemma 2.3 there that the solution (v, u) to (1.1) lies asymptotically between two
positive x-independent stationary solutions (V1, U1) and (V2, U2). One can check that
this property is proved without exploiting the equation on the road, and hence it holds
true for (2.1). Notice that (V1, U1) and (V2, U2) are solutions to (2.1) as well, because
they are x-independent. Then, Proposition 3.1 of [15] implies that (2.1) admits a unique
positive x-independent stationary solution (Vs, Us), concluding the proof of Theorem 2.1.

In the case without mortality (k = 0) we have the trivial solution (Vs, Us) ≡ (1, 1/µ)
(recall that ν = 1). In general, Vs = Vs(y) and we know that Vs(+∞) = 1.

The issue is now to track the invasion front, and this is done in the next two theorems.

Theorem 2.2. (Propagation on the road). Let (v, u) be the solution of (2.1) starting
from a nonnegative, compactly supported initial condition (v0, u0) 6≡ (0, 0). Then, setting

γ? :=
f ′(0)

1 + 2α
,

1. ∀γ > γ?, lim
t→+∞

sup
|x|>eγt

u(x, t) = 0,

2. ∀γ < γ?, lim
t→+∞

sup
|x|6eγt

|u(x, t)− Us| = 0.

Thus, the process at work on the road is the same as that of an effective reaction-
diffusion equation of the form:

∂tu+ (−∂xx)αu = feff (u), (2.2)

where f ′eff (0) = f ′(0). In particular, spreading will occur at the same rate as was com-
puted in [23] for this equation (see also [22]), despite the fact that there is no reproduction
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on the road. Thus, the road has once again a dramatic effect, and we have therefore iden-
tified a new mechanism for front acceleration.

Turn to the propagation in the field. Recall that cK = 2
√
f ′(0) is the KPP velocity.

Theorem 2.3. (Propagation in the field). Under the assumptions of Theorem 2.2, for
all θ ∈ (0, π), we have:

1. ∀c > cK/sin θ, lim
t→+∞

sup
r>ct

v(r cos θ, r sin θ, t) = 0,

2. ∀c < cK/sin θ, lim
t→+∞

sup
06r6ct

|v(r cos θ, r sin θ, t)− Vs(r sin θ)| = 0.

The speed of propagation in the direction (cos(θ), sin(θ)) is thus asymptotically equal
to cK/ sin(θ). When θ is close to 0, this speed tends to infinity, which is consistent with
Theorem 2.2. And so, the front is, asymptotically, close to a straight line parallel to the
x-axis moving vertically at velocity cK . One may interpret it as follows: the invasion on
the road is so fast that the whole system behaves just as if the density in the field only
saw the condition v ≡ 1 at the boundary, as in the effective equation vt−∆v = f(v), with
v(x, 0, t) ≡ 1. It is easy to see that this gives the correct behavior, by trapping v(x, y, t)
between two suitable translates of the solutions of

∂tv − ∂yyv = f(v) for y ∈ R, v(y, 0) = (1± ε)H(y),

for every small arbitrary ε. The whole scenario is summarized by the numerical simulation
of Figure 2, once again reported from [25]:

2.3 Organization of the paper

First, we give a brief overview of the context of the problem we study here in Section 3.
There we present a review of the existing literature related to our model: propagation
enhancement, propagation acceleration, as well as further results obtained on the model
(1.1). The proof of the exponential in time asymptotic spreading in our model starts
in Section 4, where we outline the strategy of the proof of Theorem 2.2. The idea is
to trap the solution between a supersolution and a subsolution whose level sets move
asymptotically at the same speed. This turns out to be a rather delicate task, the
construction of the supersolution being quite different from that of the sub-solution. The
former is achieved in Section 5, together with the main computations. Section 6 is devoted
to the construction of an auxiliary subsolution for a 1D transport equation. This is the
building block used in the rather computational Section 7 to obtain the subsolution to
the full system. Some weaker versions of the second statement of Theorems 2.2 and 2.3
- with the convergence to Us and Vs replaced by a positive lower bound - are derived
in Sections 7.4 and 8 respectively. These bounds are used in Section 9 to complete the
proofs of Theorems 2.2 and 2.3. Finally, an appendix studies the Cauchy problem for
(2.1) and provides regularity and a comparison principle, similar to that of [16].

3 A review of front speed-up and acceleration
In this section, we present a general overview on front propagation enhancement, which
has seen an important development in the last 15 years. We start with the case of a single
local equation. In the second subsection, we present further results obtained on (1.1). In
the last one, we give an overview of the mathematical literature on accelerating fronts.
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Figure 2: Level sets of v

3.1 Front propagation and speed-up: an overview

It is well known that diffusion, when coupled with reaction, gives rise to propagating
fronts. The most common situation is the development of fronts travelling at constant
speed. The basic result concerns front spreading in a homogeneous medium. Let us recall
its main features. The equation reads

ut −∆u = f(u), u
∣∣
t=0

> 0, 6≡ 0, compactly supported. (3.1)

We are looking for a function R : R+ → R+ such that

∀ε > 0, lim
t→+∞

inf
|x|<R((1−ε)t)

u(x, t) > 0, and lim
t→+∞

sup
|x|>R((1+ε)t)

u(x, t) < 1. (3.2)

A fundamental result in this direction is that of Aronson-Weinberger [3], which accounts
for how a front develops from a compactly supported datum.

Theorem 3.1 ([3]). Let u(x, t) be the solution of (3.1). Then, still setting cK := 2
√
f ′(0),

1. ∀c > cK , lim
t→+∞

sup
|x|>ct

u(x, t) = 0,

2. ∀c < cK , lim
t→+∞

inf
|x|6ct

u(x, t) = 1.
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Figure 3: Transition between 0 and 1

In other words, (3.2) holds with R(t) = cKt. An important literature has developed
from there; to discuss it is out of the scope of this paper. Let us just mention the
forthcoming book [8], which provides a complete overview of the question.

In the presence of heterogeneities, quantifying propagation can be quite difficult.
The pioneering work in this field goes back to the probabilistic arguments of Freidlin
and Gärtner [33]. They studied KPP-type propagation in a periodic environment and
showed that the speed of propagation is no longer isotropic: propagation in any direction
is influenced by all the other directions in the environment. They provide an explicit
formula for the computation of the propagation speed. Many works have followed since
then, we mention for instance the references [10] for a definition and estimates of the
spreading speed in periodic environment, [13] for the particular case of space dimension 1,
and [9] for a general definition in arbitrary heterogeneous media, as well as new estimates
of the heat kernel.

Reaction-diffusion equations in heterogeneous media since then is an active field and
the question how the environment may enhance propagation has received much attention.
The first paper in the domain is that of Audoly, Berestycki and Pomeau [4], which studies
models of the form

∂tv + A∇ · (vq(x)) = ∆v + f(v), t ∈ R, (x, y) ∈ R× RN−1 (3.3)

where A > 1 is large and q is an imposed divergence free flow field. They propose, by a
formal analysis, various asymptotics for the propagation velocity, in particular if q(x) is a
shear flow q(x) = (α(y), 0) or a periodic cellular flow field. This has triggered a series of
mathematical works; let us first mention a general deep estimate by Constantin, Kiselev,
Oberman and Ryzhik [24] of the bulk burning rate of (3.3), defined as:

V (t) =

∫
RN
f(v(t, x))dx.

This quantity turns out to be a relevant one, especially in problems where the flow is
time-dependent or strongly heterogeneous - thus precluding the reduction of the problem
to travelling or pulsating waves. The study of speed-up properties of propagation by
an advecting velocity field is continued, in a mathematically rigorous fashion, in [39].
This work derives upper and lower bounds for (3.3) in terms of A: V (t) 6 CA for shear
flows, and V (t) > CA1/5 for cellular flows. When the flow is a steady shear flow, a
recent paper of Hamel and Zlatos [36] makes the Kiselev-Ryzhik upper bound sharp:

under a Hörmander type condition on α, there exists γ∗(α, f) >
∫
TN−1

α(y)dy such that
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the velocity c∗(Aα, f) of travelling fronts of (3.3) satisfies lim
A→+∞

c(Aα, f)

A
= γ∗(α, f).

Moreover the quantity γ∗ is the unique admissible velocity for the following degenerate
system with unknowns γ and U :

∆yU + (γ − α(y))∂xU + f(U) = 0 (R× TN−1)

lim
x→+∞

U(x, y) ≡ 0,

lim
x→−∞

U(x, y) ≡ 1.

(3.4)

A similar situation will be discussed in the next section.
For reaction terms f which are of the Fisher-KPP type, there is a relation between

the principal eigenvalue and the amplitude of the velocity field, which has motivated the
paper by Berestycki, Hamel and Nadirashvili [9] on principal eigenvalue problems of the
form

−∆φ+ Aq(x).∇φ = µ(A)φ,

µ(A) being the eigenvalue that is sought. The link between the existence or nonexistence
of a first integral for the flow, and the size of µ(A), is elucidated.

3.2 Speed-up by the line of fast diffusion: recent results

The qualitative properties of model (1.1) have been studied further, with the discovery
of new effects. In what follows, we list some natural questions and the answers that have
been given.

3.2.a Is the bound c∗(D) ∼ c∞
√
D robust?

Whether this asymptotic persists if the nonlinear term f is changed to a different type of
source term is not obvious. Indeed, a priori trivial question; this could indeed be thought
of as a special property of models with Fisher-KPP type nonlinearities. Moreover, the
asymptotic for the velocity is obtained through algebraic computations. So, it is quite
natural to ask whether this result persists with more general nonlinearities, where explicit
computations are not longer possible. And, indeed, the property seems to be general,
as shown by Dietrich [27], [28]. Consider the situation where Ω is the strip R × (0, L),
with Neumann boundary condition at y = L. The function f vanishes on an interval
[0, θ], and is positive on (θ, 1). Then (1.1) admits a unique travelling wave velocity c∗(D).
Moreover, the velocity still grows like

√
D: we have c∗(D) ∼ c∞

√
D, where c∞ > 0 is the

unique c such that the following problem admits solution:

c∂xφ− ∂xxφ = ψ − µφ, x ∈ R, y = 0

c∂xψ − d∂yyψ = f(ψ), (x, y) ∈ Ω

−d∂yψ = µφ− ψ, x ∈ R, y = 0

∂yψ = 0, x ∈ R, y = L

(ψ, φ)(−∞, y) = (0, 0), (ψ, φ)(+∞, y) = (1, 1/µ), y ∈ [0, L].

(3.5)

This is reminiscent of the Hamel-Zlatos situation, although the speed-up mechanism is
quite different.
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3.2.b How is the spreading velocity modified if additional effects are in-
cluded?

Another natural question is what happens if nonuniform transport effects are included.
In the following model, we assume that on the road there is a constant transport q as
well as a constant mortality rate k. The conditions in the field remain unchanged. The
equations for u and v thus read:

∂tu−D∂xxu+ q∂xu = νv − µu− ku x ∈ R, y = 0, t > 0

∂tv − d∆v = f(v) (x, y) ∈ Ω, t > 0

−d∂yv = µu− νv x ∈ R, y = 0, t > 0.

(3.6)

In [15], it is proved that Problem (3.6) admits asymptotic speeds of spreading c±∗ in the

directions ±e1. Moreover, if
D

d
6 2 +

k

f ′(0)
∓ q√

df ′(0)
, then c±∗ = cK , else c±∗ > cK .

Let us give a brief biological interpretation of this result. For definiteness, let us
consider propagation to the right (that is, in the direction e1).

First we see some expected effects: mortality on the road makes speed-up more dif-
ficult by raising the threshold for D/d past which the effect of the road is felt. On the
contrary, a transport q > 0 on the road facilitates speed-up (to the right) by lowering the
threshold. When q < 0, the threshold is raised by the same factor.

A less expected consequence is the following. In the absence of mortality on the road,
the threshold condition reads

D

d
> 2− q√

df ′(0)
= 2

(
1− q

cK

)
, i.e., q > cK

(
1− D

2d

)
.

In other words, a transport q larger than cK speeds up propagation, no matter what the
diffusivity ratio is. Biological situations are, for instance, the spreading of a parasite by
a river, as reported for instance in [38]. For values of q less than cK(1−D/2d) - and, in
particular, for large values of −q - spreading towards right occurs at the KPP velocity: in
biological terms, propagation upstream against a river flow remains unaffected, whereas
downstream propagation, in the direction of the flow, can be strongly enhanced. This
yields a remarkable assymetry which, as a matter of fact, is also felt in the field: the
asymptotic shape of the front may deviate significantly from that computed in the absence
of flow field (c.f. [17]).

3.2.c Nonlocal exchanges between the field and the road

Up to now, we considered exchanges between the road and the field taking place in
the infinitesimal vicinity of the road. It is therefore a natural question to examine the
influence of the range of exchanges between the road and the field, in other words what
happens when the exchanges are nonlocal. This was recently investigated by Pauthier,
[51], [49] and [50]. The model under study is∂tu−D∂xxu =

∫
R
ν(y)v(x, y, t)dy − u

∫
µ(y)dy, x ∈ R, t > 0

∂tv − d∆v = f(v)− ν(y)v + µ(y)u, (x, y) ∈ R2, t > 0
(3.7)
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The functions µ and ν are smooth, L1 functions: individuals can jump away from the
road, but only very few of them can go very far from it. Notice that the initial model
(1.1) is retrieved from (3.7), at least formally, by setting

µ(y) := µδy=0, ν(y) = νδy=0

where µ and ν are two positive given constants. The question is how the spreading
velocity is modified by the introduction of this non locality. Pauthier shows that the
thresholds are quite stable, but also discovers surprising effects.

1. Propagation enhancement. The threshold D = 2d is still there [51]: if D 6 2d, we
have c∗(D) = cK ; if D > 2d, then c∗(D) > cK . Moreover, there is c∞ > 0 such
that c∗(D) ∼ c∞

√
D as D → +∞. The dynamics when µ and ν are close to Dirac

masses is also quite stable [49]: if (µε, νε)ε>0 converge to (µδy=0, νδy=0), then (i)
cε∗(D)→ c∗(D) as ε→ 0, and (ii) the limits t→ +∞ and ε→ 0 commute.

2. Variation of the spreading velocity with the range of µ and ν. How does c∗(D) then
vary when µ and ν vary, their masses being respectively kept equal to µ and ν? (i)

a new threshold ([50]). Take (µ(y), ν(y)) =
1

R
(µ0(

y

R
), ν0(

y

R
)), the functions µ0 and

ν0 having masses µ and ν. Then, if c∗(D,R) is the spreading speed, it holds that

lim
R→+∞

c∗(D,R) > cK ⇐⇒ D > d

(
2 +

µ

f ′(0)

)
.

(ii) Moreover (see [51]), contrary to what intuition suggests, the spreading velocity
is not always maximized - under the constraint that the masses of µ and ν are kept
equal to the constants µ and ν - when exchanges are localized on the road.

3.2.d Other effects

The speed-up effects observed in the original model (1.1) are displayed in other various
situations. Consider, for instance, a strip bounded by the road on one side and with
Dirichlet boundary conditions on the other. In this case, Tellini [58] proves the existence
of an asymptotic speed of propagation which is greater than that of the case without
road and studies its behavior in the limits D → 0 and D → +∞. When the width of
the strip goes to infinity, the asymptotic speed of propagation approaches the one of the
half-plane model (1.1).

Equations (1.1) have also an interest in higher dimensions, where they arise as models
in medicine. One motivation would be to model the diffusion of a drug within a body
through the blood network. The analysis of an N -dimensional model is achieved by Rossi,
Tellini and Valdinoci [55]. The authors consider a circular cylinder with fast diffusion at
the boundary, which reduces to a strip between two parallel roads in the bidimensional
case. The picture obtained in [55] is similar to the ones described before: enhancement
of the spreading velocity occurs if and only if the ratio between the diffusivities on the
boundary and inside the cylinder is above a certain threshold. The authors investigate
the dependence of the spreading velocity with respect to the radius R of the cylinder,
discovering that it is monotone increasing if the ratio between the diffusivities is below
2, whereas, if the ratio is larger than 2, the dependence is no longer monotone and there
exists a critical radius R = RM maximizing the velocity.
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Let us end this review with the recent preprint [34] by Giletti, Monsaingeon and Zhou,
which extends Theorem 1.1 to the situation where µ and ν are replaced by 1-periodic
functions.

3.3 Front acceleration: a review

As opposed to the previous situation, non-local diffusion may cause acceleration of fronts.
This phenomenon has also long been identified. In the context of ecology, Kot, Lewis and
Van den Driessche [42] study, both numerically and heuristically, discrete time models of
the form

Nt+1(x) =

∫ +∞

−∞
k(x− y)f(Nt(y))dy = (k ∗Nt)(x). (3.8)

When the decay of the convolution kernel k is slow enough, the authors observe accel-
erating profiles rather than travelling waves. Similar properties have been noticed, still
from the numerical point of view or in the formal style, for models with continuous time,
e.g. reaction-diffusion equations of the form:

ut + Lu = f(u), t > 0, x ∈ RN (3.9)

where f is of the Fisher-KPP type, and L a non-local diffusive operator. Typical examples
are Lu = (−∆)α, or Lu = k ∗ u− u (notice that, with this last kernel, (3.8) is the exact
analogue of (3.9)). See [46] for a rather complete review. The basic heuristic argument
for acceleration is the following: since f is concave, a good approximation of the dynamics
of (3.9) is given by that of the linearized equation; this entails studying the level sets of

v(x, t) = ef
′(0)te−tLu0(x).

In the case L = (−∆)α, and for a compactly supported datum u0(x), we have etL ∼
t

|x|N+2α
, yielding that the level sets of v spread like ef ′(0)t/(N+2α). More generally, if e−tL

decays spatially slower than any exponential, this yields accelerating level sets.
Mathematically rigorous proofs of acceleration, and precise identifications of the mech-

anisms responsible for acceleration, are more recent. The first paper in this direction is
that of Cabré and the third author [22] for L = (−∆)α, which proves that the level sets
of (3.9) spread asymptotically like ef ′(0)t/(N+2α).

Theorem 3.2 ([22]). Let u(x, t) be the solution of (3.9) with L = (−∆)α, starting from
a compactly supported initial datum u0 > 0, 6≡ 0. Then we have:

1. ∀c > f ′(0)

N + 2α
, lim

t→+∞
sup
|x|>ect

u(x, t) = 0,

2. ∀c < f ′(0)

N + 2α
, lim

t→+∞
inf
|x|6ect

u(x, t) = 1.

Here, (3.2) holds with R(t) = ef
′(0)t/(N+2α). See [23] when e−tL is a general Feller

semigroup. A first question of interest is what happens as α → 1, or how to reconcile
Theorems 3.1 and 3.2 in the limit α → 1. The second and third author address this
question in [26]: for α close to 1, propagation at velocity 2

√
f ′(0) occurs for a time of

the order |Ln(1− α)|; from that time on, Theorem 3.2 applies.
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When L is of the convolution type, the relevant result is that of Garnier [32], who
proves: (i) super-linear spreading for (3.9) as soon as the convolution kernel k decays
more slowly than any exponential, (ii) exponential spreading when k decays algebraically
at infinity. The precise exponents are not, however, given. Accelerating fronts can be
observed in (3.9) even when L = −∆: Hamel and Roques prove, in [35], that it is enough
to replace the compactly supported initial datum with a slowly decaying one. This paper
is also the first to identify, in an explicit way, that the correct dynamics of the level sets
is given by that of the level sets of the ODE

u̇ = f(u), u(0, x) = u0(x).

Whether or not Theorem 3.2 is sharp is a natural question. One may indeed wonder
whether the exponentials should be corrected by sub-exponential factors. Cabré, and the
second and third authors prove in [21] that the exponentials are indeed sharp, in other
words that any level set is trapped in an annulus whose inner and outer radii are constant
multiples of ef ′(0)t/(N+2α). For that, they devise a new methodology which extends to the
treatment of the models of the form

ut + (−∆)αu = µ(x)u− u2, (3.10)

with µ > 0 and 1-periodic. Surprisingly enough, the invasion property (3.2) can still
be described by the single function R(t) = eλ0t/(N+2α), where (−λ0) is the first periodic
eigenvalue of (−∆)α−µ(x). The method consists in two steps: (i) one shows that u(·, 1)
decays at the same rate as the fractional heat kernel, (ii) one constructs a pair of sub
and supersolutions that have exactly the right growth for large times and the right decay
for large x. This proved to be a more precise approach than all the previous studies,
which mainly relied on the analysis of the linear equation. This mechanism, which is
quite different from what happens in the case α = 1, was later on described by Méléard
and Mirrahimi [48], with a different viewpoint. Their work is in the spirit of the Evans-
Souganidis approach for front propagation [31]; to take into account the fact that the
propagation is exponential, the authors modify the classical scaling (x, t) 7→ (t/ε, x/ε)
into (x, t) 7→ (t/ε, |x|1/ε); they apply the Hopf-Cole transformation to the new equation
and derive a propagation law for the level sets.

The analysis of [21] can be pushed further, to prove that in fact a strong symmetriza-
tion phenomenon is at work, see [54]. The result is the following: when u0 is compactly
supported, then the level sets of the solution u(x, t) of (3.9), with L = (−∆)α, are
asymptotically trapped in annuli of the form

{q[u0]ef
′(0)t/(N+2α)(1− Ce−δt) 6 |x| 6 q[u0]ef

′(0)t/(N+2α)(1 + Ce−δt)}.

Here, q[u0] > 0, C > 0 and δ ∈ (0, f ′(0)/(N + 2α)) are constants depending on u0.
Let us end this review by mentioning a different mechanism of acceleration in kinetic

equations. Here, an unbounded variable is responsible for acceleration of the overall
propagation. A first model is motivated by the mathematical description of the invasion
of cane toads in Australia. It has the form

∂tn− α(θ)∆xn−D∆θn = n(1− ρn), t > 0, x ∈ RN , θ ∈ Θ (3.11)

where n(t, x, θ) is the density of individuals, and θ a genetic trait. The quantity ρn(x, t) is
the integral of n over Θ. The coefficient α(θ) > 0 may be unbounded, as well as the state
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space Θ. This influences the dynamics of (3.11): when Θ is unbounded and α(θ) = θ,
the note [19] gives a formal proof that the level sets of n develop like t3/2. This, by the
way, can also be seen by computing the fundamental solution of the of (3.11), linearized
at n ≡ 0, and is related to the previous heuristics concerning the fractional Laplacian. A
work under completion by Berestycki, Mouhot and Raoul [18], gives a rigorous proof of
the computations of [19].

A related model is the BGK-like equation

∂tg + v · ∇xg = (M(v)ρg − g) + ρg(M(v)− g), t > 0, x ∈ R, v ∈ V (3.12)

analyzed by Bouin, Calvez and Nadin in [20]. The underlying biological situation is that
of a colony of bacteria. The unknown g(t, x, v) is the density of individuals, and v a
velocity parameter. The set V may be unbounded, and this, as before, influences the
dynamics of (3.12). The function M(v) is a reference velocity distribution. The quantity
ρg(x, t) is the integral of g over V . The Fisher-KPP equation (3.1) arises as a limiting
case of (3.12) under the scaling (t, x, v) 7→ (t/ε2, x/ε, ε2v), as ε → 0. When M(v) is a
Gaussian distribution, a level set of a solution g(t, x, v) starting from an initial datum
of the form g(0, x, v) = M(v)1{x<xL} is trapped in an interval of the form(c1t

3/2, c2t
3/2)

where ci are universal constants. This result is obtained by the construction of a pair of
sub/super solutions of a new type. The authors conjecture that acceleration will always
occur when V is unbounded.

4 Strategy of the proof of Theorem 2.2 and comments

4.1 The main lines of the proof

A first idea would be to try to adapt a new, and quite flexible, argument devised by the
second and third authors of the present paper, together with X. Cabré, in [21]. For the
equation

ut + (−∆)αu = f(u), t > 0, x ∈ RN

0 < α < 1, with u(0, .) compactly supported, they prove the

Theorem 4.1 ([21]). We have, for a universal C > 0:

C−1

1 + e−κt |x|N+2α
6 u(x, t) 6

C

1 + e−κt |x|N+2α
(4.1)

This is done by introduction of the invariant coordinates ξ = xe−λt, and a pair of
sub/super solutions is sought for in those coordinates, where u solves

∂tu− λξ · ∇ξu+ e−αλt(−∆)αu− f(u) = 0 (4.2)

The construction of sub/super solutions for (4.2) is connected to the existence of suitably
decaying solutions of

−λξφ′ = f(φ),

on the whole line, which just amounts to finding entire solutions of ψ̇ = f(ψ). Try-
ing to extend this idea here amounts to rescaling the x variable, defining the functions
ṽ(ξ, y, t) := v(eγtξ, y, t) and ũ(ξ, t) := u(eγtξ, t), with the idea that γ = f ′(0)/(1 + 2α). If
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we - formally - neglect the diffusive terms e−2γtṽξξ and e−2αγt(−∂ξξ)αũ, that should go to
0 as t tends to +∞, we end up with the following transport system

∂tṽ − γξ∂ξṽ − ∂yyṽ = f(ṽ), ξ ∈ R, y > 0, t > 0,

∂tũ− γξ∂ξũ = −µũ+ ṽ − kũ, ξ ∈ R, y = 0, t > 0,

−∂yṽ = µũ− ṽ, ξ ∈ R, y = 0, t > 0.

(4.3)

The idea is to look for stationary solutions to that system, and try to deform them.
However, we are not able to carry out that program, and there is a deep reason for that.
The subsolution will be constructed in a different way than the supersolution, which will
result in a loss of precision in estimating the propagation speed on the road.

1. The upper bound. We use the classical remark that f(v) 6 f ′(0)v to bound the
solution of (1.1) by that of the linearized system at v = 0, i.e. the solution (v, u) of

∂tv −∆v = f ′(0)v, x ∈ R, y > 0, t > 0

∂tu+ (−∂xx)αu = −µu+ v − ku, x ∈ R, y = 0, t > 0

−∂yv = µu− v, x ∈ R, y = 0, t > 0,

What will be of interest to us will be the behavior f u on the road, the rest of the
solution being handled with standard arguments of parabolic equations. The main
results that we will prove is the existence of a constant cα > 0 such that

u(x, t) ∼ cαe
f ′(0)t

(k + f ′(0))3|x|1+2αt
3
2

as |x|, t→ +∞. (4.4)

This will give, for all γ > γ? =
f ′(0)

1 + 2α
:

lim
t→+∞

u(x, t) = 0 uniformly in |x| > eγt.

In fact, we have, for t large enough

{x ∈ R | u(x, t) = λ} ⊂
{
x ∈ R | |x| 6 Cλt

− 3
2(1+2α) e

f ′(0)
(1+2α)

t

}
.

2. Lower bound. We apply the methodology introduced in [21], but we adapt it in
an important fashion: since it seems difficult to construct a stationary subsolution
to the rescaled transport problem, we work in a strip of width L instead of the half
plane and let L go to infinity. An explicit subsolution is constructed under the form

v(x, y, t) =

{
φ(xBe−γt) sin

(π
L
y + h

)
if 0 < y < L(1− h

π
)

0 if y > L(1− h
π
)

, u(x, t) = chφ(xBe−γt) ,

where γ ∈
(

0,
f ′(0)

1 + 2α

)
and φ decays like |x|−(1+2α).
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4.2 Consequences and remarks

1. The speed of propagation for this two dimensional model cannot be purely exponen-
tial. This also explains why trying to construct steady solutions to (4.3) does not lead
anywhere.
2. The influence of the road is felt on the expression of the solution to (5.1). Indeed,
although there is no increase of matter on the road, the maximal growth rate - i.e. the
same as in the ODE u̇ = f(u) - is chosen and the system behaves as if there were an
effective growth term on the road.
3. The effect of the mortality on the road is never felt in the growth exponent. Its
only influence is that it divides the fundamental solution by a large factor. But, if one
waits for a sufficiently long time, one will in the end observe propagation at exponential
velocity. This suggests to study the asymptotics k → +∞, and a transition of the type
discovered in [26] for α→ 1.
4. This raises the question of whether this is the correct asymptotics: sharp spreading
rates are indeed not given, in general, by that of the linearized equation. The following
simulation, taken from [25], investigates the issue. It solves the rescaled problem satisfied
by ṽ and ũ, defined on R× R+ × R+, by

ṽ(x̃, y, t) = v(eltt−mx̃, y, t) and ũ(x̃, t) = u(eltt−mx̃, t).

Here l = 1
1+2α

, and m > 0 the constant that we want to discover.

Figure 4: Evolution of the density ũ with α = 0, 5, for m = 0 (on the left), m = 3
2(1+2α)

(in the center) and m = 3
1+2α

(on the right), at successive times t = 30, 40, 50, ..., 200
with a color graduation from blue to red.

The left side of Figure 4, that concerns m = 0, shows that the level sets move faster than
e

t
1+2α , whereas the right side, that concerns m = 3

1+2α
, shows that the level sets move

slower than t−
3

1+2α e
t

1+2α . The center of Figure 4 concerns the particular choicem = 3
2(1+2α)

,
suggested by the upper bound of Theorem 5.1. On compact sets, the rescaled density ũ
seems to converge to a function that does not move in time.
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5 The supersolution
In this section, we are going to present the main lines of the proof of the

Theorem 5.1 (Coulon [25]). Let (v(x, y, t), u(x, t)) solve
∂tv −∆v = f ′(0)v, x ∈ R, y > 0, t > 0

∂tu+ (−∂xx)αu = −µu+ v − ku, x ∈ R, y = 0, t > 0

−∂yv = µu− v, x ∈ R, y = 0, t > 0,

(5.1)

with (v(x, y, 0), u(x, 0)) = (0, u0(x)) and u0 6≡ 0 nonnegative and compactly supported.
There exists a function R(t, x) and constants δ > 0, C > 0 such that

1. we have, for large x:∣∣∣∣u(x, t)− 8αµ sin(απ)Γ(2α)Γ(3/2)

π(k + f ′(0))3

ef
′(0)t

t3/2|x|1+2α

∣∣∣∣6 R(t, x),

2. and the function R(t, x) is estimated as

0 6 R(t, x) 6 C

(
e−δt +

ef
′(0)t

|x|min(1+4α,3)
+

ef
′(0)t

|x|1+2αt
5
2

)
.

This is a computationally nontrivial result whose full proof will not be given here.
However we will give the main steps. Let r0 > 0 be the unique solution of

r2
0 = r2α

0 + f ′(0) + k. (5.2)

will be denoted by r0. It is crucial to notice that r0 >
√
f ′(0).

We define (v1, u1) = e−f
′(0)t(v, u), the equation solved by (v1, u1) is

∂t

(
v1

u1

)
= −Ã

(
v1

u1

)
= −

(
−∆v1

(−∂xx)αu1 + µu1 − v1 + ku1 + f ′(0)u1

)
.

5.1 Fourier-Laplace transform

The operator Ã is similar to the operator A defined in (A.1) with the constant k replaced
by k + f ′(0). Its domain is D(A) given by (A.2). It is a sectorial operator on X with
angle βÃ ∈ (0, π

2
). And so, we have(
v1(x, y, t)

u1(x, t)

)
=

1

2iπ

∫
Γ0,β

Ã

(Ã− λI)−1

(
0

u0(x)

)
e−λtdλ. (5.3)

The computation of (Ã− λI)−1

(
0

u0

)
in the Fourier variables is an easy step that

gives

(Ã− λI)−1

(
0

u0

)
=


F−1

(
ξ 7→ µ

P (λ, |ξ|)
e−
√
−λ+|ξ|2y

)
? u0

F−1

ξ 7→
√
−λ+ |ξ|2 + 1

P (λ, |ξ|)

 ? u0

 , (5.4)
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where P is given by

P (λ, |ξ|) :=
(
−λ+ |ξ|2α + µ+ k + f ′(0)

)(√
−λ+ |ξ|2 + 1

)
− µ. (5.5)

The computation of this inverse Fourier transform requires the knowledge of the location
of the zeroes of P ; one may prove that (see [25]):

• if |ξ| < r0, for any λ ∈ C, P (λ, |ξ|) does not vanish,

• if |ξ| > r0, P (λ, |ξ|) may vanish for some real values of λ.

5.2 First reduction

The following preliminary lemma simplifies the expression of the inverse Fourier trans-
form. Its poof is not given here, see [25].

Lemma 5.2. Let r0 be defined in (5.2) and P be defined in (5.5). For r > 0, t > 1 and
a constant β ∈ (0, π

2
), we set

Iβ(r, t) =
1

iπ

∫
Γ0,β

√
−λ+ r2 + 1

P (λ, r)
e−λtdλ, (5.6)

where Γ0,β = R+e
iβ ⊕ R+e

−iβ. Then, for all c ∈ (0, 1), we have

1. For r ∈ (0, cr0) and t > 1 :

Iβ(r, t) =
2µe−r

2t

π

∫ ∞
0

√
ν

|P (r2 + ν, r)|2
e−νtdν.

2. There exists a universal constant C > 0 such that, for all r > cr0 and all t > 1

|Iβ(r, t)| 6 Ce−(r2α+k+f ′(0)−ε0)t
(√
|r2 − (r2α + k + f ′(0)− ε0)|+ 1

)
,

where ε0 = r2α
0 (1− c2α) > 0.

5.3 The main part {|ξ| < r0}
Estimating the integral on {|ξ| < r0} is now a Polya type computation [41], [53]. This is
what we choose to develop here.

Lemma 5.3. Define J(x, t) as

J(x, t) :=

∫ cr0

0

Iβ
Ã

(r, t)eixrdr.

where c ε > 0 satisfy c2r2
0 cos(2ε) > f ′(0). There is C > 0 universal such that, If |x| is

large enough, we have∣∣∣∣J(x, t)− 4αµ sin(απ)Γ(2α)Γ(3/2)

π(k + f ′(0))3

ef
′(0)t

t3/2|x|1+2α

∣∣∣∣ 6 C2

(
e−c

2r20 cos(2ε)t + e−
√
x sin(ε) +

1

x3

)
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Proof. From Lemma 5.2, we know that for r ∈ (0, cr0) and t > 1,

Iβ
Ã

(r, t) =
2µe−r

2t

π

∫ ∞
0

√
ν

|P (r2 + ν, r)|2
e−νtdν,

where
P (r2 + ν, r) = (−ν − r2 + r2α + µ+ k + f ′(0))(i

√
ν + 1)− µ.

We define, for (ν, z) ∈ R+ × C :

Q(ν, z) = (−ν − z2 + z2α + k + f ′(0))2 + ν(−ν − z2 + z2α + µ+ k + f ′(0))2,

so that we have

Q(ν, r) =
∣∣P (r2 + ν, r)

∣∣2 for (ν, r) ∈ R+ × [0, cr0].

Thus, J becomes

J(x, t) :=
2µ

π

∫ cr0

0

e−r
2teixrj(r, t)dr, (5.7)

where
j(r, t) =

∫ ∞
0

√
ν

Q(ν, r)
e−νtdν.

To estimate J , there are three steps. The first one consists in rotating the integration
line by a small angle ε > 0. Then, we prove we can only keep values of r close to 0.
Finally, we rotate the integration line up to π

2
.

Step 1 : From our knowledge of P , there exists a small angle ε > 0 such that

cos(2ε) >
f ′(0)

c2r2
0

, (5.8)

and

for all ν > 0 and z ∈ {z ∈ C | |z| 6 cr0, arg(z) ∈ [0, ε]} : |Q(ν, z)| > cQ. (5.9)

We want to rotate the integration line of ε in (5.7). For all t > 1, the function

z 7→ e−z
2teixzj(z, t)

is holomorphic on the same set as Q, that is to say on {z ∈ C | |z| 6 cr0, arg(z) ∈ [0, ε]}
if α ∈ [1

2
, 1) and on {z ∈ C? | |z| 6 cr0, arg(z) ∈ [0, ε]} if α ∈ (0, 1

2
]. In this last case,

we need to remove a neighborhood of zero when rotating the integration line. Choose
δ ∈ (0, cr0). On the small arc γδ,ε = {δeiθ, θ ∈ [0, ε]}, we have for t > 1∫

γδ,ε

∣∣∣e−z2teixzj(z, t)∣∣∣ dz 6 C

∫ ε

0

e−δ
2 cos(2θ)te−xδ sin(θ)δdθ,

where C > 0 is a universal constant. The right hand side tends to 0 as δ tends to 0.
Thus, the Cauchy formula leads to

J(x, t) =
2µ

π
(J1(x, t)− J2(x, t)), (5.10)
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where

J1(x, t) =

∫ cr0

0

e−s
2e2iεt+iε+ixseiεj(seiε, t)ds, J2(x, t) = cr0i

∫ ε

0

e−c
2r20e

2iθt+iθ+ixcr0eiθj(cr0e
iθ, t)dθ.

The term J2 decays exponentially in time :

|J2(x, t)| 6 cr0

∫ ε

0

e−c
2r20 cos(2θ)te−xcr0 sin(θ)

∣∣j(cr0e
iθ, t)

∣∣ dθ 6 C

t3/2
e−c

2r20 cos(2ε)t, (5.11)

where C > 0 is a universal constant linked to cQ defined in (5.9).

Step 2 : We now treat J1. We cut it into two pieces in order to keep values of s close to
0. Let us define, for x > (cr0)−2 and t > 1 :

Jm1 (x, t) :=

∫ x−
1/2

0

e−s
2e2iεteixse

iε

j(seiε, t)eiεds and (5.12)

Jr1 (x, t) :=

∫ cr0

x−1/2

e−s
2e2iεteixse

iε

j(seiε, t)eiεds,

so that J1(x, t) = Jm1 (x, t) + Jr1 (x, t). For x > (cr0)−2 and t > 1, we have the estimate

|Jr1 (x, t)| 6 C

∫ cr0

x−1/2

e−xs sin(ε)e−s
2 cos(2ε)tds,

where C > 0 is once again linked to cQ defined in (5.9). This implies that Jr1 (x, t) decays
exponentially in x and, taking C larger if necessary, for x > (cr0)2 and t > 1:

|Jr1 (x, t)| 6 Ce−
√
x sin(ε). (5.13)

Step 3 : We prove that Jm1 (x, t) decays like x−(1+2α) for large values of x. We turn
the variable of integration into s̃ = xs to get, for x > (cr0)2 and t > 1,

Jm1 (x, t) =

∫ x
1/2

0

e−
s̃2

x2
e2iεteis̃e

iε

j(s̃x−1eiε, t)eiε
ds̃

x
.

Keeping in mind that we want an estimate for large values of x, we cut Jm1 as

Jm1 (x, t) =

∫ x
1/2

0

eis̃e
iε

j(s̃x−1eiε, t)eiε
ds̃

x
+

∫ x
1/2

0

(e−
s̃2

x2
e2iεt − 1)eis̃e

iε

j(s̃x−1eiε, t)eiε
ds̃

x
.

The second term in the right hand side satisfies

∣∣∣∣∣
∫ x

1/2

0

(e−
s̃2

x2
e2iεt − 1)eis̃e

iε

j(s̃x−1eiε, t)eiε
ds̃

x

∣∣∣∣∣ 6 C

x3

∫ +∞

0

s̃2e−s̃ sin(ε)ds̃, (5.14)

21



where C > 0 is once again universal. We have to estimate∫ x
1/2

0

eis̃e
iε

j(s̃x−1eiε, t)eiε
ds̃

x

for large values of x and t > 1. For all ν ∈ R+, Q(ν, 0) 6= 0. Consequenlty, there exists
x0 ∈ (0, 1) such that Q does not vanish in R+ × Bx0(0). Thus, for all t > 1 and all
x−1/2 < x0, the function

z 7→ eizj(zx−1, t)

is holomorphic on {z ∈ C | |z| 6 x1/2} if α ∈ [1
2
, 1) and on {z ∈ C? | |z| 6 x1/2} if

α ∈ (0, 1
2
]. Let δ ∈ (0, 1). On the small arc γδ = {δeiθ, θ ∈ [ε, π

2
]}, we have for t > 1∫

γδ

∣∣eizj(zx−1, t)
∣∣ dz 6 C

∫ π
2

ε

e−δ sin(θ)δdθ.

The right hand side tends to 0 as δ tends to 0. For x > x−2
0 , we can rotate the integration

line up to π
2
and the Cauchy formula leads to∫ x

1/2

0

eis̃e
iε

j(s̃x−1eiε, t)eiε
ds̃

x
=

∫ x
1/2

0

e−sj(isx−1, t)i
ds

x
+

∫ π
2

ε

eix
1/2eiθj(x

1/2eiθ, t)ieiθ
dθ

x1/2
.

The second term in the right hand side satisfies∣∣∣∣∣
∫ π

2

ε

eix
1/2eiθj(x

1/2eiθ, t)ieiθ
ds̃

x1/2

∣∣∣∣∣ 6 Ce−
√
x sin(ε), (5.15)

where C > 0 is a universal constant. It remains to estimate J̃m1 defined by

J̃m1 (x, t) =

∫ x
1/2

0

e−sj(isx−1, t)i
ds

x
,

where
j(isx−1, t) =

∫ ∞
0

√
ν

Q(ν, isx−1)
e−νtdν.

Recall that we are interested in the real part of J̃m1 . A simple computation gives

∣∣Q(ν, isx−1)
∣∣2<e

(
i

Q(ν, isx−1)

)
=
∣∣Q(ν, isx−1)

∣∣2=m

(
1

Q(ν, isx−1)

)
= 2

s2α

x2α
sin(απ)((−ν + s2x−2 + k + f ′(0) + µ)(1 + ν)− µ) +

s4α

x4α
sin(2απ)(1 + ν).

The integral under study is

<e(J̃m1 (x, t)) =

∫ x
1/2

0

e−s
∫ ∞

0

=m

(
1

Q(ν, isx−1)

)√
νe−νtdν

ds

x
.

With the dominated convergence theorem, we get
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lim
x→+∞

x1+2α<e(J̃m1 (x, t)) = 2

∫ ∞
0

e−ss2α sin(απ)h(ν, t)ds,

where h is defined by

h(ν, t) =

∫ ∞
0

(−ν + k + f ′(0) + µ)(1 + ν)− µ
|Q(ν, 0)|2

√
νe−νtdν ∼

t→+∞

Γ(3/2)

(k + f ′(0))3t3/2
.

This implies that

lim
x→+∞

t−
3/2x1+2α<e(J̃m1 (x, t)) =

4α sin(απ)Γ(2α)Γ(3/2)

(k + f ′(0))3
. (5.16)

Finally with (5.13), (5.14), (5.15) and (5.16), we have the existence of a constant x1 >
max(x−2

0 , cr0, (cr0)−2) such that, for all x > x1 and all t > 1 :∣∣∣∣Jm1 (x, t)− 4α sin(απ)Γ(2α)Γ(3/2)

(k + f ′(0))3

∣∣∣∣ 6 C

(
e−
√
x sin(ε) +

1

x3

)
,

with C > 0 universal. This estimate added to (5.10) and (5.11) leads to the existence of
a constant C2 > 0 such that, for x > x1 and t > 1,

|J2(x, t)| 6 C

(
e−c

2r20 cos(2ε)t + e−
√
x sin(ε) +

1

x3

)
,

which proves Lemma 5.3.

5.4 The remaining terms

Since r0 >
√
f ′(0), the integral on {|ξ| > r0} can be bounded from above by e−r20t. See

[25] once again.

6 An auxiliary subsolution for the transport equation
Let us come back to our model (2.1). The following lemma provides a subsolution to
a nonlinear transport equations with suitable exponential decay. In what follows, for
λ ∈ R+, we set vλ(x) := |x|−λ .

Lemma 6.1. Let g be a nonnegative function of class C∞(R), with g(0) = 0, g′(0) > 0,
and let σ be a positive constant. Then, for all 0 < γ 6 γ̃ := g′(0)/σ, the equation

− γxψ′(x) = g(ψ(x)), x ∈ R, (6.1)

admits a subsolution φ 6 1 of class C2(R) and with the prescribed decay |x|−σ as |x| → ∞.
More precisely, there exist some positive constants β,A1, A2, ε and D such that

if |x| > A2, −γxφ′−g(φ) 6 −βvσ+ε, −φ′′ 6 Dvσ+ε, (−∂xx)αφ 6 Dφ, (6.2)

if |x| ∈ [A1, A2], −γxφ′ − g(φ) < 0, (6.3)

if |x| 6 A1, φ = φ(A1). (6.4)
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Proof. Let δ ∈ (0, 1) be such that g is increasing on (0, δ) and, in addition,

∀s ∈ (0, δ), g(s) > g′(0)s+ (g′′(0)− 1)s2. (6.5)

A first attempt to construct a subsolution satisfying the conditions stated in the lemma
could be

φ1(x) :=

vσ(x)− Avσ+ε(x) if |x| > A1,
1

Aσ1
− A

Aσ+ε
1

if |x| 6 A1,

with A,A1 > 0 to be chosen. Requiring that φ1 ∈ C1(R) yields

A1 = A1/ε
(

1 +
ε

σ

)1/ε

.

With this choice, the function φ1 is positive and nonincreasing on R+. But, if α > 1/2, it
is not regular enough to yield an estimate of its fractional Laplacian. Consequently, we
modify it to have a C2(R) function. This argument is, by the way, not so far from that
of Silvestre in [57] in the study of the regularity of solutions of integral equations. The
function φ1 is concave for A1 6 |x| 6 A3, where

A3 := A1/ε
(

1 +
ε

σ

)1/ε
(

1 +
ε

σ + 1

)1/ε

> A1,

otherwise it is convex.

x

y

Figure 3: Graph of φ1

A1A3

We fix a constant A2 ∈ (A1, A3) and consider

φ(x) :=


vσ(x)− Avσ+ε(x) if |x| > A2,

χ(|x|) if A1 < |x| < A2,
1

Aσ1
− A

Aσ+ε
1

= φ1(A1) > 0 if |x| 6 A1,

where χ ∈ C2([A1, A2]) is nonnegative, nonincreasing, concave on (A1, A2) and chosen so
that φ ∈ C2(R). First, we prove that φ is a subsolution to (6.1) treating separately the
different ranges of |x|.
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• |x| > A2 > A1/ε.
For A > δ−ε/σ, we have that

0 6 φ 6
1

Aσ1
− A

Aσ+ε
1

6 A−σ1 6 A−σ/ε 6 δ,

whence, by (6.5), g(φ) > g′(0)φ+ (g′′(0)− 1)φ2. This, together with γσ 6 g′(0), yields

−γxφ′ − g(φ) 6 γσφ− Aγεvσ+ε − g′(0)φ+ (1− g′′(0))φ2

6 (1− g′′(0))v2
σ − Aγεvσ+ε.

Since v2
σ = v2σ, choosing ε < σ, we have that the latter term is less than −βvσ+ε for

given β > 0, provided A is large enough. This proves the first estimate in (6.2).

• |x| ∈ (A1, A2).
Using the concavity and monotonicity of χ we see that the function r 7→ γrχ′(r) is
nonincreasing in (A1, A2). Hence, by the monotonicity of g in (0, δ),

−γxφ′(x)− g(φ(x)) = −γxχ′(|x|)− g(χ(|x|)) 6 −γA2χ
′(A2)− g(χ(A2)),

which is less than or equal to −βvσ+ε(A2) by the previous case. This proves (6.3).

• |x| 6 A1.
−γxφ′(x)− g(φ(x)) = −g(φ(A1)) 6 0.

Then, we prove the remaining two estimates of (6.2) for |x| > A2. As for the first
one, we have that

−φ′′(x) 6 (σ + ε)(σ + ε+ 1)Ax−2vσ+ε(x) 6 Dvσ+ε(x),

for some D > 0. The last estimate, concerning (−∂xx)αφ, follows from the previous one,
with a possibly smaller D. Indeed, as seen in [21], the function φ, being of class C2,
radially symmetric and nonincreasing in |x|, satisfies (−∂xx)α(x)φ 6 D′φ(x) for some
D′ > 0.

7 Lower bound close to the road
Throughout this section, (v, u) is as in Theorem 2.2 and γ < γ? = f ′(0)/(1 + 2α).
Namely, (v, u) is a solution to (2.1) starting from a nonnegative, compactly supported
initial condition (v0, u0) 6≡ (0, 0). The section is split into four subsections. In the
first, short one, we estimate the solution of (2.1) at time t0 > 0 in strips of the form
R × [0, Y ]. In the second one, we study a reduced model - where we discard, from the
full system (2.1), terms that seem to decay exponentially fast in time; we think that it
will help in understanding the logic of the construction. The third subsection is devoted
to the construction of a subsolution to the full model, which is then used in the following
subsection to derive an auxiliary result to Theorems 2.2 and 2.3 part 2.

Proposition 7.1. Under the assumptions of Theorem 2.2, for all γ < γ?, there holds:

lim inf
t→+∞

inf
|x|6eγt

u(x, t) > 0, (7.1)

∃A > 0, lim inf
t→+∞

inf
|x|6eγt
06y6A

v(x, y, t) > 0. (7.2)
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7.1 Bounding from below the solution at positive time

The next result provides a lower bound on the decay of solutions to the system with no
reaction in the field (i.e., f = 0).

Lemma 7.2. Let (pv, pu) be the solution to
∂tp

v −∆pv = 0, x ∈ R, y > 0, t > 0,

∂tp
u + (−∂xx)αpu = −(µ+ k)pu + pv, x ∈ R, y = 0, t > 0,

−∂ypv = µpu − pv, x ∈ R, y = 0, t > 0,

(7.3)

completed with the initial data pv(·, ·, 0) = 0 and pu(·, 0) = u0. Then, for any constant
Y > 0, there exists a > 0 such that

∀(x, y) ∈ R× [0, Y ], pv(x, y, 2) >
a

1 + |x|1+2α , pu(x, 2) >
a

1 + |x|1+2α . (7.4)

Proof. Remark A.2 in the Appendix ensures that, for all time t > 0, the function pv is
nonnegative on R× R+. Thus the second equation of (7.3) gives

∀x ∈ R, t > 0, ∂tp
u(x, t) + (−∂xx)αpu(x, t) + (µ+ k)pu(x, t) > 0.

Let us denote by pα the fundamental solution to the 1D fractional Laplacian; it is well
known that pα decays like |x|−(1+2α) and a lower bound of pα leads to the existence of a
constant a1 > 0, depending on u0 and α, such that for all x ∈ R and all t > 1:

pu(x, t) > e−(µ+k)tu0 ? pα(x, t) > a1
t−1/2αe−(µ+k)t

1 + |x|1+2α . (7.5)

Take x0 large enough so that

∀x ∈ (x0 − 1, x0 + 1),
1 + |x|1+2α

1 + (1 + |x|)1+2α
>

1

2
.

Set
w(x, y, t) := (1 + |x0|1+2α)pv(x0 + x, y, t).

We have to prove that, for any Y > 0, there exists a > 0 independent of x0 (large enough)
such that w(0, y, 2) > a for y ∈ [0, Y ]. The boundary condition satisfied by pv in (7.3),
the estimate of pu in (7.5) and the choice of x0 give, for |x− x0| < 1 and t > 1,

−∂yw(x, 0, t) + w(x, 0, t) = µ(1 + |x0|1+2α)pu(x, t)

> 2−1a1t
−1/2αe−(µ+k)t.

If t ∈ [1, 3], this is larger than some constant a2 > 0. Thus, it easily follows from the
uniform regularity of w with respect to y (which is the same as for pv), that y 7→ w(0, y, 2)
cannot be arbitrarily close to 0 at y = 0 without becoming negative at some y > 0, which
is impossible.
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7.2 A reduced model

We are going to seek a stationary strict subsolution to the following system:
−γξ∂ξV − ∂yyV = f(V ), ξ ∈ R, 0 < y < L,

−γξ∂ξU = −µU + V − kU, ξ ∈ R, y = 0,

−∂yV = µU − V, ξ ∈ R, y = 0.

(7.6)

for a large constant L. We want the subsolution to have the algebraic decay |ξ|−(1+2α)

for large values of |ξ|. Taking

L > π (f ′(0)− (1 + 2α)γ)
−1/2

= π [(1 + 2α)(γ? − γ)]−1/2 , (7.7)

we see that γ < (f ′(0)− π2/L2)/(1 + 2α) and hence Lemma 6.1 applies with

g(s) := f(s)−
(π
L

)2

s, σ := 1 + 2α, (7.8)

providing us with a function φ satisfying (6.2)-(6.4) and decaying as |x|−(1+2α). Define

V (ξ, y) =

{
φ(ξ) sin

(π
L
y + h

)
if 0 6 y < L

(
1− h

π

)
0 if y > L

(
1− h

π

) , U(ξ) = Cφ(ξ) ,

where 0 < h < π and C > 0 will be suitably chosen in such a way that (V , U) is a
subsolution to (7.6). We treat separately the three equations of the system.

• The first equation.
The nontrivial case is 0 < y < L(1− h

π
), and there holds

−γξ∂ξV − ∂yyV − f(V ) =

(
−γξφ′ +

(π
L

)2

φ

)
sin
(π
L
y + h

)
− f(V )

= −γξφ′ sin
(π
L
y + h

)
− g

(
φ sin

(π
L
y + h

))
6 (−γξφ′ − g(φ)) sin

(π
L
y + h

)
,

where the last inequality holds because s 7→ g(s)/s is decreasing. Then, using the
properties (6.2)-(6.4), we derive the existence of β, ε > 0 such that

− γξ∂ξV − ∂yyV − f(V ) 6 − β

1 + |ξ|1+2α+ε
sin
(π
L
y + h

)
. (7.9)

• The second equation.
Since −γξφ′ 6 g(φ) 6 g′(0)φ, we have that

−γξU ′ + (µ+ k)U − V (ξ, 0) = C[−γξφ′ + (µ+ k)φ]− φ sin(h)

6 [C(g′(0) + µ+ k)− sin(h)]φ.

Consequently, for C = C(h) small enough,

− γξU ′ + (µ+ k)U − V (ξ, 0) 6 −βU, (7.10)

for a possibly smaller β.

27



• The third equation.
There holds

− ∂yV (ξ, 0)− µU(ξ) + V (ξ, 0) =
(
−π
L

cos(h)− Cµ+ sin(h)
)
φ(ξ) 6 0, (7.11)

up to choosing h < arctan(π/L) and then C = C(h) small enough.

7.3 Subsolution to the full model (2.1)
The subsolution (v, u) that we are going to construct is a modification of the pair (V , U)
defined in the previous subsection. We know from Lemma 6.1 that (V , U) decays as
|ξ|−1−2α, and by (6.2), that there exists D > 0 such that

− ∂ξξV (ξ, y) 6
D

1 + |ξ|1+2α+ε
sin
(π
L
y + h

)
, (−∂ξξ)αU(ξ) 6 DU(ξ). (7.12)

Lemma 7.3. For B > 0 small enough, the couple (v, u) defined by

v(x, y, t) = V (xb(t), y) and u(x, t) = U(xb(t)), (7.13)

with b(t) = Be−γt, is a subsolution to (2.1).

Proof. Let us call

L1(v) = ∂tv −∆v − f(v), L2(v, u) = ∂tu+ (−∂xx)αu+ (µ+ k)u− γ0v.

• In the field.
The nontrivial case is 0 < y < L(1− h

π
), where, by properties (7.9) and (7.12), we get

L1(v) = −γxb(t)∂ξV (xb(t), y)− b2(t)∂ξξV (xb(t), y)− ∂yyV (xb(t), y)− f(V (xb(t), y))

6
−β +Db2(t)

1 + |xb(t)|1+2α+ε
sin
(π
L
y + h

)
.

Then, since |b(t)| 6 B, this term is negative for B small enough.

• On the road.

Using (7.10) and the second estimate in (7.12) we derive

L2(v, u) = −γxb(t)U ′(xb(t)) + b2α(t)(−∂ξξ)αU(xb(t)) + (µ+ k)U(xb(t))

− V (xb(t), 0)

6 (−β +B2αD)U(xb(t))

which is negative for B small enough once again.

• The boundary condition is an immediate consequence of (7.11).

This shows that (v, u) is a subsolution to (2.1).
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7.4 Conclusion by comparison with the subsolution

Proof of Proposition 7.1. We derive the lower bound close to the road by fitting the
subsolution (v, u) provided by Lemma 7.3 below (v, u) at time t = 2. To do this, we
make use of the pair (pv, pu) from Lemma 7.2. Recall that, by construction,

v(x, y, 2) 6
C

1 + |x|1+2α1[0,L](y), u(x, 2) 6
C

1 + |x|1+2α .

for some L,C > 0. Since the nonlinearity f is nonnegative, the comparison principle
of Theorem A.2 entails that (v, u) is greater than (pv, pu). Applying Lemma 7.2 with
Y = L, we infer the existence of a constant a > 0 such that for all x ∈ R and y ∈ [0, L],

v(x, y, 2) > pv(x, y, 2) >
a

1 + |x|1+2α , and u(x, 2) > pu(x, 2) >
a

1 + |x|1+2α .

We eventually infer that, at time t = 2, (v, u) is greater than ε0(v, u), provided ε0 > 0 is
small enough. Notice that since s 7→ f(s)

s
is decreasing, for ε0 ∈ (0, 1) the couple ε0(v, u)

is still a subsolution to the problem (2.1). Therefore, choosing ε0 ∈ (0, 1) sufficiently
small, we can apply the comparison principle and obtain

∀(x, y) ∈ R× R+, t > 2, v(x, y, t) > ε0v(x, y, t), u(x, t) > ε0u(x, t).

Finally, we know from Lemma 7.3 that

v(x, y, t) = V (xBe−γt, y), u(x, t) = U(xBe−γt),

with B > 0, V positive in some strip R × [0, A] and U positive. The proof of Proposi-
tion 7.1 is thereby achieved.

8 Lower bound in the field
This section is dedicated to the proof of following weaker version of Theorem 2.3 part 2:

Proposition 8.1. Under the assumptions of Theorem 2.2, there holds

∀θ ∈ (0, π), 0 < c < cK/sin(θ), lim inf
t→+∞

inf
06r6ct

v(r cos(θ), r sin(θ), t) > 0.

Proof. As said in Section 2, the invasion on the road is exponential in time, whereas it
cannot be more than linear in the field. Therefore a good model for it is the Dirichlet
problem

∂tv − ∂yyv = f(v) for y > 0, v(0, t) = 1.

Extend v as a function of two spatial variables by v(x, y, t) := v(y, t): this gives the
desired propagation. In order to make this consideration rigorous, we first exploit the
lower bound close to the road given by Proposition 7.1, next we use standard arguments
for the spreading in the field orthogonally to the road.

Let (v, u) be as in Theorem 2.2. By (7.2), for any γ ∈ (0, γ?), there exists δ, t0, A > 0
such that

∀t > t0, |x| 6 eγt, 0 6 y 6 A, v(x, y, t) > δ. (8.1)

We now forget the road and replace it with sudden death of the population, namely, with
the Dirichlet boundary condition. We derive the following
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Lemma 8.2. Let w be the solution to the problem{
∂sw −∆w = f(w), x ∈ R, y > 0, s > 0,

w(x, 0, s) = 0, x ∈ R, s > 0,
(8.2)

starting from a nonnegative, compactly supported initial datum w0 6≡ 0. Then

∀0 < c < cK , lim
s→+∞

w(x, y + cs, s) = 1, ∀c > cK , lim
s→+∞

w(x, y + cs, s) = 0, (8.3)

locally uniformly in (x, y) ∈ R2. Moreover, for any K b R, ρ > 0 and 0 < c < cK,

inf
s>ρ, x∈K
ρ6y6cs

v(x, y, s) > 0. (8.4)

It is also possible to show that w converges locally uniformly to the unique positive
bounded solution W to the ODE −W ′′(y) = f(W (y)) for y > 0, such that W (0) = 0.
Let us postpone the proof of this lemma until the end of this section and continue with
the proof of the proposition. We actually derive a stronger result: the uniform lower
bound in rectangles expanding with any speed less than cK in the vertical direction, and
exponentially fast in the horizontal one (cf. Figure 4).

c sin(θ)t

eγεt−eγεt x

y

θ

Figure 4: Expanding rectangle

Fix c ∈ (0, cK), θ ∈ (0, π) and ε ∈ (0, 1). Let t1 > t0/ε be such that

∀t > t1, eγεt > c
| cos(θ)|
sin(θ)

t+ 1.

It follows from (8.1) that, for all t > t1, there holds

∀|x0| 6 eγεt − 1, |x| 6 1, y ∈ [0, A], v(x0 + x, y, εt) > δ. (8.5)

Consider w the solution to (8.3) with initial datum w(x, y, 0) = δ1(−1,1)×(0,A)(x, y). Since
v is a supersolution to (8.3), the comparison principle yields

∀t > t1, |x0| 6 eγεt − 1, x ∈ R, y > 0, v(x0 + x, y, t) > w(x, y, (1− ε)t).

Applying the estimate (8.4) from Lemma 8.2 with x = 0 and s = (1− ε)t, we derive

inf
t>t1, |x0|6eγεt−1

ρ6y6(1−ε)ct

v(x0, y, t) > 0,

for any ρ > 0. This estimate actually holds true up to ρ = 0 thanks to (8.5). Notice
that, for 0 6 r 6 c

sin(θ)
(1 − ε)t, we have |r cos(θ)| 6 eγεt − 1 by the choice of t1, and

r sin(θ) 6 c(1 − ε)t. The proof of Proposition 8.1 is thereby complete owing to the
arbitrariness of c ∈ (0, cK) and ε ∈ (0, 1).
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Proof of Lemma 8.2. The second limit in (8.3) follows immediately from the spreading
result of [3, 40], because solutions to (8.2) are subsolutions of the problem in the whole
plane. For the same reason we know that lim sups→+∞w(x, y, s) 6 1 uniformly in (x, y) ∈
R× R+. Let us deal with the fist limit in (8.3). Fix c ∈ (0, cK) and cast the problem in
the frame moving vertically with speed c. That is, consider the problem for w̃(x, y, s) :=
w(x, y + cs, s): {

∂sw̃ −∆w̃ − c∂yw̃ = f(w̃), x ∈ R, y > −cs, s > 0,

w̃(x,−cs, s) = 0, x ∈ R, s > 0.
(8.6)

We need to prove that lim infs→+∞ w̃(x, y, s) > 1 locally uniformly in (x, y) ∈ R × R+.
Let λc(r) be the principal eigenvalue of the operator −∆−c∂y in the two-dimensional ball
Br, under Dirichlet boundary condition, and ϕc be the associated positive eigenfunction.
This operator can be reduced to a self-adjoint one by multiplying the functions on which
it acts by exp(−(c/2)y). This reveals that λc(r)− c2/4 = λ0(r), the principal eigenvalue
of −∆ in Br. Hence

lim
r→∞

λ(r) = lim
r→∞

λ0(r) +
c2

4
=
c2

4
< f ′(0).

There is then r > 0 such that f(s) > λ(r)s for s > 0 small enough, and we can therefore
normalize the principal eigenfunction ϕc in such a way that, for all κ ∈ [0, 1], κϕc is a
stationary subsolution to (8.6) for (x, y) ∈ Br and s > r/c. Moreover, for given s0 > r/c,
up to reducing κ if need be, κϕc lies below the function w̃ at a time s = s0, the latter
being positive by the parabolic strong maximum principle. Let w be the solution to
(8.6) emerging at time s = s0 from the datum κϕc extended by 0 outside Br, which is a
generalized subsolution. It follows that w is increasing in s and converges, as s → +∞,
locally uniformly to a positive bounded solution W of

−∆W − c∂yW = f(W ) in R2.

Then, from one hand, W ≡ 1 by the Liouville-type result of [11], Proposition 1.14. From
the other, the comparison principle yields w 6 w̃ for s > s0. We eventually derive that
w̃ → 1 as s→ +∞.

We finally turn to (8.4). From the above arguments we know that, for R > 0 large
enough, the principal eigenfunction ϕ0 of −∆ in BR satisfies −∆ϕ0 6 f(ϕ0). By the fist
limit in (8.3) we have that, up to renormalizing ϕ0 if need be, for given c ∈ (0, cK), there
exists s0 > R/c such that

∀s > s0, (x, y) ∈ BR, w(x, y + cs, s) > ϕ0(x, y).

Hence, by the comparison principle,

∀s > s0, t > 0, (x, y) ∈ BR, w(x, y + cs, s+ t) > ϕ0(x, y).

Consider τ > s0 and cs0 6 η 6 cτ ; applying the previous inequality with s = η/c (> s0),
t = τ − η/c (> 0), y = 0, we infer that

inf
τ>s0, |x|6R/2
cs06η6cτ

w(x, η, τ) > inf
|x|6R/2

ϕ0(x, 0) > 0.

31



By the parabolic strong maximum principle, in the above infimum, τ > s0 can be replaced
by τ > ρ, for any given ρ > 0. We can further get a positive lower bound for w on the
set τ > ρ, |x| 6 R/2, ρ 6 η 6 cs0 by comparison with the function ϕ0(x, y − R − ρ/2),
suitably normalized. Namely, it holds true that

inf
τ>ρ, |x|6R/2

ρ6η6cτ

w(x, η, τ) > 0,

from which (8.4) eventually follows by a covering argument, owing to the invariance of
the problem by x-translations.

9 Convergence to the steady state in the invasion set
In this section, we put together the previous results and derive Theorems 2.2 and 2.3.

Proof of Theorems 2.2 and 2.3 part 1. We start with Theorem 2.2. Let (v, u) be as there.
The pair (v, u) given by Theorem 5.1 is nonnegative by the comparison principle given
in the Appendix, and thus it is a supersolution to (2.1) because f is concave. The same
holds true for K(v, u), for any K > 0. We choose K large enough so that, at time t = 1,
K(v, u) is above the compactly supported initial datum of (v, u). This is possible because
v, u are strictly positive at any time t > 0, as is readily seen by applying the parabolic
strong maximum principle and Hopf’s lemma to derive the positivity of v, and next using
the equation for u. Therefore, by comparison, (v, u) lies below K(v(·, · + 1), u(·, · + 1))
for all times and thus Theorem 2.2 part 1 follows from Theorem 5.1.

We now turn to Theorem 2.3. Let f be a concave function vanishing at 0 and at
‖v‖∞ + 1 and such that

f > f in (0, ‖v‖∞ + 1), f
′
(0) = f ′(0).

Consider the solution to

∂tv − ∂yyv = f(v), y ∈ R, t > 0,

starting from any positive bounded initial datum. We know from Aronson andWeinberger
[2] (or even [40]) that v spreads at speed cK = 2

√
f ′(0), that is,

∀c < cK , lim
t→+∞

inf
|y|6ct

v(y, t) = ‖v‖∞ + 1, ∀c > cK , lim
t→+∞

sup
|y|>ct

v(y, t) = 0. (9.1)

From the first property (recalling that v0 is compactly supported) we deduce in particular
the existence of t0 > 0 such that

∀y ∈ R, v(y, t0) > v0(y), ∀t > t0, v(0, t) > ‖v‖∞ .

It follows that v(y, t0 + t) > v(x, y, t) at t = 0 and also for t > 0, x ∈ R, y = 0.
Namely, v and v(y, t0 + t) are respectively a solution and a supersolution to ∂t −∆ = f
in (x, y, t) ∈ R × R+ × R+, which are ordered at t = 0 and at y = 0. The comparison
principle eventually yields

∀(x, y) ∈ R× R+, t > 0, v(x, y, t) 6 v(y, t0 + t).

Statement 1 of Theorem 2.3 then follows from the second condition in (9.1).
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Proof of Theorems 2.2 and 2.3 part 2. Fix γ ∈ (0, γ?) and let (xτ )τ>0 in R and (yτ )τ>0

in R+ be such that
|xτ | 6 eγτ , (yτ )τ>0 is bounded.

It follows from the estimates in the Appendix that, as τ → +∞, the family

(v(·+ xτ , ·, ·+ τ), u(·+ xτ , ·+ τ))τ>0

converges (up to subsequences) locally uniformly to a bounded solution (ṽ, ũ) of (2.1)
for all t ∈ R. We claim that (ṽ, ũ) coincides with (Vs, Us), the unique positive bounded
stationary solution. This would yield Theorem 2.2 part 2. From (7.1) in Proposition 7.1
(applied with a slightly larger γ) we deduce that

m := inf
(x,t)∈R2

ũ(x, t) > 0.

Then, on the one hand, by Theorem 2.1, the solutions (V1, U1) and (V2, U2) to (2.1), with
initial datum (0,m) and (‖ṽ‖∞, ‖ũ‖∞) respectively, tend locally uniformly to (Vs, Us) as
t→ +∞. On the other, by comparison with (ṽ(·, ·, ·−n), ũ(·, ·−n)), for all (x, y) ∈ R×R+

and n ∈ N, we have:

∀t > 0, (V1(x, y, t), U1(x, t)) 6 (ṽ(x, y, t− n), ũ(x, t− n)) 6 (V2(x, y, t), U2(x, t)),

whence, calling s = t− n and letting n→ +∞, we derive

∀s ∈ R, (ṽ(x, y, s), ũ(x, s)) = (Vs(y), Us),

that was our claim.
It remains to prove Theorem 2.3 part 1. Fix θ ∈ (0, π), c ∈ (0, cK) and consider a

family (rτ )τ>0 such that 0 6 rτ ∈6 cτ . We need to show that

v(rτ cos(θ), rτ sin(θ), τ)− Vs(rτ sin(θ))→ 0 as τ → +∞.

This has been done above for sequences of τ for which rτ is bounded, because xτ :=
rτ cos(θ) 6 eγτ , for any γ > 0 and τ large enough, and yτ := rτ sin(θ) is bounded.
Consider the case rτ → +∞ as τ → +∞. The sequence of translations (v(·+rτ cos(θ), ·+
rτ sin(θ), ·+τ) converges (up to subsequences) locally uniformly as τ → +∞ to a bounded
function ṽ satisfying

∂tṽ −∆ṽ = f(ṽ), (x, y) ∈ R2, t ∈ R.

Furthermore, applying Proposition 8.1 with a slightly larger c and values of θ in a neigh-
bourhood of the fixed one, we infer that inf ṽ > 0. Thus, by comparison with solutions
of the ODE V ′ = f(V ), one readily gets ṽ ≡ 1, which concludes the proof of Theorem
2.3 part 2 because Vs(+∞) = 1.
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Appendix: Cauchy Problem and comparison principle
We choose to prove existence, uniqueness and regularity to the Cauchy Problem for
(2.1) by the theory of sectorial operators and abstract theory of semilinear equations, as
exposed in Henry [37]. Comparison is then proved by standard integration by parts. We
point out that this is not the only way, we could also use viscosity solutions theory. This
would not, however, yield a significantly shorter study.

A.1 Existence, uniqueness, regularity

We work in the Hilbert space X = {(v, u) ∈ L2(R× R+)× L2(R)}. This framework will
be sufficient for what we wish to do. In what follows, γ0 and γ1 denote the usual trace
and exterior normal trace operators. The operator A is defined by

A

(
v

u

)
=

(
−∆v

(−∂xx)αu+ µu− γ0v + ku

)
. (A.1)

The domain of A is

D(A) =
{

(v, u) ∈ H2(R× R+)×H2α(R) | γ1v = µu− γ0v
}
⊂ X. (A.2)

Notice that the first component v of an element of A is a continuous function by the
embedding result, thus the trace γ0v is simply the value of v at y = 0. From [25], the
operator A is sectorial in X. Cast the problem (2.1) in the form

Wt + AW = F (W ), where W =

(
v

u

)
, F

(
v

u

)
=

(
f(v)

0

)
,

where f is C∞(R) and extended in a smooth fashion so that f(0) = f(1) = 0, and f ≡ 0
outside (−1, 2). From Theorem 3.3.3 and Corollary 3.3.5 of [37], there is a unique global
solution (v, u) to (2.1) starting from (v0, u0) ∈ X such that t 7→ (v, u)(·, t) belongs to

C
(
(0,+∞) , H2(R× R+)×H2α(R)

)
∩ C1

(
(0,+∞) , L2(R× R+)× L2(R)

)
. (A.3)

We are going to prove the

Theorem A.1. The solution (v, u) of (2.1) starting from (0, u0), for a continuous, non
negative and compactly supported function u0 6≡ 0, satisfies (v, u) ∈ C∞(R×R+ ×R∗+)×
C∞(R× R∗+).

Proof. This regularity result will be obtained by induction, proving the existence of a
constant δ ∈ (0, 1) such that, for all T > 0, ε ∈ (0, T ) and n ∈ N :

v ∈ Cn+δ,n+δ
2 (R× R+ × (ε2n, T ]) and u ∈ Cn+δ,n+δ

2 (R× (ε2n, T ]), (A.4)

where ε2n =
2n∑
j=1

2−jε −→
n→+∞

ε.

We will use the following results :
Result 1 : Elementary Sobolev embeddings. We have :
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• H2(R× R+) ⊂ Cλ(R× R+), for all λ ∈ (0, 1),

• for α ∈
(

1
4
, 1
)
: H2α(R) ⊂ C2α− 1

2 (R).

Result 2 : Let 0 < t0 < T , l > 0, and consider two functions g ∈ Cl, l2 (R× R+ × [t0, T ])

and u1 ∈ C1+l, 1+l
2 (R× [t0, T ]). Then, from Theorem 4.5.3 in [44], the solution v1 of

∂tv1 −∆v1 = g, x ∈ R, y > 0, t > t0,

−∂yv1 + v1 = µu1, x ∈ R, y = 0, t > t0,

starting from v1(·, ·, t0) ∈ Cl+2(R×R+), for which the following compatibility conditions
of order m1 := b l+1

2
c hold :

∂
(m)
t (−∂yv1 + v1)(·, ·, t0) = µ∂

(m)
t u1(·, t0), for all m = 0, . . . ,m1,

satisfies v1 ∈ Cl+2, l
2

+1(R× R+ × [t0, T ]).

With these two results, we can prove (A.4). Let T > 0, ε ∈ (0, T ) and εi =
i∑

j=1

2−jε.

In view of Result 1, α = 1/4 is a special value. Thus we break the study into two cases:
α 6 1/4 and α > 1/4. We detail the latter case, and explain the needed modifications
for the former one.
Case 1. α > 1/4.

• Case n = 0 : Since (v, u) belongs to the space in (A.3), Result 1 and Lemma 3.3.2 of
[37] yield a constant δ > 0 such that (v, u) ∈ Cδ, δ2 (R× R+ × (0, T ])× Cδ, δ2 (R× (0, T ]).

• Case n = 1 : We first prove that (∂tv, ∂tu) ∈ C((ε1, T ]), H2(R × R+) × H2α(R)) ∩
C1((ε1, T ]), L2(R× R+)× L2(R)). It is sufficient to prove that (∂tv, ∂tu) is solution to

∂tw + Aw = F1 (w, t) , t > ε1, (A.5)

starting from (∂tv(·, ·, ε1), ∂tu(·, ε1)) ∈ L2(R × R+) × L2(R), where F1 is defined on
X × R+ by

F1

((
w1

w2

)
, t

)
=

(
w1f

′(v(·, ·, t))
0

)
. (A.6)

As is usual, we can not directly differentiate equation (2.1) with respect to time, that
is why we consider, for h > 0, the functions vh and uh defined on R× R+ × R+ by

vh(·, ·, t) :=
v(·, ·, t+ h)− v(·, ·, t)

h
and uh(·, t) :=

u(·, t+ h)− u(·, t)
h

.

For any h > 0, (vh, uh) is in D(A) and satisfies

∂t

(
vh

uh

)
+ A

(
vh

uh

)
=

 f(v(·, ·, t+ h))− f(v(·, ·, t))
h
0

 , t > 0. (A.7)
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Once again from Lemma 3.3.2. of [37], v(x, y, ·) is Hölder continuous in time, uniformly
in (x, y) ∈ R×R+, which implies that F1 satisfies the assumptions of Theorem 3.3.3 and
Corollary 3.3.5 of [37]. Thus, from [52], we can pass to the limit as h tends to 0 in (A.7)
to get that (∂tv, ∂tu) is the solution to (A.5), starting from (∂tv(·, ·, ε1), ∂tu(·, ε1)) ∈
L2(R× R+)× L2(R). Thus, we conclude

(∂tv, ∂tu) ∈ C((ε1, T ], H2(R×R+)×H2α(R))∩C1((ε1, T ], L2(R×R+)×L2(R)). (A.8)

We now study, for all t ∈ [ε2, T ], the couple (∂xv(·, ·, t), ∂xu(·, t)). We first prove that,
for all t ∈ (0, T ], ∂xu(·, t) exists and

∂xu(·, t) ∈ L2(R).

From (A.3) and (A.8), we know that, for all t ∈ [ε2, T ] :

u(·, t) ∈ H2α(R), ∂tu(·, t) ∈ H2α(R) and v(·, ·, t) ∈ H2(R× R+).

Applying the operator (−∂xx)α to the equation

∂tu(x, t) + (−∂xx)αu(x, t) = −(µ+ k)u(x, t) + v(x, 0, t),

we have for all t ∈ [ε2, T ] :

(−∂xx)2αu(·, t) = −(µ+ k)(−∂xx)αu(·, t) + (−∂xx)αv(·, 0, t)− (−∂xx)α∂tu(·, t).

This proves that for all t ∈ [ε2, T ], u(·, t) ∈ H4α(R) ⊂ H1(R). As done in the case
n = 1, it is sufficient to prove that (∂xv, ∂xu) is the solution to (A.5), starting from
(∂xv(·, ·, ε2), ∂xu(·, ε2)) ∈ L2(R× R+)× L2(R), where F1 is defined in (A.6).

Once again, we can not directly differentiate equation (2.1) with respect to x, that is
why we consider, for h > 0, the functions vh and uh defined on R× R+ × R+ by :

vh(x, ·, ·) :=
v(x+ h, ·, ·)− v(x, ·, ·)

h
and uh(x, ·) :=

u(x+ h, ·)− u(x, ·)
h

.

Passing to the limit as h tends to 0 in the problem solved by (vh, uh), [52] gives that
(∂xv, ∂xu) is solution to (A.5) with (∂xv(·, ·, ε2), ∂xu(·, ε2)) as initial datum, and conse-
quently

(∂xv, ∂xu) ∈ C((ε2, T ], H2(R× R+)×H2α(R)) ∩ C1((ε2, T ], L2(R× R+)× L2(R)).

• Case n = 2 : To get the regularity of v, we apply Result 2 with

u1 = u ∈ C1+δ, 1+δ
2 (R× [ε3, T ]), g = f(v) ∈ C1+δ, 1+δ

2 (R× R+ × [ε3, T ]),

and initial condition v(·, ·, ε3), to get that v ∈ C2+δ,1+ δ
2 (R × R+ × [ε4, T ]). It remains

to prove the regularity on u, more precisely that ∂tu ∈ Cδ,
δ
2 (R × (ε5, T ]) and ∂xxu ∈

Cδ, δ2 (R× (ε5, T ]). This is done as in the case n = 1, applying several times the operator
(−∂xx)γ to the equation for u, γ being any positive number < α.
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Iterating, we get (A.4).
Case 2. α 6 1/4. It is enough to show that there is δ > 0 such that (v, u) ∈ Cδ, δ2 (R ×
R+× (0, T ])×Cδ, δ2 (R× (0, T ]). From that, the proof of Case 1 applies. To prove that, one
applies alternatively Theorem 3.3.3 and Corollary 3.3.5 of [37] to get, inductively, that

• u ∈ C((0, T ), Hkα(R)) and v ∈ C((0, T ), H3/2+kα(R2
+))

• ∂tu ∈ Cδ((0, T ), H(k−1)α(R)) and ∂tv ∈ H3/2+(k−1)α(R2
+))

• and then, by Lemma 3.3.2 of [37], that u ∈ Cδ((0, T ), H(k−1)α(R)),

• and, finally, that v ∈ Cδ((0, T ), H3/2+(k−1)α(R2
+)).

We are back to Case 1 as soon as kα > 1/4.

Once we know that the solution (v, u) to (2.1) is regular in space and time, we can
remove the trace operators and the Cauchy Problem is thought of in the classical sense.

Remark A.2. In the particular case of x-independent solutions, a similar proof as the one
done implies the unique solvability in C((0,+∞) , H2(R+)×R) ∩ C1((0,+∞) , L2(R+)×
R) for (2.1) with an x-independent initial condition in L2(R+)× R.

A.2 Comparison principle

It will follow from standard arguments; however we give some details: it is a crucial tool
in the whole. Recall first that, from a straightforward computation, we have∫

R
(−∆)αh(x)h+(x)dx > 0,

for all h in H2α(R),

Theorem A.3. Let (v1, u1), (v2, u2) be two couples in C((0,+∞), (H1(R×R+)∩Lip(R×
R+))×H2α(R)) ∩ C1((0,+∞), L2(R× R+)× L2(R)) that satisfy

∂tv1 −∆v1 6 f(v1), x ∈ R, y > 0, t > 0,

∂tu1 + (−∂xx)αu1 6 −µu1 + γ0v1 − ku1, x ∈ R, y = 0, t > 0,

γ1v1 6 µu1 − γ0v1, x ∈ R, y = 0, t > 0,

and 
∂tv2 −∆v2 > f(v2), x ∈ R, y > 0, t > 0,

∂tu2 + (−∂xx)αu2 > −µu2 + γ0v2 − ku2, x ∈ R, y = 0, t > 0,

γ1v2 > µu2 − γ0v2, x ∈ R, y = 0, t > 0.

If for almost all (x, y) ∈ R× R+ v1(x, y, 0) 6 v2(x, y, 0) and u1(x, 0) 6 u2(x, 0), then for
all (x, y, t) ∈ R× R+ × R+, we have v1(x, y, t) 6 v2(x, y, t) and u1(x, t) 6 u2(x, t).

Proof. Let l > 0 be a constant greater than the Lipschitz constant of f . Set

(v3(x, y, t), u3(x, t)) := (v1(x, y, t), u1(x, t))e−lt − (v2(x, y, t), u2(x, t))e−lt, (A.9)
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we have
∂tv3 −∆v3 6 e−ltf(v1)− e−ltf(v2)− lv3, x ∈ R, y > 0, t > 0,

∂tu3 + (−∂xx)αu3 6 −µu3 + γ0v3 − ku3 − lu3, x ∈ R, y = 0, t > 0,

γ1v3 6 µu3 − γ0v3, x ∈ R, y = 0, t > 0.

(A.10)

Almost everywhere in R×R+ and R we have v3(·, ·, 0) 6 0 and u3(·, 0) 6 0. Multiply the
first equation of (A.10) by v+

3 and integrate over R× R+ to get

∫∫
x∈R,y>0

∂tv3v
+
3 dxdy −

∫∫
x∈R,y>0

∆v3v
+
3 dxdy 6

∫∫
x∈R,y>0

(l |v3| − lv3)v+
3 dxdy = 0.

(A.11)
Since v1 and v2 belong to C((0,+∞), H1(R× R+)) ∩ C1((0,+∞), L2(R× R+)), we have
classically ∫∫

x∈R,y>0

∂tv3v
+
3 dxdy =

1

2

d

dt

(∫∫
x∈R,y>0

∣∣v+
3

∣∣2 dxdy) . (A.12)

Using the third equation of (A.10) and the fact that γ0v
+
3 > 0, we have

∫∫
x∈R,y>0

∆v3v
+
3 dxdy 6 −

∫∫
x∈R,y>0

∣∣∇v+
3

∣∣2 dxdy + µ

∫
R
u3γ0v

+
3 dx−

∫
R

∣∣γ0v
+
3

∣∣2 dx.
Inserting this last inequality and (A.12) in (A.11), we get

1

2

d

dt

(∫∫
x∈R,y>0

∣∣v+
3

∣∣2 dxdy) 6 −
∫∫

x∈R,y>0

∣∣∇v+
3

∣∣2 dxdy + µ

∫
R
u+

3 γ0v
+
3 dx. (A.13)

Working similarly with u+
3 , we get

1

2

d

dt

(∫
R

∣∣u+
3

∣∣2 dx) 6
∫
R
u+

3 γ0v
+
3 dx. (A.14)

The continuity of the trace operator gives a constant Ctr > 0 such that∥∥γ0v
+
3

∥∥2

L2(R)
6 C2

tr

(∥∥v+
3

∥∥2

L2(R×R+)
+
∥∥∇v+

3

∥∥2

L2(R×R+)

)
.

Add (A.13) and (A.14), and use the continuity of the trace operator:

1

2

d

dt

(∥∥u+
3

∥∥2

L2(R)
+
∥∥v+

3

∥∥2

L2(R×R+)

)
6 C

(∥∥u+
3

∥∥2

L2(R)
+
∥∥v+

3

∥∥2

L2(R×R+)

)
,

where C > 0 is a universal constant. Since u+
3 (·, 0) = 0 and v+

3 (·, ·, 0) = 0 almost
everywhere, we have for all t > 0, u+

3 (·, t) = 0 and v+
3 (·, ·, t) = 0 almost everywhere,

which concludes the proof.

The above comparison principle is stated for classical solutions whose initial condition
belongs to X = L2(R×R+)×L2(R). However, it is necessary for later purposes to have
a similar result for solutions starting from x-independent initial data, which therefore do
not belong to X.
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Theorem A.4. Let (v1, u1) be as in Theorem A.2, and (v2, u2) ∈ C((0,+∞), H2(R+)×
R) ∩ C1((0,+∞), L2(R+)× R) be such that

∂tv2 − ∂yyv2 > f(v2), x ∈ R, y > 0, t > 0,

u2
′ > −µu2 + γ0v2 − ku2, x ∈ R, y = 0, t > 0,

γ1v2 > µu2 − γ0v2, x ∈ R, y = 0, t > 0.

If v1(·, ·, 0) 6 v2(y, 0) and u1(·, 0) 6 u2(0) , then v1(·, ·, t) 6 v2(·, t) and u1(·, t) 6 u2(t).

The proof is a straightforward adaptation of that of Theorem A.2. Indeed, the points
where the integrability is required involve the positive parts of the couple (v3, u3) defined
by (A.9), which do belong to the desired spaces. For the same reason, one can also
handle the case where both the sub and the supersolution are x-independent and the
subsolution belongs to C((0,+∞), H2(R+)×R)∩C1((0,+∞), L2(R+)×R), which is even
simpler because one is reduced to a problem in one less spatial dimension.
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