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Abstract

For the study of the 2-dimensional space of cubic polynomials, J. Milnor considers the
complex 1-dimensional slice S,, of the cubic polynomials which have a super-attracting orbit
of period n. He gives in [Mi4] a detailed and partially conjectural picture of S,. In the
present article, we prove these conjectures for S; and generalize these results in higher de-
grees. In particular, this gives a description of the closures of the hyperbolic components
and of the Mandelbrot copies sitting in the connectedness locus. We prove that the bound-
ary of each hyperbolic component is a Jordan curve, the points of which are characterized
according to the dynamical behaviour of the associated polynomial. The global picture of
the connectedness locus is a closed disk together with “limbs” sprouting off it at the cusps
of Mandelbrot copies and whose diameter tends to 0 (which corresponds to a qualitative
Yoccoz’ inequality).

Résumé

Pour étudier 'espace 2-dimensionnel des polynomes cubiques, J. Milnor considere la
tranche §,, de dimension un complexe formée des polynémes cubiques qui ont une orbite
super-attractive de période n. Il donne dans [Mi4] une image détaillée et partiellement conjec-
turelle de S,,. Dans le présent article, nous démontrons ces conjectures pour S; et généralisons
ces résultats aux degrés supérieurs. En particulier, nous obtenons une description de la fer-
meture des composantes hyperboliques et des copies de Mandelbrot se trouvant dans le lieux
de connexité. Nous prouvons que la frontiere de chaque composante hyperbolique est une
courbe de Jordan, dont les points sont caractérisés en fonction du comportement dynamique
du polynéme associé. L’image globale du lieux de connexité est un disque fermé avec des
“membres” qui en sortent aux cusps de copies de Mandelbrot et dont le diametre tend vers
0 (ce qui correspond & une inégalité de Yoccoz quantitative).

Introduction

In [BrHu] Branner and Hubbard studied the parameter space of cubic polynomials (in terms
of the dynamics). This space has been intensively studied since then. In this paper we focus
on the 1-dimensional complex slice S; of the cubic maps which have a fixed critical point. Our
goal is to prove the conjectural picture given by Milnor in [Mi4] of the connectedness locus in
S1, and to generalize these results to degrees d > 3. The first question concerns the topology
of the boundary of the main hyperbolic component. This leads naturally to the question of
characterizing in dynamical terms the parameters on this boundary. The other problems are to
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describe first the intersections of the closures of hyperbolic components between each others and
second their intersection with the Mandelbrot copies. Milnor considered also the limbs which
are attached to the main hyperbolic component and raised the question of the existence of an
analogue of Yoccoz’ inequality, namely, the inequality which bounds the size of the limbs in the
Mandelbrot case.

Let us consider the families of polynomials of degree d > 3 having a critical fixed point of
maximal multiplicity. When we fix the degree, d, this set of polynomials is described—modulo
affine conjugacy—by the following family {fa, a € C}, where 0 is the critical fixed point of

maximal multiplicity :
da
_ ,d-1
falz) =2 <Z+d—1>'

Ho

Figure 1: Connectedness locus for d = 3 and 4 in dark color.

The set of parameters is partitioned into two loci: C = C LI Ho (after [BrHu]). The set
C denotes the connectedness locus i.e., the set of parameters a such that the Julia set J(fa) is
connected ; Ho, consists of the parameters a such that the “free” critical point —a is attracted
by oo (see [DoHul]). We can continue the partition further, considering the hyperbolic param-
eters 7.e., the parameters such that the orbit of every critical point converges to an attracting
cycle (see [Mil, Mi4]). This hyperbolic set is a disjoint union of open disks called hyperbolic
components. The locus Hoo is the unique unbounded hyperbolic component (see Lemma 1.9
or [Mi4] and [BrHuj). Among the hyperbolic components contained in C, we focus on the ones
associated to the attracting point 0. The union of those is H = {a € C | —a € Ba}, where B,
is the basin of attraction of the fixed point 0.

Local connectivity of the boundary of hyperbolic components

Theorem 1. The boundary of every hyperbolic component of C is a Jordan curve.

This Theorem is a consequence of Theorem 2 and the renormalization® property of Propo-
sition 1.

!Definitions of “renormalization” and of “copies of M” are given in section 3.5



Theorem 2. The boundary of every connected component of H is a Jordan curve.

Proposition 1. If the map fa has a non-repelling periodic point p # 0 then fa is renormalizable
near p and the parameter a belongs to a copy of the Mandelbrot set M.

Theorem 2 is the analogue in the parameter plane of the following dynamical result?:
Theorem [Fa, Rol|. The boundary of every connected component of éa 1s a Jordan curve.

Let us recall that D. Faught gave a proof of Theorem 2 in his thesis [Fa]. This result remains
unpublished. For completeness, we give a proof of this result of local connectivity ; our proof is
different from that of [Fal, the argument here is based on an idea of Shishikura that simplifies
the analysis.

Proposition 1 has the following two interesting corollaries :

Corollary 1. Any hyperbolic component of C is either a connected component of H or a hyper-
bolic component of a copy of M.

Corollary 2. Assume that fo possesses a periodic point p with multiplier A = 2™ such that
0 € R\ Q. Then fa is linearizable near p if and only if 0 € B. Moreover, if 0 ¢ B there exist
periodic cycles in any neighbourhood of p.

Here B denotes the set of Brjuno numbers: an irrational 6 of convergents p, /g, (ratio-
nal approximations obtained by the continued fraction development) is a Brjuno number, if

Z?:ﬂlog Gn+1)/qn is finite.

Parameters on the boundary of components of JH

Let Hg be the connected component of H containing 0.

Theorem 3. Let a € OHy. There exists a unique parameter ray® in Ho landing at a, say R§(2).
The following dichotomy holds:

e there is a unique external parameter ray converging to a. In this case f, is not renormal-
izable so a do not belong to a copy of M. Moreover in the dynamical plane, the ray RO (t)
lands at the critical value fa(—a) € OBa and there is a unique external ray converging to

fa(_a) y

e there are exactly two external parameter rays converging to a. In this case a is the cusp
of a copy of M. Furthermore, in the dynamical plane, the ray RO(t) lands at a parabolic
point on 0B,. The angle t is necessarily periodic by multiplication by d — 1.

Proposition 2.32 gives a criterion on the angle ¢ to decide which one of the two cases described
above arises.

Theorem 4. Let a € OU where U # Hy is a connected component of H. Then a is the landing
point of a unique parameter ray of U, say Ry(t). In the dynamical plane, some iterate fF(—a)
lies in OBy but —a ¢ 0Ba. Moreover, there exists a holomorphic function r, defined in a
neighbourhood of a, such that the dynamical Tay Rz(a) (t) converges to the critical value fa(—a).
As a consequence, fa has no parabolic cycles.



Figure 2: A copy of M attached to Hy and a component U of H \ H.

Corollary 3. (see also [GoMi]) For parameters a on the boundary of a component of H, fa
cannot have an irrational indifferent periodic point.

Intersections between the closures of hyperbolic components

Lemma 1. Any two distinct components of H have disjoint closures.

Recall that the cusp of M is the point ¢ = 1/4, and that the tips of M are the parameters
¢ € M such that c falls after some iterations on the repelling fixed point, 3. (the one that does
not disconnect the Julia set). The cusp and the tips of a copy of M are the corresponding images
by the homeomorphism defining the copy.

Let My be a copy of M.

Proposition 2. If My intersects OU where U is a component of H, the following dichotomy
holds :

o IfU ="Hy, MoNIU is reduced to a single point, which is the cusp of My ;

o IfU # Hy, Mo N IU is reduced to a single point, which is a tip of Mg. Furthermore,
Mg N IHy is not empty, it reduces to the cusp of My.

Conversely,

Proposition 3. If My intersects OHy, then at any of its tips there is a connected component of
H \ Ho attached.

These results describe all the intersections between the boundaries of components of H and
also with copies of M, so in particular between all hyperbolic components of C.

Theorem 5. The only intersections between closure of hyperbolic components, and also copies
of M are the following :

2We will recall briefly the proof of it from Yoccoz’ Theorem in section 6
3Rays and parameter rays are defined in section 2 and 3



o The central component Hy has Mandelbrot copies M; attached to it at angles t which
are periodic by multiplication by d — 1 (a full characterization of these values is given in
Proposition 2.32) ;

o At every tip of such a satellite My, there is a component U of H \ Ho attached.

Nevertheless, there are infinitely many copies of M in C and components of H not in the category
described above.

Some global properties of C

Theorem 6. OC is locally connected at every point which is not in a copy of M and at any point
of OU for every connected components U of H.

Concerning the limbs* of the main component Hg, we obtain a qualitative version of Yoccoz’
inequality for this family :

Theorem 7. For any € > 0, only a finite number of limbs have diameter greater than e.

Description of the content of the article

In the first section we give some properties of the polynomials f, in dynamical and parameter
plane.

The second section is devoted to the parametrization of the components of H and also of
Hoo. The parametrization is given by the Bottcher coordinate of the critical value and provides
parameter rays and equipotentials.

In section 3, we construct graphs that define puzzles to prove the local connectivity in the
parameter space. They correspond—via the parametrization—to those used in the dynamical
plane in [Rol] for the proof of the local connectivity of 0B, (we will recall the construction
and the results of [Rol]). Then, the holomorphic motion of the dynamical graphs allows us
to compare the puzzles in the parameter plane and in the dynamical plane, as pointed out by
Shishikura in the case of quadratic polynomial (see [Ro2]).

Section 4 is devoted to the proof of Theorem 1, 2, 3 and 4. Namely, we prove that when
the intersection of the puzzle pieces (in the parameter plane) is not reduced to a single point,
then this intersection is a copy of the Mandelbrot set.

In section 5 we give the announced description of C i.e. the proof of Theorems 5, 6 and 7.

Finally, we add in the Appendix (section 6) the proof of Theorem [Fa, Rol].

Acknowledgment: 1 would like to thank Tan Lei, Carsten Petersen and Curt Mc Mullen for
encouraging me to write this down. I would also like to thank John Milnor for many discussions
and for suggesting me section 2.5.

1 Overview of dynamical and parameter plane

Through the article we will take angles in R/Z but in general we will have in mind their
representant in [0, 1[. We will write dt¢ for the image of the angle t € R/Z by the multiplication
by d and t/d for the element whose representant is in [0, 1/d].

4defined in section 5



1.1 The dynamics of f,

We consider the polynomials f, for a fixed degree d > 3. Note that for d = 2 only the polynomial
P(z) = 22 satisfies the condition to have a super-attracting fixed point (modulo affine conjugacy).

Recall that the filled Julia set K(fa) consists in the non escaping points and that the Julia
set Ja = J(fa) is its boundary:

o= K(fa) = {z| f1(z) —/> o0}, Ja=0Ka.
Note that for every a € C, K, # J, since K, contains the basin of attraction of 0 i.e.

Ba={2€C| fi(z) — 0},
n—oo
We denoted by B, the immediate basin of 0, that is the connected component of éa containing 0.
It follows from the maximum principle that B, is a topological disc. If —a ¢ B, the map fa|p,
is conjugated to z%~! on D, else By = B, (see [Rol] and the following Béttcher’s Theorem).

Theorem. [Bottcher| Forp = 0 or oo, there exist neighborhoods Vi, W% of p such that fo(VZ) C
VP land conformal isomorphisms ¢h: V¥ — W¥ satisfying

¢ o fa=(82)" on V® and @hofa= (@D on VY (%)

with ¢ tangent to identity near co and ¢ tangent to z +— A(a)z near 0 where A(a) is a (d—2)-th
root of %.

Remark 1.1. The map ¢3° is always unique. Moreover, if we fix the choice of the (d — 2)-th
root A(a), the map ¢2 is also unique.

Assumption 1. Through all the paper we will only consider parameters in C\ R~ (because of
Remark 1.7). Thus, for the choice of A\(a) we take the (d — 2)-th principal root of %, i.e., the
one such that A\(RT) c R".

The Green function G3° (resp. G2) associated to oo (resp. to 0) is the harmonic map equal
to log [¢3°(2)| on Vi° (resp. to —log|¢)(z)| on V;)), extended on C\ K, through the relation
dG(2) = GX(fa(z)) (resp. on Bj through (d — 1)G2(2) = G2(fa(z))) and vanishing on the
complement.

Definition 1.2. The equipotential of level v > 0, EL(v), around p = 0 or oo is the curve
Ei(v) = {z € C| Gh(z) = v}. A ray, Ri(t), of angle t € R/Z, stemming from p = 0 or oo, is a
gradient line of Gh that coincides near p with (¢h) ™ (R*e?m).

Note that if there is no critical point of G& on a ray, it is a smooth simple curve; whereas
at the critical point the gradient line divides itself so that several points have the same potential
on this ray and also different points of J, might be on the closure of a unique ray of given angle.
This happens if a € Ho, U Hp. In this case the angle ¢ and the potential do not define uniquely
points on the ray, we will say that the ray is not well defined. In fact the ray is well defined in
{z | Gh(z) > Ga(—a)} since ¢h extends to this set (via (x)). Note that it is possible to extend
qbg continuously at the critical point —a, but not ¢3° since there are two external rays crashing
on —a.

Finally, if a ray RA(t) is well defined, it accumulates on the Julia set. We say that it lands
if its accumulation set is reduced to one point and the landing point is in J,.

We have the following behaviour for rational rays (see [DoHul, Mil, Pe]):



Lemma 1.3. Letag € C, p=0 or oo, and t € Q/Z. If the ray RA,(t) is well defined, it lands
at an eventually periodic point which is repelling or parabolic ®.

Lemma 1.4. Under the assumptions of lemma 1.3, if the landing point is repelling and not
eventually a critical point, there exists a neighbourhood A of ag such that for all a € A the ray

RA(t) lands at a repelling point. Moreover, the map (a, s) — 1 ,(s) is continuous on A x [0, o0]

and holomorphic in a, where Zt(s) is the point on Rh(t) of potential s.

Proposition 1.5. [Yoccoz] For every eventually periodic point of fa that is repelling or parabolic,
there exists a rational angle t such that RY(t) lands at this point if J(fa) is connected.

We will not need the analogue result in the non connected case since we will start from the
rays obtained when the Julia set is connected and proceed to a holomorphic motion.

Lemma 1.6. If two rays R3(t) and R(t') land, their landing points are distinct when t # t'.

Proof. This follows, by a contradiction argument, from the maximum principle applied to the
iterates of f, on the domain bounded by the closed curve R(t) U RI(t). O

1.2 Parameter plane

2im

Remark 1.7. The rotation 7(z) = 7z, where 7 = ed-1 is the only possible conformal conjugacy
between polynomials f, and fa ; the relation is fra4(72) = 7 fa(z). Besides this, fa is conjugated
to fa by the complex conjugacy o(z) = Z.

Hence a “fundamental domain” for the study of the family fj, is

S:{aEC]OSarg(a)S%}.

»

Figure 3: Fundamental domain in degree d = 3,4 and 5.

The connectedness locus C, i.e., the set of parameters a such that K, (or equivalently Jy)
is connected, admits the following classical characterization (see [DoHul]):

C={acC| fl(~a) —/ oo},

5A point z of period p is repelling, attracting, parabolic or indifferent irrational, respectively, if [(f2) (x)] > 1,
[(F7) ()] < 1, (f?)(2) = €*™® and 6 € Q/Z, or 6 € (R\ Q)/Z.



Remark 1.8. The sets C, H and H~ admit ¢ and 7 as symmetries.

Lemma 1.9. The set Hoo = C\C is a connected component of the set of hyperbolic parameters.
Similarly, the connected component H is exactly the set {a | —a € By}.

Proof. Clearly H, contains a neighbourhood of co. So if H o is not connected there is a bounded
connected component, U C Hy,. The boundary of I/ is in C so there exists some M € R such
that |f2(—a)| < M for all n > 0 and a € OU. For ay a parameter in U, there exists some N
such that |f2 (—ag)| > 2M for n > N. This contradicts the maximum principle for the function
ar— fN(-a).

The proof for Hy goes with the same arguments exchanging 0 and co. Assume (by contra-
diction) that there is a connected component & C C of {a | —a € B,} which is different from
Ho. There exists some € > 0 such that on OU, |f}(—a)| > € and for ag € U there exists some N
such that |f3 (—ag)| < €/2 for n > N. This contradicts the maximum principle (as before) for
the map a +— 1/fY(—a) which is well defined on a neighbourhood of I since fY¥(—a) # 0 for
a € U because the sequence fJ'(—a) tends geometrically to 0 in B,. O

Definition 1.10. The so—called capture components pf depth 7 > 1 are the connected components
of H;, where H; = {a € C | fi(fa(—a)) € Ba and f*"(fa(—a)) ¢ Ba}.

We have the following decomposition of the hyperbolic components of H :

Remark 1.11. H = | H,.

i>0
Proof. For a € H, the critical point —a is attracted by 0, so there exists k > 0 such that
fk(—a) € Ba. If a ¢ H; for any i > 0, necessarily fa(—a) € Ba with —a ¢ B,. This is not
possible since any point near fa(—a) in B, would have d — 1 preimages in B, (see Bottcher’s
Theorem) plus two near —a (the critical point), which exceeds the degree d of f,. O

A rough picture of the dynamics of f, for a € H U H is the following. For parameters
ain Hy = C\ C, the filled Julia set K, is not connected but not totally disconnected since it
contains the closed disc B,. More precisely, K, is the disjoint union of all the inverse images of
Ba,, the dynamics of f, on K, = Uf;*(Ba) is the "shift” and on B, it is conjugated to z — 2%~
on D.

For parameters a in Hg the critical point —a is in the immediate basin B,. Indeed, for the
center a = 0 this is clear and the situation is stable. Thus for a € Hy, the dynamics is very
simple: Ka = Ba, Ba = Ba, Ja is a quasi-circle and falJ. 18 quasi-conformally conjugated to
2+ 2% on S ‘

For parameters a € H; with ¢ > 1, K, = Uj>0 fa’(Ba), the map f, is conjugated to z
2?1 on B, and corresponds to the ”shift” on the components of (fa’(Ba)) j>0 not containing
the critical point.

Lemma 1.12. Any connected component of H, as well as Hoo U {0}, is simply connected.

Proof. Once more this is an application of the maximum principle. The proof goes by contra-
diction. For the sake of simplicity we give the proof for a connected component U of H,, with
n > 0. The argument follows for Ho, U {co} by exchanging 0 and oc.

Assume for contradiction that there exists a bounded connected component K of C\ U.
Then there exist points of 9U in K and also a simple closed curve v C U surrounding K since
U is arcwise connected. In U, the iterates of the critical point —a converge to 0. Thus, for



every € > 0, there exists an N > n such that for every 7 > N and every parameter a € v,
|fi(—a)| < e. Now let = be a point in K NOU. Since x ¢ 'H, there exists an r > 0 (depending on
x) such that the iterates fi(—z) N B(0,r) = () for every j > 0. Taking € = r/2, this contradicts
the maximum principle for the holomorphic function g(z) = f¥(—z), on the bounded open set
delimited by 7. O

Notation 1.13. Let Yo: Hog — D, resp. Yoo : Hoo — C\ D, be the conformal representation
tangent to the identity at 0, resp. at oo.

2im

Remark 1.14. Then, for p = 0 or oo, Tj(ca) = 0cYp(a) and Yy(ra) = 7Y (a) with 7 = ed-1
and o(a) = a. In other words H, admits o and 7 as symmetries.

Proof. Since H,, is invariant by the complex involution ¢ and the rotation 7 (see Remark 1.7),
the maps 0¥, (0z) and T)(72)/7 are conformal representations of H, onto D, or C \ D, which
are tangent to the identity at 0, or at co. Hence Y, (02) = 0¥ p(2) and Yp(72) = 7Y,(2). O

Corollary 1.15. Letp = e%, for any k € N the line p* RT cuts Hy and Hoo under a connected
set. As a consequence, Yo(p* RF) = pF[0,1[ and Yoo (pF RY) = pF]1, +00].

This does not imply that R crosses only Hg, Heo and OC (see corollary 2.27).

Proof. Fix p € {0,00}. By remark 1.14, for a € R*, T,(a) € R and Y,(ap*) € p* RT (since
pfa = p*o(pko(a)) = p**o(pFa) for a € R, where o denotes the complex conjugacy). To prove
that Rt NH,, is connected we apply the maximum principle to a loop that we construct now.
Assume for contradiction that there exist xg < x < x1 with ¢ H, x¢, 21 € H,; then there is
a simple arc 79 C H, with endpoints z¢ and x; such that vy \ {zo, 21} avoids R (otherwise we
change x¢ and z; to new adapted points). The desired loop in H, surrounding z is v = yoUo (7o)
(obtained by adding the conjugate). Hence R™ N H, is connected by the same argument as in
Lemma 1.12. Using the symmetries o and 7 (Remark 1.14) we deduce that for £ > 1, the set
"R N'H,, is also connected. O

The following Lemma will be useful for describing the domains of parametrization of the H;
for i € N U {oo}. It gives some symmetry properties of the rays. These properties are specific
to the family under consideration.

Lemma 1.16. Fiz p € {0,00}. If the parameters a and Ta are in C\ R™, the Bdéttcher maps

are related by some constants k, as follows: o i(a)(a(z))) = ¢h(z) = rp(a)Pla(Tz), with
kso(@d) = 771 and ko(a) = Tigizi) Then the rays at parameters a, Ta and o(a) satisfy the

following relations, where ty(a) = arg (kp(a)) :

R (6) =0 (RL(~)) and  REy(t) = 7RI (t + t,(a)).
Proof. Since 771 fra(72) = fa(2), the map 77 1¢X(72) conjugates fa to z +— 2¢ near oo.
Since it is tangent to identity at oo, 7 !¢ (72) = ¢°(z). Applying the same argument

to the maps ¢%,(72) and U(qﬁg(a)(a(z))), we obtain that qbgoa)(a(z)) = 0(¢X(2)) and that
/@’O(a)a(qﬁg(a)(a(z))) = ¢9(2) = ro(a)¢l,(72) where kg(a) and k) (a) are appropriate constants.
Taking the derivatives at 0, we obtain s{(a)o(A(c(a))) = A(a) = ko(a)TA(ra). Note that
Kp(a) =1since \=0o0Xoo. O



Figure 4: Symmetric parameters aj,ag,as in Cq and J(fa,), J(fay)s J(fas) -

Notation 1.17. Let ST denote the connected component of C\ (r7!R~UR™) containing R*
for d >3, and ST = {2z | Im(z) < 0} for d = 3. Note that S C S+.

2

Remark 1.18. If a belongs to ST, then rg(a) = T/\l(T) = ¢a% and thus to(a) = —75.

2 Coordinates in the parameter plane

The conformal representations Tg and Y, are “a priori” independent of the dynamics. In
this section we define a dynamical parametrization of H U Hs as well as parameter rays and
equipotentials.

2.1 “Dynamical” parametrization of H, and H..

As usual, this parametrization is given by the “position” of the critical value. It is not defined
everywhere, but can be extended by symmetry (see also [Mi4]).

Proposition 2.1. The following map is a holomorphic covering of degree d :

o .{HM—HC\ﬁ
T ar— 0x(a) = ¢ (fal-a)

Its restriction to Hoo NS is a homeomorphism onto Ay where

Ag=(-1)%1! {rew

1 1
r>1,0§9§§+————}.

10



Proof. The Bottcher coordinate ¢3°(z) is holomorphic in (a, z) where it is defined (see [Bl]) so
®..(a) is holomorphic on Ho, with values in C\ D. It extends by ®.,(00) = 00 and @, : Heo U
{0} — C\ D is proper. Indeed, for any sequence a, € Hs, tending to a € dC, the modulus
|Poo(ay)]| = e~ Canlfan(=an)) tends to e~Ca (fal=2)) since the map (a,z) — G°(z) is continuous
on (C\ {0}) x C. Moreover, G°(fa(—a)) = 0 since fa(—a) € K, for a € C, so [P (a,)| — 1.
The map @, : HooU{oo} — C\D is holomorphic and proper, hence it is a ramified covering
whose degree is determined by the number of preimages of co. Since co is its sole preimage we

have to check the local degree at oco. The following computations show that ® . (a) ~ _El__?)d at

00, so that the degree is d. The function Fu(z) = fa(z)/2% = 1+ is greater than 1/2

da
(d—1)z
_ 2 1y,d 2 P
for z € Dy = {2 | |2| > |a|*} and large a. Thus |fa(2)| > 5|2|* > |2]* and fa sends D, into itself.

1

Hence, since F,(D,) is a small neighbourhood of 1, for every k > 1, the quantity (Fa(fX(2)))a+
is well-defined on D, by taking the principal determination (since ¢3°(z) is tangent to identity
at 00). The Bottcher coordinate ¢3° is the limit of the functions

1

o2u(2) (£52)) ™ = 2 (Fa(2) * (Falfal2))

‘ =

1

o (Falf5(2) #.

N

For k> 1, |1 — Fy (ff(—a))‘ < d;il|a’1—2k since for large a the critical value fa(—a) belongs to
D, and |f¥(—a)| > |a|?". Thus,

log (Fa(fi(—
Z Og( (dk-i-l ( a))) n—oo O and (I)OO(a) oo fa(_a) - d - ]. ’
k>0

Hence ®o.: Hoo U {00} — C\ D is a covering of degree d which is ramified only at oo
(Riemann Hurwitz formula). We can lift it through the covering C \ D EaiiN'e) \ D to a map
v: Hoo U {00} — C\ D satisfying v(a)? ~ _(d%l‘)d at 0o, so that we can choose v tangent to
—ae'd1d at co with a > 0. Therefore v(a) = —e/IT (a)/(d — 1)Y/? (they are conformal

representations from Ho, U {oo} to C\ D tangent at oo, so they coincide). Hence

Coo(@) = (1) To(a)?/(d - 1).
This determines the image of S N Hy, by @ using Corollary 1.15. Indeed, @ (RT N Hy) =
(-1 IR\ D and @, (pRT N He) = (—1)9pRT \ D so that @ (Hoo N'S) = Ay since $np

preserves the cyclic order at oo. Finally ®, is injective on S N Hy because the opening of
Too(S) is less than 1/d and @ (a) = (=1)T 1T (a)?/(d — 1). O

Remark 2.2. For d = 3,4 one has
2iml 3 20 1 1
Az =qILoc[e™™ [0 < 20, Ay = (JLoofe™™ [ S << o410,

Remark 2.3. From the proof above and Remark 1.14, the following symmetries hold: ® . (c(a)) =

0(Pos(a)) and Poo(Ta) = 7®@oc(a) where 7 = e%.

Proposition 2.4. The map ®g(a) = ¢2(fa(—a)) is well-defined on Ho \ R™.

11



Figure 5: Some rays in Hy and Ho for d = 3 and d = 4.

o For d > 3, its restriction to Ho NS is a holomorphic homeomorphism onto

d—1 10 1 1
= (— <
Ag=(-1) {re |r€[0,1[,0_9_2+2( %)

o For d =3, the restriction of ¢y to Hy NS is a holomorphic homeomorphism onto D\ R™T,
where § denotes the interior of S. Moreover, ®¢ maps bijectively each of the two boundary
lines Ho NRT and Ho NiR* onto [0, 1] (with i? = —1).

Proof. The proof goes exactly as in Proposition 2.1; we just have to take care since ¢2 is not
defined for a € R~ (see Bottcher’s Theorem, section 1.1). We do it for d > 3, the proof for
d = 3 follows the same arguments ; the only difference is that the boundaries of A4 glue together
to give the disk for d = 3, so if we forget the components of the boundary the arguments go
through for d = 3.

The map ®( is holomorphic on Hy \ R™. Indeed, for a € Hy \ (R™ U {0}) ®p(a) =
Pa(A(Q) fa(—a)), where ¢ is the Bottcher coordinate near 0 of the map ga(z) = A(a) fa (2/A(a)) =
z4=1 4 \(a)'~? 2 (remark that A(a) is a non-vanishing holomorphic function on Hg\ (R~ U{0})).
As in Proposition 2.1 above, ¢, is the limit of

1

Bai() = (h(2)) T = 2 (Gal2)) T - (Calgh(2)) T

where Ga(2) = ga(2)/27 1 =14 A(a)! "¢ 2. The extension of ¢, using ¢a 0 ga = (¢a)%" gives
a holomorphic function (a, z) — ¢a(z) with (¢a) (0) = 1.

It remains to prove that ®( is proper. As in the proof of Proposition 2.1, if a € Hy \
(R~ U {0}) tends to OHp, Po(a) tends to D ; an analogous computation shows that ®g(a) ~
—\(a)(—a)?/(d — 1) near 0. So we can extend ®q by ®¢(0) = 0.

In order to determine the images of R™ N Hy and pR™ N Hy, with p = e™/(d=1) " we can
use that ¢Q is defined by continuity at the critical point —a and satisfies ®g(a) = ¢2(fa(—a)) =
(¢2(—a))9~1. From the proof of Remark 1.16, ¢?(R™) C R~ for a € R¥ since (¢2)'(0) € R*
and ¢2(0(2)) = o(#2(2)). Hence ®o(R*) C (—1)4"'R*. Now for a € pR* N Hy, we determine
t such that —a “is” on the ray RJ(t), using the symmetries of Lemma 1.16 with 7 = p2. Since
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To(a) = a, the critical point —a is on RY(t) = R?U(a) (t), thus —o(a) = —7la € T_IRS)_U(a) (t).
Since T_IRS)_U(a) (t) = R2,(t + to) = o(RY(—t — to)), where to = to(o(a)) = 7= (Remark 1.18),
we deduce that the critical point —a is also on Rg (—t + d_i2) ;sot=—t+ d_i2 mod 1 because

there is a unique ray stemming from 0 which contains the critical point (the case of bounded

Fatou components). Hence, 2t = dle mod 1 and the critical point belongs to R (m) or

to RY <m + %) The map ¢2(z) is asymptotic to A(a)z near 0; so any point z € pR~

near 0 is sent inside e”™/(*=2)R~ since a € pR*. Finally, ¢)(—a) € ™/ (@=2)R~ and ®y(a) €
(_1)d€i7r/(d—2)R+'

The image ®o(S N Hyp) is exactly Ay. Indeed, the points of S near 0 are sent by @
inside Ay. Moreover, if ®¢(S N Hy) were bigger than Ay, there would be another connected
component of ®;1(dA4) in S, but then ®;1(0) NS # 0 which is impossible (¢2(fa(—a)) =
0 = a=0). Finally ®; is a proper holomorphic map from & N Hy onto Ay. It is a ramified
covering since Ho NS is simply connected (by Lemma 1.12 and Corollary 1.15). The covering
Ppo Y, L. YTo(SNHy) — Ay extends to all the boundary and its degree is the number of preimages
of 0. Thus ®y: SNHy — A4 is a holomorphic homeomorphism. O

Remark 2.5. From Lemma 1.16, Remark 1.18 and the proof above, the following symmetries

2im 2im
hold: ®y(c(a)) = o(Pg(a)) for a ¢ R~ and, for a € ST, ®y(ra) = e=-2Py(a), where 7 = ed-1
and o(a) = a.

Remark 2.6. The difference (in the angles) between Ay and Ay comes from the fact that the
boundary of H, will also touch the boundary of the components of H,, with n > 0.

2.2 Parametrization of H,,.

Lemma 2.7. If U is a connected component of H, with n > 0, it cannot contain at the same
time a point ag and its symmetric Tag. Therefore, either U or TU is included in C\ R™.

Proof. Assume for contradiction that U contains a point ay and its symmetric 7ag. Then, we
can construct a curve vy surrounding 0 on which f7 is uniformly bounded for every n: v is the
union of an arc in U joining ag to Tag and all the symmetric images by 7. This curve 7 is
contained in U since U N 7U # 0, so that U = 7U = ... = 7¥U{. Then ~ surrounds Hy since
0 € Ho and v C U # Hy. This contradicts the fact that U is simply connected, Lemma 1.12.
Suppose now that I/ crosses R~ and also 77'R™; then it will necessary cross p~'R~ or
pR~where p = €/™/4=1. Moreover U = o (i) since both have a common point on R~. Let ag be
some point of U N p~'R~. Then o(ag) belongs to U. But o(ag) = Tag since 7p~ ! = o(p~1). By
the first part of this Lemma, this is again a contradiction. O

Lemma 2.8. Let U be a connected component of H,, with n > 0 included in C\ R~. The map
U—D
Dy 07 en
ar— Py(a) = ¢5(fa(fa(—a)))
18 a conformal homeomorphism.

Proof. For a € U, the map ¢? is well-defined, and is holomorphic in (a,z) for z € B, (see
Remark 1.1). Hence since U is simply connected @y, is a ramified covering from U to D (it is
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holomorphic and proper: the proof is similar to that of Proposition 2.4). It remains to show
that it has degree one. For this we will prove that ®;, is a local homeomorphism near every
point of U. Let ag € U and zy = Py(ag). We will construct by surgery a local inverse a(z) to
z = ®y(a) in a neighbourhood of zy. We first modify fa, near the point fz (—ag), in order to
send f3 (—ag) to (cbgo)_l(z) and we prove that this new map is quasi-conformally conjugated to
fa(z), so that &y (a(z)) = z.

Let B’ = fa_o (Ba,), B’ is a topological disc. For € small enough and for every z € D(zg,¢)
one can construct a map d,: C — C smooth in the variable z and satisfying :

o 5,20 = f. ags

o 0:(fa,(—2a0)) = (¢a,) ' (2),

e J. coincides with fa, outside V' which is a small neighbourhood of f3 (—ag) compactly
included in B’ (and independent of z),

e J, is a diffecomorphism from B’ to Bay,.
We denote by o, the complex structure which coincides with the standard complex structure on
By, U (C\ an) and which is invariant by J,. This complex structure has bounded dilatation.
Let g, be the homeomorphism that integrates o,, given by Ahlfors-Bers’” Theorem which is
normalized to fix 0 and to be tangent to identity at co. Then the map h, = g, 06, o g; !
holomorphic. Moreover it fixes oo with local degree d and 0 with local degree d — 1. Therefore,
ho(u) = u?H(u+da(z)/(d—1)) = fa(z)(u) with a(z) a continuous function of z and a(z9) = ao.
On B,,, g. is holomorphic, conjugates fa, to fa(.); so qﬁgo and gbg(z) o g, differ from a d — 2
root of unity (since they both conjugate fa, to z — 2971, For z = z, this root of unity is 1;
S0, by continuity, gbg d)a(z o g,. Moreover g,(—ag) = —a(z) since g, preserves the critical

points (looking at the local degree). This implies that ®y/(a(z)) = a(z (fg(tl( a(z))) = z since
fitl(—a(2) = go00mH ogT  (—a(2)) = g.007+! (—ag) = g.0d.(f4, (—a0)) and g.o0. (fi,(—a0)) =
0 (6%,)71(2) = (¢0,.)) 1 (2). 0

Remark 2.9. From Lemma 1.16 and Remark 1.18, the following symmetries hold: for a € U,

24w

B0 (0(a) = o(Dy(a)) and, @y (ra) = e 2Dy (a) if U C ST, where 7 = e 1.

2.3 Parameter rays and equipotentials in C\ R™.
Definition 2.10. We define the equipotential of level v > 0, in H o, and in Hy, by :
Ex(v) = @) ({e"™™, t€[0,1]}), &E(v) =5 ({e T2, te0,1]}).

Note that an equipotential in H, is a closed curve surrounding C and that an equipotential
in Hy is never closed because the point in R~ is missing. One can close it however by adding
this point.

Definition 2.11. Let p € {0,000}, we define the union of the rays of angle ¢ in H,, by
URp(t) = ()~ (R ™).
Remark 2.12. With this definition, there is no intersection between R~ and UR(t) for any ¢.

Definition 2.13. Let p € {0,00} and s € {Id, 7,0, 70, -} the result of any composition of the
symmetries o and 7. Denote by @ the restriction to s(S) of the map ®, and define the ray of
angle ¢ in H, N s(S) by

Ro(t) = (®3) " ({re¥™, r e R*}) = UR,(1) N 5(S).
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Remark 2.14.

e The set R;(t) \ {0} is connected except when d =3, =0 and s = Id;

e Ford=3and t =0, R(I)d(O) \ {0} has two connected components. Therefore we will make
the convention that R%d (0) is the ray Rt N'Hy and iR N Hy is the ray R77(0) ;

e We will get rid of these notations when we will work in a para-puzzle piece Py(ag) since
from Remark 3.6, for every t, UR,(t) NPy(ap) has only one connected component that we
will call Rp(t).

Lemma 2.15. We have o(R5(t)) = R3*(—t), TR, (t) = Rt + 1) and if Ri(t) C ST,
TRE() = REE(t+ 755) -
Proof. This follows from Remarks 2.5 and 2.3 O

It follows from Lemma 2.15 that UR,(¢) is not invariant in general by o neither by .

Remark 2.16. We have the following correspondences for parameters a € C \ R~ and for
p€{0,00}: (a € UR,(t) < fa(—a) € RA(t)) and (a € &y(v) < fa(—a) € ER(v)).

Remark 2.17. Let p € {0, 00}.
e The line RT N'H,, is the ray R})d(O) if d is odd, and R},d(l/Q) if d is even ;

e The line pRT N'Hy and pRT N H, are the rays R%d (% + 2(d—1_2)) and Rg} (% + m)

respectively if d > 3 is odd, and R%d (2(d—1_2)) and R&i (m) respectively if d is even.

Proof. This follows from Proposition 2.4 and Proposition 2.1 (those angles are given by the
boundaries of Ay and Ay).

Definition 2.18. Let &/ C C\ R~ be a connected component of H,,, with n > 0. We define
the center of U by ¢y = QJZ;I(O) and the internal ray of angle t € R/Z, resp. the equipotential of
level v by :

Ru(t) = <I>Z;1 ({rezi’rt, r< 1}) , resp. &u(v) = <I>Z;1 ({e_”+2”t, t €0, 1]}) .

Note that Ry (t) \ {cu} is connected since @y is a homeomorphism.

Remark 2.19. For a € H,, \ R~ with n > 0, the critical value fa(—a) belongs to a connected
component U, of By. The map ff': Uy — B, is a homeomorphism. Thus we can pull back the
Bottcher coordinate to get coordinates on Ul,.

Notation 2.20. We denote by r and call the center of U, the unique point of U, which is sent
by f& to 0 (the center of B,). We denote by Rj(t) the ray stemming from r with Bottcher
coordinate ¢, i.e. the preimage (f2|r.) ' (RY(t)) which contains r in its closure.

As in Lemma 1.6 we get now the criterion for connected components in the dynamical plane
to have a common boundary point which is the landing point of rays.

Lemma 2.21. Let a € C\ R~ and U,V be two connected components of Ea with center r,r’
respectively. If the rays RL(t) and R (t') land at the same point © then either r = r' and t =t/
or the landing point x is eventually critical.
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Proof. We assume that the rays R%(t) and RZ (') are different. After several iterations by fa,
the image of the two rays in B, should coincide by Lemma 1.6. Therefore we have, at some
step of the iterations, the situation of two rays landing at a common point and having the same
image under the map f,. Then the common landing point is the critical point —a. O

Note that when a is the center of a connected component U/ of H,,, the critical value is the
center of U,.

Lemma 2.22. Let U be a connected component of H,, with n > 0. Let Q be a simply connected
neighbourhood of U which avoids the centers of all the components of H; with j < n. There
exists on £ a holomorphic map r = 1y : Q — C such that for a € U, r(a) is the center of the
connected component that contains the critical value.

Proof. We apply to F(a,z) = f2(z) the Implicit Function Theorem in a neighbourhood of the
point (a, z) = (cy, fe,,(—cu)). The only point where it is not possible to apply the Theorem are
the centers of H; for j < n since then the critical point is sent after n iterations to 0. O

Corollary 2.23. Let Y € C\ R~ be a connected component of H,, with n > 0. We have the
following equivalence : a € Ry(t) <= fa(—a) € Rg(a)(t).

2.4 Landing properties

Most of the results in this subsection follow as in the classical case of quadratic polynomials,
see [DoHul, Mil] and also [Mi4]. Recall that for U = Ho, or Hy, the ray R, (t) is the one in
s(S) where s is any composition of o and 7. Thus, it is not defined for any ¢; for instance for
s = Id, the angle has to be in A; or in A4. For a more detailed description and an other proof
of the following Lemma, see section 2.5.

Lemma 2.24. Let Y C C\ R~ be a connected component of H, with n € N U {oco}. Fort
rational, the ray R;,(t) converges. Let ag denote the landing point. If ag ¢ R™, the ray RQEj’O)(t)
is periodic (resp. eventually periodic) and lands at a parabolic periodic (resp. eventually periodic)
point or at fa,(—ag) which is a repelling periodic (resp. eventually periodic) point.

In the last sentence, “eventually” depends on ¢, meaning that the number of iterates after
which R2? )(t) becomes periodic, and the period, both depend on t.

r(ag

Proof. Assume that U = Ho, the proof being easier for the other components. Let ag be
an accumulation point of RZ,(t). Since ag € C and ¢t € Q the ray Rg(t) is well-defined and
converges. The landing point is (eventually) periodic, either parabolic or repelling. If it is
repelling, and not eventually the critical value, by lemma 1.3 we should have the stability of
the rays RZ°(t/d + k/d). But for parameters a on R3 () near ag the critical value is on Rg°(t)
(by definition), so at least two of the previous rays crash on the critical point. So there exist
p,1 depending only on ¢ such that fE(—ag) = fL,(—ag). If the landing point is eventually
parabolic, the resultant of the two polynomials f2(y) — v and (f4,)'(y) — 1 vanishes since they
have at least a common root. In both cases ag is a root of a polynomial. Hence the accumulation
set is a finite set and, since it is connected, it reduces to a point.

In the case where the landing point of RZ? (f) is eventually repelling, let k be the first integer
such that the critical value lies on R (d¥t). Thus the compact set R (d*t) moves continuously

(by Rg°(dFt)) for a in a neighbourhood 2 of ag. In particular, for a € (R, (¢) U {ap}) N Q,
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the compact set R (t) is a continuous image of R3°(dkt) since fF restricts on RZ(t) to a
homeomorphism onto R (d*t) (the holomorphic motion of the closure is obtained using the
A-Lemma). Therefore the critical value, which for a € RS (t) N Q is in RZ°(¢), is for a = ag in

Rg(t). Therefore RZY (t) lands at fa,(—ao). O

Definition 2.25. A parameter a is Misiurewicz (or of Misiurewicz type) if for some [ > 1,
z = fl(—a) is a periodic point of fa.

Note that if fi(—a) is periodic (with I > 1), it is necessarily a repelling point. Indeed, if
it is attracting or parabolic it would attract a critical point and there is no other “free” critical
point that can converge to it. Note also that all the Misiurewicz points are in C.

Lemma 2.26. Let a € C\ R~ be a Misiurewicz point. There exists t € Q such that R (t)
lands at fa(—a). Moreover, the ray R, (t) lands at a, for s such that a € s(S).

Proof. The proof is exactly the same as in [DoHul]. O
Corollary 2.27. Ifd is odd, RT = Rgg(O) U R({d(O) U {*} where x is a Misiurewicz point.

Proof. It d =21+ 1, RT N'Hy = R%d(O) (Remark 2.17). Let ag be the landing point of the ray
R(I)d(O), ag € R™. Theray R) (0) C R lands at a fixed point, say 29 € R™*. If this fixed point
is parabolic, the critical point —agp is in a Fatou component attached to zg. Thus, this Fatou
component contains a curve which joins —ag and zy and avoids 0. By symmetry (o) this Fatou
component contains a curve surrounding 0 : this contradicts the fact that Fatou components are
simply connected for polynomials. Therefore xq is repelling and ag is a Misiurewicz parameter,
80 o = fa,(—ap) (Lemma 2.24).

The fixed ray R (0) C R™ also converges to a positive fixed point, say x1. Assume that
x1 # xo. Then, from the shape of the graph of fa,|Rr+, it is easy to see that since z is repelling,
either there are two other fixed points (one attracting and one repelling) or there is a parabolic
fixed point of multiplier 1. This implies that, including 0, there are at least d + 1 fixed points in
C counted with multiplicity. This is not possible for a polynomial of degree d.

Therefore x9 = 1 and the ray R (0) lands at fa,(—ap). So 72}3(0) lands at ag (by
Lemma 2.26). O

Proposition 2.32 and Proposition 4.15 give the precise dynamical behaviour of f, for pa-
rameters on OH,.
The parameters on R~ excluded in all the results are obtained by symmetry.

Lemma 2.28. Two different rays in U, where U is a connected component of H, cannot converge
to the same parameter.

Proof. The proof is the same in any H; so we do it for i = Hy. Assume, to get a contradiction,
that two rays of Hy converge to the same point ag. One can suppose (up to changing the rays)
that they belong to the same s(S), so that it is enough to consider the case s = Id. Let R(t)
and Ro(t") be the two rays under consideration. Let  be the curve Ro(t) URo(t') U {ag} U {0}.
There are infinitely many angles of the form m between t and ¢/, and infinitely many of
them give rays landing to Misiurewicz parameters. Indeed, for such an angle 6, the ray Ro(6)
converges to a parameter a which is either of Misiurewicz type or such that the map f, has a
parabolic point of period k£ with multiplier 1 since it is the landing point of a ray in B, (see

Lemma 2.24). As there is only a finite number of parameters a satisfying the second alternative
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(they are solutions of a polynomial equation of degree at most d¥), we know that infinitely
many of these landing parameters are Misiurewicz points (on 0Hy \ {ag}) lying in the bounded
component of C\ 7. This contradicts the fact that Misiurewicz parameters are landing points of
external parameter rays (Lemma 2.26) because such external rays will have to cross 7 to enter
the bounded component of C\ 7. O

2.5 Description of the dynamical position of the critical value.

Note that in degree d > 3, the position of the critical value does not give directly the position of
the critical point as in degree 2. We will now give the Bottcher coordinate of the critical point
for any parameter a € S N (Hs U Hp), so in this subsection we forget the exponent specifying
the sector for the parameter rays.

d—1 d+1
Lemma 2.29. Fora € R (t), the rays Ry <§ + 15 J> RY <§ L 2 J> crash on the critical

1%52)

point —a. If a € Ro(t), the critical point —a belongs to RY (ﬁ + 25

Proof. For a € R (t), fa(—a) belongs to R°(t), so the two rays crashing on —a belong to the
set of rays T={RL (L +%) |0<k <d—1}. If a € Ry(t), the critical point —a belongs to a
unlquerayoftheset:l—{ <dl+d )\Oﬁkgd—Q}.

We first describe the case of parameters a € R™: this case is more visual because of the
symmetry RA(—0) = o(Rh(0)) (where o is the complex conjugacy). Then we conclude by moving
a through S.

1) For 0 < a < 1, the critical point is on Rg(%) C R ,sinceac HoNR*'. For d =2l +1,
a € Ry(0) so t = 0; we verify then that R3(32) = R3(0 + 7). For d = 21 + 2, a € Ro(3), so

t =1 we verify in that case that R3(3) = RS <m + ﬁ)

For a € SN'Hy, ¢3(—a) is well-defined and continuous, and so it belongs to 2Tt T R
for a € Ro(t). The integer k is a continuous function of a, so it is constant and therefore equal
to [41].

2) We consider now the case a > 1. The fixed rays RS (7%5), RX(557) with k € N are well
defined. Indeed, —a ¢ K, so every rational ray in B, converges. Moreover the only fixed rays in
Tare R3°(0) C RJr and, if d is odd, R (3) =] — 0o, p| where p is the unique negative fixed point
of fa; note that p < —a since fa(—a) > 0. By Lemma 1.6, distinct internal rays of Rg(:l:%)
(k € N) converge to distinct fixed points, named x 1. Those xj are repelling points (a ¢ C).
They are the landing points of external rays (see [LePr]), which are also fixed rays because of the
rotation number at zj (see also [Pe]). Those rays belong to {R3°(7%7), 0 < p < d—2}. Because

of the symmetry, RP(FE) and R2(35) converge to x4y, for 0 < k < |]. Thus, for | = |52,
Ya = RP (:l:l 1) U RO (:l:l—l) is a curve "separating” C into two connected components; let

Ua be the one which contains —a. The only rays of 7 entering U, are ROO( L), Roo(dgzll) SO
they crash on —a for a > 1.

By Lemma 1.4, 74 admits a holomorphic motion parameterized by S N "Ho,. Indeed, if —a
belongs to v, the critical value would describe on the external rays a sector of opening more

than dT” which is impossible since it is exactly the opening of ®(S). Therefore —a stays in
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d+1

U, and the only candidates of T in U, are RP(4 + =2—=) and R(4 + L 2 J), so they crash
on —a. |

Corollary 2.30. For a € S, if the critical point —a belongs to RX(0) then 6 € [3 — 1, 1 + 1],
if —a € R(6) then 6 € |3 — ggy. 5 + 741)-

Proposition 2.31. Fort € Q, the ray Roo(t) converges to a parameter aso(t). Forl= |4t :

1. if% + é (resp. é + HTI) is periodic by multiplication by d, ax(t) is a parabolic parameter.
The ray Rzom(t) (5 + é) (resp. Rgooo(t) (5 + HTl)) lands at a parabolic point p, root of the

Fatou component P, containing the critical point —ax(t) and the ray Rzom(t) (é + HTl)
(resp. R:Ooo(t) (é + é)) lands at the preimage of fa_ (1) (p) on OF;

2. otherwise as(t) is a Misiurewicz parameter, Rzooo(t) (% + é) and R:Ooo(t) (5 + HTI) land at
—ax(t).

Figure 6: Two rays converging to the parabolic point (on the left), to the critical point (on the
right) for some parameters in Cy.

Proof. We will use the notations: ty = é + L%J, t1 = §+ L%lj and xg,x; for the landing
points of Rg° (to), RS (t1) respectively. We distinguish two cases according to whether ¢, ¢;
are periodic or not.

1) to is periodic : The point x(, which is eventually critical or parabolic, is now periodic and in
the Julia set. So it is necessarily parabolic. If ¢y is fixed the result follows. Assume now that
to is not fixed. Suppose, to get a contradiction, that xg is not the root of P;. So some ray with
angle to = d'ty # to converges to the root of the Fatou component P; which contains the critical
point, that is to the image f(z¢) belonging to P;. Since the angles {m, k€N, j € N} are

dense in R/Z (the distance between two consecutive terms tends to 0), there exist three angles
of this form called 0; # 0 separating to, t; and t3. Hence the external rays of angles 6; with
the internal rays which have the same end points form a graph § that separates C into three
connected components: one contains Rzooo(t) (t2) and the critical point, the other ones contain
R 0 (to) and R 0 (t1). By Lemma 1.4, § varies continuously for a € R (t) since the critical
point cannot be on v (Lemma 2.29). Here we get a contradiction since the critical point varies
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continuously, cannot cross § and has to break the rays R )( 0) and RZ> (t )(tl) (Lemma 2.29).
Hence zg is the root of P;. Let 2’ be the other preimage on dP; of faoo(t)(0). We want to prove
now that R2° ® (t1) converges to x’. The curve v formed by all the ﬁxed rays (see Lemma 2.29)
varies continuously with a on R (t) up to a(t) since at this parameter the critical point is not
on . So the rays R (to) and RZ® (t )(tl) are the only preimages of R (dtp) in the same
connected component of C \ v as P;. So RY o) (t1) converges to z'.
If t1 is periodic instead of tg the proof is the same.

2) Neither ty nor ti is periodic: Assume for contradiction that x( is eventually parabolic, by
the same argument using v as before, R>° ") (to) lands at the root p of P,. But ¢y is not
periodic, so there is another ray RZ° ) (d" to) landing at p. Let k be the first integer such that

dtFty = dFtgmod 1; then f - ( ) must be critical since two different rays land at this point:

RE o (di*F=1tg) and Ry ()(dk t9) which have the same image RY (d*tp). This gives a
contradiction. Finally, by Lemma 1.4, xg is eventually critical. O

Proposition 2.32. Fort € Q, let ag(t) be the landing point of Ro(t). We have :

d—1 d—1
1. i ﬁ + % 1s periodic by multiplication by d — 1, then Rgo(t) <d T+ Ld 1J> lands at

a parabolic point which is the root of the Fatou component P; which contains —ay(t);

d—1
2. otherwise, Rg ® <d T+ Ld 1J> lands at the critical point —ag(t).

Proof. The proof goes exactly as the one of Proposition 2.31. O

Lemma 2.33. Let a be a Misiurewicz point on OH; with j € {0,00},
Ro® (t) lands at  fa(—a) < R;(t) lands at a.

Proof. The proof of the implication = is exactly the same as in degree 2 (see [DoHul]). The
proof of <= is just the case 2 of Proposition 2.31 and Proposition 2.32 since —a cannot be at the
same time eventually periodic and attracted by a parabolic point.

We can now give another proof of the following corollary :

Corollary 2.27 If d is odd, RT = Rgg(O) U ROM(O) U {*} where x is a Misiurewicz point.

d—1
Proof. If d =20+ 1, RT NHy = Ro(0) so t = 0 and LEJ = ﬁ = 3 this angle is not

1
1

periodic by multiplication by d — 1, neither the angle since their images are [ and [ + 1.

—1
Thus R(0) converges to a parameter ag such that Rao(%) lands —ap. So ag is a Misiurewicz
point. The unique positive fixed point is fa,(—ag) so the fixed ray R3°(0) C R* converges to
fao(—ap) and by Lemma 2.33, R (0) lands at ay. O

3 Graphs, puzzles, para-graphs and para-puzzles

This section is devoted to the construction of the puzzles and the para-puzzles. We recall in
section 3.1 the graphs used in [Rol] and we construct in section 3.2 the analoguous graphs in the
parameter plane, then we establish the relations between graphs and para-graphs (section 3.3
and 3.4) and show how to use them for the question of local connectivity (section 3.5).
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3.1 Dynamical puzzles and graphs

We define the puzzles and the graphs (as in [Rol]) when the Julia set is connected, i.e. for
parameters in C \ R™, and obtain the puzzles in the other cases through a holomorphic motion
of these graphs.

Fixa € C\R™. For large [ and 0+ = iﬁ,
to a point 1 which is repelling (fa possesses at most one parabolic orbit). Let 1 be the angle
of some external ray R3°(n4) landing at x4 (given by Proposition 1.5). Since the internal ray
RY(6) is fixed by fl, the external ray R (n+) will also be ﬁxed by f! so ni is periodic (see
Remark 3.2). Using these rays we construct the graphs in X -, where X2 = {z € C | GY(2) <
1 and G(z) < 1}, as follows.

Definition 3.1. Leta € C\R™, 01 = +
defined by the following graph :

128(6) = 9X® U (Xa N (U (Rg((d “1)i0.) U R (dini)))).

1>0

the ray RY(0+) is well defined and converges

ﬁ with [ large (as before). A puzzle for f, is

The puzzle pieces of depth n > 0 are the connected components of
fa "X\ B = fa"(X?*\ 1), where IZ = fa"(I3) foralln>1.

The puzzle piece containing a given point z is denoted by P?(z). The puzzle pieces containing
the critical value fa(—a) are denoted simply by P§,..., P2,... if there is no ambiguity.
The puzzle is the union of all the puzzle pieces.

Remark 3.2. The ray R (7)) is the only external ray of the cycle R (d’n+), j > 0, to converge
to x4.

Proof. Assume (to get a contradiction) that RZ°(d’n+) with d’ne # 1+ mod 1 converges to
T4. Since there is a finite number of rays in the cycle converging to x4 we can assume (up to
changing the notations) that the angles are all in the interval (n+,d’n+). Since the map fa

conformal at this point, it preserves the “cyclic order” of the rays at 4. But it maps R (d’ ni)
to RP(n+) and R (n+) to RP(d"~Iny). These rays land at x4+ but (because of the cyclic order)
d'"~Jn4 will not be in the interval (n4,d’n). So the two rays cannot be in the same cycle. [

If we fix some 6 as in definition 3.1 but vary the parameter a in C \ R™, we will see that
for the graph I§(#) the landing points of the rays, x4, can become parabolic, the rays RZ (1+)
and RY(A+) can land at different points, the rays can crash on critical points and no more be
well-defined etc... For these reasons we should restrict the domain (in the parameter space)
on which we consider the graph at each depth. The para-puzzle pieces defined in section 3.2
correspond exactly to the region were the dynamical pieces are defined by the same rays.

3.2 Para-graphs and para-puzzles

The para-graph are just the copy of dynamical graphs in the parameter plane so depend from a
preferred parameter. Let ag € C\ R~ and I§°(6) be the graph associated to this parameter by
Definition 3.1, with 6 € {6 }.

Definition 3.3. For n € N, let k,, be the set of all the pairs (U, v) where:
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e U is a connected component of H; with i € {c0,0,--+ ,n};
e (d—1)"w=1if0<i<nanddw=1ifi=oco.

Let X, be the connected component containing ag of C\ ( |J &y(v)).
(Uw)ERR

)
Definition 3.4. For n € N, let ©,, be the set of all the pairs (U, t) where:
e U is a connected component of H; with i € {c0,0,--- ,n};
e (d—1)""te{h,...,(d— )10} if 0 <i<n;
o d"t € {d’n, j >0} ifi=oc0.

Figure 7: Schematic representation of a para-graphs Zy and Z7 for Cy.

Definition 3.5. The para-puzzle is the union of the para-puzzle pieces. The para-puzzle pieces
of depth n are the connected components of X, \ Z,, where

7,00) = ox,u | (URu(t) N Xn> .
Ut)eo,

The para-puzzle piece containing a given parameter a will be denoted by P, (a). For the given
parameter ag we will simply write P,, for P, (ao).

The points of R~ can be added or not to the graph. We only care of parameters in &
and for these parameters, all the para-puzzle pieces are compactly contained in C \ R~ by the
following Remark.

Remark 3.6. For parameters ag € S, the para-puzzle piece Py(ag) is compactly contained in
C\R™. Moreover there is only one connected component of UR () \ {p} in Po(agp). Thus for the
simplicity of the exposition we will forget the exponent in R;(t) and call R,(t) the parameter
ray that belongs to Py(ag).
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Proof. By definition of the para-graphs, any piece of depth 0 is bounded only by rays in Ho and
in Hoo and equipotentials. If Py(ag) intersects R then it is compactly contained in the interior

of SUcS UT7LS. Indeed, the sector 6S UT71S = p~H(SUcS) with p = a1 contains all the

rays of Hg in a sector of angles of width greater than 1+ 15 by proposition 2.4 and using the
coordinate ®q. Therefore, Py(ag) is contained in the interior of SUcSUT 1S since by definition
Po(ap) N'Hp corresponds to angles in a sector of width less than 1. Using the same argument, if
Po(ag) intersects pR™ then it is compactly contained in the interior of S U 708 U 78 which is
SUT(SU0oS). Hence, Py(ag) is compactly contained in C\ R~ since the interior of SUpSUcS
is included in C\ R™.

Since by definition Py(ag) N Ho corresponds to angles in a sector of width less than 1,
URp(t)\{0} has only one connected component in Py(ag). The same holds for UR(t)\{oc}. O

3.3 Holomorphic motion of the dynamical graphs

Definition 3.7. Let A be a C-analytic variety. Let Ag € A. A holomorphic motion of a subset
I' ¢ C parameterized by A is a map ¥: A x I' — C such that ¥(.,z) is holomorphic on A,
U = W(),.) is injective on I" and U0 = Id.

For the given parameter ag € C \ R™, we define now the set of parameters for which the
graph I{°(6) admits a holomorphic motion. Let 7 be the angle of the external ray converging to
the same point as RJ (6) in I5°(6).

Lemma 3.8. Let (0, be the set of parameters a € C\R™ such that for alli > 0 the ray R (d'n)
is well-defined and converges to a repelling periodic point.

1. Q,, is a non empty open set;

2. The set I'go(n) = U Roo(dZ ) admits a holomorphic motion parameterized by €1, ;
>0

3. The boundary 0%y, is a subset of R~ U |J UR(din) without isolated points.
i>0
Proof. 1. and 2.: Since ag € {),, it is clearly not empty. To prove that €2, is open, take
a; € Q. For each ¢ > 0, the landing point of R (d'n) is periodic and repelling, thus not
eventually critical. Therefore the compact set RZ? (d’ ) admits a holomorphic motion in some
neighbourhood of a; (lemma 1.4). The set I'gS (n ) is a finite union of such compact sets, so it
admits a holomorphic motion in a neighbourhood of a;. Hence €, is open.

3. a) Remark that R~ C C\ §,, (by definition), so there is no isolated point of 9, in R™.
Assume for contradiction that there is a point a; of C\ R~ isolated in 8Q, = Q, \ ©,. Then
there exists an open neighbourhood O of a; such that O\ {a;} C €,,. Since the parameter a; is
not in €2,,, one of the rays either is not well defined or converges to a parabolic point. If the ray
RZ2(d'n) crashes on —ay, then fa, (—a1) belongs to RS (d'1n) and a; € R (d"'n) for some
s composition of 7 and o. Then for parameters a € R3_(d""1n) N O near aj, the ray R (d'n)
also crashes. This contradicts the fact that O\ {a;} C €2,,. Consider now the case where all the
rays RO (d'n) are well-defined but converge to a parabolic periodic cycle (d'n is periodic). For
acO, the landing point z;(a) of the ray R°(d'n) defines a holomorphic map (Lemma 1.4). It is
repelling for a € O\ {a;} and parabolic at a;. So (f¥)'(z(a)) can be extended to a holomorphic
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map from O to C\D (where k denotes the period of the cycle). Its modulus reaches its minimum
at aj ; this contradicts the maximum principle for the map a — 1/(f¥) (z(a)).

b) For a € 99, \ R™, either one ray R3°(d'n) crashes on the critical point —a and so
a € UR(d1n), or the rays R3°(d'n) converge to a parabolic periodic cycle and so a € PA =
{a | 3 x such that f¥(z) = z and (f¥)'(x) = 1} (where k is the period of 1). The set PA is
finite since every a € PA is a root of the discriminant of the two polynomials f¥(z) — z and
(k) (2) — 1. Since there is no isolated points in 9§, those parameters of P.A N JQ,, are in the
closure UR o (d'n) for i > 0. O

The same result holds for internal rays:

Lemma 3.9. Let ), be the set of parameters a € C\ R™ such that for all i > 0 the ray
RY((d — 1)'0) is well-defined and converges to a repelling periodic point.

1. Q’g 1S a mon empty open set;

2. The set T'y (0) = ‘L>Jo RY,((d — 1)i0) admits a holomorphic motion parameterized by  ;

3. The boundary 0 is a subset of R™ U |J URo((d — 1)%9). It has no isolated points.
i>0

Corollary 3.10. In the connected component containing ag of Q, Ny, the rays RY(0) and
R3°(n) land at a common point.

Proof. The landing points zo(a) of R2(0), z(a) of R°(n), are both repelling periodic points.
The period is determined by the angles 6, and 7, and is at most say k. At the parameter ag
the points coincide by definition of the graph: =z = zg(ag) = z(ap). Since x is repelling,
by Rouché’s Theorem, on some neighbourhood U of x there is exactly one point of period less
than k, for a in a neighbourhood U C Q, N Qj of ag. Moreover, the points zg(a) and z(a)
vary continuously for a € Q, N €Y (Lemma 3.8 and Lemma 3.9). Therefore, they coincide on U
and finally on the connected component containing ag of €, N Qj (since they are holomorphic
maps). O

Corollary 3.11. The para-puzzle piece Py is contained in the connected component of &, N €Y
containing ag. Therefore the graph I5°(0) admits a holomorphic motion defined on Py(ag) so
that I5(0) is well defined (i.e. the rays of the graph are well defined).

Proof. The boundary 89; is included in 2,,UR™, except for the landing points of the rays, since
0 NN, C R™ U (URp((d — 1)i0) N URs(d'n)). The same holds for 99Q,, so the boundary of
Q,NQy is simply the union 9€2,,U0SY,. Thus (0€2,U08),)NAy is included in Zo(#)UR ™. Therefore
Py is contained in the connected component of €2, N €Y containing ag (since Py = Py(ag) is a
connected component of C\ Zy(#) in C\ R7).

Hence, the graph 18(0) = 0X,U ((T'(n) UTY(0)) N Xa) is well defined for a in Py(ay), since
Po(ap) is included in Xy. The holomorphic motion of the graph I3 follows from Lemma 3.8,
Lemma 3.9 and the fact that the map (a, z) — ¢h o (¢h,) 1 (2) defines a holomorphic motion of
the equipotentials F4 (1) for a in Xy and p € {0, 00}. O

From now on through the rest of the paper, we restrict ourself to parameters ag € S
and study para-puzzles inside the open region Py(ap). Hence by Remark 3.6 we don’t need
assumptions on the sector containing the parameters considered.

24



Corollary 3.12. For n > 1, the points which are in Py of Z,,(0) NC are of Misiurewicz type.

Proof. A parameter a € Z,,() N OC is necessarily the landing point of a ray Roo(t) with d"t €
{d’n,j > 0} (by definition of Z,,(f)). Thus the ray R () belongs to I? since its image by fZ,
R (d™t), belongs to I§ (by definition of ¢ and of I§). Since they are in Py, the landing points
of rays in I§ are repelling periodic points (Lemma 3.8 and Corollary 3.10). Therefore a is a
Misiurewicz point since we are in the second alternative of Lemma 2.24: R3°(d"t) lands at a
repelling periodic point. O

Lemma 3.13. For parameters a € Py(ag), the following equivalence holds :
a€7l, < fa(—a)el?.

Proof. By construction of Z,,, the rays and equipotentials involved in Z,, and I2 correspond to
each other via the change of coordinates (Remark 2.16 and Corollary 2.23). From Corollary 3.12
and its proof, the points in Z, N JC are Misiurewicz points and fa(—a) is the landing point of
the corresponding ray in I2. Conversely, if fa(—a) € I2 is in the Julia set, it is the landing point
of some external ray RZ°(t) of I2, so d*t € {d’n j > 0}. Since fa(—a) is eventually periodic,
a is a Misiurewicz point and by Lemma 2.26 the external ray Roo(¢) lands at a. Hence, the
parameter a belongs to Z,, (by definition of this para-graph). U

Corollary 3.14. For a € P,(ay), the n-th para-puzzle piece, the critical point —a is not on any
of the graphs 1§, ... 1%, .

Corollary 3.15. The para-puzzle pieces are simply connected.

Proof. 1t is equivalent to prove that the graph Z,, is connected. Any part of an equipotential
involved in Z,, NH; (i € N) is connected to OC by a ray in Z,,. By Corollary 3.12, this ray
converges to a Misiurewicz parameter, say a;. At this parameter, in the dynamical graph I3!,
some external ray R3S (t') converges to fa,(—ai). Then the external parameter ray Roo(t') of Z,
(by Lemma 3.13) converges to a; (Lemma 2.26). Finally all these external rays are connected
to the external equipotential of the graph Z,,. O

Let n > 1 and P, = Pp(ap) C Pr—1 = Pn-1(ap).
Lemma 3.16. There ezists a holomorphic motion hy: Pp x 15, — C such that :
o I3, =h3(I5%,) forallae Py ;
® hy coincides with hp_1 on P, x 130 ;
e for every a € P, the following diagram is commutative :

a ha
0 n a
In—l—l n+1

foo | 2

ap a
In In

a
hn—l
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Proof. By Corollary 3.11, the graph I§° admits a holomorphic motion on Py(ap). For a € P,, the
critical point is not on any of the graphs I for k < n 4 1 (Corollary 3.14), so we can pull-back
the holomorphic motion of I (by fg with j < n+1) to get the sequence of holomorphic motions
of the graphs I;’O on the restricted domain P;_;. By construction they satisfy the announced
properties. O

3.4 Relation between graphs and para-graphs

Lemma 3.17. The following map H, is a homeomorphism.

— (h5) " (fa(-a))

Proof. For ain P,NZ,11, (h2)"(fa(—a)) is well-defined by Lemma 3.16 and Lemma 3.13. The
image H,,(PyNZ,41) is clearly included in I})9,. Moreover for a = ag, the critical value fa,(—ag)
belongs to the puzzle piece P2°. Therefore fa(—a) belongs to the (open) puzzle piece bounded
by h2(0P2°), since fa(—a) and I3 = h2(I2°) move continuously and never meet when a € P,
(Corollary 3.14). Hence, Hy,(Py NZy41) C P20 since (h2)~! is injective on 12, ;.

By construction, the map H,, is clearly a homeomorphism on the rays and equipotentials
of 7,41 N P, that are in H,. We prove now that it is injective in H. Assume by contra-
diction that U;,Us are two connected components of H and that there exist parameters aj,
ag on two rays Ry, (t1), Ru,(tz2) respectively such that Hy,(a;) = H,(a2). Since P, is a
simply connected region (corollary 3.15) that avoids the center of all the components of H;
for 0 < i < n, we can define functions 74 (a) and ry,(a) on P, by Lemma 2.22. Since for

J = 1,2 the critical value fa,(—a;) belongs to R:j.j (aj)(tj) (corollary 2.23), Hy,(a;) then belongs
to (hn' )™t <R:;j (aj)(tj)> = RaJ (ao)(tj). Since Hy(a1) = Hy(ag), the two rays have a common

{Pnﬂzn—i-l — PP NI,
o

point so coincide, and U; = Us, t; = t. The same arguments work (simpler) for the injectivity
on the equipotentials in H N7, ;.

To achieve the proof of injectivity, it is enough to show that H,, is injective on Z,,+1 N OC.
Thus, we consider two distinct rays Ry, (t1), Ry, (t2) C 41 landing at points aj, ag € P, such
that Hy(a;) = Hy(a2), with U; connected components of HUH . As before, the corresponding

Tu (a;)

dynamical rays Ra;’ (tj) for j = 1,2 are pulled back by the holomorphic motion to the

rays R:gj(ao)(tj). These rays land at a common point: Hp(a;) = Hp(az). Since this point is

eventually repelling and not eventually critical, this situation is possible only if one (at least)
of the centers ry, (ag) or 14, (ap) is at oo (Lemma 2.21 and Lemma 1.6), or in the trivial case
where Uy = Us, t1 = ta. Say ry,(ag) = 00, so Us = Ho and 174, (a) = oo for every a € Py,
Now, pulled back to the dynamical plane of a; (through the holomorphic motion) the rays
R (t2) and R (al)(tl) still land at a common point, by Corollary 3.10. This common point
is h2'(Hp(a1)) = fa,(—a1). This implies that Roo(t2) lands at a; (Lemma 2.26) and therefore
that a; = as.

The surjectivity follows from the same kind of arguments. The map is clearly surjective on

the part of I35, N P2 which is in By, (00) (the closure of the basin of co) by construction and
by Lemma 2.26. Now let z be a point in P20 on I}, N By, so z € R} (t) for some center r
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and angle t. Let z; be the landing point of this ray. By Remark 3.2 and Corollary 3.14 there is
only one external ray in I3}, that also lands at z1, say Rg(t'). Thus, the ray Roo(t') belongs
to the para-graph Z, 1 (by the surjectivity). It lands at a parameter a; and there is only one
ray in Z,4; that also lands at a; (by the injectivity of H,). Consider the simple arc formed by
the union of this ray, {a;} and Roo(t'). Its image by H, must contain z, by the injectivity of
H,, and since there is no other branch of Is‘jrl at z1. This reasoning extends to the parameters

of 7,11 lying on equipotentials. ]

Corollary 3.18. Let a € P,,_1. The parameter a belongs to the annulus P,_1\ Py, if and only if
the critical value fa(—a) lies in P2 |\ C2 where C2 is the puzzle piece bounded by h2_|(dP).

Proof. By definition, a € P,_; implies that fa(—a) € P2 ;. In the proof of Lemma 3.17 we
showed that the piece P2 is bounded by h2_;(0P20), for a € P,,. Thus if fa(—a) lies in P2 ,\C2,
then the parameter a is in P, \fn.

Conversely, suppose a belongs to P,,_1 \ P,, and denote by P, (a) the new para-puzzle piece
of depth n containing a (if a € &},_1 \ &}, the result is clear). We construct a continuous path
a; C Pp—1 joining ag to a; = a, crossing 0P, (resp. P, (a)) at exactly one point a;, (resp. ay, )
on equipotentials of Z,, and avoiding Z,, \ {ay,,as }. For this, we connect ap by a path in P, to
a point a’ € H, NP, then we follow the ray containing a’ and cross 9P, at an equipotential,
we then take an equipotential contained in X,_1 \ &, and join a; by a ray entering P,(a) and
a piece of path, as before, inside P, (a).

Thus, for ¢ < tg, the critical value fa,(—a;) belongs to the puzzle piece bounded by
h2t (OP29). Moreover, since the parameter path a; crosses Z,, at ¢ = ¢y on a ray (chang-
ing so the value of its potential) the critical value fa,(—a;) goes out of the piece bounded by

a_,(0P20) when t passes over tg. Then Lemma 3.17 insures that, for ¢ty < ¢ < ¢, the critical
value does not cross I2* again. Hence the critical value fa,(—a;) is outside the piece bounded by
hyt 1(0P3°). Now at t1, the critical value fa, (—at,) belongs to Iy, but not to ot (AP29) since
H,_1(at,) ¢ OP2° by the injectivity of H,, (see Lemma 3.17). Thus as before going inside P, (a)
along a ray, the critical value enters a new puzzle piece which is not bounded by h2* | (0P20). O

Corollary 3.19. If P3° C P2, then P, C Pp_1.

Proof. Assume, to get a contradiction, that 0P, N dP,—1 # 0. In the graph I§°(f) two rays
never converge to the same point, nor do they in I2°(6) by pullback, nor in Z,, by isomorphism
(or Lemma 2.26). Therefore, the intersection 9P, N JP,_1 contains at least a part of external
rays. Indeed, if it contains a part of internal ray it then also contains a part of external ray, so
we only have to consider case of the external rays. Let a; be such an intersection point contained
in some ray Roo(t). So d"t € {d’n,j > 0} but also d"~ 't € {d’n,j > 0}. Through a path in
Pp, one can go from a; to the “center” ag of P, without crossing the graph Z,, (outside a;).
Since the graph admits a holomorphic motion in P, the critical value fo(—a) enters the piece
P2 which is bounded by h2_,(0P32°) (this is clear taking a path which starts by some part of
equipotential). On the path and by holomorphic motion, the ray R°(¢) N X2 is in the boundary
OP2 = h2_,(9P2). Therefore R (t) belongs to I20. But, since d"~'t € {d’n,j > 0}, the ray
R (t) is also in I5° ;. Therefore, 9P2° N 0P # () which contradicts the hypothesis. O

Corollary 3.20. If 0P, +1 C Pn, then Hy, induces a homeomorphism between P, 1 and 8P39rl.
Proof. Since H,, is not well defined on 0P,, we need the assumption that 9P,+1 C P,. Then

the result follows from Lemma 3.17. O
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3.5 Graphs and renormalization

In the dynamical plane, the graphs of Definition 3.1 are used to prove the following Theorem
(see [Rol]):

Theorem [Fa, Rol]. 6 The boundary of Ba, as well as of any connected component of éa, 15 a
Jordan curve for any a € C.

It follows (by Remark 3.21) from Proposition 3.22 which is a formulation of Yoccoz’ Theorem
in the context of the family (fa).

Remark 3.21. Let p be a point in some region U C C. If a sequence of disjoint annuli Ay, are
homotopic in U \ {p} and satisfy > ;- ,mod Ay = oo then the diameter of Uy, the connected
component of U \ Ay containing p, shrinks to 0.

Proof. This is a direct consequence of the following classical results (see [Ah]):

e Grotzsch inequality : mod A > ). mod A; when A; are disjoint sub-annuli of A homotopic
to A;

e for any compact K contained in a disk D, if the annulus D \ K has infinite modulus, then

K is just a point. O
Proposition 3.22. Let a € C\ R™. There exist e = =1 and ly such that for | > ly the puzzle
defined by I§(0) with 6 = m gives a sequence of non-degenerate annuli A3, satisfying :

1. fori>1, A5 = Pp. \ P2, so A} surrounds the critical value for i > 1 but maybe not
fori=0;

2. fai7" induces a non-ramified covering map from A% onto Af ;

3. either ) ;~omod A5 = oo (where mod A3 denotes the modulus of A%.) or there exists
k> 1 such that fF: P2, — P is a quadratic-like map for every large n.

The proof of this proposition can be found in [Rol] as a consequence of Lemma 2.9,
Lemma 2.10 and Theorem 1.10 (Theorem of Yoccoz) in this article. Similar formulations can be
found in [Fa, Mi3]. It will be used several times latter.

Definition 3.23. A proper holomorphic map f: U — V is quadratic-like if U,V are topological
disks with U C V and if the degree of f is 2.

A map f is said to be renormalizable if there exist disks U,V and some integer k& > 1 such
that f¥: U — V is quadratic-like and if the orbit of the unique critical point = of the restriction
fﬁ] stays in U, i.e. f*"(z) € U for all n > 0. The integer k is called the period.

Lemma 3.24. The map fa is renormalizable if and only if there exists 1 > lg such that for
I > 1y the second case of the alternative of Proposition 3.22.3. occurs for the graphs I§(0) defined

Proof. First we suppose that f, satisfies the second case of the alternative of Proposition 3.22.3.
Then, there exists ng and k > 1 such that féf: P2 . — P7 is a quadratic-like map for every n >
ng. Since fa(—a) belongs to P2, the critical point —a belongs to fzf_l(Perk) = P2 | (fk(-a))

for every n > ng and the restriction fF=1: P2 e PR fE(—a)) is a homeomorphism. Denote

5For completeness, we will sketch its proof in section 6.
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by x5 the unique preimage of —a by the restriction. Since the pieces are nested, this preimage
does not depend on n and z, € F; for every ¢ > k. The point z, is the critical point of the
restriction fX: P2 . — P for every n > ng. To prove that f, is renormalizable it is enough to
see that if we fix some n > ng, the image fX(z,) belongs to p2, . for all i > 0. This follows

from the fact that z, € P2, ,, for every i > 0 so that f}(za) € P2,

Now we assume that f, is renormalizable, and that the first alternative of 3 of Proposi-
tion 3.22 does not hold. Let K, denote its filled Julia set of the renormalization and k& the
period: Ka = Ni>o(f¥)~4(U) for U as in Definition 3.23. We prove first that the intersection
K,N0B, contains at most one point. Assume that there is at least two points in this intersection
but also that K, is not contained in dB,. Then there is a bounded connected component in
C\ (0Ba U Kj) so there are points on the boundary of this connected component (and also on
0B,) which are not in 0Ba(00) ; this is not possible for a polynomial. If K, C 0B, we would
deduce by iteration that 0B, = Kj,, since 0B, is a Jordan curve; this is not possible for a
polynomial (namely for f¥). Now we can prove that K, is included in the puzzle pieces P2(—a)
as follows. If K, is cut by 0P2(—a) there are some rays in B, converging to points of K, so by
iteration some ray of the graph of depth 0 converges to a point of K,y N 0B,. The intersection
point has to be fixed by fZ (else there is more than one point in the intersection). For I; > I,
the rays of the graphs defined for [ > [; are not k-periodic so cannot converge to K, N 0B,.
Therefore K, is included in all the puzzle pieces P?(—a), so fX: o, — PR is quadratic-like
and we are in the second case of the alternative of Proposition 3.22.3. for those graphs. O

Definition 3.25. A set My is a copy of M if there exists a homeomorphism x and an integer
k > 1 (the period) such that

1. My = X_l(M)>
2. x 1(OM) C OC and for every a € My,

3. fa is renormalizable near the critical point —a with fZ topologically conjugated to z2+x(a)
on neighbourhoods of the filled Julia sets.

Proposition 3.26. If fa, is renormalizable, My, = () Pn(ao) is a copy of M.

n>0
Proof. Since fa, is renormalizable, there exist [; > [y such that the graphs defined in Lemma 3.24
satisfy the second case of the alternative of Proposition 3.22.3. We prove that {ff: P2 —
P2, acPy(ag)} form a Mandelbrot-like family.
For n > ng and P,, = Pp(ap), we consider the mapping f: W/ — W defined by W = {(a, z) |a €
Pn, z€ P2, LW ={(a,2) |a€ P,, z€ P2} and f(a,2) = (a, f¥(2)). They form an analytic
family of quadratic-like maps in the sense of Douady and Hubbard [DoHu2, p.304] since they
satisfy the following three properties:

e the map f: W — W is holomorphic and proper ;

e the holomorphic motion of the disk P2, resp. P2 ,, is a homeomorphism between W',
resp. W, and P, x D which is fibered over P, (since a € P,,);

e the projection W NW — P, (i.e. the first coordinate) is proper, since W nw = {(a,2) |
ac€PpP,, zc P2}
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Let Mgy = {a | K(fF) is connected} denote the connectedness locus of f, where K(fF) =
N (f5)=(P2) denote its filled Julia set. Then My coincides with Ma,. Indeed, for a € My,, the
i>0

critical point —a, and its orbit under fa, does never cross the graphs I (j > 0) since a belongs
to every para-puzzle piece. Therefore the critical point z, of f§| pa never escapes the piece P2
(by iteration by f¥). Hence K (fX) is connected and a € M¢. Conversely, for a € P, \ P11, the
critical value belongs to A2 (by Corollary 3.18). Thus fX(fa(—a)) is not in P2 , and therefore
the critical point of f¥ escapes the domain; then the filled Julia set is not connected anymore
so that a ¢ Mg.

Moreover, by Corollary 3.19 and Proposition 3.22, there exists a sequence n; such that
P41 C Prn,. Thus M,, is also the intersection of the closed pieces: Ma, = ) P,, and

n>0
therefore is compact. -

Now, the theory of Mandelbrot-like families of Douady and Hubbard (see [DoHu2|, Theorem
I1.2, Propositions I1.14 and 1V.21) gives a continuous map x: P, — C such that the maps f,f
and 22 + x(a) are quasi-conformally conjugated on a neighbourhood of the filled Julia sets, for
every a € Pp.

Moreover, since My is compact, the map x induces a homeomorphism between My and the
Mandelbrot set M if we are in the following situation (see [DoHu2]): for a closed disk A C P,
containing My in its interior, the quantity f¥(x,) — za, (where x, denotes the critical point of
f§| pa should turn exactly once around 0 when a describes dA. We verify this property now.

Take some piece Pp(ag) = A, compactly contained P, (ag) (see Corollary 3.19). It is a
topological disk containing M, in its interior. To compute the degree on OA of y(a) = fF(za) —
za we make a homotopy of this curve v to the curve H,_i(a) — x4, as follows, where Hy, is as in
Lemma 3.17. The critical point 2, of f¥ satisfies that f¥~!(z,) = —a, so y(a) = fa(—a)—za. Let
h(a,z) = hyp—1(a, z) — xa, then y(a) = h(a, H,—1(a)). Assume that P,_; is a round disk (if not
use a conformal representation) ; then the homotopy is simply G(t,a) = h(ag+t(a—ayp), Hp—1(a))
joining G(0,a) = Hp_1(a) — x4, and G(1,a) = fa(—a) — za.

Since Hy,_; is a homeomorphism from 9P, to 8P;0 (piece that surrounds z,,), the degree
of H,_1(a) — xqa, around 0 is exactly 1, when a describes OP),. O

Proposition. 1. If fo has a periodic point x # 0 of multiplier p with |p| < 1, then fa is
renormalizable near x and a belongs to a copy of M.

Proof. Since x # 0, it is not in Ea and, since it is not eventually repelling, it is not on any
of the graphs. So we can consider the sequence (P2(z)) of puzzle pieces containing x. Since
x is periodic, this sequence of pieces is periodic i.e., ff(P:Jrk(a:)) = P2(z) for any large n and
for some k > 1. Choose the smallest k with this property. There exists some i < k such that
the critical point —a belongs to the piece P2(fi(z)), for every sufficiently large n. Otherwise
the map fF: P2 () — P}(x) would be invertible and its inverse g: P2(z) — P2(z) either
would be an automorphism or has an attracting fixed point (by Schwarz’ Lemma). This is not
possible since on the one hand |¢’(z)| > 1 and on the other hand the sequence P2(x) is strictly
decreasing (3 n | P2, (z) = g(P3(x)) # P}(x)). This integer i is independent of n since the
pieces P2(fl(—a)) are disjoint for j < k. Therefore the map f%: P2 (fi(x) — P2(fi(x)) is
quadratic-like. Hence we are in the situation of Lemma 3.24 where we proved that a belongs to
a copy of the Mandelbrot set M (see Proposition 3.26). O
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Corollary. 1. Any bounded hyperbolic component either is a connected component of H or a
hyperbolic component of a copy of M.

Proof. Let U be a hyperbolic component which is not in H. For a € U, the map f, has
an attracting periodic cycle, which is not the fixed point 0. Thus we are in the situation of
Proposition 1 so that the parameter a belongs to a copy of M. O

Corollary. 2. If fa has a periodic point x of multiplier X = €™ with 6 € R\ Q, then fa is
linearizable near x if and only if 6 € B. Moreover, if 0 ¢ B there exist periodic cycles in any
neighbourhood of x.

Proof. The map f, is renormalizable by Proposition 1. So there is a homeomorphism that con-
jugates f¥ to a quadratic polynomial 22+ x(a) on a neighbourhood of its Julia set (see [DoHu2]).
The multiplier at the fixed points are the same by Naishul’ Theorem (see [Na]). So the result
follows from Yoccoz’ and Brjuno’s work (see [Yo)). O

4 Local connectivity

Fix ag € 9CNS. Take ly > I1 given by Proposition 3.22 and Lemma 3.24, and 0 € {iﬁ}
with [ > .

Recall that the sequence of graphs I3°(6) and the para-graph Z,(#) associated in Defini-
tion 3.5 satisfy the following properties:

e The sequence of puzzle pieces P2° containing the critical value is well-defined since the
critical value fa,(—ap) is on none of the graphs 120, n > 0.

e The sequence of para-puzzle pieces (P,), containing ag is well-defined by Lemma 3.17
(since the parameter ag also never belongs to a graph Z,).

e There exists a sequence of (non-degenerate) annuli (A%?)Z en Such that, for ¢ > 1, AR =

PO\ P2, (so surrounds the critical value fa,(—ag)) and the map fr:="0: AZ0 AR

induces a non-ramified covering map (Proposition 3.22);

e The annuli A,,, = P,, \ Ppn,+1 are non-degenerate (Corollary 3.19) and surround ay.

4.1 Tools for proving local connectivity: estimation of moduli and connec-
tivity questions

The next Proposition follows from Shishikura’ trick to compare moduli of annuli.
Proposition 4.1. There exists a constant K > 1 such that, for i > 0,

1
17 mod A?L? < modA,, < Kmod A?L? .

Proof. The idea is to get a K-quasi-conformal homeomorphism between A, and A}° extending
the map H,, (via Slodkovksi’s Theorem and the dynamical covering).

Fix n € {n;, i > 0} and let d,, be the degree of fi~"0: A% — A%0. For every a € P, we
define, for m < n, the dynamical annuli A2, “motion” of A2 by the connected component of
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P2\ h3,(OP7Y, ) that intersects I3 | in its interior. By definition (Lemma 3.16) the following
diagram is commutative for a € P,,.

pAz0 7, 5aa

n—no n—mn
faO J/ J/ a 0

Thus f2~"™ maps A2 to Az - and induces a non-ramified covering. Indeed, the critical value
fa(—a) remains outside I2 so that the critical point —a and all its preimages cannot enter
Az, At depth ng we extend the holomorphic motion hpy: Pp, x 0A7S — C by Stodkowski’s

Theorem [S] to a holomorphic motion A, : Pp, X C —> C. For every a € Py, the map %20

is a Ka-quasi-conformal homeomorphism, with K, = T_riigzgi where ¢: P, — D is a conformal

representation sending ag to 0. For every a € P,, the homeomorphism %?LO: ARS — Az lifts—

via the holomorphic covering maps fa~"° and f7~"°—to a quasi-conformal homeomorphism
ha: A® — A2 with the same dilatation K,. Moreover the identity f7~"0 o h = h3 o fi-—"0

ensures that the map B P x AZ0 — C, (a,2) — E%(z), is a holomorphic motion that extends
hy. From Corollary 3.18 we know that a belongs to A, if and only if fa(—a) belongs to A2 so
that a belongs to A, if and only if fa(—a) belongs to A2 or equivalently a belongs to A, UIP, 11
if and only if (h3)~!(fa(—a)) € A2 UOP2),. Therefore the following map H, is well-defined

An UdPiq — A2 UHP™ |
~ ~ \ —1
a o Hy(a) = (A)  (fal-a))

From [DoHu2, IV.3] the map H, is K,-quasi-regular with K, = sup{Ka, a € Pn} (see
also [Ro2]). Moreover H,, is a bijection since it agrees with H, on dPp4; (Lemma 3.17). There-
fore H, is a K-quasi-conformal homeomorphism from A4, to A2° with K = sup{Ka, a €
fnoﬂ} < 400. The result then follows. O

H,:

In the rest of this subsection we prove the connectedness of the intersection of the para-
puzzle pieces with 9C and OU.

Lemma 4.2. Let U be a connected component of H. For everyn > 0, the intersection of U and
P is a sector of U bounded by

OP U = (X N (Ryy(tn) U Ru(t,))) U Eu(wn),

where gu(vn) is a part of the equipotential Ey(vy,) and t, < t!,. Moreover, as n tends to infinity,
vp, — 0 and t,,t), converge to a common value.

Proof. Since every ray of 0P, NU is associated to an external ray, it is not possible to have
more than two rays in 9P, NU (two consecutive internal rays are connected by a section of
equipotential and similarly for two consecutive external rays). So t,,t, are consecutive angles
in ©,. We prove that ¢, — ¢/, — 0 for Hg; the proof is the same for any &. By definition of
the graphs, any puzzle piece of depth 0 intersects Hg under an angular sector of width less than
1/d. Therefore the puzzle pieces of greater depth have rays in H(y whose angles are consecutive
angles divided d — 1. Thus [}, — t,| < ﬁ , so limt,, = lim¢/, =t (since both sequences are
monotone). O
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Lemma 4.3. For every connected component U of H, the intersection P, N OU is a connected
set for alln > 0.

Proof. From Lemma 4.2, we know that U NP, is just the decreasing intersection of the compact
connected sets ®y¢(S})) where S} is the sector in the disk between the angles ¢, and t;, and of
potential less than v}!, where (v}')ren s a sequence which tends to 0 with k. Therefore it is
compact and connected. O

Lemma 4.4. For every n > 0, the intersection P, N 9C is connected.

Proof. The property of the para-puzzle pieces we use here are to be a disk whose boundary is a
succession of arcs of the following form: a part of an equipotential in H . followed by a part of
a ray in X, converging to a point of C and another part of a ray in X, followed by a part of
an equipotential in ‘H (by Remark 3.2 and Lemma 3.17). We denote the property by (x). Fix
n and let G, be the bounded connected component of C \ x,(1/d"). Consider B(k) the set of
disks D C G, satisfying Property (*) and such that G,, \ D has k connected components.

We prove by recurrence on k that for any disk D € B(k), DN aC is connected.

Let D € B(1), we prove by contradiction that DNAC is connected. Let V be the complement
Gn \ D. Since D belongs to B(1) there is only two parts of equipotentials in its boundary: one
part of £(1/d") and one part of an equipotential in a component & of H. The complement
V' has the same property. Therefore the intersection OV N C is reduced to the landing points
of the external rays so is included into 94 N C. Assume now that D N AC is not connected :
DNOC =AU B where A and B are non empty, closed and disjoint. The intersection D N oY
is connected (it is the intersection of a decreasing sequence of connected compacts as in the
previous Lemma 4.3) so we can assume that it is contained in A. Therefore A’ = (V NIC)U A
is closed since the closure of V' N JC is included in A. Moreover A’ is disjoint from B and
A’ U B = 9C. This contradicts the fact that dC is connected.

Now fix some integer & > 1. Assume that we have proved the result for B(i) with i < k.
Take D a disk of B(k + 1). There exists at least a connected component, V, of G, \ D whose
boundary intersects £, (1/d") under exactly one component. Then DUV is a disk in B(k). So,
with the same argument used before for k = 1, if D N AC is not connected then (DU V)N AC is
not connected neither. This gives the contradiction. O

Now we can conclude in the non-renormalizable case.

Lemma 4.5. If the map fa, is not renormalizable, then OC and OU are locally connected at ay,
where U is any connected component of 'H.

Proof. By Lemma 3.24 if the map f,, is not renormalizable it satisfies the first alternative of
Proposition 3.22.3. The sequence of annuli considered in Proposition 3.22 has the property that
> i>omod A%% = oco. Hence ;- omod A, = oo by Proposition 4.1. Thus the diameter of Pp,
shrinks to 0 by Remark 3.21.

Finally, P,, N 0U, resp. P,, N IC, form a basis of connected neighbourhoods of ag in U,
resp. in 0C, by Lemma 4.3, resp. Lemma 4.4 (since Py, is a neighbourhood of ay). O

Corollary 4. 9C is locally connected at ag as soon as ag does not belong to a copy of M.

Proof. By Proposition 3.26 we are in the first alternative of Proposition 3.22.3., so the result
follows from Lemma 4.5. O
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4.2 Local connectivity of 0H, and Wakes of H,

Proposition 4.6. Let ag € OHoNS. If fa, is renormalizable of period k, there exist k-periodic

angles t ( under multiplication by d — 1) and ¢, ¢’ ( under multiplication by d) such that the rays

Ro(t), Roo(€) and Reo(¢") converge to ag. Moreover the curve Roo(()URs(()U{ag} separates

Mo, \ {ao} from Ho where Ma, = () Pn(ag). In the dynamical plane, the rays R3 (t), R (C),
n>0

R (¢") converge to the same point which is a parabolic periodic point and R (QUR(¢")U{ao}
separates fa,(—ag) from Ba,.

Figure 8: Separation of My, (copy of M) from Hg by rays.

Proof. The para-puzzle piece P, = P,(ag) intersects Hy since it is a neighbourhood of ay €
OHp. In particular, its boundary 9P, contains two rays in Hy, say Ro(t,), Ro(t),), landing at
parameters called a,, a], respectively and two external rays say Roo(Cn), Roo((},) also landing at
a, and a/, respectively. The sequences of angles (t,,), (¢,) converge to some common value ¢ with
t, <t <t (seeLemma 4.2). Moreover, the sequence of intervals ({,, () is decreasing, so the
angles (,, (], converge to some values ¢, (’.

The boundary of the dynamical puzzle pieces P2 is given for the subsequence n; such
that OPp,+1 C Pn, by the bijection described in Corollary 3.20. It contains parts of the rays
R, (tn,), RS, (t1,,) and R ((n, ), RS (¢),,) landing at points zp, (ag), 27, (ag) respectively. Since fa,

is renormalizable, the puzzle pieces are “periodic” i.e., ffo (P:j)rk) = P?° by Lemma 3.24. Hence
the angles satisfy the relation (d— 1)k9n+k = 6, mod 1 for the rays in B, and dk9n+k =0, mod 1
for the external rays. This is clear for the rays in By, since there are only two rays in 0P2° N By,

and it follows for the external rays since they converge to the same points z,,, z,,. Then the angles

p
a—1)

We prove now that Ro(t), Rec(¢) and Roo(¢’) converge to x5 (1/4) where Xa, is the home-
omorphism that maps Ma, to M. The proof is the same for the three rays, we do it for R ().
The ray Ro(t) converges, since ¢ is rational, to some parameter a;. For every n > 0 the part of
the ray Ro(t) N &), is in Py, because of the bijection between 0P, and OP?° and of Lemma 4.2.
Thus a; belongs to My,. In the dynamical plane, the ray Rgl (t) lands at a periodic point
21, since t is periodic. Its period, say k, is the period of ¢ (two rays in B,, cannot land at

!
q q .
P10 JF—1° dF 1 respectively.

t, ¢, satisfy the same relations and therefore are of the form i
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the same point). The point z; cannot be eventually critical since ¢ is periodic. It is parabolic
by Lemma 1.4 since the ray Rgl (t) is not stable in any neighbourhood of a; by the following
remarks. For a € Ro(t) near aj, the critical value is on R)(t) = RY((d — 1)*t). Moreover the
critical point —a is in f‘l(Perk) since fa, is renormalizable and a is very close to a;. So —a
is on the preimage of RJ(t) that belongs to fﬁ_l(Perk), i.e. on RY((d — 1)*~1¢). Thus the ray
RS ((d—1)*"1t), as well as its iterated preimage RJ (t), is not stable. Then the point z; is, for
the return map ffl, a parabolic fixed point. Moreover its multiplier is 1 since the ray Rgl (t) is
fixed (by f!;l). Therefore, under the bijection xa, the parameter a; corresponds to the cusp of
M, i.e. a1 = Xz (1/4).

Finally, the three rays Ro(t), Roo (), Roo(¢’) converge to the same parameter a; = )gol(l /4)
of M,, and, the proof above shows that M, C P, is in the connected component of C\ (R¢(t,)U
Ro(t)) UReo(Cn) UR(C)) that contains ag. Therefore, My, is in the closure of the connected
component of C\ (Roo(¢) URuo(¢")) not containing Hy. (Misiurewicz parameters in M, are
accessible by external rays Roo(0) with 6 € (¢,(’).) Then the only possible intersection between
M,, and H, is the cusp a;. Therefore a; = ay.

The three rays RJ (t), RX(¢), R(¢') converge to points in NP2, fixed by fF. But
Koy = NPZ° contains only one fixed point with rotation number 1 called 3. Thus the three
rays land at the same point: 3. They separate K, ; from By, i.e. fa,(—ag) from By,. Indeed,
any eventually repelling periodic point in K, ; (for instance [ the preimage of 3 by féfo) is
accessible by an external ray whose angle is between (,, and ¢, so at the limit between ¢ and
¢’ O

Definition 4.7. A parameter, a, is called parabolic (or of parabolic type) if f, has a parabolic
periodic point.

Corollary 4.8. Any ag € 0Hy, for which fa, is renormalizable, is the cusp of a copy of M.
More precisely, the intersection My, N OHgy reduces to {ag} for Ma, = NP,(ag). Moreover
ag = Xag (1/4) where M = xa,(Ma,), so ag is parabolic.

Proof. This follows from Proposition 4.6, its proof above and the use of symmetries.

Corollary 4.9. The boundary of Ho is locally connected.

Proof. Tt is locally connected at parameters a € 9Hg which are not renormalizable (Lemma 4.5).
For parameters ag € OHy which are renormalizable, we consider the sequence Q,, of subsets of
OHo defined by Q,, = P, N OHy. These subsets are connected neighbourhoods of ag in OH,

(Lemma 4.3). Moreover they form a basis since ([ P, N OHo) C (Ma, N OHg) = {ag} by
n>0
Corollary 4.8. O

The following Lemma is used in Theorem 3.

Lemma 4.10. Let a € C. For any point z € 0B,, there are at most two external rays converging
to z. Moreover, if z is not eventually critical and if there are two external rays converging to z,
then z is (eventually) periodic ; moreover the two rays define two connected components, each of
them contains at least one critical point of f¥ for some k > 0.

Proof. Assume that z is not eventually critical. Consider the closure of all the external rays
converging to z and let V' be a connected component of its complement. Assume to get a
contradiction that there is no critical point of f¥ in V' (for every k > 0). Then the iterates fX
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restrict to homeomorphisms on V. This contradicts the fact that the map is doubling the angles
on B, (00) so that the image of V by some f£ will contain all Ba(co) and f£*+! will no more be
injective on V.

Assume now that there are at least three external rays converging to z. Let Vj be the
component containing the critical point 0 and (up to iterating) one component V7 contains the
first inverse image of B,. Note that this implies that —a € V3. Take V5 to be a third component.
Since V5 contains a critical point of fi (for some i > 0) it is mapped by some iterate of fa, to
V1 (which contains —a and the preimage of B,). Indeed, all these sectors are mapped to sectors
attached to 0B, as long as they do not contain a critical point. Therefore z is a periodic point,
of period say k. Then the fact that V5 is mapped to V; contradicts the fact that f,f preserves
the cyclic order of the rays landing at z since there is a finite number of external rays landing
at z (see for instance [Pe]).

If a critical point ¢ is on the boundary of B,, by the previous description it is not possible
that two external rays converge to f(c). Therefore, f(c) is the landing point of exactly one
external ray and c of exactly 2 and so for every z which is eventually critical. O

Now we can describe more precisely the boundary of 0H :

Theorem. 3. Let a € OHy \ R™; there exists a unique parameter ray in Ho landing at a, say
R§(t). The following dichotomy holds:

e there is a unique external parameter ray converging to a. In this case f, is not renor-
malizable so that a does not belong to a copy of M. Moreover in the dynamical plane,
the ray RO(t) lands at the critical value fa(—a) € OB, and there is a unique external ray
converging to fa(—a);

e there are exactly two external parameter rays converging to a. In this case a is the cusp
of a copy of M. Furthermore, in the dynamical plane, the ray R3(t) lands at a parabolic
point on 0B,. The angle t is necessarily periodic by multiplication by d — 1.

Note that in the first case, the angle ¢ can be periodic by multiplication by d — 1 in this
case a is a Misiurewicz parameter. In Proposition 2.32, we give the exact conditions on t € Q
so that a is of parabolic or of Misiurewicz type. If t € R\ Q we are clearly in the first case.

Proof. We do the proof in several steps.
Any parameter a of OHo \ R~ is the landing point of a ray in Ho:

We consider the fundamental domain s(S) containing a. For d > 3, the map P restricts to a
homeomorphism ®( from s(S)NH, onto Ay (see Proposition 2.4). Since the boundary of H( and
therefore of s(S) N Ho (Remark 2.17) is locally connected, the inverse map Wy = ®;* extends
continuously to the boundaries: ¥g: Ay — s(S) N Ho. The analogue statement for d = 3 gives
a continuous extension Wy from D \ R into s(S) Ny (one can use a double covering argument
to see this). Therefore the parameter a on the boundary of H is the limit of a ray R§(t).

Now we suppose first that f, is not renormalizable.

Note that a does not belong to a copy of M by the definition of “renormalizable”.

In the dynamical plane, the sequence of puzzle pieces (P?2) shrinks to one point namely
fa(—a). Moreover, taking the subsequence n; such that P,,41 C P,,, the existence of the
homeomorphism between 0P, +1 and P || preserving angles and potentials (Corollary 3.20)
insures that the ray RJ(f) enters all the puzzle pieces P2, for i > 0. Thus R3(t) converges to

fa(—a).
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Figure 9: Points on 0Hy and rays converging to them.

By Lemma 4.10, there is only one external ray landing at z = f,(—a) since —a € 0B,.
Assume now that two external rays Roo(§), Reo(§’) land at a. These two rays enter any para-
puzzle piece P, (a) so by the homeomorphism of Corollary 3.20 the rays R2 (£) and R2 (¢') enter

all the pieces P2. Since the intersection (| P2 reduces to fa(—a), the rays both converge to
n>0
the same point z = fa(—a). But we have just seen that this is not possible.

Now we consider the second case of the dichotomy : fa is renormalizable.

In this case Proposition 3.26 insures that M, = NP, (a) is a copy of M and a is the cusp
x~1(1/4) where x is the homeomorphism between M, and M. There are two external rays
Reo(€), Roo(¢") converging to a by Proposition 4.6 and in the dynamical plane the ray R(t)
converges to a point z € B, which is a parabolic periodic point. Hence the angle ¢ is periodic
by multiplication by d — 1.

To prove that there is only two external parameter rays converging to a we proceed by
contradiction. Assume that there is a third ray £ converging to a. To fixe the ideas assume
that the cyclic order at oo is ¢/,£,{. Then the Mandelbrot copy belongs to one connected
component of the complement of Ry (£) U Roo(() U Reo(¢’) U {a}, say the one containing the
rays of angle between ¢’ and . Since the ray R (§) enters every para-puzzle piece, the ray
R (&) enters every puzzle piece P2 by the homeomorphism of Corollary 3.20. So the ray R3°()
converges to a point z of J(fF) (the Julia set of the renormalized map). There exist points in

J(f¥) that are accessible by external ray of angle &’ € Q between ¢ and ¢ such that neither

a1 a—1
% + L 2 ! nor 5 + L QdJH is periodic by multiplication by d. Then the ray R (&) lands at a

Misiurewicz parameter by Proposition 2.31. This Misiurewicz parameter belongs to M, since
the ray Roo(£') enters every para-puzzle piece P, (by the homeomorphism of Corollary 3.20).
But this contradicts the fact that M, belongs to connected component containing the rays of
angle between ¢’ and &.

O

Remark 4.11. The fact that ¢ is k-periodic by multiplication by d — 1 does not imply that f,
is renormalizable.
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Proof. It is possible that the sequence f;(P:Jrk) avoids the critical point since there are other
preimages of fa(—a) on 0B, in degree d > 3. See Proposition 2.32. O

Definition 4.12. We define the wake W(ag) of any point ag € 9Hy NS as follows.
If fa, is not renormalizable let us take W(ag) = 0); else let W(ay) be the connected compo-
nent of

C\ (Roo(€0) UR(¢y))  containing  Ma, \ {ag}

where (o, ¢, are periodic angles (by multiplication by d) such that the rays R (¢o) and Roo(())
converge to ag. For parameters not in S we use the symmetries to define the wake.

Remark 4.13. By Theorem 3 there are at most two rays converging to a parameter a € 9Hg
(those defined in Proposition 4.6) so that the wake is well defined. Moreover since a is the
landing point of a ray R(t), we can also call W*(t) the wake W(a). Note that the wake of a
parameter a € S is not necessarily contained in S.

Lemma 4.14. For any parameter a in W(ay), the rays R ((o), RL(C)) and RA(ty) converge
to the same point which is repelling of period k (the period of Ma,), where (o, (), define the wake
W(ag) and R§(to) is landing at ag. For a = ag these three dynamical rays also land at a common
point, which is k-perio ¢ v}, the critical value is

in the corresponding dy wABEE e i, : o (Co)URS (Ch)) which
does not contain Ba. |

Figure 10: Illustration of Lemma 4.14, a € M, of figure 8.

Proof. Note first that, for every parameter a € My, the three rays R((p), R(¢}) and R2(to)
converge to the same k-periodic point. For a = ag, this follows from Proposition 4.6. Then it is
easy to check that all the arguments of Proposition 4.6 go through for the parameters a in M.
Indeed, the boundary of the puzzle pieces 0P and P20 are identified through the holomorphic
motion defined on the neighbourhood P,,_; of Ma,.

After this remark, the proof goes exactly as point 3 of Lemma 3.8 and Corollary 3.10,
so we give here just the steps of the argumentation. We consider the set {2 of parameters a
such that R°((p), R (¢)) and RY(ty) converge to the same point which is a repelling peri-
odic point of period k. Then () is open and non empty. Its boundary is included in PP U

U (Ro((d — 1)) UUR(d"¢o) UUR(d'C))) (see definition 2.11), where PPy is the set of pa-
i>0

rameters a such that f, has a parabolic point of period k¥ and multiplier 1. We claim that, in
the region W(ag) there are no parameter rays of UR oo (d'Cp), UR oo (d'¢})) and Ro((d—1)%ty) with
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i > 0. For this we look first in the dynamical plane of fa,. The angles (o, ¢} are the limits
of the sequences ((n)n>2, (¢}, )n>2 defined as follows: the two internal rays R3 (t,), RY, (t),) of
OP2° converge to points z,, z,, to which are attached the external rays R3S (¢n), Rae(C;,) of OP20.

There is no iterate of R (Cy), R0 ((),) in Qn, the connected component containing fa,(—ag) of

C\ (R, () URL, () U R (G) U RS (G ) -

Otherwise, such an iterate would be attached to an internal ray of some 8P;‘0 for j < n, with
angle in (t,,t;,). But this is not possible since OP2° contains only two rays in B,,, they are in
0@, and since P20 C Pfl. Therefore, there is no element of d'Cy, d’¢}) in the segment ((y,C))
“defining” the region @, and so neither in the limit interval (o, ¢(,). Thus there are no rays of
URoo(d'Co), URwo(d'¢)), i > 0 in W(ag). On the other hand, there is no point of PPy in W(ay):
otherwise this would contradict the maximum principle for the multiplier of the landing point
of R)(ty) (as in Lemma 3.8). Therefore, W(ag) C Q. O

4.3 Local connectivity of oU for a component U of H \ H,.

Proposition 4.15. Let U be a connected component of H \ Ho. Let ag € OU NS be such
that fa, is renormalizable and denote by xa, the homeomorphism between My, and M where
M., = NPr(ag) (see Proposition 4.6). Then:

o OUNM,, ={ap};
o My, NOHo = Xag (1/4) := a1 the cusp of My, ;
e U C W(ay) the wake of a; ;

ag is the landing point of three rays Ry(t1), Roo(n) and Reo(n') where d'n = (1, d'n' = (]
with t1 and (1, k-periodic by multiplication by d — 1, and by d respectively. Here i is the
depth of U i.e., U C H; \ Hi—1, and t1,(1,¢; are associated to a; by Proposition 4.6 ;

The curve Roo(n) U Reo(n') separates U from Ma,.

Proof. We will not prove the items in the order they appear. The proof is very similar to
that of Proposition 4.6. Using Lemma 2.22, we can define in P,, = P,(ag) a holomorphic
function r(a) which coincides, for a € U, with the center of U(a), the connected component
of Ea containing the critical value. Since P, intersects U/, 0P, contains two internal rays
Ru(mn)s Ru(7],) (Lemma 4.2) with landing points w,,u], respectively, but also external rays
Roo(Mn); Roo(n),) landing at uy,u, respectively. Using the homeomorphism of Corollary 3.20,
the boundary dP2° contains the part in X, of the rays Rggao)(m), Rgf)aO)(T,g) and R (1),
R3S (my,) (Corollary 2.23), with common landing points, say z,, 2, respectively, at least for n in
the subsequence (n;);>0 given in Proposition 3.22.
1. We prove first that 0P, NHo # 0 and that Ma, N OHy = x;ol(l/él) =aj:

Since for every m > 0, P2 intersects U(a), which is of depth i, the image fi (Pq?) intersects
Ba,. Then, for i < kj < m, the image féfg(PﬁLO) which is the puzzle piece P;O_kj containing
the critical value, intersects Ba,. Thus, P2 N By, # ( for any n. By the homeomorphism
of Corollary 3.20, we deduce that P, NHy # (). So there is some point a; in the intersection

N Pn.NHo = Ma, NHy. Applying Proposition 4.6 (or Corollary 4.8) to this point a1, we deduce
n>0
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Figure 11: Intersection of U and the copy Mg of M.

that My, N OH) is reduced to a; and is the cusp of X;01(1/4) of My, since Ma, = Ma,. Indeed,
a; € My, = NP, the pieces P, (ag) and P, (a;) coincide.

2. We prove here that P,, contains in its boundary the part in X, of the rays Ro(Tn+i),
Ro(h1i)s Roo(Cnti)s Roo(Clyy) with ¢ = d'ny and ¢, = d'nj,, at least for infinitely many
neN:

We prove it for the dynamical puzzle piece P2° and then use the homeomorphism of Corol-

lary 3.20. We have seen in point 1 above that the puzzle piece P:j)ﬂ- contains in its boundary

the rays Ra® (1,41), RQ&"‘O)(TT’LH) and also RY (tnti), B3, (t,.;). Since fi (P29.) is the piece
P2o(fi (fao(—a0))), it contains only two rays of Ba, in its boundary, so that the rays RQ&aO) (Tn+i)
and RJ (¢, have the same image by fi,- In particular, (d — 1)'t/,,; = Tp4; = t),. Therefore
the puzzle piece f;o_l(PSjJri) contains the critical point —ag since it is simply connected and
fa, maps its boundary with degree two on its image. Thus f;o(P:ii) = P2 go that i is a
multiple of k. The piece P2 contains in its boundary the rays R3 (Tn+:), RS, (75.;), With end
points 24,2, ; respectively, to which converge the external rays R3S ((nyi), Rao((),;) with
Cnti = di"?n—i—i» <7/’L+Z = di%ﬂ-

Using the homeomorphism of Corollary 3.20 we deduce that the para-puzzle piece P,, con-
tains in its boundary the rays Ro(7n+i); Roo((nti) landing at a common parameter a,y; and
Ro(7) 1)y Roo((,4;) landing at some other parameter aj _;, at least for n in the subsequence
(nj)j>0 defined in Proposition 3.22.

3. We prove now that Y C W(ay):

The pieces P, (ag) and P,(ay) coincide. As in Proposition 4.6 applied to ap, the sequences of
angles (7,), (75,) admit a common limit 7 which is, by point 2 above, equal to the common limit
t1 of the sequences (ty,)n>2, (t,)n>2. The monotone sequences ((p)n>2, (€),)n>2 converge to limits
(1, (1 respectively. By Proposition 4.6, the angle 7 is k-periodic by multiplication by d — 1, the
angles (1, ({ are k-periodic by multiplication by d and the rays Ro(t1), Roo(C1), Roo(¢]) land at
a1 = xa, (1/4). The curve Roo(C1) U Roo(¢]) bounds W(ay).

Let @, be the connected component containing ag of

C\ (Ro(a ) UR0(77y) U R (Goed) U R (Gr)) -
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The para-puzzle piece P, is contained in @, and Ry(7,) is in the boundary of P,,. Thus U is
included in @, since Y N IQ,, = 0. Thus the component U is totally included in W(ay).

4. Finally, we prove that Ry(t1), Reo(n), Roo(n') land at the same parameter, which is
ag, and that the curve v = Roo(n) U R (1) separates U from May,, :
Since t1,n,n are rational (d'n = ¢; and d'n’ = ¢}) the rays Ry(t1), Roo(1), Roo(n) converge to
parameters a;,, a,, a,r respectively which are either parabolic or Misiurewicz parameters after
Lemma 2.24.

If a;, is a Misiurewicz parameter, the ray Rgg?tl)(tl) converges to fa, (—as,) (Lemma 2.24).
Moreover, the rays Rgtl (t1), R (1) and R (¢}) land at the same point which is repelling

(Lemma 4.14). Indeed, a;, is in W(a1) since Ry(t1) C€ W(a1) U {a1} but a;, # a; since a; is
T atl)

a parabolic parameter. Pulling back along the critical orbit we obtain that Ra, "'’ (t1), jol (n)

and RY (') land at the same point i.e., at fa, (—as,). Therefore, by Lemma 2.26 the rays
Ru(t1), Roo(n), Roo(n') land at the same parameter a;, . The proof is exactly the same in case
a,, or a,y, is of Misiurewicz type.

Assume now that every parameter a € {a;,,a,,a, } is parabolic. Then, the landing point
of RY(t1) is a parabolic periodic point. Thus, the map f¥ possesses a parabolic fixed point of
multiplier 1. Then, the only possibility for a € Mj, is to be the cusp of My, i.e. a = X;01(1/4)
SO a;; = a,; = a,.

In both cases, the curve 7 = Roo(1) U Roo(n') U {ay, } separates the plane into two compo-
nents. Let V denotes the one containing U (since U Ny = (). The para-puzzle piece P,, intersects
V and Y. Using Lemma 4.3 one can see that for any ray R (§) in V NP, the angle £ is either
in (n/,n),) or in (n,,n). Assume (to get a contradiction) that M,, intersects V. Then let a be
a Misiurewicz parameter in the intersection My, N'V. It is the landing point of an external ray
Reo(§). This ray belongs to V' but also enters every P,, since it converges to a € M,,. Hence
¢ is either in (n',n),) or in (n,,n), so & = n or & = n’. Then a = a;, but this contradicts the
fact that a € V (since a;, € V). Therefore, the curve v separates My, from U and the unique
possible intersection between U and M, is ay,, so that ag = a;, since ag € M, and ag € Y. [

We will see in Theorem 4 that ag is always a Misiurewicz parameter.

Corollary 4.16. If U is a connected component of H \ Ho, there exists at most one param-
eter a on OU such that f, is renormalizable. If it exists it is the parameter characterized in
Proposition 4.15.

Proof. Let a be a parameter on 0l such that f, is renormalizable. By Proposition 4.15 M, =
NP,(a) intersects Ho and U. So if there is another point a’ like this, one can find a loop in
Ho UU UM, UM, surrounding points of H,, and this contradicts the fact that H., U {oco} is
simply connected. O

Corollary 4.17. The boundary of U is locally connected.

Proof. Let ag € OU. If f,, is not renormalizable the result follows from Lemma 4.5. If fa, is
renormalizable, we are in the situation of Proposition 4.15. The sequence P,, N OU of connected

neighbourhoods of ag (Lemma 4.3) form a basis since ( () P, NOU) C (Ma, NOU) = {ap}. O
n>0

Theorem. 2. For every connected component U of H, the boundary OU is a Jordan curve.
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Proof. Every component U of H is simply connected (Lemma 1.12) and its boundary is locally
connected (Corollary 4.17). Therefore any conformal map ¥: D — U extends continuously to
amap ¥: D — U by Caratheodory’s Theorem. Thus the boundary 0l is the curve: W(S!).
We prove that it is a Jordan curve by contradiction. If U(S?!) is not a simple curve, there is a
crossing point z of ¥(S!) and one can find a simple closed cuve vy in &/ U{z} surrounding points of
Heoo (since W(St) C OHoo). This contradicts the maximum principle, exactly as in Lemma 1.12,
applied to the map a — fN(—a) for some large N. O

Theorem. 1. The boundary of every bounded hyperbolic component is a Jordan curve.

Proof. The boundary of a hyperbolic component which is contained in H is a Jordan curve by
Theorem 2 above. The other bounded hyperbolic components are connected components of the
interior of a copy of M (by Corollary 1). Thus the boundary of such a component is the image
by a homeomorphism of the boundary of a hyperbolic component of the interior of M. Therefore
it is a Jordan curve. O

The following result is the analogue of Theorem 3 for the captures components. We can go
out of a capture component U/ (and stay in C) only through the landing point of rays of angles
¢ such that (d — 1)7¢ = t; where U C W*(t1).

Theorem. 4. Let U be a connected component of H; \ Ho (with i € N). Any parameter a € OU

is the landing point of a unique ray Ry (§). In the dynamical plane, Rg(a) (&) converges to fa(—a),
which is not on OBy but fitl(—a) € OBa. No parameter a € OU can be of parabolic type. If
¢ € Q the parameter a is of Misiurewicz type. Moreover, let t1 be such that U C W*(t1) (see
Proposition 4.15). Then:

o if (d—1)7¢ = t1, there are evactly two external parameter rays converging to a ;

e otherwise there is exactly one external parameter ray converging to a.

Figure 12: Zoom on a point of OU where U # Hy is a capture.
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Proof. The proof is similar to that of Theorem 3. The boundary Ol is locally connected by
Theorem 2. So, the coordinate @1;1: D — U extends to a continuous map from the closure D
to U. Hence, any point a of U is the landing point of a unique ray Ry (§). Let U, be the
connected component of B, containing fa(—a) for a € U, let r(a) be its center. The dynamical

ray Rg(a) (&) converges to a point z(a) € OU, since U, is locally connected.

If fa is not renormalizable then z(a) = fa(—a):
As in the proof of Theorem 3, the point z(a) belongs to every P2 for n > 0 so that NP2 = fa(—a).
Thus z(a) = fa(—a).

If fa is renormalizable then z(a) is (eventually) parabolic or z(a) = fa(—a) :
If fa is renormalizable, Proposition 4.15 insures that & is rational (with the uniqueness proved just
above). Then z(a) is either a (eventually) parabolic point or z(a) = fa(—a) (see Lemma 2.24).

The critical value is not on 0By :
Assume, to get a contradiction, that fa(—a) € 0Ba. Then, it is the landing point of exactly one
ray of Ba, say R(¢'). Note that the parameter a cannot be of parabolic type since fa(—a) is
not in a Fatou component. Then z(a) = fa(—a) by the two remarks above. Thus the two rays
FURNE (€)) = RO(€) and fi(RO(€) = RO((d — 1)'¢’) converge to fi(z(a)). By Lemma 1.6, this
implies that (d — 1)i¢’ = ¢. Then, the two different rays RO((d — 1)""1¢’) and fé_l(Rg(a) €))
landing at fi~!(z(a)) have the same image by fa. Thus, fi~!(z(a)) = —a, so fi(—a) = —a but
this is not possible since the critical point would be periodic on the Julia set.

The parameter a is not parabolic :
Assume to get a contradiction that a is of parabolic type. Then, by Proposition 1, f, is renor-
malizable, so that £ is in Q and z(a) is a (eventually) parabolic periodic point. Proposition 4.15
insures that U is in some wake WW(a;) where a; € 9Hp. Then a € W(a;), but in W(a;) the
point z(a) should be eventually repelling, so a = a;. Hence, the four parameter rays (of Propo-
sition 4.15) Ro(¢1), Reo(¢]), Roo(n) and Roo(n') land at the same point a;. But this is not
possible by Theorem 3 since a; € 0Hj.

If £ is rational a is of Misiurewicz type:
The conclusion of the points before is that z(a) = fa(—a). Then fa(—a) is eventually repelling
(since ¢ is eventually periodic by multiplication by d). Thus a is of Misiurewicz type.

The iterate fit1(—a) belongs to OBa:

Indeed, z(a) = fa(—a) € OU, so that fi(fa(—a)) € OBa.

Finally, we consider the number of external parameter rays converging to a:
We have seen above that a is of Misiurewicz type and that the ray Ri® (&) is landing at fa(—a).

First case: (d —1)7¢ = t;. Since a € W(ay), the rays RI(t1), RX(¢1) and R(¢)) land
at a common point y. We can pull back these rays and get that two external rays R3°(n) and

R (n') landing at the same point as Rr® (&), that is at fa(—a). Since a is of Misiurewicz type,
the external parameter rays Roo(7), Roo(n) land at a. Assume (to get a contradiction) that
there is a third external parameter ray Roo(¢') converging to a, £ ¢ {n,n'}. Then, since a is
of Misiurewicz type, the ray R3°(¢') lands at fa(—a) (Lemma 2.24). Thus, since (d — 1)7¢ = ¢4,
JE(R (&) gives a third external ray converging to y, since d*¢’ ¢ {(1,(]}. But this contradicts
Lemma 4.10 which insures that at most two external rays land at a point of 0B,.

Now we do the other cases. Assume (to get a contradiction) that there are (at least) two
external dynamical rays converging to fa(—a). Since fa(—a) is not on 9B, but y = fi(fa(—a)) €
0B,, we iterate the three rays i-times and get R2(¢) and two external rays, say R(6;) and
RZ°(03), converging to y. The two external rays separate C into two connected components.
Let V' be the one containing B, and Vj be the other one. Note that, as long as the V; = (Vo)
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does not contain a critical point of f,, its image by f, is still a sector not containing B, and
attached by f*™!(y) to OB, (since —a is not in the orbit of ). From Lemma 4.10, some iterate
of Vp has to contain a critical point. If V; contains 0, then V;_; contains B}, and so the preimage
of f/(y) on OB,. Then fa: Vj_1 — V; is not a homeomorphism so —a € V;_;. We consider the
first j such that —a € V;_;. The sector V;_; contains a preimage of R (d/6;) and of R (d’6)
landing at a preimage of f2(y). Let V/ be the connected component of C\ (R3°(d701)U R (d’65))
containing the critical value. Denote by Vj’_1 the connected component of f; 1(Vj’ ) containing
—a. Then V] | C Vj_;. Applying Lemma 4.10 to V, we get that some iterate f, (V) contains
—a, so if r is the smallest iterate to satisfy this condition one has: fI (V]’ ) = Vj_1. Hence the
landing point fg_l(y) = g+r(y) is a repelling periodic point. We thicken the sector V;_; by
adding a small disk D around fg_l(y) which satisfies fZT!(D) D D and by taking external rays
close to RP(d~161) and R (d’~1605) landing at points in D. Denote by V., this new domain:
the domain Vj’jrr is bounded by these two rays union a part of D and containing D U V;_;.
Take the inverse image of Vj’jrr by frt1 along the previous orbit (i.e. backward along the orbit
{7 ), -, 27" (y)}). We obtain a domain V', with m cVi,_yand fi: Vi =V
is proper of degree two. Hence, since y = fi(fa(—a)), the forward orbit by fI! of —a will stay
in Vj”_ 1 so that f, is renormalizable. This contradicts the fact that two external rays converge
to fa(—a) in the non renormalizable case.

Assume now that two external rays Roo(£'), Roo(€”) land at a. These two rays enter any
para-puzzle piece P, (a) so by the homeomorphism of Corollary 3.20 the rays R2 (¢') and R2 (¢")

enter all the pieces P2. Since the intersection () P2 reduces to fa(—a), the rays both converge
n>0
to the same point z = fa(—a). But we have just seen that this is not possible. O

Corollary. 3. There is no parameter a on the boundary of a connected component of H such
that fa has an irrational indifferent periodic point.

Proof. Let U be a connected component of H and let a be a parameter of OU. Assume to get a
contradiction that f, admits an irrational indifferent periodic point denoted by x. If U = Hy,
Proposition 1 asserts that f, is renormalizable, then Proposition 4.6 implies that a is of parabolic
type. If U € H; \ Ho for some i > 0, Theorem 4 gives that fi*1(—a) € 9B,. Therefore x € OB,
since a subsequence of (fZ(—a)) accumulates z. Denote by RJ(¢) the ray landing at (0B, is
a Jordan curve). Since z is periodic, £ € Q (Lemma 1.6). This contradicts the Snail Lemma
(see [Mil]) which asserts that the landing point of a periodic ray either is a repelling periodic
point or has multiplier equal to 1. O

5 Description of C and size of the limbs of H,.

5.1 Connections in C

Definition 5.1. Let Mg be a copy_of M, let U be a hyperbolic component. We say that Mg
and U are attached if My intersects U.

Definition 5.2. A tip of M is the landing point of an external ray of the form Ryg(p/2") with
0 < p < 2™. Equivalently it is a parameter ¢ such that P! (0) = B, for some j > 0 where [, is
the non-separating fixed point of K(P,) (here P.(z) = 2% + ¢).

A tip of a copy Mg of M is the image x~!(c) of a tip ¢ of M, where My = x~}(M).
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Proposition. 2. Let My be a copy of M and U be any connected component of H. If the
intersection Mo NU # (), then it reduces to exactly one point. Moreover this intersection point
18

e the cusp of My, if U = Hp ;

e a tip of My, if U # Hy. Moreover, in this case My is also attached to Ho (by its cusp).

Figure 13: Components I/ attached to the tips of a copy M of M.

Proof. Let a be in MgNoU. Since f, is renormalizable, the intersection M, = NPy, (a) is a copy
of M (Proposition 4.15). We first prove that My = M,.

If U = Hp, the puzzle pieces P,(a) intersect Hy along a sector that contains a in its
boundary. Thus, they cannot cut Cardy, the main cardioid of M. Then Cardy is contained in
every P,(a) so in the intersection M,. Thus M, = Mj. The proof of Theorem 3 insures that
a is the cusp of M,. Hence, My N dHy = {a} the cusp of M.

If U # Hy, M, is attached to Hg by Proposition 4.15. Hence M, = M, otherwise one can
find a loop in M,UMUH surrounding points of M., which contradicts the fact that H.,U{oco}
is connected. Then, from Proposition 4.15 we get that M, NU = {a}. Now we prove that a is a
tip of M. From Theorem 4, the parameter a is of Misiurewicz type since x := fi*!'(—a) € 0B,
is an (eventually) repelling periodic point. Some iterate z = fZ(z) belongs to K(fF) = nP2.
Then z is a repelling fixed point of f¥ which does not separate K (fX). So z corresponds to the
(3 fixed point of 22 + x(a), the quadratic polynomial to which f¥ is conjugated. Therefore, a is
a tip of M. O

Corollary 5.3. Let My be a copy of M attached to Hy and contained in a wake W*(t). Let U
be a connected component of H\ Ho attached to My. The landing point of an internal ray of U,
Ru(&), is a tip of My if and only if £ =t.

Proof. Let a be the landing point of Ry(€) and let ag be the intersection point & N My (there
is only one point by Proposition 2). we prove first that ag is the landing point of Ry ().

Since fa, is renormalizable we can apply Proposition 4.15. Namely, the intersection My, =
NPn(ag) is attached to Hy and the intersection point is the landing point of R(¢), since ag €
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W3(t) and since the curve Roo(¢) U Roo((’) separates Hg from the points of W#(t). Thus,
My = M,, ; otherwise one can find a loop in Mg U Mj,, U Ho surrounding points of Hs, which
contradicts the fact that Ho, U {oo} is connected. Then Proposition 4.15 insures that ag is the
landing point of Ry (t).

Now, if a is a tip of Mg, a = ag since it is the only intersection point between I and
Ma,, (Proposition 2). Therefore a is the landing point of Ry (¢) and ¢ = £ by the uniqueness of
Theorem 4.

Conversely, if £ = ¢ since a is the landing point of Ry(€) and ag is the landing point of
Ru(t), a=ag so that a is a tip of M (Proposition 2). O

Proposition. 3. If a copy Mg of M is attached to Hg, then at any of its tips, there is a
connected component U of H \ Ho which is attached.

Proof. Let a be a tip of My and ag = Mg N Hyp; ag is the cusp of My by Proposition 2.
Moreover, My = M,, and P,(a) = P,(ag) for all n > 0, also from the proof of Proposition 2
above. Since My is attached to Hg every para-puzzle piece P,(a) intersects Hy. Therefore, the
puzzle pieces P2 intersect the basin B, (applying the homeomorphism of Corollary 3.20). Then,
the intersection K, = NP2 intersects B, and since K (fa) is full, Ka N B, reduces to one point,
say . Since fa is renormalizable, there exists k& > 0 such that f¥ maps P2, onto P2, so the
point x is k-periodic. Since x € OB,, z is the landing point of a unique ray, say RJ(7). The
uniqueness implies that 7 is k-periodic by multiplication by d—1, so that x is the non separating
fixed point of the renormalized map fsz. Since a is a tip of My, fa(—a) is mapped by some
iterate of f¥ to z. Thus some iterated preimage Rg(a)(T) of RY(7) is landing at fa(—a) # x
with r(a) the center of some connected component U, of Ba \ Ba (since K (fa) is full). The
puzzle pieces P2 intersect U, for all n > 0. Denote by R (1n) and Rg(a)(TY’L) the rays involved
in Uy NOP? and by R(n,), respectively R (1)), the external rays of 9P? converging to the
landing points of the rays in U,. By the homeomorphism of Corollary 3.20, the para-puzzle
pieces P, (a) should intersect some component U of H \ Hy and the rays involved in 9P, (a) NU
are Ry (7,) and Ry (7)) converging to the same points as the external rays Roo(7,) and Reo(7,)
respectively (at least for infinitely many n € IN). The sequences (7,), (7,,) converge to 7 and the
sequence (1), resp. (1)) converges to 7, resp. 1’ by Propositions 4.6 and 4.15. In the dynamical
plane Rg(a)(T), R (n) and RYP(n') converge to the same point fa(—a). Since a is a Misiurewicz
parameter, Roo(n) lands at a (Lemma 2.26). Assume that the internal ray Ry (7) lands at a
parameter a’ # a. Since Ry/(7) enters every puzzle pieces Py (a), the parameter a’ belongs to
M, = Mj. This contradicts the fact that R (n) will have to land at a’ by Proposition 4.15. So
U is attached to My at a. O

Lemma. 1. Any two distinct components of H have disjoint closures.

Proof. Assume, to get a contradiction, that there exist U1, Us two distinct components of H
and a € Uy NUsy. Since one connected component is distinct from Hj, the parameter a is a
Misiurewicz point by Theorem 4. Moreover Theorem 4 and Theorem 3 insure that there exist
&1, & such that Ry (€1), Ry, (€2) land at a and RL® (&), ra(a) (&) land at fa(—a) for some
adapted centers r1(a), r2(a). This is impossible since fa(—a) would be eventually critical by
Lemma 2.21, although the critical point cannot be periodic on the Julia set. O

Theorem. 5. The only intersections between closures of hyperbolic components, and also copies
of M are the following :
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o The central component Hg has Mandelbrot copies My attached to it at angles t which are
(d — 1)-periodic (a full characterization of these values is given in Proposition 2.32):

o At every tip of such a satellite My, a capture component U of H \ Ho is attached.

Nevertheless, there are infinitely many copies of M in C and infinitely many captures components
not contained in the category described above.

Figure 14: At the center a Mandelbrot copy without connections with H.

Proof. The description of the intersections of copies of M with components of H follows from
Proposition 2 and 3. The intersections between components of H follows from Lemma 1.

There are other copies of M in C (see figure 14) which are not attached to components of
H since Mandelbrot copies are dense in C by [McMu].

We prove now that there are capture components V of H \ H which are not attached to
Mandelbrot copies (and also not attached to hyperbolic components by Lemma 1).

We start with a capture component U attached to some satellite copy M;. Let a be the
landing point of Ry(§) with (d — 1) = t. In the dynamical plane for a, the critical value is on
the boundary of some component U, which is mapped by some fi to Ba. Since U is in W*(t),
the critical value fa(—a) is separated from B, by two external rays R3°(61), R3°(02) landing at
fi(fa(—a)) a repelling periodic point (Proposition 4.15 and Lemma 4.14). Then, considering
the puzzle pieces, there is some n such that OP? involves rays in U, and other rays in some
iterated inverse image of U, denoted by V,. Using the homeomorphism of Corollary 3.20 we
get that 0P, (a) N P,_1(a) contains rays in some capture component V (because of the external
parameter rays). This para-puzzle piece is contained in W?*(t) so that V is contained in W5 (t).
Therefore, V cannot be attached to a Mandelbrot copy. Otherwise this copy is attached to Hg
(Proposition 4.15) so would coincide with M. Therefore & and V cannot be connected by an
arc avoiding My, else one can complete it by an arc in / UMoUYV to get a loop in C surrounding
points of Hs which contradicts the fact that Ho, U {oo} is connected. But since C N Py (a)
is connected, we get that &/ and V are connected outside My. Hence, V is not attached to a
Mandelbrot copy. O
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5.2 Size of the limbs

Definition 5.4. For any a € 0Hy, we denote by limb containing a the intersection L(a) =
Wi(a)NC if W(a) # () and else L(a) = {a}.

Remark 5.5. By Lemma 4.14, the definition of the limbs coincides with the one given by Milnor
in [Mid].
Remark 5.6. Note that £(a) N 0Hy = {a}. We will adopt sometimes the notation £%(t) for a
limb £(a) where a is the landing point of R§(%).

The following result was conjectured in [Mi4] (with another parametrization of the rays).

It follows from Theorem 3.

L1451
a1

Corollary 5.7. A limb L%(t) contains more than one point if and only if the angle thl +
1s periodic by multiplication by d — 1.

Proof. Let ag be the point of OHg N L5(t), so L%(t) = L(ap). From Theorem 3 there are two
external rays converging to ag if and only if ag is of parabolic type. This corresponds to the
statement about periodicity of proposition 2.32. O

Theorem. 7. For any € > 0, there exists only a finite number of limbs with diameter greater
than e.

Proof. This proof is inspired by Milnor’s one in the quadratic case. It proceeds in two steps.
1. Every point of C \ Hg belongs to a unique limb.

Let a € CN S\ Hp. For every n, there exists a sector S,(a) containing a such that
X, N oS, (a) C Z, is the union of two rays in Hy and two external rays. This sector contains a
para-puzzle piece, say P,, which intersects Hy along two internal rays Ro(tn), Ro(t),) and Heo
along two external rays Roo((n), Roo(C))-

The study of the para-puzzle pieces (Lemma 4.2, Proposition 4.6) gives the following infor-
mations. The sequences of angles ¢, ¢/, converge to the common limit ¢. Let ag be the landing
point of Ro(t). Assume that fa, is renormalizable. Then the sequences ((,), (¢;,) converge to
different angles: ¢ and ¢’ respectively, with R (), Roo(¢’) landing at ag (Theorem 3). Thus
a belongs to the wake W(ap) so to the limb L(t). If, fa, is not renormalizable, a = ag since
a € NP, = {ag}, so NP2 = fa(—a) and NP, = {a}. If two external parameter rays enter
the para-puzzle pieces P,, by the homeomorphism of Corollary 3.20 the two corresponding dy-
namical rays enter the puzzle pieces P20, so converge to fa,(—ag). This contradicts Theorem 3.
Therefore the two external rays Roo((n) and R ((,) converge to an external ray R (¢) which
lands at ag. Thus W(ag) = 0 and a = ag = L(t).

2. We assume (to get a contradiction) that there exists a sequence L(t,) of limbs which accu-
mulates at two points a1 # as.

First suppose that aj,as belong two different limbs L£(¢1) and L(t2) respectively. There
exists t € (t1,t2) such that Ro(t) lands at a Misiurewicz parameter a. Then this point is the
landing point of an external ray R.o((). The curve Ro(t) U R (() separates a; from as so that
the sequence L(t,) cannot accumulate on both a; and as.

Now suppose that a; and ay belong to the same limb £(t), we can assume that a; ¢ 0H)
(since OH is locally connected), so there exists r > 0 such that B(ai,r) C W(ay). Therefore,
if a sequence a,, € L(t,) accumulates aj, then for large n the parameter a,, belongs to the ball
B(a,r) so to W(aj) and therefore to L(t) so t,, = t. O
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5.3 Local connectivity of dC

Theorem. 6. OC is locally connected at every point which is not in a copy of M and at any
point of OU for every connected component U of 'H.

Proof. Corollary 4 gives the local connectivity for parameters which are not in a copy of M. Let
ayg € OU where U is a connected component of H; and P, be the para-puzzle piece containing
ag. If ag is not parabolic, N"P,, = {ag} then AC is locally connected at this point by Lemma 4.4.
If ag is parabolic, then the intersection NP, is a copy Mg of M. So to get the local connectivity
at ag we consider the restricted puzzle pieces P}, as follows. Let v be the parametrization by the
internal angle of the boundary of the main cardioid of My with «(0) at the cusp. We consider
an external ray converging to v(1/n) and another to v(—1/n) then we complete their union to
get with oo a closed curve §,, by adding some segment of curve ¢, inside the main cardioid.
Let P/ be the connected component of P, \ §, containing ag. The choice of ¢, is such that
the intersection of P), with the cardioid of My is a sequence decreasing to the cusp of My (the
boundary of cardioid is locally connected). We prove now that the sequence P}, is a basis of
neighbourhoods of ag. Assume that there is a point a # ag in NP),. The parameter a is not on
the cardioid of My, otherwise it would be some ~(t) with _71 <t< % so can only be ag. Then,
since the intersection of P,, is My, the parameter a belongs to a Limb of My (the image of a
limb of M by the homeomorphism) say Lng(f). Thus for n such that 1/n < |t| the point a does
not belong to P),. This gives the contradiction. The intersection C NP}, is clearly connected by
the same arguments as in Lemma 4.4 since we cut nicely the piece P, with the curve §,. O

6 Appendix

For the completeness of the article, we recall here the proof of the following result:

Theorem [Fa, Rol|. The boundary of every connected component of éa 1s a Jordan curve.

6.1 Yoccoz’ Theorem for rational-like maps

Definition 6.1. A map f: X' — X is rational-like if :

e X, X’ are connected open sets of C with smooth boundary, such that X > X’ and X has
a finite number of connected components ;

e f: X' — X is a holomorphic proper map with a finite number of critical points and extends
to a continuous map from X’ to X.

For a rational-like map f: X’ — X, a graph I' is admissible if :
e T is connected, finite, included in X and contains 0.X ;
e [ isstable, d.e. f~1() DT NX"
e the forward orbits of the critical points are disjoint from I

To an admissible graph, I', a puzzle is associated :
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Definition 6.2. The puzzle pieces of depth n are by definition the connected components of
FXND).

The end of a point z is the nested sequence (Py(z), Pi(z), -, Py(x),---) of the puzzle
pieces containing z.

The end of z is periodic if there exists k, N such that f*(P.,(z)) = P,(z) for n > N.

The impression of x is the intersection N,>0F,(x) of the puzzle pieces containing x.

The point x is surrounded at depth ¢ if the annulus A; = P; \Fz'—l-l surrounds z, i.e. if
xz € Py andmCPi.

Yoccoz’ Theorem can be stated in the context of rational-like maps as follows :

Theorem. Let f: X' — X be a rational-like map with a unique critical point xo of multiplicity 2
and x be a point of K(f). IfT' is an admissible graph that surrounds xy and surrounds infinitely
many times x then:

e if the end of xq is not periodic, then the impression of x is equal to {x} ;

e otherwise, let k be the period of the end of xo, the map f*: Pryp(xo) — Py(x0) is quadratic-
like for | large enough and the impression of xq is the filled Julia set K(fk|pl+k(xo)) of the
renormalized map. Moreover the impression of x reduces to x or to a preimage of the
impression of xg if some iterate of x falls in the impression of x.

Remark 6.3. Let C be a forward invariant set under a rational-like map f. A compactness argu-
ment shows that instead of finding one admissible graph and infinitely many annuli surrounding
x € C' with this graph, it is enough to find a finite number of admissible graphs I'g, - -- ,I'; such
that every point of C' is surrounded at bounded depth by one of these graphs which surrounds
also the critical point xg.

6.2 Application to the family f,

It is enough to prove that B, is locally connected : one gets then the result for every connected
component of B, by pulling back .

Remark 6.4. If a ¢ C the connected components of the Julia set are locally connected since f,
is hyperbolic. Thus we consider only parameters a € C.

Let X be the connected component of C \ (E°(1) U E2(1)) containing J(fa) and X' =
fa1(X). The map fa: X’ — X is a rational-like map. We consider the graphs given in section 3.
They are clearly admissible. We prove now that they satisfy the conditions of Yoccoz’ Theorem :
using Remark 6.3 it suffices to show that every point z € 0B, is surrounded, at bounded depth,
by one of the graphs which also surrounds the critical point —a.

Lemma 6.5. For 0 = ﬁ and 0’ = m with ' > 1+ 1 and [ large enough, every point

of 0B, is surrounded by one of the graphs at bounded depth.

Proof. Let U(#) be the connected component of C \ v containing RJ(0) where v denotes the
curve in I#(0) = fy'(I§(6)) formed by the internal rays RO( + 1) and Rg(d%"l) and the
corresponding external rays. One sees that every point of 0B, which is in U(f) but not on the
graph I?(0) is surrounded at depth 0 by the graph Ip(#). Now the points on 0B, of I1(6) and
of I;(¢') are distinct. Moreover the union V' = U () U U(#’) is the connected component of the
complement of § containing R%(0), where 6 is the curve formed by the internal rays R (6’ + ﬁ)
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and Rg(%) and the corresponding external rays. Then for n such that %(9’ + d—il) < %, the
union |J £ (V) covers C\ {0}. Thus every point of OB, is surrounded at depth less than n by

i<n

Iy(6) or by Iy(6"). O

Remark 6.6. This result clearly holds also for 6 = T and 0 = ——=1

-1 -1
(d-1)I— (d—1)'—1"

Lemma 6.7. There exists ko and ¢ € {£1} (depending on a) such that for every k > ko the

critical point —a is surrounded at depth 1 by the graph Io(ed) where 6 = m.

Proof. We take the open set U(f) defined in previous Lemma. For d > 3 it is clear that the
union U(0) UU(—0) covers B, \ {0} and therefore all C\ {0}. This solves the question for d > 3.

For d = 3, the union U(§) UU(—0) U f71(U(0) UU(—0)) covers all B, \ {0} and therefore
all C \ {0}. 0

The proof that the intersection P,(x) N dB, is a connected set is exactly the same as the
proof of Lemma 4.3 (in the parameter plane).

Yoccoz” Theorem (stated in section 6.1) and the previous lemmas allow us to conclude that
if the end of the critical point —a is not periodic, the boundary 0B, is locally connected. Then
Caratheodory’s Theorem together with Lemma 1.6 insures that 0B, is a Jordan curve.

We now consider the case where the end of the critical point —a is periodic of period k.

The map fX: P, x(—a) — P,(—a) is quadratic-like and the orbit of the critical point never
escapes the puzzle piece P,(—a). So by the straightening theorem of [DoHu2|, the restriction
of fF is conjugated to a unique quadratic polynomial 2% + c. Let K, = K(f¥) denote the filled
Julia set of the restriction and K the filled Julia set of the quadratic polynomial.

We assume that K, N 0B, # 0.

Lemma 6.8. There exists an internal ray Rg(n) of period k converging to the non separating
fized point By of fE in K, and two external rays RX(C), RX(C') converging to Ba and separating
K, from B,.

Proof. The angles of the internal rays that bound the puzzle piece P, (—a) are of the form n,, < 1),
with (d — 1)*1,,x = n,mod 1 (and the same for ) with |/, — n,| < W. Therefore they

converge to a common limit 7 which is periodic of period k. Moreover the ray R2(n) lies in all
the puzzles pieces P, (—a) so its landing point is in B, N K,. Since it is a fixed point of f¥ with
rotation number 0 it is the non-separating fixed point of K,, i.e. Ba.

For the external rays the proof is the same. The external rays attached to RY(n,) and
R3(n,) which are in the boundary of P,(—a) are of the form RJ(¢,) and R3(¢/,) and the angle
satisfies the equations d*(, 1 = ¢, and dkC;1 k= (;L respectively. Thus they converge to periodic
angles ¢, (’. The rays R°(¢) and R,(¢’) converge to B, by the same argument as before. To see
that the curve R3° () U RP (") U Ba separates B, from K, \ {fa} it is enough to note that the
preimage [, of (B, in K, is the landing point of a ray of the form R;f(g + ) which is always
contained in P,(—a) so converges to K, and separates R3°(¢) from R3°({). O

Corollary 6.9. The boundary of 0Bg is locally connected.

Proof. When the end of the critical point —a is periodic, the impression of the end is K,. If
K,NOB, is empty the end of any point forms a basis of connected neighbourhoods of that point.
If K, N OB, is not empty, we take for sequence of neighbourhoods of 3, in 0B, the intersection
U, = Vi, N OB, where V,, is the connected component of P, (3a) \ (R (¢) U R (¢") U Ba) which
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intersects Ba. It is easy to see that the sequence (U,,) forms a basis of connected neighbourhoods
of B4 in 0B, since the intersection NU,, reduces to 0B, N Ky = Ba. Then we pull back those
neighbourhoods along the backward orbit of (,. O
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