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Abstract

In this paper we develop a combinatorial analytic encoding of the Mandelbrot
set M. The encoding is implicit in Yoccoz’ proof of local connectivity of M at
any Yoccoz parameter, i.e. any at most finitely renormalizable parameter for which
all periodic orbits are repelling. Using this encoding we define an explicit combi-
natorial analytic modelspace, which is sufficiently abstract that it can serve as a
go-between for proving that other sets such as the parabolic! Mandelbrot set My
has the same combinatorial structure as M. As an immediate application we use
here the combinatorial-analytic model to reprove that the dyadic veins of M are
arcs and that more generally any two Yoccoz parameters are joined by a unique
ruled (in the sense of Douady-Hubbard) arc in M.

1 The Douady-Hubbard description of M

The Mandelbrot set M equals the set of parameters ¢ € C for which the critical point 0
of Q.(2) = 2% + ¢ does not iterate to oo:

M ={ceC|Qic) # oo}

n—oo

In the following we shall briefly outline the basic properties of M proved by Douady and
Hubbard in [DH1] and [DH2|. Let ¢. denote the Bottcher coordinate at infinity with
the radially maximally extended co-domain U, so that U. C C\ D is starshaped around
infinity and for each ray Ry = e™.]1,00] we have U. N Ry = e2™.|r.(0),c0]. We let
e :U. — B.={z]| Q(2) — oo} denote the inverse of ¢.. The map 1, is surjective if

and only if U, = C\ D.

Isee Definition 2.1
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The Green’s function g.(z) = log|¢.(z)| is the harmonic function on B. satisfying
9e(Qc(2)) = 29.(2) and g.(z) = log|¢c(2)| on Y. (U,). It extends as a subharmonic function
to all of C, taking the value 0 on the filled-in Julia set K, = C\B.. The (external) ray R§
of K. with argument § € T = R/Z is the arc R§ = 1).(Ry N U.). The ray Rj is also the
unbounded field line of g. making the angle 6 with the positive real axis at infinity. Notice
that the straight ray Ry coincides with the external ray of argument 6 for Qu(z) = 2%
Notice also that (). acts on external rays by doubling argument and potential. (Pre)-
periodicity of § under angle doubling thus let us write it as 2%(2!0) = 2!/ mod 1, where
[ > 0 is the pre-period and k > 1 is the period. Hence 6 is (pre)-periodic if and only if it
is rational and periodic if and only if its reduced form has odd denominator. We also say
that Ry is rational, when 6 is rational.

The ray RS is said to land at z € J, if 7.(0) = 1 and R§ = {2z} URS. If r.(8) > 1 then
the ray R§ is said to bump onto z € B,, where R§ = {z} UR§. The point z is then a
(pre)-critical point for Q. and is also the bumping point of another ray R§, meeting R§
head on at z. From z and orthogonally to these emanate two bounded field lines of g..
They may either bump again on another pre-critical point, which happens precisely if 0
is periodic under angle doubling, or converge to .J. and possibly land on a point in J..
Bumping of rays occurs only if ¢ ¢ M.

The following was proved first by Sullivan, Douady and Hubbard, see also [P, Th. A
and Prop. 2.1] for a more general result.

Theorem 1.1. For every ¢ € C every non bumbing rational ray R§ lands on a (pre)-
periodic point. More precisely suppose 2870 = 2!0 mod 1 with k > 0 and | > 0 minimal.

1. If 1 = 0 then R§ lands on either a repelling or a parabolic periodic point z of period
k' dividing k. Moreover if parabolic, then its multiplier equals some root of unity
e?™/9 with (p,q) = 1 and K'q dividing k.

2. If I > 0 then R lands on a pre-periodic point z of pre-period | and QL(Ry) =
RSip oq 1 lands on the periodic point Q'(2), and has the properties above.

The landing of the (pre)-periodic ray R§ at the (pre)-periodic point z(c) is locally
stable at ¢ when Q'(z) is repelling and 0 is not in the orbit of 2. In particular the landing
is globally stable in any connected open set for which Q(2) remains repelling and 0 does
not enter the forward orbit of R.

Definition 1.2. A g-cycle under QF of external rays RS, . . . , Ry_1 co-landing on a com-
mon k-periodic point z and numbered in the counter clockwise order around z defines
combinatorial rotation number p/q, (p,q) =1 iff Q¥(R;) = R(j1p) mod ¢-

We also have conversely to the theorem above:
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Theorem 1.3 (Douady-Yoccoz landing theorem). If z € J. is any repelling or
parabolic (pre)-periodic point. Then there is at least one (pre)-periodic ray landing at z.
In particular z has a combinatorial rotation number.

For a proof of an even more general case see e.g. [P, Th. B, for the case of rational
maps, the general case is identicall.

Douady and Hubbard continued to define a holomorphic map ® : C\M — C\D, tan-
gent to the identity at oo by the formula ®(c) = ¢.(c), c € C\ M and ®(c0) = oo. They
proved that ® is biholomorphic. We let ¥ = ®~! denote its inverse. For § € T the
parameter ray of argument 6 is defined by R := ¥(Ry). (We shall in the following use
the term dynamical ray whenever we need to distinguish a ray in a dynamical plane from
a ray in the parameter space.)

Theorem 1.4 (Douady and Hubbard). Fuvery pre-periodic (i.e. rational ray) Ry of
M lands. More precisely suppose 2870 = 2/ mod 1 with k > 0 and | > 0 minimal.

1. Ifl = 0 then R} lands on a parameter c for which the corresponding dynamical ray
R§ lands at a parabolic periodic point z(c), with exact period k'| k and with multiplier
A = (Q¥Y(2(c)) a primitive k/k'-th root of unity. Moreover there exists a second
argument 6 with 20" = 0" mod 1 such that also R) lands at ¢ and such that the
Jordan curve in the dynamcial plane of Q., RURE U{z(c)} separates the parabolic
petal of z(c) containing ¢ from any other parabolic petal of the orbit of z(c). We
also say that the two rays Rg U Ry are adjacent to c.

2. If 1 > 0 then R)" lands at a parameter ¢ for which the corresponding dynamical ray
RS also lands on ¢ and for which Q*'(c) = Q'(c) is a repelling periodic point of
exact period k. Moreover for any dynamical ray Ry, landing on c, the corresponding
parameter ray RyF lands at ¢ € M.

The map @, has (counting multiplicity) two fixed points. The beta-fixed point (3(c) is
by definition the landing point of the unique fixed ray, R§. The other fixed point a(c) is
attracting in the main hyperbolic component Hy bounded by the main cardioid ¢, neutral
on © and repelling outside. Moreover A(a(c)) defines a bi-holomorphic map of C\[1, o]
onto C\[1, co|, which sends zero to zero with derivative 2.

For each p/q, (p,q) =1 there is a unique parameter ¢ = ¢,,, € Q for which A(a(c)) =
e2/4_ For this parameter the unique g-cycle of rays R§ , R , . .. RG, 0 < by <0 <
... < 0,1 <1 of combinatorial rotation number p/q, i.e. 20, = 0(j4+p) mod ¢ mod 1 lands
on «(c). Moreover the minimal distance in T between neighbouring ’s in the cycle is
realized by 6, and 6, and the corresponding parameter rays Ry? , Rp" land together
at ¢, tangentially to ©. The wake W (c,/q) of ¢,/ is the Jordan domain bounded by
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723?{1 U Rgf U {cp/q, 00} and not containing 0. It consists precisely of those parameters ¢
for which «(c) is repelling and has combinatorial rotation number p/q. Define the limb
Lyq = A{cpse} UW(c,/q) MM and the uprooted limb L:}q = W(cp/q) N M. The Douady-

Yoccoz ray landing Theorem implies that for any point ¢ € M\ Hj the fixed point a(c)
is the landing point of at least one periodic ray and thus has a rational combinatorial
rotation number. Hence the Mandelbrot set naturally decomposes into a disjoint union

M = H, U UL*

p/q’
p_£0
E;AT

Any periodic point z(cy) with multiplier A\(z(¢g)) # 1 can be followed holomorphically
(according to the implicit function theorem applied to Q% (z) = z) in a neighbourhood of ¢q
and the corresponding multiplier function varies also holomorphically. In the particular
case A(z(cp)) € D there exists a topological disk H C M containing ¢q such that z(c)
extends to a holomorphic function on H and the map A\(z(c)) extends to homeomorphism
from H onto D which is analytic except possibly above 1. Such a disk H is called a
hyperbolic component of M. The unique point ¢* = ¢}; of H with A\(z(¢*)) = 0 is called
the center of H. It satisfies Q% (0) = 0, so that both 0 and hence ¢* belongs to the orbit
of z(¢*). The period k > 1 of the attracting orbit is called the period of the hyperbolic
component. Moreover the unique point ¢y € OH with A(cy) = 1 is called the root of H.
At the root the k periodic orbit coincides with another orbit of period &” a divisor of k.

For § + %, (p,q) = 1 the parameter c,/, is the root of the unique hyperbolic component
Hy)q C Ly, of period ¢. The g-periodic orbit for ¢/, coincides with the fixed point a(c,/q)

of Q.. The center ¢* = c:}q of H,,, we shall call it the center of L:}q.

Douady and Hubbard developed this theory further in [DH3], where they prove that
for any hyperbolic component H of M with period k£ and center ¢*, there exists a compact
connected subset My D H of M and a homeomorphism g : My — M such that: For
each ¢ € My the map QF has a quadratic like restriction with connected Julia set, i.e. Q.
is k-renormalizable. And such that the k-periodic orbit zy = 0,2, = ¢*,..., Q" (%) can
be followed continuously (holomorphically except at the root) in My and z(c) is the
a-fixed point of the renormalization containing 0.

2 The Yoccoz Puzzle Y

For the rest of this section we fix a non zero rational p/q # 0/1, (p,q) = 1. All the
introduced quantities will depend on p/q, but we shall only occasionally make reference
to p/q. Also we shall fix an arbitrary choice of equipotential level say 1. For ¢ € Lg let

G)? denote the graph consisting of the equipotential of level 1 for the Green’s function g,
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of K. and the segments of the external rays in the unique p/q cycle R;j together with their
preimages by . inside the equipotential chosen above along with a(c) and its preimage
—a(c). The level 0 or base (p/g-Yoccoz) puzzle pieces are the closures of each of the
bounded connected components of C\GY?. The level 0 or base (p/q-Yoccoz) puzzle )? is
the collection of the 2¢ — 1 level 0 puzzle pieces. The level n € N (p/g-Yoccoz) puzzle Y7

is the collection of closures of connected components of Q. "(Y"), where Y ranges over all
of the level 0 puzzle pieces. The (p/g-Yoccoz) Puzzle for Q. is the union YV, = U,>oY" of
the puzzles at all levels.

Any two puzzle pieces Y € V! and Y’ € V', m < n are either interiorly disjoint or
nested with Y C Y, because potential is multiplied by two under the dynamics and the
set of rays in the construction of Y0 is forward invariant

A nest ie. a sequence N' = {Y"} Y™ € Yr, Y™ C Y™ is called convergent iff
End(N) := N,y Y" is a singleton set and is called divergent otherwise. A nest N is
called critical iff 0 € End(N') and called a critical value nest iff ¢ € End(N).

Yoccoz convergence theorems (see Theorem 3.20 for a parameter space statement)
states that for any parameter ¢ such that (). is non-renormalizable and all its periodic
points are repelling the Julia set J. is locally connected and @, is uniquely given by its
Yoccoz puzzle. The latter also being phrased as “Q). is combinatorially rigid”. Moreover
if (). is renormalizable one may iterate the Yoccoz-puzzle construction on the renormal-
izations and obtain local connectivity of the Julia set J. and rigidity of Q). for any Yocoz
parameter. Rigidity means that ). is “determined by its combinatorics”. To make this
phrase more precise let us introduce:

2.1 The Universal Yoccoz Puzzle U.

When ¢ € M the Bottcher coordinate, which conjugates Q. to Qg at infinity extends to
a bi-holomorphic map ¢, : B.(oco) — C\D tangent to the identity at co. When viewed
in the Bottcher coordinates at oo any two Yoccoz puzzles Y, and YV with ¢, ¢’ € L, /q are
“identical”. In fact the graph @U° := ¢.(QV°\{a, —a}) US! is the union of the unit circle,
the circle of radius e! and the segments of the straight rays Ry, Rej T 0 < j < g between

the two circles. The base universal (p/q-Yoccoz) puzzle U consists of the closures of the
2¢ connected components of the complement of @4° between the two circles. Notice that
¢. is defined only on the parts of each puzzle piece outside K., and that the intersection
with B.(00) of the critical puzzle piece, i.e. the puzzle piece containing the critical point
0, has two connected components. Hence this puzzle piece is 'split’ in two by ¢., where
as the other puzzle pieces have connected intersection with B.(co) and so are mapped to
one puzzle piece each. This is why the base universal puzzle has 2¢q pieces, where as the
base puzzle of (). only has 2¢ — 1 pieces. Moreover as ¢, is a conjugacy, the image U™
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of the level n puzzle Y consists of the 2"2q pieces Q,"(U), where U ranges over the 2¢
pieces of the base puzzle U°. Define U = U,eNU". We call U the universal p/q-Yoccoz
puzzle.

Let Z° denote the set consisting of the unique ¢ cycle for Q, of combinatorial rotation
number p/q in S' and its preimage (corresponding to the arguments 6;, 6, + % above).
Then Z° consists of the end points on S! of the rays in the universal p/g-base puzzle U°.
Define Z" := Q,"(Z°) so that Z" consists of the end points on S! of the rays in the level
n universal p/q puzzle U™. Notice that Z® C Z"*! for all n. Let Z denote the increasing
union Z := U,>0Z".

Yoccoz’ theorem on combinatorial rigidity can be interpreted as follows: Though the
common model U = ¢.(V.) = ¢ (V) does not detect directly any differences between ¢
and ¢’ from the same limb. A natural sequence or tower of equivalence relations {~¢} .,
on Z does. The equivalence relation ~¢ is obtained by declaring 7 and 7/ in Z" equivalent
if and only if the corresponding (rational) rays for @), land at a common point. The
notion of combinatorics of the quadratic polynomial then becomes its associated tower
of equivalence relations ~¢ on Z". And combinatorial rigidity amounts to the statement
that c is uniquely determined by the infinite tower {~¢} ., of equivalence relations.

This motivates the following study of which such towers are potentially possible and
which are actually realized as well as the concluding combinatorial analytic model C of M.
The model has the virtue of being sufficiently abstract that it can be used for other sets.
It is for instance also a faithfull model of the parabolic Mandelbrot set My and of the
limit sets obtained when limbs of the Mandelbrot set degenerate during the holomorphic
motion of M induced by moving the multiplier at infinity.

Definition 2.1. In the space of quadratic rational maps modulo Médbius conjugacy, let
Perq(1) denote the complez line of conjugacy classes of maps with a fixed point of multi-
plier 1. Then, the parabolic Mandelbrot set, My, is the connectdness locus, i.e. the set of
rational maps in Peri(1) with connected Julia set.

3 The Yoccoz Combinatorial-Analytic invariant

There are many combinatorial models for the Mandelbrot set M, e.g. kneading sequences
and their generalizations, Hubbard trees etc, see e.g. [BrSl] for a comprehensive discussion
and comparison. In this section we shall introduce yet another way of modelling M. We
call it the Yoccoz Combinatorial-Analytic Invariant. The model consists of combinato-
rial objects called p/g-equivalences and for the subset of renormalizable p/g-equivalences
(see Definition 3.13) also a complex parameter in M containing analytical information
obtained by renormalization. The set F,,,, of p/g-equivalences have the virtue of being in
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Figure 1: The parabolic Mandelbrot set Mj.

exact one to one correspondence with the quadratic polynomials in the L, /,-limb modulo
renormalization, no more no less. In other words “if it exists combinatorially it is also
realized by an essentially unique quadratic polynomial”. That is F,/, is a model for L, ,
in which every first renormalization copy of M is reduced to a point. This model/notion
was initially created in order to pass smoothly from quadratic polynomials to e.g. Peri(1),
the space of Mobius conjugacy classes of quadratic rational maps having a fixed point of
multiplier 1. Here we shall also show however that with a few extra ingredients we can
reprove that e.g. veins are arcs.

3.1 Towers of equivalence relations

We consider finite and infinite tuples (~,)y<,<n, Where N € N U {oo} and where for
each n the object ~, is an equivalence relation on the set Z" defined in the previous
section. However first a few preparations. Let Z7! = Z72 = ... = Z79%! denote the set
consisting of the unique ¢ cycle for Qg of combinatorial rotation number p/q in S'. So
that Qo(27) = 27! when j — 1 > —q and 2% := Q;*(27!). Recall that Z" := Q;"(2°)
so that Z™ consists of the end points on S! of the rays in the level n universal p/q puzzle
U"™. Moreover Z" C Z™* for all n by the forward invariance of Z° and Z := U,>¢Z".

For £ C S' we let H(FE) denote E union its hyperbolic convex hull in D. Note that the
notion of hyperbolic convexity of subsets of D is well defined. Because any two distinct
points on S! are joined by a unique hyperbolic geodesic in D. For U C D we let 6U
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denote the set U N'S'. We shall say that a subset U C D is ideally convez if and only if
U = H(6U). That is U is hyperbolically convex with extremal boundary oU.

Define universal and trivial equivalence relations ~; on 27, —¢ < j < 0 with just one
equivalence class, all of Z7.

Definition 3.1. A possibly infinite tuple of equivalence relations (Nn)ogngN 15 called a

tower if it satisfies the following admissibility conditions, (see also Kiwi [Ki] for a more
complete discussion):

i) (Proper) For any finite n, 0 < n < N and any (equivalence) class E of ~, the set
Qo(E) is a class of ~(n_1).

ii) (Conservative) For any m,n, —1 <m <n < N : ~y, |zm = ~,.
iii) (Union) If N = oo then ~oo= U ~n-
n=0

iv) (Un-crossed) For anyn, 0 <n < N and any two classes E and E' of ~,, :
H(E)NH(E') = 0.

N
Note that ~y= U ~, when N is finite by the Conservative property. Also reversely
n=0
~p=~n |z,. Henceforth we shall abbreviate the notation (~,), <n<n for a tower of height
N to just ~py.

Remark 3.2. Though finite and infinite towers share the same admaissibility properties,
we consider them conceptually different. The finite towers ~y are the nodes of a tree with
root ~qo and with a branch connecting ~y back to ~y_1. We denote this tree by T or
T,/q if we need to emphasise the dependence of p/q. The infinite towers ~« on the other
hand are the infinite branches of this tree starting at ~o. We denote the set or space of
all infinite branches T or ’];7‘; if mecessary. In order to obtain the right space we will
eventually have to pass to a quotient F of T>°. And we shall equip the space F with a
Hausdorff topology.

In view of the Conservative property we define the level of a class E as the minimal
n > 0 for which £ C Z".

For any un-crossed equivalence relation ~ on S! we define the graph G.. of ~ as

G.= |J HE)CD.

E a class of ~
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Definition 3.3. A gap G of a finite tower ~,, is any connected component of D\G....
The set G = G N'S' is called the essential boundary of G.

Notice for reference that the term Gap was used earlier by Thurston to denote also
the interior of the convex hull of a class.

Notice also that gaps are relatively open ideally convex subsets of D.

A gap G of an uncrossed equivalence relation ~,, is critical iff 0 € G and similarly a
class E of ~,, is critical iff 0 € H(E). Clearly an un-crossed equivalence relation ~ either
has precisely one critical gap or precisely one critical class and not both. We shall denote
the critical gap/class of ~,, by G /E? or just G*/E* if the level is clear or not essential.

The reader shall easily supply a proof of the following lemma

Lemma 3.4. Suppose ~y is a tower. Then for any finite n, 0 < n < N and any gap
G, of ~,, there ezists a gap G,—1 of ~(m—_1) such that Qo(0G,) = 6G,_1. Moreover Qq is
injective on 0G,, if G, is not critical and 2 : 1 if G, is critical.

Definition 3.5. We define Qo(G,,) := G, _1, when Qy(dG,,) = 0G,,_1.

It is easy to see that Qo(G,) = G,_1 (in the usual sense) up to a homotopy fixing S!
pointwise. Note that for 2 — ¢ < j < 0 and any non critical gap G of Z7 we can define
similarly the image of G by ()y. Note also that for any non critical gap G of ~ there is
a minimal 0 < j < ¢ such that Q}(G) is the critical gap of Z7.

Definition 3.6. For a finite tower ~x with critical gap G5 define the critical period
k> 1 of ~n as the minimal k > 1 for which Q& (G?%,) is again a critical gap (of ~n_y).

Note that in fact k > q always.

Let ~x be a finite tower and let 0 < n < N. If ~, has a critical gap G} then the
~m-1) g8ap G, = Qu(G3) (or just G') is called the critical value gap for ~,. Similarly if
~y, has a critical class E then the ~,_ ) class E], = Qo(E;) (or just £') is called the
critical value class for ~,,.

Remark that the critical value gap G’ /class E' for ~y, is a gap/class of the equivalence
relation ~,_1) one level down.

3.2 Basic tower properties

Lemma 3.7. Let ~y be a tower, and let E be a class of ~n. Then Qg is injective on E
if B is not critical and 2 : 1 iof E is critical.
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2/7 2/7
2/7 1/7
1/7

1/14

4/7

9/14
11/14 11/14

Figure 2: ’é = %7 Zl=z72_ {%, %’ %}’ Z0 — {1_14’ 1249 11 Op the left ~_j=r_y,
in the middle ~g, on the right the graph G.,, H(E) is in black for non trival classes.

Proof. The map @)y is injective on any open half circle and maps any two opposite points
z and —z to the same point. If E is not critical, then E is contained in an open half circle
of S', hence Qq is injective on E. If E is critical, then so is —E as Qo(F) = Qo(—F).
Hence £ = —F,ie. E=Qy'(Qo(E)), that is Qpis2:1 on E. O

Let ~xn be a tower and let 0 < n < N be finite. A gap G,, of ~,, is a descendent of a
gap G, of ~,, with m < n, if Q4""(G,) = G,,. Similarly a class E,, of ~,, is a descendent
of a class E,, of ~,, with m < n, if Qy ™ (E,) = E,,.

9/28 2/7 Géa ng GéL

s d
GS
1/14

1/28

15/28

a/7

25/28

23/28
11/14

Figure 3: On the left ~1, on the right ~5 with the three possibilities for the critical value
class for ~s3.

Lemma 3.8. Let ~y be a finite tower. Then either ~y has a critical gap Gy and
all equivalence classes of ~n have q elements. Or it has a critical class ) of level n,
g <n < N, EY and any of its descendent has 2q elements and any other class has q
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elements. Moreover in the latter case, ~yn has a unique extension ~, for every n > N
and thus a unique infinite height extension.

Proof. 1f ~y has a critical gap G, then () is injective hence bijective on any class E of
~x. Moreover any class is a descendent of the class Z7!, which has ¢ elements.

Suppose next that ~y has a critical class Ey with critical value class Ey\ = Qo(E%)-
Then for any class E # EY of ~y the preimage Q' (E) is separated into two non empty
sets by £, each one of which has to be a class of any extension ~y; of ~y. As also the
critical class B} = Qp'(E') of ~y and thus of ~y,; is determined the extension ~y
is completely determined by ~,. Hence by induction any extension ~,, n > N of ~y is
uniquely determined by ~p, including n = co. Let N be the level of the critical class EY.
Then ~y_; has a critical gap so that by the first case any class of ~x_; has precisely ¢
elements. Hence £ has 2¢q elements and any other class of ~y has ¢ elements. By the
lemma above () is injective on any non critical class and since EY is already a critical
class and remains the unique so for any extension, () is injective hence bijective on any
class of level n > N. Thus the lemma follows. O

% %
% %

Figure 4: Description of the Gaps included in G*; for the three fertile towers ~3, the last
one is the terminal one. The critical period is 3 above left, 4 above right, 5 below left.

The reader shall easily verify that
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Lemma 3.9. For any finite height tower ~x with critical value gap G'y and for any gap
G C Gy or class E C G'y of ~n there exists a unique extension ~$,; respectively ~% .,
with critical value gap G'y,, = G /class By, = E.

In view of the above a finite tower ~ is fertile if it has a critical gap, as suggested
by Lemma 3.9. Moreover a possibly infinite tower ~y with critical class of level n < N
is called terminal with combinatorics ~,=~y |z~ as suggested by Lemma 3.8.

3.3 Yoccoz parameter puzzle pieces.

To shorten notation we shall write RM(7) := RM and R¢(7) := R, where 7 = .
Let us recall the connection with quadratic polynomials. For ¢ € L,/ the coordinate
¢. induces an un-crossed equivalence relation ~¢ on each Z" as follows: for 7,7 € Z™
71 ~¢ 1o iff ¢! has the same radial limit at 7; and 7, i.e. the two rays R¢(m;) and R¢()

co-land on the same point of Qc_("ﬂ)(oz). Defining ~$ = Up>o ~¢

¢ it is easy to see that
~¢_ is an infinite tower. We shall see that this tower essentially determines c¢. For ¢ in
the open wake W(c,/q), but not in L,,, we have to reinterpret the notion of co-landing
slightly. If a ray R¢(7), 7 € Z" bumps into the critical point 0 then also the ray R¢(—7)
bumps into 0. At 0 the two rays bifurcate and land on two distinct points of Q" (—a(c)).
One speaks of broken rays in this case. Similarly any iterated preimage of 7 and —7 gives
rise to broken rays passing through a precritical point. We define the class of 7 as the
maximal subset £ C Z" containing 7 and such that the set U cgR¢(7’) is connected in

C. Notice that this definition coincides with the previous definition, when ¢ € L, /,.

Notice in parsing that for p/q # p’'/q’ the sets Z(p/q) and Z(p'/q') are disjoint and
hence so are any two equivalence relations on the two sets.

Definition 3.10. For a finite tower ~y define the Yoccoz parameter puzzle piece YP(~y)
of ~n as the set

YP(~n) = {ce W(Cp/q)| ~y=r~n and g.(c) < 2_N+1},

If ~y is fertile with period k > q, then a parameter co € YP(~ny) is called a center of
YP(~n) iff QF (0) = 0.

Note that by construction YP(~n11) € YP(~n), when ~y=~n,; |z~v. Note also
that YP(~y) is open, when ~y is fertile and neither open nor closed when ~y is ter-
minal. Finally we remark that we have excluded the parabolic parameter c,/,, with

C*
* — 27 from YP(~X) by allowing only parameters

g-renormalizable combinatorics ~X

ce L:}q. The parameter c,/, is somewhat special, because it is both a boundary point of

12
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y7>(~7§) and has the right combinatorics. (See also the comment after the statement of
Theorem 3.15)

We refer to YP(~y) as a level N parameter puzzle piece.

A priori however such parameter puzzle pieces could be empty. But the following slight
reformulation of Thurston’s existence and uniqueness theorem for (quadratic) branched
coverings of the sphere shows that none are empty.

Theorem 3.11 (Thurston realization theorem). Any finite height tower ~x is real-
ized by some quadratic polynomial Q.(z) = 2* + ¢. Moreover

i) If ~n has a critical class E* of level n < N, then there is a unique ¢ such that
=, QU(e) = —alc), and hence Q(c) = alc).

it) If ~n has a critical gap with critical period k, then there exists a unique c for which
~S=~n and Q¥(0) =0, but Q(0) #0 for 0 < j < k.

The above Thurston realization theorem can be proved in several ways. For instance
given an admissible tower ~y one may construct an un-obstructed Hubbard tree, which
in turn yields a branched degree 2 covering to which Thurston’s theorem applies. Or
alternatively one may apply the spider theorem to the Hubbard tree. However there
is no known algorithm which produces a Hubbard tree from a finite admissible tower.
Here we shall give a very short different proof using Shishikura’s idea (see [R]) to prove
that the Mandelbrot set is locally connected at Yoccoz parameters. It has the virtue of
simultanuously proving that parameter puzzle pieces for fertile towers are Jordan disks
and in particular connected. Recall that

n

= U o

kE=0Yecyk

We extend the notion of periods of gaps to gaps G of ~y contained in the critical
value gap G’y for ~y. The period k of such a gap G is k = 1 41, where [ is the minimal
integer for which QL (G) is critical, i.e. Q4(G) = G%_;, the critical gap of ~y_;. Thus the
period k is the critical period of the unique extension ~y,; of ~x having critical value
gap Gy, =G.

Lemma 3.12. Let ~y be any fertile tower of height N and critical period k. Then there
exists a unique extension ~y.1 of ~n of the same critical period k. Any other extension
has strictly higher period. In particular there exists a unique infinite tower ~.,, which
extends ~x and for which the finite towers ~p,=ry |zn with n > N also have critical
period k.

13
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Proof. Let G% denote the critical gap of ~y and let Gy = Qo(G%) denote the critical
value gap for ~y. Then G%_, = QF(G%) = Q51(G'y) is the critical gap of ~y_. Let

Nii_r C GN_j denote the critical gap of ~y4i_;. Then G’y contains a unique gap G
of ~y with Q¢ '(G) = Gi.,_, and hence of period k, because Q¢ ' : 0Gy — Gy _s
is a homeomorphism. Consequently ~y has a unique fertile extension ~y 1 with critical
period k, the one with critical value gap G’y ; = G. Moreover Q}(G) is not critical for
0 < j < k for any other gap G; of ~x contained in Gy.

By induction for each n > N there exists a unique tower ~,, extending ~y and having
critical period k. O

Definition 3.13. Possibly reducing the height N above we can suppose that N is the
minimal height n for which ~,, has critical period k. In this case the infinite tower ~, is
said to be renormalizable with combinatorics ~y and renormalization period k.

*
For c € Lp/q,

n puzzle piece for (). corresponding to the gap G, i.e. R¢
shall abuse this notation and use the generic term Y, (G*
level n for )., as the level n is already indicated.

n € N and G a gap of ~¢ we define Y*(G) € Y to be the unique level
(T)NYMG) # 0 iff 7 € 60G. We
)

for the critical puzzle piece at

Lemma 3.14. Let ~, be renormalizable with combinatorics ~y. If YP(~y) has a center
o, then ~oo=~%0.

Proof. Let k be the renormalization period of the tower. Proof by induction on n > N.
By definition ~{=n~y and QF (0) = 0. Thus suppose n > N and that ~?=n~,. Let
G), 2 G, denote the critical value gaps for ~,, and ~,; respectively and let G} _, =

5N GL) 2 QNG ) = Gi oy, denote the critical gaps of levels n — k and n+ 1 — k
respectively. Then

Yo (Ghia) — Y3 UG 3

Q’é;ll lQi“O‘l

0€ Yczﬂ_k( "1k s Ycz_k( v k)20,

where — denotes the inclusion and where Q%1 : Y~ 1(G)) — Y2 7%(G7_,) is an isomor-
phism with Q% (c) = 0. It follows that ¢y € Y*(GY,, ;) and hence that ~% =~ 1. O

Theorem 3.15 (Shishikura realization theorem). For every N > 0 and for every

fertile tower ~y, let k denote its critical period and G'y denote its critical value gap.
Then

i) the Yoccoz parameter puzzle piece YP(~y) is a Jordan domain in particular it is
not empty. Moreover for every ¢ € YP(~ny) there is a canonical homeomorphism

he : OYN"YGY) — OYP(~n) with h, = U o ¢. where both sides are defined,

14



The Yoccoz Combinatorial Analytic Invariant 15

it) the Yoccoz parameter puzzle piece YP(~n) has a unique center ¢y, i.e. QF (0) =0

iii) there ezists a canonical holomorphic motion with base point ¢y € YP(~y)
H=H.,: YP(~n) % (@5 U{zlge(2) 2 277} — C,
such that H(c,z) = 1. 0 ¢, (2) where both sides are defined,

w) the homeomorphisms h, defined in i) extends to homeomorphisms of YN =1 G\ )NGYY
onto their common image, such that h., = WV o ¢., where both sides are defined and
such that he, = h.o H,,

v) for any terminal extension ~yy1 of ~n there is a unique parameter ¢ € YP(~y)
such that ~% 1 =~n11 and QY () = —a(c'), in particular ¢ € YP(~y) "M

Note that the holomorphic motion statement iii) above does not apply to the special
parameter c,/,, € 83277(NE), though this parameter does have the combinatorics c/,.
As usual in the literature we shall write H,. for the quasi-conformal homeomorphism
z +— Hc,z). Also for ¢ € YP(~y) the map (c,z2) — H(c, H:(z)) is essentially the
same holomorphic motion, but with base point ¢ instead of cg.

For E a class of ~% we denote by E° the union of ray closures E¢ = U,cpR(T).
Moreover if none of the rays R°(7), 7 € E are broken rays, then the common landing
point of these rays is denoted by w(c, F).

Proof. The proof is by induction on N. The induction basis consists of the towers ~
with N < g and k = ¢. These have common critical value gap G’ = G’y with essential
boundary 6G’ bounded by the two points 7,1 and 7, of the p/q orbit for ¢)y. Hence it

follows from the introductory section on the Mandelbrot set M that
YP(~n) = W(eysq) N{elge(c) <2703

and that ¢o = ¢, is a center for YP(~y). For ¢ € YP(~y) define a homeomorphism
he : OYN"Y(GY) — OYP(~y) by

h(e) = {\If o he(2) if 2 € YN LG\ e

Cp/q if z = a(c)

This fulfils i) and ii). For iii) recall that a ray R°(7) moves holomorphically with the
parameter ¢, except when 0 is either in the ray or in a forward iterate of the ray. And
moreover for a (pre)periodic ray R¢(7) landing at a (pre)periodic repelling point z, the
closed ray {z} UR°(7) moves holomorphically with ¢, provided the critical point 0 is not
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in the forward orbit of {2z} UR®(7). For ¢ € YP(~y) we have ¢ ¢ YY" and g.(0) < 27V
so that 0 ¢ GV U {2]ge,(2) > 27N}, Hence (¢, 2) — 1), 0 ¢¢,(2) induces a holomorphic
motion

H : YP(~n) x (QVa U{zlgey(2) 2 277}) — C,

such that H(c,z) = 1. o ¢, (z) where both sides are defined. Because a holomorphic
motion of a set X automatically induces a holomorphic motion of its closure.

For iv) there is only something to prove when §G’\ N ZV # (. For this to occur
we need at least N > ¢q. Suppose £ C G\ N ZV is a class of level N and let ~y,;
denote the unique extension of ~y with critical value class E. Then for each 7 € E the
parameter ray RM(7) lands at a parameter ¢ € YP(~y) for which R¢(7) lands on ¢ and
Q%(c) = —a(c). Then since ¢ € YP(~y) any of the other dynamical rays R¢(7'), 7/ € E
also lands on the same c. Hence by Theorem 1.4 any of the parameter rays RM(7/), 7/ € E
lands on that same c. It follows that ¥ o ¢, extends as a homeomorphism from E° onto
X = {c} UU;cgRM(7) and hence that ¥ o ¢ extends as a homeomorphism of E onto
X for any ¢ € YP(~y). This proves iv) and we have also proved v) for the same price,
since any terminal extension ~yyq of ~y has a level N critical value class £ C §Gy.

For the inductive step, suppose that the theorem holds for any fertile tower of height
N and let ~y; be a fertile tower of height NV + 1, critical period k and critical value gap
G'vyqi- Write ~yi=~n41 |zv and let kg < k denote the critical period and G’y 2 Gy,
the critical value gap of ~y. By the induction hypothesis YP(~y) has a center ¢y and
for every ¢ € YP(~y) their exists a homeomorphism

he : Y HGY) NGV — he(YEH(GY) NGYL)

with h. = Wo¢,., where both are defined and with h.o H. = h.,. Let D = D(~y,1) denote
the bounded connected component of the complement of the Jordan curve he, (OY,Y (Gly 1))
We claim that D C YP(~n41): Notice at first that ¢ € D implies that ¢ € YN (Gy4),
because h. o H, = he, for any ¢ € YP(~n) (2 D) so that h. (YN (Gy.1)) = 0D and
because ®(c) = ¢.(c) for ¢ € D\M so that ¢ € YN(Gy,,) at least for these c¢. But then
¢ € YN(Gy.y) for all ¢ € D by continuity. From this it follows that D C YP(~n41)
because generally we have ~§_;=~y41 if and only if ~§=~y and ¢ € YV (G, ).

Finally D = YP(~p41), by the pigeon hole principle, since any connected component
of
(VYP(~n)N{c] gelc) < 2_N})\hCO(YCJOV—1(G§V) N gyé\g)

corresponds in the above way to a unique height N + 1 extension of ~y. Taking for A,
the restriction of h. above to YN (G'y.) completes the proof of i).

To prove ii) we need to prove that the map ¢ — Q% '(c) = @Q%(0) has a unique
zero in D = YP(~ny1). For k = kg we have ¢y € D so that ¢ is also a center for
D = YP(~n41). For the other case ¢ < ko < k notice that for any ¢ € YP(~y) the map
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2= QF1(2) YCN( 1) — YNTITF(GY) is an isomorphism and thus has a unique zero in

the interior of YV (G'y.;). Hence the curve z — Q*7!(2) : YN (G'y,,) — C* has winding

number 1 around the origin. Let n: D — YP(~y) be a homeomorphic extension of the
Riemann map with say 7(0) = co.

Using iv) we can define a continuous map K : [0, 1] x 0D — C* by

K(s,c) = H(n(s-n~'(c)), Qe ' (he' (0))),

whenever (s, c) ¢ {1} x 0YP(~y) and extend it continuously to the remaining part. That
is for any ¢ € 9D NOYP(~y) there exists a class E of level n < N such that ¢’ € E¢ and
" € YP(~,). Moreover by the induction hypothesis the map (¢, z) — 1.0 ¢, (z) defines a
holomorphic motion of Q¥1(E®) on YP(~y,). (For parameters ¢’ with g.(¢) =2V the
point QF~*(h_ () belongs to the equipotential at level 27N=** and the map (c, z) —
e 0 Peo(2) defines a holomorphic motion of this equipotential in a large neighbourhood of
D.) Then for any pair (s,c) we have K(s,c) € OYY7%(G*) for some ¢ € YP(~y) and
hence K(s,c) is never vanishing.

For any ¢ ¢ M:

( ) d}n(s n- ) © ¢Co co (hc_ol (C)>
Qn(s = O ¢77(s n= ) © ¢Co (hc_ol (C)>
QW(SW O¢77(317 ) @) @(C)

It follows by continuity that for all c € D, K (0, ¢) = ’C“O Y(hgl(c)) and K(1,¢) = QF'(c).
That is K is the desired homotopy in C* from ¢ — QF1(h_'(c)) to ¢ — Q5 !(c). Hence
the function ¢ — Q*1(c) = Q*(0) has a unique zero ¢ € D, that is a unique center in

yP(NNH) =D.

The proofs of iii), iv) and v) are similar to the proofs for the induction base and are
left to the reader. O

3.4 The p/g-equivalences.

Not all infinite towers are realized, but almost. Generally any tower “neighbouring” an
infinite terminal tower is not realized with the unique renormalizable tower of period ¢
and combinatorics ~q as the only exception. We shall obtain a complete set of realized
combinatorial invariants by defining an equivalence relation on infinite towers.

To be more precise and to fix the ideas, suppose ~ZL is an infinite terminal tower

with critical value class E!. That is ~,=~1 |z has a critical class with image E/ and
~n_1=~1 |z _, has a critical gap with critical value gap G/, ; containing H(E!). Then

17
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G’ _, contains exactly ¢ gaps G',...,GY of ~,_;, which are adjacent to E’, i.e. with
H(E') N 0G7 # 0, because H(E'!) is a g-gon. Let ~J denote the unique extension of
~n_1 with critical value gap G7, for j = 1,...,q. Furthermore by induction on m for each
j =1,...,q there exists a unique fertile extension ~7 of ~J with critical value gap the
unique gap of ~/ | contained in G’ and adjacent to H(E! )(= H(E')). Denote by ~J_
the corresponding infinite tower.

We shall say that ~Z is adjacent to any of the q towers ~! ... ~% and vice versa.

Definition 3.16. We consider the smallest equivalence relation on the set T = ’];f/‘; of
infinite towers such that any two adjacent towers are equivalent. The equivalence classes
will be called p/q-equivalences and will generically be denoted by F. The space of all

p/q-equivalences will be called F,;, and we write

F= U Fola-
p/q#0/1,(p,q)=1

2

Figure 5: Illustration in a sector of the equivalence ~!, ~2, ~3, adjacent to the terminal

one ~7 with critical class in black.

Definition 3.17. We define the combinatorial projection Z¢ : Ly;q — Fp/q as the nat-
ural map given by the Yoccoz combinatorics:

Eo(c) = F(~5).
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Proposition 3.18. There are three types of p/q-equivalences F' € Fq:

1. There is one p/q-equivalence Fy = Fy(p/q) with countably many elements. It
consists of the unique g-renormalizable tower ~X=~X (p/q) (with combinatorics
~o=n~0 (p/q)), countably infinitely many terminal towers ~1 adjacent to ~X and

for each such terminal tower ~L the ¢ — 1 other infinite towers adjacent to it.

2. There are countably many p/q-equivalences F' consisisting of just one terminal tower

~1 and its q adjacent infinite towers ~L_ ... ~9_.

3. There are uncountably many p/q-equivalences F' consisting of just one infinite tower.

Proof. There are uncountably many infinite towers ~., and countably many of these are
terminal towers ~T  (each one uniquely specified by its critical value class). Moreover
any fertile tower has uncountably many extensions of which infinitely many are terminal
extensions. We thus need to prove that any two terminal towers ~! and ~?2 belongs
to the same p/g-equivalence if and only if they are both adjacent to ~X the unique

g-renormalizable tower, and that ~X is adjacent to infinitely many terminal towers.

For n > 0 let G’ denote the critical value gap for ~*=~X |z.. Recall that Fy =
{70,...,74-1} is the Qo invariant equivalence class consisting of the unique p/g-orbit.

Then Qf : 0G),,, — 0G!, is a degree 2 covering. Moreover G = G as sets for 0 <
1 < q and Fj is the only class adjacent to these gaps. It hence follows by induction on

m > 0 that

i) The initial class Ej is adjacent to any of the critical value gaps G/,..

i) Giiym = Gl as sets for 0 < i < g and m > 0. In particular any class E # Ey
adjacent to G, is also adjacent to G7,. Moreover any such class E has level

gm’ — 1 with 1 <m’ < m and is already adjacent to G;m,.

iii) any class £ adjacent to G, is adjacent to G, for any n > mgq and is the critical
value class of a terminal tower. In particular the class Qf(E) is also adjacent to Gy,
and ~X is adjacent to the terminal tower with critical value class E.

iv) The number of classes E C dG),,, , of level mg — 1 equals 2™,

By iii) any class £ adjacent to some G, is the critical value class of a terminal tower ~7

adjacent to the tower ~X. And by iv) ~X is adjacent to (countably) infinitely many such
terminal towers. To complete the proof we only need to prove that any infinite tower
~oo#~X is adjacent to at most one terminal tower. For this we set up a bit of ad hoc

notation. Denote by G the critical gap of ~¢ and for 0 < j < ¢ write G/ = QY7 (GY).

19
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So that the gaps of ~¢ are £G7, 1 < j < ¢, with G4 = —G9. Let I, —I C S' denote the
intervals with GY = I U —I. Finally for this proof it is convenient to let “ mod ¢” take
its values in {1,...,q}.

Let ~I be any terminal tower with critical value class E | of level n +1 > ¢ — 1.
For m € N write ~) =~1 |zm. Let G!, D E/ ., denote the critical value gap for ~! and
let & > g denote the critical period of G/, and thus of ~T.

Case 1: If k = ¢ we saw above that n = mq — 1, ~X is one of the ¢ towers adjacent to
~I and that the critical value gap G, for ~¥=~1 is adjacent to both Fy and E/ ;. We
need to prove that the ¢ — 1 other towers adjacent to ~I  are not adjacent to any other
terminal tower. For m >n and 1 < j < ¢ let G denote the unique gap of ~T adjacent

to Ey and contained in GY. Then similarly —G?, C —G7 is adjacent to —Fj and the sets

+ K, = H(E) UUI_, £ @,i converge in the Hausdorff topology on compact sets in the
plane to +H (Ey) = H(£E)), because Qo(6K,,) = 0 K,,—1, so that 6K, converge to Ej.

Let @}1, ce @2‘1‘1) C G, denote the ¢ —1 gaps adjacent to £, and of periods strictly
larger than ¢. Possibly exchanging indices we can suppose that @ maps 5@% 1:1 onto
§(=G9). Let ~L,,,...,~ " denote the ¢ — 1 extensions of ~I with critical value gaps
@}1, N @g—l. Moreover let J C I be the minimal interval such that J U —J contains the
critical class Qy ' (E)_) for ~T ;. Then the critical gaps of those ¢ — 1 fertile towers and
any of their descendents are contained in H(J U —J). It follows that for any m > n + n,
J ., the gap G4, C GI adjacent to B,

maps 1 : 1 onto —G?__ by Qp. In particular this holds for the g—1 towers ~._ ..., ~

for any 1 < j < g and any extension ~,, of ~

adjacent to ~Z and with critical value gaps @fn for every level m + 1. It follows that the
sets H(E), ;) U U?;}@% converge to H(E, ) in the Hausdorff topology and thus these
q — 1 adjacent towers of ~Z can not be adjacent to any other terminal tower, because

any two distinct classes are strongly separated.

To recapitulate, this completes the proof that Fy = F(~X) consists of ~X, countably
many terminal towers ~2 adjacent to ~X and for each such terminal tower ¢ — 1 towers
adjacent to it, but not adjacent to any other terminal tower.

Case 2: If k > ¢ there is a minimal N = mqg < n, 1 < m such that N% has critical
value gap G’y of period k' > ¢ and the critcal value gap G’ _, for ~%_, has period g¢.
Hence G’y_, contains a unique level (N — 1)-class Ey_; separating G’ from Ej. Let ~11
denote the terminal tower with critical value class Ex_; C G'\_;. Then Ey_; and N’gg
are as in the first case treated above, where k = ¢q. We shall use the ad hoc terminology
of Case 1, but relative to Ey_;. With this terminology the gap G’y equals one of the gaps
@g'v_l, 1 < j < ¢ which are adjacent to Ex_;. Morever ~I and the ¢ towers ~!_, ... ~%
adjacent to ~I are all descendents of the fertile tower ~% for which Ey_; is a class.

Hence the gaps £G?, with m > N persists also for the appropriate restrictions of these

20
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towers. Enumerating the ¢ towers ~! ... ~% adjacent to ~L such that the critical value
gaps éfﬂ for the level m + 1 > n restrictions Niq, 1=n~4y |zm+1 are mapped by Qp into
—G7 we obtain for m > N +n that QF(GJ,) = —G%,_,.. As the map Q4 : B/, — —Ej
is bijective the map ()f is also injective on é{ﬂ for m sufficiently large, since — K converge

to —Fj in the Hausdorff topology. Consequently the towers ~J_ can not be adjacent to
any terminal tower other than ~Z . This completes the proof. O

Definition 3.19. For every p/q equivalence F' define the Yoccoz parameter nest

YP(F)= () | VP~ |20).

neN ~oo€F

Note that YP(F) = Z5'(F) except when F = Fy, where YP(F) = Z2'(F) \ {¢p/4}-

Theorem 3.20 (Yoccoz’ Parameter nests Theorem).
For any non-zero, irreducible rational p/q and for any c € L;q let FF'=Z¢(c).

Then either

Q. is not renormalizable, YP(F) = {c} and the sets U._epYP(~oo |2n), n € N form

a fundamental system of open neighbourhoods of ¢ in L:}q,

or
Q. is k > q-renormalizable and:
If k > q then F = {~S }, ~% is k-renormalizable with combinatorics ~n=n~5 |zn
for some N > q and for every m > N and for every ¢ € YP(F) the restriction
QF : Y (G*) — Ve, (G*) is quadratic-like with connected filled-in Julia set. More-
over the Douady-Hubbard straightening map xr : YP(F) — M is a homeomorphism
and the sequence of puzzle pieces YP(~S, |zn), n € N form a fundamental system of

neighbourhoods of YP(F) in L*

p/a’

Ifk = q then F = Fy = F(~X), where ~X is the unique q-renormalizable tower (with
combinatorics ~q) and Q. is q-renormalizable with connected filled-in Julia set. More-
over the Douady-Hubbard straightening map xp, : YP(Fx) — M\{1} is a homeo-

morphism and U VYP(~o |2n) is a fundamental system of open neigbourhoods of

~oo€F g

VP (Fy).

For a proof see e.g. Hubbard, [H] and Roesch, [R]. In particular, for the proof of the
existence of the homeomorphism xr (the Douady-Hubbard straightening map) see the
proof of Theorem 14.6 of [H].

Corollary 3.21. For every p/q-equivalence F' € F, ),
YP(F) # 0.
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Figure 6: For p/q = 1/3, a representation of YP(F(~X |zs)).

In particular the combinatorial projection Z¢ : Ly q — Fp/q 18 surjective.

Proof. If F = Fy then YP(F) is homeomorphic to M\{3} and in particular not empty.
If Fis a class with ¢ + 1 elements one of which is a terminal tower ~ with a critical

class of level N ; then by Theorem 3.15 there exists a unique parameter ¢ € L:}q such that

QY (0) = —a(c) and hence ~,,=~¢_. Thus YP(F) # 0 also in this case. Finally suppose
F = {~.} and let ¢, be the unique center of the parameter puzzle piece YP(~ |zn)
for each n > 0. Let ¢ be any accumulation point of the sequence {c,},. We claim that

~oo=n5,. First note that ¢ € L;;q and let F} denote the p/q equivalence class of ~¢_.

Secondly by the Yoccoz Parameter Nest theorem the sequence of sets U epYP(~S, |2n),
n € N form a fundamental system of neighbourhoods of YP(F}). If F} = {~¢ } then for
every M there exists an N such that ¢, € YP(~S, |zum) for every n > N, (by nestedness
of puzzle pieces, then N = M) that is ~u, |zm =~ |zm for every M. Thus ~=~¢ . If
F has ¢+1 elements then by nestedness of parameter puzzle pieces and arguments similar
to the above there exists a unique non-terminal tower ~J_€ Fy such that ~y=~7 and

hence F' = Fj, which contradicts the assumption that F' = {~y}. Finally a completely
analogous argument applies in the case F} = F. O
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Figure 7: The “1/3” member of M.

The following construction and Corollary is instrumental in showing that there is a
dynamics preserving bijection between the Mandelbrot set M and the parabolic Mandel-
brot set Mj. Also it is used in a proof that g-renormalization of L,,, converge to M;
under the holomorphic motion parametrized by the multiplier A of the fixed point at oo,
when A € D converge subtangentially to e~*27P/4.

Definition 3.22. Forp/q # 0/1 with (p, q) = 1 define the space C,/q of all p/q (quadratic)
combinatorial analytic invariants as
Coyq = {FI|F is a non-renormalizable p/q equivalence}

U {(F,c)|F is a k > q renormalizable p/q equivalence and ¢ € M}

U {(Fa )| Fy = Falp/a) and e € M\{7})

Moreover define the space C of all quadratic combinatorial analytic invariants as

c=Du |J Gy
p/q#0/1
Recall that 220 N 2% = 0 so that C,/q N Cp /g =0, whenever p/q # p'/q'.
Combination of the above leads immediately to the following combinatorial analytic
description of the Mandelbrot set
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Corollary 3.23. There exists a dynamically natural bijective mapping = : M — C given
by:

—~
)

~—
I

A if Q. has a non-repelling fived point of multiplier X,
(c) €Cpy ifce L:}q is non-renormalizable and

c(€), Xzo(0)(€)) if Q. is renormalizable.

[ 0 [
©
I
[
Q

=
I
™

That is a parameter ¢ € M is uniquely determined by either

e (). has a non-repelling fixed point, i.e. ¢ belongs to the filled-in cardioid

e or (). is non-renormalizable and ¢ is uniquely determined by the combinatorial

invariant Z¢(c) = F(~%)

e or (). is renormalizable and ¢ is uniquely determined by the combinatorial and
analytic pair (F, xr(c)), where F' = Z¢(c) = F(~%).

Notice also that when F' = F(~.) where ~. is renormalizable, then F' is uniquely
determined by its combinatorics ~y, which is a finite tower. The Yoccoz Parameter Nest
Theorem shows that any non-renormalizable parameter ¢ with both fixed points repelling
is uniquely determined by ~¢_, i.e. is combinatorially rigid. Iterating the combinatorial
analytic invariant, that is applying it iteratively to initially all the first renormalized copies
of M obtained at renormalizable combinatorics F', then to second renormalizable copies
of M in the first renormalizable copies, etc. associates to any parameter ¢ a possibly
infinite string of combinatorial invariants. By iteration of the Yoccoz Parameter Nest
Theorem any ¢ which is only finitely many times renormalizable, is uniquely determined
by the finite string of (iterated) combinatorial invariants plus possibly the eigenvalue of a
non-repelling fixed point for the quadratic like map of the last renormalization. Graczyk
and Swiatek, [G-S], Lyubich, [L] and Kahn, [Ka2], [K-L] have shown that even many
of the infinitely renormalizable parameters ¢ are combinatorially rigid, i.e. are uniquely
determined by the infinite sequence of iterated combinatorial invariants. The remaining
question being if all infinitely renormalizeable parameters are combinatorially rigid.

4 Arcs in the Mandelbrot set.

In this section we shall topologize the space F,/, and realize it as a set of subsets of D in
a way reminiscent of the Thurston Lamination. We shall use this to reprove that any vein
in M is an arc and we shall prove that more generally any two Yoccoz parameters are
joined by a unique ruled arc in the sense of Douady and Hubbard. Results which are yet
unpublished but which are described in the ph.d. thesis of Johannes Riedl, [Ri] and for
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which the proof was later simplified by Jeremy Kahn, [S]. Here ruled arc means that any
passage of a hyperbolic component takes place along hyperbolic geodesics to and from
the center of that component.
ant
Gl
2/7

1/7

Figure 8: Determination of ~!_ for the fertile tower of critical value Gap Gj.

Let ~, € Ty /g, ~n7~X be afertile tower with critical value gap G, and let E*, E?, ... E"
be the finite number of classes of ~(,_;) bounding G}, in D. Denote by ~J_, 1 < j <r
the infinite towers adjacent to the terminal towers with critical value class E? and with
~I_ | zn =~,. Then we define

Ulron) = {rooe€ Tyjal ~oo 20 =~} \ ke~ 0

Next let ~,€ 7,/,, be a terminal tower with infinite extension ~X ¢ Fy. Let ~1
,o. o, ~L e F(~L) be the g infinite towers adjacent to ~ . Then we define

q

U(~n) = F(~L)u U~ |20).

J=1

Finally suppose that ~,=~X* or that ~,, is a terminal tower with infinite extension be-
longing to Fy. Write F}y = Fy \ {~eo | ~eoc=~X or ~o is terminal}. Then we define
U(~n) = Fye U{~e | ~oo |z, :N:’} U U U(~os [20).

NOOEF;’

Note that for any class F' € F,/, and any ~, with F' NU(~,) # 0 we have F' C U(~y,)
by construction. Furthermore for any two finite towers ~,, and ~,,, say with n < m
the intersection U(~,) N U(~p) is of the form U(~!,) where ~,, =~/ if and only if

m m

It follows that the sets U(~,,), ~,€ 7,y which we shall call open sets form the basis
of a topology on 7°° and that the projection of any such set into F,/, is open in the
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quotient topology on F,,, since any such set is saturated under the projection. We shall
abuse the notation and say that U(~,,) is also an open subset of F,/,, though technically
it is its projection which is an open subset. We remark for later use that:

1,2 a8 et _ab_ef “2T b2 bg bb

N\

Z
3 \ //

N
~2

~1

~0

~

Figure 9: The tree 7,,, for p/q = 1/3 until level 5 .

Lemma 4.1. The quotient topology on F,, is Hausdorff.

Pfroof. Let F', F? € F,/, and suppose F'' # F?. We prove the lemma case by case. If

= {~"_} for i = 1,2 choose any n such that ~1£~2. Then the open sets U(~!) are
dlSJOlIlt open nelghbourhoods of ~i for i =1,2. If say Fl = {~,} and F? contains a
terminal tower ~7  but F? # Fy, then let ~_ ., 1 < j < q denote the ¢ infinite towers
adjacent to ~ and for each n let G denote the critical value gap of ~J = ~J_|z.. Since
F1 #£ F? there exists an n such that ~u, |zn =:~,#~7 for each value of j € {1,...,q}.
Hence U(~,,) and U(~L) are disjoint neighbourhoods of F! and F? respectively. Next if
F' = {~} and F? = Fy, then let m be maximal such that ~,,_y) has critical period g.
Let ~I be the terminal tower adjacent to ~* and such that its critical value class E/
separates the critical value gap G’ for ~,, from the period ¢ critical value gap for ~X.
From here proceed as in the case above.

T and F! # F? = Fy. Let m be
maximal such that ~(  is fertile with critical period ¢. Denote by ~Z2 the terminal

Next suppose that F'! contains a terminal tower ~7’

tower whose critical value class E'? separates the critical value gap for ~* from the critical
value gap G, for ~T if ~I is fertile or its critical value class E/, if ~I is terminal. In
any of the two cases ~! has a critical value class E for some N > m and E) is
separated from the critical value gap for NJ*\', by E2. As only the infinite tower ~X € Fj
is adjacent to more than one inifinte terminal tower, there exists n > N such that U(~T)
and U(~1?) are disjoint neighbourhoods of F! and F? F* F inally we have the case
Where F! £ Fy # F? and F' each contains a termlnal tower ~27 with critical value class

E"i =1,2. Taking n sufficiently large both ~!% are terminal, and the two critical value
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classes are separated by the critical value class of at least one other terminal tower, since
only the renormalizable tower ~X is adjacent to more than one terminal tower. For such
n the open sets U(~1") are disjoint neighbourhoods of ~1". O

n

Figure 10: The elements at level 5 of the neighborhood U(~3).

Corollary 4.2. The combinatorial projection Z¢ : Ly — Fp/q has the following prop-
erties:

1. The fiber above every point is compact and connected.

2. The fiber above any non-renormalizable class is a singleton, i.e. Z¢ is injective above

the non-renormalizable classes.

3. For any renormalizable class F (including Fy ) the fiber Z;'(F) is homeomorphic
to M by a canocical homeomorphism X .

*

4. For each c € L* and eachn € N the open neighbourhood of ¢ in Lp/q,

p/q

U VP~ l20)
)

NOOEEC(C

is mapped onto the open neighbourhood U(~%) of Zc(c) in Fp/q by Ec.

4.1 Impressions of p/g-equivalences in D.

Let G' = G'(p/q) = Gi(p/q) denote the critical value gap of ~¢=~y (p/q) and let
Comp(G’) denote the set of compact subsets of G'.
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Definition 4.3. We define the impression map 1 : T,;; — Comp(G") by the following:
If ~« is terminal with critical value class E' we define I(~y) = E'. If ~ is not terminal
let G!, denote the critical value gap of ~o |zn, n € N. Then we define

I(~oo) = ﬂ G_;m

n>0

Moreover we define the impression of a p/q-equivalence F' as

I(F) = |J Z(~w)

NOOEF

similarly the impression of a subset ¥V C F,, is defined as Z(V) = U I(F).
Fev

Recall that a subset U C D is ideally convex if and only if it is hyperbolically convex
with extremal boundary 6U = U N'S!.

As any gap or class is ideally convex, the reader shall easily verify the following Lemma:

Lemma 4.4. For any ~«€ 175 and for any F' € F,q the impressions I(~o) and Z(F)
are compact and ideally convex, in particular they are connected.

Note that an impression Z(V) for a subset V C F,/, is not necessarily compact.

Proposition 4.5. We have Z(F,;,) = G, and moreover:

1. If ~p€ 1,4 is fertile with critical value gap G, and critical period k > q. Then
IU(~n)) = G,

2. If ~T ¢ Fy is terminal with critical value class E!, and ~I_, 1 < j < q are the
adjacent towers with critical value gaps G for ~J . when n > m, then

q
ZU(~)) =E'ul Gy
j=1

3. Finally let ~TJ, 1 < j < r denote the terminal towers adjacent to ~X and with

~LiL K  Similarly let ~1 1 < i < s denote the fertile towers in Fy with ~t # ~X.
Denote by E and G the respective critical value classes and gaps. Then

I(~x) =I(~7) =I(~) = GrulJEf v Gr

j=1 i=1
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Proof. Note first that for any fertile tower ~,, n > 1 with critical value gap G7,, with

n’

terminal children N%;j 1) j = 1,...,7 having critical value classes E’ 1 and with fertile
children NZ('n =18 having critical value gaps G/, | we have

T S
r 15 17
Gn - U En+1 U U Gn—i—l‘
j=1 i=1

Hence no point in z € G, is lost under the subdivision into critical value gaps and
classes at the next level. And moreover once a point is trapped in some critical value
class E!, it remains there. It then follows by induction that Z(F,/,) = G’. Moreover it
also follows that for any fertile tower ~, € T, /,, ~n,7#~X with critical value gap G, that
G' CI(U(~,)) C G'. Weshall prove that we have equality to the left. Let E', E% ... E"
be the finite number of classes of ~(,_1) bounding G/, in D. Denote by ~J_, 1 < j <r
the infinite towers adjacent to the terminal towers with critical value class £’ and with

~ | zn =~,. For any m > n write B,, = {~pn | ~m |z0 =~n} \ {~},,...,~"} then
U U(~m) CU(~R) = U U U(~m).
~mEBm m>n ~m€Bm
As

I( U Ulvm) CU(~) C G
~m€Bm
for all m > n we have Z(U(~,)) C G! and thus equality. This proves 1. From this 2. and
3. also easily follows, once we note that for ~., adjacent to ~% the impression Z(~,)
equals to the adjacent side of the class and impression Z(~%). O

Corollary 4.6. If F\ € Fpy, Iy € Fpyjy and Z(Fy) NZ(Fy) # 0 then p/q = p'/q" and
F=F.

Proof. We have p/q = p'/q, because G'(p/q) N G'(p'/q') = 0, when p/q # p'/q, simply
because the sets Z(p/q) and Z(p'/q') are disjoint and hence so are any two equivalence
relations on the two sets. Next let U(~!) and U(~2) be disjoint neighbourhoods of F*
and F? respectively (for existence of such neighbourhoods see the proof of Lemma 4.1).
By Proposition 4.5 these two sets have disjoint relatively open impressions. Disjointness

of Z(F') and Z(F?) then follows, as these sets are compact. O

Definition 4.7. For any z € G’, there exists (by Proposition 4.5) a class F € Fpjq such
that z € I_(F) Moreover, Corollary 4.6 implies that F' is unique, so that we can define a
map J : G' — Fp/q by (a “left inverse to I7)

J(z) =F.
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Corollary 4.8. The map J : G — p/q 15 continous with compact and ideally convex

fibers T~Y(F) =I(F).

Proof. Let F' € F,/, be arbitrary and represented by ~., which is either the sole tower
in F, or the sole terminal tower in F or ~X* if F' = Fy. Then the sets U(~,) form
a neighbourhood basis at F' and by Proposition 4.5 these are mapped by Z to open
neighbourhoods of Z(F) = J1(F). O

Proposition 4.9. The topological space F,,q is uniquely arcwise connected. More pre-
cisely for FO # F' let 2* € T(F%) fori = 0,1 and let R C G’ be the finite, infinite or
bi-infinite geodesic segment for the hyperbolic metric on I joining z° to z'. Then the
image of the restriction T = Jg : R — Fyyq is an arc from F* = J(2°) to F' = J ()
and s the unique such arc.

Proof. The arc R is a hyperbolic geodesic and the fibers of J are compact and ideally
convex. It follows that the continuous curve I'g from F° = J(z) to F'' = J(21) can not
have loops. Thus its image v = J(R) is an arc. (The curve I'p will have infinitely many
stationary points though.) Also a point F' € F,,, belongs to v if and only if the fiber
I(F) = JY(F) separates 2° and z' in D, because hyperbolic geodesics cross at most
once. But then the impression Z (o) of any curve o C F,/, joining F° to F' contains Z(7)
and thus v C o. If 0 # 7 then there is a point F' € o~\7. By compactness of v there
exists a neighbourhood U(~,,) of F" and a finite collection of open sets U(~j, ), 1 < j <t

covering v such that U(~,) and U(~7 ) are disjoint for every j. The impression Z(U(~,,))

is separated from R by the impressiori of a terminal class F'? ¢ v as Z(U(~,)) NZ(U(~,
)) = 0 for all j and Z(y) C U;_,Z(U(~j,)). But then o can not be injective, because it
must visit £'2 both on the way from F° to F' and on the way further from F to F'. This
proves that the arc v connecting F° to F'! is the unique such arc and in particular does

not depend on the choice of points z* € Z(F*), i = 0, 1. O

Corollary 4.10. The topological space F,, is a tree.

Proof. Let F' € F,, be arbitrary and represented by ~, which is either the sole tower
in F, or the sole terminal tower in F' or ~X if ' = Fy. Then the sets U(~,) form a
neighbourhood basis for F'. A rerun of the proof above shows that these sets are arcwise
connected, because Z(U(~,,)) is ideally convex. A uniquely arcwise connected and locally
arcwise connected space is a tree. [

To complete the proof that veins are arcs let w = wy,/on = e™/2" be a dyadic point.
And let R be the radial segment between w and its first intersection z,, towards the origin

with Ey. We shall prove by induction on n that Z;'(J(R)) contains an arc connecting
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the root ¢,/, of L/, to the dyadic tip 5" (J (w)), where G'(p/q) > w. First we need some
preparatory statements.

For zp,z; € S* we shall use the notation [zg, 21]g1 to denote the closed arc of S! from
2o to z7 in the counter clockwise direction.

Proposition 4.11 (The Douady Tuning Algorithm). Let ~., be k > g > 1 renor-
malizable. Then §(Z(~w)) is a Qf-invariant Cantor-set on which Qf is conjugate to the
one-sided shift on two symbols. More precisely let J = J(~w) = [20,21]s1 denote the
minimal interval with §(Z(~y)) C J. Then zy and z are fized points of Qf and J con-
tains two disjoint arcs Jy = |20, 2}]g1 and Jy = [2), 21|51 such that f=QF : J;, — J s
an orientation preserving diffeomorphism, affine in the angular coordinate, for i = 0,1
(f(z) = 2 - Qk(2/2)). The corresponding f-invariant Cantor set equals §(Z(~y)).

Proof. For each n let G’ denote the critical value gap for ~,= ~|z» and choose Ny
such that ~,, has critical period k for each n > Ny. Then QF: 456G, — 5@ is a
2 : 1 covering for any n > Ny. It follows that the restriction Qf : I' := §(Z(~o)) — I!
is a 2 : 1 covering map. Because the sets 6G’ are nested with non-emty intersection
I' = My>00GY.

For1 < j < klet JU+1) modk — Qé([l). Then Qo : I° — I'isa 2 : 1 covering which is
locally the restriction of a diffeomorphism. And for 1 < j < k Qg : I — JU+D mod k jg 5
diffeomorphism (i.e. homeomorphism which is locally the restriction of a diffeomorphism).
For such j let J7 denote the minimal subarc of S! containing I7. Then H(J/)NH(I°) = 0,
because H(I7) is a connected set disjoint from H(I°) and D\ H (I°) is a collection of disjoint
hyperbolic half-spaces. It follows that )y is injective on each arc J7/ as 0 € H(I°). Write
J = J' = [20, z1]g1, then zp,2; € I' and Q' (J') has two connected components J', J"
with end points in I° and with 1° C J'U J". As Q, is injective on J*~!, this arc contains
one diffeomorphic preimage under g of each of the arcs J', J”. These preimages have
end points in I*~! and their union contains /*~*. And recursively each J*77, 0 < j < k
contains one diffeomorphic preimage under ()’ of each of the arcs J’, J”. These preimages
have end points in 777 and their union contains I*=7. As the end points 2y, z; of J = J*
belongs to I'' we obtain in the final case j = k—1 above that J contains two disjoint subarcs
Jo = [20, 20)sr and J; = [2), z1]g1 such that I C JyU Jy and f=QF: JyoUJ, — J is a
2 : 1 covering. As f is orientation preserving the end points zy and z; are f-fixed points.
Moreover as f is expanding the invariant subset C(~u) = Ny>of "(J) is a Cantor set

and there is a unique homeomorphism 7 =n._ : X5 = {0, 1}N — ((~s) conjugating
the shift on 5 to f and with n((i),) = z;, for i = 0,1. As §(Z(~w)) = I' C J' is
QF = f-invariant we have I° C C(~4). On the other hand it follows from the conjugacy
above that the set of backwards orbits of zy and z; are dense in C(~y,). As fis2:1on
I° any such backwards orbit is also in the closed set I°. Hence the other inclusion and
thus equality of the two sets follows. O
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Remark 4.12. In the following we shall be working with renormalizable towers ~ .
However in order to shorten/simplify notation we shall often use the index F' = F(~)
instead of ~. The only case where this is not always appropriate is the case F =
Fy(p/q) = F(~* (p/q)), where the impression Z(F) and its essential boundary 6Z(F)
contains but do not equal those of ~X (p/q) for ¢ > 3.

Definition 4.13. For ~., renormalizable with period k > 1 let
v N

as in the proof of Proposition 4.11 denote the unique topological conjugacy of the shift
map on Yy to Qf on 6Z(~u) mapping (i), to z fori=0,1.

We remark that the actual tunning algorithm is based on the proposition above in a
slightly different phrasing. The combinatorial part of the algorithm states that if we write
the arguments 0°,6' € T = R/Z of 29, 21 in base two, 6" = .€! ... €l for i = 0,1, then the
argument ¢ € T of the point nr((0;);) is given by:

o0 gj g4

H(UF((Jj)j)) = ZEIQTEI“ = e e e

J=1

Or equivalently writing p; = € ... el € {0,1,...,2% — 1} for i = 0,1 we have

ool = 3 5

w‘@

This formula follows from (2]) = ;7" ... ¢, "€; ... €, for i = 0,1, which in turn follows

from the restrictions Qf : J* — J being diffeomorphisms.

The open complementary arcs

D, jas = Dy jos(~oo) = Inp(er ... €5-101),np(er ... €5.110)[s2

of the Cantor set dZ(~y) are naturally labelled by the dyadic fractions r/2%, where r =
€1 ...€5_11. Because both of the binary fractions .€;...€,_110 = .1 ...€,_101 represents
r/2%. We shall moreover denote by Dy = Dy(~«) the arc |z, zggs:.

Notice that if ~, is renormalizable then 6Z(~,) can not contain dyadic points
Wy jon = €272 because 07 (~w) is Qf-invariant and does not contain the fixed point
1 = wy of Qp. The complementary intervals D, os = D, /9s(~oo) Will however contain
infinitely many dyadic points each. The dyadic point wy,/on in D, j9s = D, /9s(~veo) With
the smallest denominator or equivalently smallest n will be called the leading dyadic point
of DT /25 -

32
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Lemma 4.14. Suppose that ~«, is k-renormalizable and that the complementary arc D1/,
of 0Z(~o) has leading dyadic w,ss. Let wy,/on be any dyadic point contained in some
complementary interval D, ou of 0Z(~s). Then

k(n'—1) <n—s.

Proof. The map Q’S(n/_l) maps D,/ jon' diffeomorphically onto D/, and thus maps w,, on
onto w,, ;pn—rw-1 € D1/2. Hence n — k(n'—1) > s. O

Definition 4.15. Let R = Ry, /on = [0, Wy,/2n] denote the closure of the hyperbolic geodesic
in 1D connecting the origin to wy,jon € G'(p/q). For ~s renormalizable with I(~o)NR # 0
define Kp = [sp,tp], 0 < sp <tp <1 by [sp-Wnjan,tF - Wyom] = T(~) NR.

Note that [0, 85 - Wy /on[C H(Dp(~s)) and that there is a unique dyadic m(F)/2")
such that Jtp - W, jon, Wryjon] C H(D gy janee) (F)), because Z(~oo) = H(0Z(~o)). Note
also that m(F)/2"") depends on both m /2" and ~, but that either n(F) =n =1 or
n(F) < n, according to Lemma 4.14.

Definition 4.16. For a dyadic fraction m/2" the corresponding dyadic tip of M is the pa-
rameter ¢ = dp,jon = Eal (wm/2n> equivalently it is the landing point of the external param-
eter ray R%ﬂ”' For a homeomorphic copy M’ of M with homeomorphism x : M’ — M
the m/2" tip of M is defined as x ' (dpjon).

Lemma 4.17. Let F = F(~y), where ~4 is a k-renormalizable tower and let Mp =
EEI(F) Then the prime end impression in M under ¥ of a point w € St intersects the
copy Mp if and only if w € 6Z(F). Moreover the parameter rays RZ[, corresponding
to the QF fized points z; € §(Z(~w)), @ = {0,1} co-land at the root of Mg and for any
dyadic r/2°, r odd the parameter rays corresponding to the two end points of Dy as(~co),
co-land at the r/2° dyadic tip of Mp. Furthermore in the particular case F' = Fy(p/q)

and ~T € Fy the terminal tower adjacent to ~X in DT/QS(N*) any of the parameter rays

corresponding to the ¢ — 2 other points of the critical value class E' of ~T also co-land at
Mpg, .

Proof. For n € N let G/, denote the critical value gap of ~, =~ |z» and for ¢ € Mp let
Y/ denote the corresponding critical value Yoccoz puzzle piece for Q.. Choose Ny such
that ~, has critical period k for all n > Ny. Then the restriction Qf : 6G!, — 06G’ _,
has degree 2 and the restriction f = Q¥ : ) — Y/, is proper of degree 2.

Suppose first that & > ¢ so that G, CC G7,_, and f is quadratic like with filled-in
Julia set K. = N,>0Y,. It follows immediately that for any z € S! the corresponding
prime-end impression under ¢_! in the filled-in Julia set K. of Q. intersects K’ if and



The Yoccoz Combinatorial Analytic Invariant 34

only if z € 0(Z(~)). And since Mp = YP(F) = Np>0YP(~,) the similar statement
holds in parameter space.

Let R, denote the two k-periodic rays for Q., where z;, © = 0,1 are the two QF fixed
points in §(Z(~)). Then by the dynamical ray landing Theorem 1.1 each of these rays
lands on a non-attracting QF = f-fixed point in K’ and each assigns combinatorial rotation
number 0/1 to their landing points. However f being quadratic like with connected filled-
in Julia set has a unique non-repelling fixed point (. admitting combinatorial rotation
number 0/1. Hence for any ¢ € Mp the two rays R co-land at 3 and their union with
Bl separates 0 from ¢ in C. By the Douady-Hubbard parameter landing Theorem 1.4 the
corresponding parameter rays RZ[ co-land at the root or cusp of Mp.

Moreover for any dyadic /2%, r odd the two end points wg, wy of D, os are mapped by

ks to 29,21. Hence the corresponding dynamical rays for Q. co-land at the r/2° dyadic

tip of K., which maps by f* to .. Again by Theorem 1.4 the parameter rays of the same
arguments co-land at the /2% dyadic tip of Mp.

Finally we leave details of the case k = ¢ to the reader. It is build into the p/g-Yoccoz
puzzle. To see that the prime-end impression of a point z € S! intersects M F, if and only
if 2 € §(Z(Fy)) recall that the sets Z' (~X*) form a fundamental system of neighourhoods
of MF* . ]

To obtain uniqueness of connecting arcs in M we need a canonical way of passing
hyperbolic components. Douady and Hubbard encompassed this by the following regu-
larization.

Definition 4.18. Define D-H-ruled arcs of M as those whose passage of a hyperbolic
component does so via hyperbolic geodesics through the center.

Let ¢y, : Hy — D denote the Douady-Hubbard multiplier map of the fixed point from
the component Hy of M bounded by the cardioid. Denote also by 1y, the homeomorphic
extension to the closures. For each rotation number p/q, (p,q) = 1 define the path
Yp/q : 10,1] — M by

© = b1 —2t), 0<t<l
Tr/q Vit (2t — 1)eipla), s<t<L

Theorem 4.19. Any dyadic tip d,,on is connected to the root dy := i of M by a unique
D-H-ruled arc Ty, jon in M. In particular dp,jon € Ly 4 is connected to the oot c,/q of Lyq
by a unique D-H-ruled arc.

Proof. The proof goes by induction on n the exponent of the dyadic numerator. Forn = 1
the vein from the cusp dy = i € M to the dyadic tip dy /91 = —2 is the real interval [i, —2]



The Yoccoz Combinatorial Analytic Invariant

and is thus an arc. Choose any parametrization I'y/s : [0,1] — [1, —2] with 'y »(0) = 1.

Let m/2", n > 1 be arbitrary and suppose that for any m//2" with n/ < n, there is a
unique ruled arc I', ;o0 2 [0,1] — M, with T, 5 (0) = do and T,/ jgur (1) = d, g’ -

Let p/q be given by dy,jon € Ly)q, let R = R, o be as in Definition 4.15 and define
Ren = Reng = {F € J(R)|F is renormalizable}.

For each ' € Ren define K and m(F)/2"¥) as in Definition 4.15 above. Furthermore
define

K=Kp= U Kp.

FeRen

For each renormalizable p/g-equivalence F' recall that Mp = Z5'(F) 2 YP(F) and the
map Xr : Mp — M is the straightening homeomorphism. Define

VP/q(i)a 0 <1< Sp,,
=T ={2(T()  t¢ K,
X5 © Loy ante) (22, F=J(t)te K.

We shall prove that [ is a curve with connected fibers and thus its image contains an arc

For ' = J(t) non-renormalizable we either have I’ = {~,} or we can choose to
represent F' by a unique terminal tower ~, = ~I € F. With this convention we have

Eo( |J YP(ve 20) = U(~y).

"‘OOGF

Continuity at ¢ thus follows from the continuity of 7. Continuity at sp, is by construction
and at tp, the argument is the same as above. For any other F' € Ren note first that
T(t) — =5 (F), when t — Kp from outside by the same argument as above. Hence
for continuity at sp we need to prove that f(t) can approach only the root of Z5'(F),
when ¢t approaches sg from below. And for continuity at ¢t we need to prove that f(t)
can approach only the dyadic tip Xl?l(dm( F)2n(e)) of =5 (F), when t converges to tp from
above. Continuity at sy now follows because [0, s - Wy, 2n | is on one side of the hyperbolic
geodesic connecting zy and z; and the rest of Z(F) is on the other side, and because the
two external rays of period k corresponding to zp and z; co-land at the root of EEI(F ).
Similarly continuity at ¢y follows because |t -y, jan , Wi 2n | is on one side of the hyperbolic
geodesic connecting the two endpoints yo and yi of D,,(p)/ancr), 0 and the rest of 7 (F)
are on the other side, and because the two rays corresponding to yo and y; co-land at the
dyadic tip X' (dyy ) janm ) of 51 (F). O
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Definition 4.20. A Yoccoz parameter ¢ € M s a at most finitely many times renormal-
1zable parameter for which every periodic cycle is repelling.

Theorem 4.21. Any two Yoccoz parameters c¢' and ¢ are connected in M by a unique
D-H-ruled arc.

Proof. We shall suppose the two parameters belong to the same limb L, /,, and leave to

the reader the easier case, where they are in different limbs. Write ~% =~¢ and F* =

F(~%) for i = 0,1. Choose points 2" € Z(~! ) and let R = R_1,2 denote the hyperbolic
geodesic connecting z! and z2. Then by Proposition 4.9 the image [J(R) is the unique arc
connecting F' to F? in F,/,. Moreover arguing as in the proof of Theorem 4.19 the set
=5 (J(R)) contains a unique arc I connecting YP(F') to YP(F2). (Note that when ~
is renormalizable with F/(~.) # F* i = 1,2, and with Z(~)NR # () as in Definition 4.15
then [ N M r is a dyadic vein of Mg except possibly for one renormalizable tower ~ .,
for which the intersection is contained in the union of two dyadic veins corresponding to
entry and exit of ' into/out of Mpg.) If ¢* is not renormalizable then YP(F*) = {c'}
for i = 1 and/or i« = 2. Thus to complete the argument we shall prove that if say
c! is renormalizable, (we leave the similar case ¢? renormalizable to the reader) then
Ec (J(R) \ F'), which converges to some dyadic tip xp1(dman) (possibly dy) of Mp1,
can be extended by an arc in Mg from xp1(dp,/on) to c'. This is however equivalent
to the initial problem applied to the renormalized (from Mp1) parameters xpi(c!) and
dynjon. But ¢! was assumed to be at most finitely many times renormalizable, and y 1 (c')
is one time less renormalizable than ¢!, so we can handle the problem recursively in a
finite number of steps. U
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