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Abstract

For the study of the 2-dimensional space of cubic polynomials, J. Milnor considers the
complex 1-dimensional slice Sn of the cubic polynomials which have a super-attracting orbit
of period n. He gives in [Mi4] a detailed and partially conjectural picture of Sn. In the
present article, we prove these conjectures for S1 and generalize these results in higher de-
grees. In particular, this gives a description of the closures of the hyperbolic components
and of the Mandelbrot copies sitting in the connectedness locus. We prove that the bound-
ary of each hyperbolic component is a Jordan curve, the points of which are characterized
according to the dynamical behaviour of the associated polynomial. The global picture of
the connectedness locus is a closed disk together with “limbs” sprouting off it at the cusps
of Mandelbrot copies and whose diameter tends to 0 (which corresponds to a qualitative
Yoccoz’ inequality).

Résumé

Pour étudier l’espace 2-dimensionnel des polynômes cubiques, J. Milnor considère la
tranche Sn de dimension un complexe formée des polynômes cubiques qui ont une orbite
super-attractive de période n. Il donne dans [Mi4] une image détaillée et partiellement conjec-
turelle de Sn. Dans le présent article, nous démontrons ces conjectures pour S1 et généralisons
ces résultats aux degrés supérieurs. En particulier, nous obtenons une description de la fer-
meture des composantes hyperboliques et des copies de Mandelbrot se trouvant dans le lieux
de connexité. Nous prouvons que la frontière de chaque composante hyperbolique est une
courbe de Jordan, dont les points sont caractérisés en fonction du comportement dynamique
du polynôme associé. L’image globale du lieux de connexité est un disque fermé avec des
“membres” qui en sortent aux cusps de copies de Mandelbrot et dont le diamètre tend vers
0 (ce qui correspond à une inégalité de Yoccoz quantitative).

Introduction

In [BrHu] Branner and Hubbard studied the parameter space of cubic polynomials (in terms
of the dynamics). This space has been intensively studied since then. In this paper we focus
on the 1-dimensional complex slice S1 of the cubic maps which have a fixed critical point. Our
goal is to prove the conjectural picture given by Milnor in [Mi4] of the connectedness locus in
S1, and to generalize these results to degrees d ≥ 3. The first question concerns the topology
of the boundary of the main hyperbolic component. This leads naturally to the question of
characterizing in dynamical terms the parameters on this boundary. The other problems are to
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describe first the intersections of the closures of hyperbolic components between each others and
second their intersection with the Mandelbrot copies. Milnor considered also the limbs which
are attached to the main hyperbolic component and raised the question of the existence of an
analogue of Yoccoz’ inequality, namely, the inequality which bounds the size of the limbs in the
Mandelbrot case.

Let us consider the families of polynomials of degree d ≥ 3 having a critical fixed point of
maximal multiplicity. When we fix the degree, d, this set of polynomials is described—modulo
affine conjugacy—by the following family {fa, a ∈ C}, where 0 is the critical fixed point of
maximal multiplicity :

fa(z) = zd−1

(
z +

da

d− 1

)
.

H0

H∞

H0

H∞

Figure 1: Connectedness locus for d = 3 and 4 in dark color.

The set of parameters is partitioned into two loci : C = C t H∞ (after [BrHu]). The set
C denotes the connectedness locus i.e., the set of parameters a such that the Julia set J(fa) is
connected ; H∞ consists of the parameters a such that the “free” critical point −a is attracted
by ∞ (see [DoHu1]). We can continue the partition further, considering the hyperbolic param-
eters i.e., the parameters such that the orbit of every critical point converges to an attracting
cycle (see [Mi1, Mi4]). This hyperbolic set is a disjoint union of open disks called hyperbolic
components. The locus H∞ is the unique unbounded hyperbolic component (see Lemma 1.9
or [Mi4] and [BrHu]). Among the hyperbolic components contained in C, we focus on the ones
associated to the attracting point 0. The union of those is H = {a ∈ C | −a ∈ B̃a}, where B̃a

is the basin of attraction of the fixed point 0.

Local connectivity of the boundary of hyperbolic components

Theorem 1. The boundary of every hyperbolic component of C is a Jordan curve.

This Theorem is a consequence of Theorem 2 and the renormalization1 property of Propo-
sition 1.

1Definitions of “renormalization” and of “copies of M” are given in section 3.5
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Theorem 2. The boundary of every connected component of H is a Jordan curve.

Proposition 1. If the map fa has a non-repelling periodic point p 6= 0 then fa is renormalizable
near p and the parameter a belongs to a copy of the Mandelbrot set M.

Theorem 2 is the analogue in the parameter plane of the following dynamical result2 :

Theorem [Fa, Ro1]. The boundary of every connected component of B̃a is a Jordan curve.

Let us recall that D. Faught gave a proof of Theorem 2 in his thesis [Fa]. This result remains
unpublished. For completeness, we give a proof of this result of local connectivity ; our proof is
different from that of [Fa], the argument here is based on an idea of Shishikura that simplifies
the analysis.

Proposition 1 has the following two interesting corollaries :

Corollary 1. Any hyperbolic component of C is either a connected component of H or a hyper-
bolic component of a copy of M.

Corollary 2. Assume that fa possesses a periodic point p with multiplier λ = e2iπθ, such that
θ ∈ R \ Q. Then fa is linearizable near p if and only if θ ∈ B. Moreover, if θ /∈ B there exist
periodic cycles in any neighbourhood of p.

Here B denotes the set of Brjuno numbers : an irrational θ of convergents pn/qn (ratio-
nal approximations obtained by the continued fraction development) is a Brjuno number, if∑∞

n=1(log qn+1)/qn is finite.

Parameters on the boundary of components of ∂H

Let H0 be the connected component of H containing 0.

Theorem 3. Let a ∈ ∂H0. There exists a unique parameter ray3 in H0 landing at a, say Rs
0(t).

The following dichotomy holds :

• there is a unique external parameter ray converging to a. In this case fa is not renormal-
izable so a do not belong to a copy of M. Moreover in the dynamical plane, the ray R0

a(t)
lands at the critical value fa(−a) ∈ ∂Ba and there is a unique external ray converging to
fa(−a) ;

• there are exactly two external parameter rays converging to a. In this case a is the cusp
of a copy of M. Furthermore, in the dynamical plane, the ray R0

a(t) lands at a parabolic
point on ∂Ba. The angle t is necessarily periodic by multiplication by d− 1.

Proposition 2.32 gives a criterion on the angle t to decide which one of the two cases described
above arises.

Theorem 4. Let a ∈ ∂U where U 6= H0 is a connected component of H. Then a is the landing
point of a unique parameter ray of U , say RU(t). In the dynamical plane, some iterate f k

a (−a)
lies in ∂Ba but −a /∈ ∂Ba. Moreover, there exists a holomorphic function r, defined in a

neighbourhood of a, such that the dynamical ray R
r(a)
a (t) converges to the critical value fa(−a).

As a consequence, fa has no parabolic cycles.
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H0

U

Figure 2: A copy of M attached to H0 and a component U of H \ H0.

Corollary 3. (see also [GoMi]) For parameters a on the boundary of a component of H, fa

cannot have an irrational indifferent periodic point.

Intersections between the closures of hyperbolic components

Lemma 1. Any two distinct components of H have disjoint closures.

Recall that the cusp of M is the point c = 1/4, and that the tips of M are the parameters
c ∈ M such that c falls after some iterations on the repelling fixed point, βc (the one that does
not disconnect the Julia set). The cusp and the tips of a copy of M are the corresponding images
by the homeomorphism defining the copy.

Let M0 be a copy of M.

Proposition 2. If M0 intersects ∂U where U is a component of H, the following dichotomy
holds :

• If U = H0, M0 ∩ ∂U is reduced to a single point, which is the cusp of M0 ;

• If U 6= H0, M0 ∩ ∂U is reduced to a single point, which is a tip of M0. Furthermore,
M0 ∩ ∂H0 is not empty, it reduces to the cusp of M0.

Conversely,

Proposition 3. If M0 intersects ∂H0, then at any of its tips there is a connected component of
H \ H0 attached.

These results describe all the intersections between the boundaries of components of H and
also with copies of M, so in particular between all hyperbolic components of C.

Theorem 5. The only intersections between closure of hyperbolic components, and also copies
of M are the following :

2We will recall briefly the proof of it from Yoccoz’ Theorem in section 6
3Rays and parameter rays are defined in section 2 and 3
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• The central component H0 has Mandelbrot copies Mt attached to it at angles t which
are periodic by multiplication by d − 1 (a full characterization of these values is given in
Proposition 2.32) ;

• At every tip of such a satellite Mt, there is a component U of H \H0 attached.

Nevertheless, there are infinitely many copies of M in C and components of H not in the category
described above.

Some global properties of C

Theorem 6. ∂C is locally connected at every point which is not in a copy of M and at any point
of ∂U for every connected components U of H.

Concerning the limbs4 of the main component H0, we obtain a qualitative version of Yoccoz’
inequality for this family :

Theorem 7. For any ε > 0, only a finite number of limbs have diameter greater than ε.

Description of the content of the article

In the first section we give some properties of the polynomials fa in dynamical and parameter
plane.

The second section is devoted to the parametrization of the components of H and also of
H∞. The parametrization is given by the Böttcher coordinate of the critical value and provides
parameter rays and equipotentials.

In section 3, we construct graphs that define puzzles to prove the local connectivity in the
parameter space. They correspond—via the parametrization—to those used in the dynamical
plane in [Ro1] for the proof of the local connectivity of ∂Ba (we will recall the construction
and the results of [Ro1]). Then, the holomorphic motion of the dynamical graphs allows us
to compare the puzzles in the parameter plane and in the dynamical plane, as pointed out by
Shishikura in the case of quadratic polynomial (see [Ro2]).

Section 4 is devoted to the proof of Theorem 1, 2, 3 and 4. Namely, we prove that when
the intersection of the puzzle pieces (in the parameter plane) is not reduced to a single point,
then this intersection is a copy of the Mandelbrot set.

In section 5 we give the announced description of C i.e. the proof of Theorems 5, 6 and 7.
Finally, we add in the Appendix (section 6) the proof of Theorem [Fa, Ro1].

Acknowledgment : I would like to thank Tan Lei, Carsten Petersen and Curt Mc Mullen for
encouraging me to write this down. I would also like to thank John Milnor for many discussions
and for suggesting me section 2.5.

1 Overview of dynamical and parameter plane

Through the article we will take angles in R/Z but in general we will have in mind their
representant in [0, 1[. We will write dt for the image of the angle t ∈ R/Z by the multiplication
by d and t/d for the element whose representant is in [0, 1/d[.

4defined in section 5
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1.1 The dynamics of fa

We consider the polynomials fa for a fixed degree d ≥ 3. Note that for d = 2 only the polynomial
P (z) = z2 satisfies the condition to have a super-attracting fixed point (modulo affine conjugacy).

Recall that the filled Julia set K(fa) consists in the non escaping points and that the Julia
set Ja = J(fa) is its boundary :

Ka = K(fa) = {z | fn
a (z) 6−−−→

n→∞
∞}, Ja = ∂Ka.

Note that for every a ∈ C, Ka 6= Ja since Ka contains the basin of attraction of 0 i.e.

B̃a = {z ∈ C | fn
a (z) −−−→

n→∞
0}.

We denoted by Ba the immediate basin of 0, that is the connected component of B̃a containing 0.
It follows from the maximum principle that Ba is a topological disc. If −a /∈ Ba the map fa|Ba

is conjugated to zd−1 on D, else Ba = B̃a (see [Ro1] and the following Böttcher’s Theorem).

Theorem. [Böttcher] For p = 0 or ∞, there exist neighborhoods V p
a ,W

p
a of p such that fa(V p

a ) ⊂
V p
a ,and conformal isomorphisms φp

a : V p
a →W p

a satisfying

φ∞a ◦ fa = (φ∞a )d on V∞
a and φ0

a ◦ fa = (φ0
a)d−1 on V 0

a (∗)

with φ∞a tangent to identity near ∞ and φ0
a tangent to z 7→ λ(a)z near 0 where λ(a) is a (d−2)-th

root of da
d−1 .

Remark 1.1. The map φ∞a is always unique. Moreover, if we fix the choice of the (d − 2)-th
root λ(a), the map φ0

a is also unique.

Assumption 1. Through all the paper we will only consider parameters in C \ R− (because of
Remark 1.7). Thus, for the choice of λ(a) we take the (d− 2)-th principal root of da

d−1 , i.e., the
one such that λ(R+) ⊂ R+.

The Green function G∞
a (resp. G0

a) associated to ∞ (resp. to 0) is the harmonic map equal
to log |φ∞a (z)| on V∞

a (resp. to − log |φ0
a(z)| on V 0

a ), extended on C \Ka through the relation
dG∞

a (z) = G∞
a (fa(z)) (resp. on B̃a through (d − 1)G0

a(z) = G0
a(fa(z))) and vanishing on the

complement.

Definition 1.2. The equipotential of level v > 0, Ep
a(v), around p = 0 or ∞ is the curve

Ep
a(v) = {z ∈ C | Gp

a(z) = v}. A ray, Rp
a(t), of angle t ∈ R/Z, stemming from p = 0 or ∞, is a

gradient line of Gp
a that coincides near p with (φp

a)−1(R+e2iπt).

Note that if there is no critical point of Gp
a on a ray, it is a smooth simple curve ; whereas

at the critical point the gradient line divides itself so that several points have the same potential
on this ray and also different points of Ja might be on the closure of a unique ray of given angle.
This happens if a ∈ H∞ ∪H0. In this case the angle t and the potential do not define uniquely
points on the ray, we will say that the ray is not well defined. In fact the ray is well defined in
{z | Gp

a(z) > Gp
a(−a)} since φp

a extends to this set (via (∗)). Note that it is possible to extend
φ0
a continuously at the critical point −a, but not φ∞

a since there are two external rays crashing
on −a.

Finally, if a ray Rp
a(t) is well defined, it accumulates on the Julia set. We say that it lands

if its accumulation set is reduced to one point and the landing point is in Ja.
We have the following behaviour for rational rays (see [DoHu1, Mi1, Pe]) :
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Lemma 1.3. Let a0 ∈ C, p = 0 or ∞, and t ∈ Q/Z. If the ray Rp
a0(t) is well defined, it lands

at an eventually periodic point which is repelling or parabolic 5.

Lemma 1.4. Under the assumptions of lemma 1.3, if the landing point is repelling and not
eventually a critical point, there exists a neighbourhood A of a0 such that for all a ∈ A the ray
Rp

a(t) lands at a repelling point. Moreover, the map (a, s) 7→ ψp
a,t(s) is continuous on A× [0,∞]

and holomorphic in a, where ψp
a,t(s) is the point on Rp

a(t) of potential s.

Proposition 1.5. [Yoccoz] For every eventually periodic point of fa that is repelling or parabolic,
there exists a rational angle t such that R∞

a (t) lands at this point if J(fa) is connected.

We will not need the analogue result in the non connected case since we will start from the
rays obtained when the Julia set is connected and proceed to a holomorphic motion.

Lemma 1.6. If two rays R0
a(t) and R0

a(t′) land, their landing points are distinct when t 6= t′.

Proof. This follows, by a contradiction argument, from the maximum principle applied to the
iterates of fa on the domain bounded by the closed curve R0

a(t) ∪R0
a(t′).

1.2 Parameter plane

Remark 1.7. The rotation τ(z) = τz, where τ = e
2iπ
d−1 , is the only possible conformal conjugacy

between polynomials fa and fa′ ; the relation is fτa(τz) = τfa(z). Besides this, fa is conjugated
to fa by the complex conjugacy σ(z) = z.

Hence a “fundamental domain” for the study of the family fa is

S =

{
a ∈ C | 0 ≤ arg(a) ≤

2π

2(d− 1)

}
.

S

S

S

Figure 3: Fundamental domain in degree d = 3, 4 and 5.

The connectedness locus C, i.e., the set of parameters a such that Ka (or equivalently Ja)
is connected, admits the following classical characterization (see [DoHu1]) :

C = {a ∈ C | fn
a (−a) 6−−−→

n→∞
∞}.

5A point x of period p is repelling, attracting, parabolic or indifferent irrational, respectively, if |(f p)′(x)| > 1,
|(fp)′(x)| < 1, (fp)′(x) = e2iπθ and θ ∈ Q/Z, or θ ∈ (R \ Q)/Z.
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Remark 1.8. The sets C, H and H∞ admit σ and τ as symmetries.

Lemma 1.9. The set H∞ = C\C is a connected component of the set of hyperbolic parameters.
Similarly, the connected component H0 is exactly the set {a | −a ∈ Ba}.

Proof. Clearly H∞ contains a neighbourhood of ∞. So if H∞ is not connected there is a bounded
connected component, U ⊂ H∞. The boundary of U is in C so there exists some M ∈ R such
that |fn

a (−a)| ≤ M for all n ≥ 0 and a ∈ ∂U . For a0 a parameter in U , there exists some N
such that |fn

a0
(−a0)| ≥ 2M for n ≥ N . This contradicts the maximum principle for the function

a 7→ fN
a (−a).

The proof for H0 goes with the same arguments exchanging 0 and ∞. Assume (by contra-
diction) that there is a connected component U ⊂ C of {a | −a ∈ Ba} which is different from
H0. There exists some ε > 0 such that on ∂U , |f n

a (−a)| > ε and for a0 ∈ U there exists some N
such that |fn

a0
(−a0)| < ε/2 for n ≥ N . This contradicts the maximum principle (as before) for

the map a 7→ 1/fN
a (−a) which is well defined on a neighbourhood of U since fN

a (−a) 6= 0 for
a ∈ U because the sequence fn

a (−a) tends geometrically to 0 in Ba.

Definition 1.10. The so-called capture components of depth i ≥ 1 are the connected components
of Hi, where Hi = {a ∈ C | f i

a(fa(−a)) ∈ Ba and f i−1(fa(−a)) /∈ Ba}.

We have the following decomposition of the hyperbolic components of H :

Remark 1.11. H =
⋃
i≥0

Hi.

Proof. For a ∈ H, the critical point −a is attracted by 0, so there exists k ≥ 0 such that
fk
a (−a) ∈ Ba. If a /∈ Hi for any i ≥ 0, necessarily fa(−a) ∈ Ba with −a /∈ Ba. This is not

possible since any point near fa(−a) in Ba would have d − 1 preimages in Ba (see Böttcher’s
Theorem) plus two near −a (the critical point), which exceeds the degree d of fa.

A rough picture of the dynamics of fa for a ∈ H ∪ H∞ is the following. For parameters
a in H∞ = C \ C, the filled Julia set Ka is not connected but not totally disconnected since it
contains the closed disc Ba. More precisely, Ka is the disjoint union of all the inverse images of
Ba, the dynamics of fa on Ka = ∪f−i

a (Ba) is the ”shift” and on Ba it is conjugated to z 7→ zd−1

on D.
For parameters a in H0 the critical point −a is in the immediate basin Ba. Indeed, for the

center a = 0 this is clear and the situation is stable. Thus for a ∈ H0, the dynamics is very
simple : Ka = Ba, Ba = B̃a, Ja is a quasi-circle and fa|Ja

is quasi-conformally conjugated to
z 7→ zd on S1.

For parameters a ∈ Hi with i ≥ 1, Ka =
⋃

j≥0 f
−j
a (Ba), the map fa is conjugated to z 7→

zd−1 on Ba and corresponds to the ”shift” on the components of (f−j
a (Ba))j≥0 not containing

the critical point.

Lemma 1.12. Any connected component of H, as well as H∞ ∪ {∞}, is simply connected.

Proof. Once more this is an application of the maximum principle. The proof goes by contra-
diction. For the sake of simplicity we give the proof for a connected component U of Hn with
n ≥ 0. The argument follows for H∞ ∪ {∞} by exchanging 0 and ∞.

Assume for contradiction that there exists a bounded connected component K of C \ U .
Then there exist points of ∂U in K and also a simple closed curve γ ⊂ U surrounding K since
U is arcwise connected. In U , the iterates of the critical point −a converge to 0. Thus, for
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every ε > 0, there exists an N ≥ n such that for every j ≥ N and every parameter a ∈ γ,
|f j

a(−a)| < ε. Now let x be a point in K ∩∂U . Since x /∈ H, there exists an r > 0 (depending on
x) such that the iterates f j

x(−x) ∩B(0, r) = ∅ for every j ≥ 0. Taking ε = r/2, this contradicts
the maximum principle for the holomorphic function g(z) = fN

z (−z), on the bounded open set
delimited by γ.

Notation 1.13. Let Υ0 : H0 → D, resp. Υ∞ : H∞ → C \ D, be the conformal representation
tangent to the identity at 0, resp. at ∞.

Remark 1.14. Then, for p = 0 or ∞, Υp(σa) = σΥp(a) and Υp(τa) = τΥp(a) with τ = e
2iπ
d−1

and σ(a) = a. In other words Hp admits σ and τ as symmetries.

Proof. Since Hp is invariant by the complex involution σ and the rotation τ (see Remark 1.7),
the maps σΥp(σz) and Υp(τz)/τ are conformal representations of Hp onto D, or C \ D, which
are tangent to the identity at 0, or at ∞. Hence Υp(σz) = σΥp(z) and Υp(τz) = τΥp(z).

Corollary 1.15. Let ρ = e
iπ

d−1 , for any k ∈ N the line ρk R+ cuts H0 and H∞ under a connected
set. As a consequence, Υ0(ρk R+) = ρk[0, 1[ and Υ∞(ρk R+) = ρk]1,+∞].

This does not imply that R+ crosses only H0, H∞ and ∂C (see corollary 2.27).

Proof. Fix p ∈ {0,∞}. By remark 1.14, for a ∈ R+, Υp(a) ∈ R+ and Υp(aρk) ∈ ρk R+ (since
ρka = ρ2kσ(ρkσ(a)) = ρ2kσ(ρka) for a ∈ R, where σ denotes the complex conjugacy). To prove
that R+ ∩ Hp is connected we apply the maximum principle to a loop that we construct now.
Assume for contradiction that there exist x0 < x < x1 with x /∈ H, x0, x1 ∈ Hp ; then there is
a simple arc γ0 ⊂ Hp with endpoints x0 and x1 such that γ0 \ {x0, x1} avoids R (otherwise we
change x0 and x1 to new adapted points). The desired loop in Hp surrounding x is γ = γ0∪σ(γ0)
(obtained by adding the conjugate). Hence R+ ∩ Hp is connected by the same argument as in
Lemma 1.12. Using the symmetries σ and τ (Remark 1.14) we deduce that for k ≥ 1, the set
ρkR+ ∩Hp is also connected.

The following Lemma will be useful for describing the domains of parametrization of the Hi

for i ∈ N ∪ {∞}. It gives some symmetry properties of the rays. These properties are specific
to the family under consideration.

Lemma 1.16. Fix p ∈ {0,∞}. If the parameters a and τa are in C \ R−, the Böttcher maps
are related by some constants κp as follows : σ(φp

σ(a)(σ(z))) = φp
a(z) = κp(a)φp

τa(τz), with

κ∞(a) = τ−1 and κ0(a) = λ(a)
τλ(τa) . Then the rays at parameters a, τa and σ(a) satisfy the

following relations, where tp(a) = arg (κp(a)) :

Rp
σ(a)(t) = σ (Rp

a (−t)) and Rp
τa(t) = τRp

a (t+ tp(a)) .

Proof. Since τ−1fτa(τz) = fa(z), the map τ−1φ∞τa(τz) conjugates fa to z 7→ zd near ∞.
Since it is tangent to identity at ∞, τ−1φ∞τa(τz) = φ∞a (z). Applying the same argument
to the maps φ0

τa(τz) and σ(φp
σ(a)

(σ(z))), we obtain that φ∞σ(a)(σ(z)) = σ(φ∞a (z)) and that

κ′0(a)σ(φ0
σ(a)(σ(z))) = φ0

a(z) = κ0(a)φ0
τa(τz) where κ0(a) and κ′0(a) are appropriate constants.

Taking the derivatives at 0, we obtain κ′0(a)σ(λ(σ(a))) = λ(a) = κ0(a)τλ(τa). Note that
κ′0(a) = 1 since λ = σ ◦ λ ◦ σ.
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a3 = a1

a1

a2 = τa1

J(fa1
)

J(fa2
)

J(fa3
)

Figure 4: Symmetric parameters a1,a2,a3 in C4 and J(fa1), J(fa2), J(fa3) .

Notation 1.17. Let S+ denote the connected component of C \ (τ−1R− ∪R−) containing R+

for d > 3, and S+ = {z | =m(z) < 0} for d = 3. Note that S ⊂ S+.

Remark 1.18. If a belongs to S+, then κ0(a) = 1
τλ(τ) = e

−2iπ
d−2 and thus t0(a) = − 1

d−2 .

2 Coordinates in the parameter plane

The conformal representations Υ0 and Υ∞ are “a priori” independent of the dynamics. In
this section we define a dynamical parametrization of H ∪ H∞ as well as parameter rays and
equipotentials.

2.1 “Dynamical” parametrization of H0 and H∞.

As usual, this parametrization is given by the “position” of the critical value. It is not defined
everywhere, but can be extended by symmetry (see also [Mi4]).

Proposition 2.1. The following map is a holomorphic covering of degree d :

Φ∞ :

{
H∞ −→ C \D

a 7−→ Φ∞(a) = φ∞a (fa(−a))

Its restriction to H∞ ∩ S is a homeomorphism onto ∆d where

∆d = (−1)d−1

{
reiθ

∣∣∣∣r > 1, 0 ≤ θ ≤
1

2
+

1

2(d − 1)

}
.
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Proof. The Böttcher coordinate φ∞
a (z) is holomorphic in (a, z) where it is defined (see [Bl]) so

Φ∞(a) is holomorphic on H∞ with values in C \D. It extends by Φ∞(∞) = ∞ and Φ∞ : H∞ ∪
{∞} → C \ D is proper. Indeed, for any sequence an ∈ H∞ tending to a ∈ ∂C, the modulus
|Φ∞(an)| = e−G∞

an
(fan (−an)) tends to e−G∞

a
(fa(−a)) since the map (a, x) 7→ G∞

a (x) is continuous
on (C \ {0}) ×C. Moreover, G∞

a (fa(−a)) = 0 since fa(−a) ∈ Ka for a ∈ C, so |Φ∞(an)| → 1.
The map Φ∞ : H∞∪{∞} → C\D is holomorphic and proper, hence it is a ramified covering

whose degree is determined by the number of preimages of ∞. Since ∞ is its sole preimage we

have to check the local degree at ∞. The following computations show that Φ∞(a) ∼ −(−a)d

d−1 at

∞, so that the degree is d. The function Fa(z) = fa(z)/zd = 1 +
da

(d− 1)z
is greater than 1/2

for z ∈ Da = {z | |z| > |a|2} and large a. Thus |fa(z)| ≥ 1
2 |z|

d ≥ |z|2 and fa sends Da into itself.

Hence, since Fa(Da) is a small neighbourhood of 1, for every k ≥ 1, the quantity (Fa(fk
a (z)))

1

dk+1

is well-defined on Da by taking the principal determination (since φ∞
a (z) is tangent to identity

at ∞). The Böttcher coordinate φ∞
a is the limit of the functions

φ∞a,k(z)
(
fk
a (z)

) 1

dk
= z

(
Fa(z)

) 1
d

(
Fa(fa(z))

) 1
d2 · · ·

(
Fa(fk

a (z))
) 1

dk+1 .

For k ≥ 1,
∣∣1 − Fa

(
fk
a (−a)

)∣∣ ≤ d
d−1 |a|

1−2k
since for large a the critical value fa(−a) belongs to

Da and |fk
a (−a)| ≥ |a|2

k
. Thus,

∑

k≥0

log
(
Fa(fk+1

a (−a))
)

dk+1
−−−→
n→∞

0 and Φ∞(a) ∼∞ fa(−a) =
−(−a)d

d− 1
.

Hence Φ∞ : H∞ ∪ {∞} → C \ D is a covering of degree d which is ramified only at ∞

(Riemann Hurwitz formula). We can lift it through the covering C \ D
z 7→zd

−−−→ C \ D to a map

υ : H∞ ∪ {∞} → C \ D satisfying υ(a)d ∼ −(−a)d

d−1 at ∞, so that we can choose υ tangent to

−αe
iπ
d Id at ∞ with α > 0. Therefore υ(a) = −eiπ/dΥ∞(a)/(d − 1)1/d (they are conformal

representations from H∞ ∪ {∞} to C \ D tangent at ∞, so they coincide). Hence

Φ∞(a) = (−1)d−1Υ∞(a)d/(d− 1).

This determines the image of S ∩ H∞ by Φ∞ using Corollary 1.15. Indeed, Φ∞(R+ ∩ H∞) =
(−1)d−1R+ \ D and Φ∞(ρR+ ∩ H∞) = (−1)dρR+ \ D so that Φ∞(H∞ ∩ S) = ∆d since Φ∞

preserves the cyclic order at ∞. Finally Φ∞ is injective on S ∩ H∞ because the opening of
Υ∞(S) is less than 1/d and Φ∞(a) = (−1)d−1Υ∞(a)d/(d − 1).

Remark 2.2. For d = 3, 4 one has

∆3 =

{
]1,∞[e2iπθ | 0 ≤ θ ≤

3

4

}
,∆4 =

{
]1,∞[e2iπθ |

1

2
≤ θ ≤

1

6
+ 1

}
.

Remark 2.3. From the proof above and Remark 1.14, the following symmetries hold : Φ∞(σ(a)) =

σ(Φ∞(a)) and Φ∞(τa) = τΦ∞(a) where τ = e
2iπ
d−1 .

Proposition 2.4. The map Φ0(a) = φ0
a(fa(−a)) is well-defined on H0 \R−.
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Figure 5: Some rays in H0 and H∞ for d = 3 and d = 4.

• For d > 3, its restriction to H0 ∩ S is a holomorphic homeomorphism onto

Λd = (−1)d−1

{
reiθ | r ∈ [0, 1[, 0 ≤ θ ≤

1

2
+

1

2(d− 2)

}

• For d = 3, the restriction of Φ0 to H0 ∩ Ṡ is a holomorphic homeomorphism onto D \R+,
where Ṡ denotes the interior of S. Moreover, Φ0 maps bijectively each of the two boundary
lines H0 ∩R+ and H0 ∩ iR

+ onto [0, 1[ (with i2 = −1).

Proof. The proof goes exactly as in Proposition 2.1 ; we just have to take care since φ0
a is not

defined for a ∈ R− (see Böttcher’s Theorem, section 1.1). We do it for d > 3, the proof for
d = 3 follows the same arguments ; the only difference is that the boundaries of Λd glue together
to give the disk for d = 3, so if we forget the components of the boundary the arguments go
through for d = 3.

The map Φ0 is holomorphic on H0 \ R−. Indeed, for a ∈ H0 \ (R− ∪ {0}) Φ0(a) =
φa(λ(a)fa(−a)), where φa is the Böttcher coordinate near 0 of the map ga(z) = λ(a)fa (z/λ(a)) =
zd−1+λ(a)1−d zd (remark that λ(a) is a non-vanishing holomorphic function on H0\(R−∪{0})).
As in Proposition 2.1 above, φa is the limit of

φa,k(z) =
(
gk
a(z)

) 1

(d−1)k = z
(
Ga(z)

) 1
d−1 · · ·

(
Ga(gk

a(z))
) 1

(d−1)k+1

where Ga(z) = ga(z)/zd−1 = 1 + λ(a)1−d z. The extension of φa, using φa ◦ ga = (φa)d−1 gives
a holomorphic function (a, z) → φa(z) with (φa)′(0) = 1.

It remains to prove that Φ0 is proper. As in the proof of Proposition 2.1, if a ∈ H0 \
(R− ∪ {0}) tends to ∂H0, Φ0(a) tends to ∂D ; an analogous computation shows that Φ0(a) ∼
−λ(a)(−a)d/(d− 1) near 0. So we can extend Φ0 by Φ0(0) = 0.

In order to determine the images of R+ ∩ H0 and ρR+ ∩ H0, with ρ = eiπ/(d−1), we can
use that φ0

a is defined by continuity at the critical point −a and satisfies Φ0(a) = φ0
a(fa(−a)) =

(φ0
a(−a))d−1. From the proof of Remark 1.16, φ0

a(R−) ⊂ R− for a ∈ R+ since (φ0
a)′(0) ∈ R+

and φ0
a(σ(z)) = σ(φ0

a(z)). Hence Φ0(R+) ⊂ (−1)d−1R+. Now for a ∈ ρR+ ∩ H0, we determine
t such that −a “is” on the ray R0

a(t), using the symmetries of Lemma 1.16 with τ = ρ2. Since

12



τσ(a) = a, the critical point −a is on R0
a(t) = R0

τσ(a)(t), thus −σ(a) = −τ−1a ∈ τ−1R0
τσ(a)(t).

Since τ−1R0
τσ(a)(t) = R0

σa(t + t0) = σ(R0
a(−t − t0)), where t0 = t0(σ(a)) = −1

d−2 (Remark 1.18),

we deduce that the critical point −a is also on R0
a

(
−t+ 1

d−2

)
; so t = −t + 1

d−2 mod 1 because

there is a unique ray stemming from 0 which contains the critical point (the case of bounded

Fatou components). Hence, 2t = 1
d−2 mod 1 and the critical point belongs to R0

a

(
1

2(d−2)

)
or

to R0
a

(
1

2(d−2) + 1
2

)
. The map φ0

a(z) is asymptotic to λ(a)z near 0 ; so any point z ∈ ρR−

near 0 is sent inside eiπ/(d−2)R−, since a ∈ ρR+. Finally, φ0
a(−a) ∈ eiπ/(d−2)R− and Φ0(a) ∈

(−1)deiπ/(d−2)R+.
The image Φ0(S ∩ H0) is exactly Λd. Indeed, the points of S near 0 are sent by Φ0

inside Λd. Moreover, if Φ0(S ∩ H0) were bigger than Λd, there would be another connected
component of Φ−1

0 (∂Λd) in S, but then Φ−1
0 (0) ∩ S 6= 0 which is impossible (φ0

a(fa(−a)) =
0 =⇒ a = 0). Finally Φ0 is a proper holomorphic map from S ∩ H0 onto Λd. It is a ramified
covering since H0 ∩ S is simply connected (by Lemma 1.12 and Corollary 1.15). The covering
Φ0◦Υ−1

0 : Υ0(S∩H0) → Λd extends to all the boundary and its degree is the number of preimages
of 0. Thus Φ0 : S ∩H0 → Λd is a holomorphic homeomorphism.

Remark 2.5. From Lemma 1.16, Remark 1.18 and the proof above, the following symmetries

hold : Φ0(σ(a)) = σ(Φ0(a)) for a /∈ R− and, for a ∈ S+, Φ0(τa) = e
2iπ
d−2 Φ0(a), where τ = e

2iπ
d−1

and σ(a) = a.

Remark 2.6. The difference (in the angles) between Λd and ∆d comes from the fact that the
boundary of H∞ will also touch the boundary of the components of Hn with n > 0.

2.2 Parametrization of Hn.

Lemma 2.7. If U is a connected component of Hn with n > 0, it cannot contain at the same
time a point a0 and its symmetric τa0. Therefore, either U or τU is included in C \R−.

Proof. Assume for contradiction that U contains a point a0 and its symmetric τa0. Then, we
can construct a curve γ surrounding 0 on which f n

a is uniformly bounded for every n : γ is the
union of an arc in U joining a0 to τa0 and all the symmetric images by τ k. This curve γ is
contained in U since U ∩ τU 6= ∅, so that U = τU = ... = τ kU . Then γ surrounds H0 since
0 ∈ H0 and γ ⊂ U 6= H0. This contradicts the fact that U is simply connected, Lemma 1.12.

Suppose now that U crosses R− and also τ−1R− ; then it will necessary cross ρ−1R− or
ρR−where ρ = eiπ/d−1. Moreover U = σ(U) since both have a common point on R−. Let a0 be
some point of U ∩ ρ−1R−. Then σ(a0) belongs to U . But σ(a0) = τa0 since τρ−1 = σ(ρ−1). By
the first part of this Lemma, this is again a contradiction.

Lemma 2.8. Let U be a connected component of Hn with n > 0 included in C \R−. The map

ΦU :

{
U −→ D

a 7−→ ΦU(a) = φ0
a(fn

a (fa(−a)))

is a conformal homeomorphism.

Proof. For a ∈ U , the map φ0
a is well-defined, and is holomorphic in (a, z) for z ∈ Ba (see

Remark 1.1). Hence since U is simply connected ΦU is a ramified covering from U to D (it is
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holomorphic and proper : the proof is similar to that of Proposition 2.4). It remains to show
that it has degree one. For this we will prove that ΦU is a local homeomorphism near every
point of U . Let a0 ∈ U and z0 = ΦU(a0). We will construct by surgery a local inverse a(z) to
z = ΦU (a) in a neighbourhood of z0. We first modify fa0 near the point fn

a0
(−a0), in order to

send fn
a0

(−a0) to (φ0
a0

)−1(z) and we prove that this new map is quasi-conformally conjugated to
fa(z), so that ΦU (a(z)) = z.

Let B′ = f−1
a0

(Ba0), B′ is a topological disc. For ε small enough and for every z ∈ D(z0, ε)
one can construct a map δz : C → C smooth in the variable z and satisfying :

• δz0 = fa0 ,
• δz(fn

a0
(−a0)) = (φ0

a0
)−1(z),

• δz coincides with fa0 outside V which is a small neighbourhood of f n
a0

(−a0) compactly
included in B ′ (and independent of z),

• δz is a diffeomorphism from B ′ to Ba0 .
We denote by σz the complex structure which coincides with the standard complex structure on
Ba0 ∪ (C \ B̃a0) and which is invariant by δz. This complex structure has bounded dilatation.
Let gz be the homeomorphism that integrates σz, given by Ahlfors-Bers’ Theorem which is
normalized to fix 0 and to be tangent to identity at ∞. Then the map hz = gz ◦ δz ◦ g−1

z is
holomorphic. Moreover it fixes ∞ with local degree d and 0 with local degree d− 1. Therefore,
hz(u) = ud−1(u+ da(z)/(d− 1)) = fa(z)(u) with a(z) a continuous function of z and a(z0) = a0.
On Ba0 , gz is holomorphic, conjugates fa0 to fa(z) ; so φ0

a0
and φ0

a(z) ◦ gz differ from a d − 2

root of unity (since they both conjugate fa0 to z 7→ zd−1). For z = z0 this root of unity is 1 ;
so, by continuity, φ0

a0
= φ0

a(z) ◦ gz. Moreover gz(−a0) = −a(z) since gz preserves the critical

points (looking at the local degree). This implies that ΦU (a(z)) = φ0
a(z)(f

n+1
a(z) (−a(z))) = z since

fn+1
a(z) (−a(z)) = gz◦δ

n+1
z ◦g−1

z (−a(z)) = gz◦δ
n+1
z (−a0) = gz◦δz(fn

a0
(−a0)) and gz◦δz(fn

a0
(−a0)) =

gz ◦ (φ0
a0

)−1(z) = (φ0
a(z))

−1(z).

Remark 2.9. From Lemma 1.16 and Remark 1.18, the following symmetries hold : for a ∈ U ,

Φσ(U)(σ(a)) = σ(ΦU (a)) and, ΦτU(τa) = e
2iπ
d−2 ΦU(a) if U ⊂ S+, where τ = e

2iπ
d−1 .

2.3 Parameter rays and equipotentials in C \ R−.

Definition 2.10. We define the equipotential of level v > 0, in H∞ and in H0, by :

E∞(v) = Φ−1
∞

({
ev+2iπt, t ∈ [0, 1]

})
, E0(v) = Φ−1

0

({
e−v+2iπt, t ∈ [0, 1]

})
.

Note that an equipotential in H∞ is a closed curve surrounding C and that an equipotential
in H0 is never closed because the point in R− is missing. One can close it however by adding
this point.

Definition 2.11. Let p ∈ {0,∞}, we define the union of the rays of angle t in Hp, by

∪Rp(t) = (Φp)−1(R+e2iπt).

Remark 2.12. With this definition, there is no intersection between R− and ∪R0(t) for any t.

Definition 2.13. Let p ∈ {0,∞} and s ∈ {Id, τ, σ, τσ, · · · } the result of any composition of the
symmetries σ and τ . Denote by Φs

p the restriction to s(S) of the map Φp and define the ray of
angle t in Hp ∩ s(S) by

Rs
p(t) =

(
Φs

p

)−1 ({
re2iπt, r ∈ R+

})
= ∪Rp(t) ∩ s(S).
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Remark 2.14.

• The set Rs
p(t) \ {0} is connected except when d = 3, t = 0 and s = Id ;

• For d = 3 and t = 0, RId
0 (0) \ {0} has two connected components. Therefore we will make

the convention that RId
0 (0) is the ray R+ ∩H0 and iR+ ∩H0 is the ray Rτσ

0 (0) ;

• We will get rid of these notations when we will work in a para-puzzle piece P0(a0) since
from Remark 3.6, for every t, ∪Rp(t)∩P0(a0) has only one connected component that we
will call Rp(t).

Lemma 2.15. We have σ(Rs
p(t)) = Rσs

p (−t), τRs
∞(t) = Rτs

∞(t + 1
d−1 ) and if Rs

0(t) ⊂ S+,

τRs
0(t) = Rτs

0 (t+ 1
d−2) .

Proof. This follows from Remarks 2.5 and 2.3

It follows from Lemma 2.15 that ∪Rp(t) is not invariant in general by σ neither by τ .

Remark 2.16. We have the following correspondences for parameters a ∈ C \ R− and for
p ∈ {0,∞} : (a ∈ ∪Rp(t) ⇐⇒ fa(−a) ∈ Rp

a(t)) and (a ∈ Ep(v) ⇐⇒ fa(−a) ∈ Ep
a(v)).

Remark 2.17. Let p ∈ {0,∞}.

• The line R+ ∩Hp is the ray RId
p (0) if d is odd, and RId

p (1/2) if d is even ;

• The line ρR+ ∩ H0 and ρR+ ∩ H∞ are the rays RId
0

(
1
2 + 1

2(d−2)

)
and RId

∞

(
1
2 + 1

2(d−1)

)

respectively if d > 3 is odd, and RId
0

(
1

2(d−2)

)
and RId

∞

(
1

2(d−1)

)
respectively if d is even.

Proof. This follows from Proposition 2.4 and Proposition 2.1 (those angles are given by the
boundaries of Λd and ∆d).

Definition 2.18. Let U ⊂ C \ R− be a connected component of Hn, with n > 0. We define
the center of U by cU = Φ−1

U (0) and the internal ray of angle t ∈ R/Z, resp. the equipotential of
level v by :

RU (t) = Φ−1
U

({
re2iπt, r < 1

})
, resp. EU(v) = Φ−1

U

({
e−v+2iπt, t ∈ [0, 1]

})
.

Note that RU (t) \ {cU} is connected since ΦU is a homeomorphism.

Remark 2.19. For a ∈ Hn \ R− with n > 0, the critical value fa(−a) belongs to a connected
component Ua of B̃a. The map fn

a : Ua → Ba is a homeomorphism. Thus we can pull back the
Böttcher coordinate to get coordinates on Ua.

Notation 2.20. We denote by r and call the center of Ua the unique point of Ua which is sent
by fn

a to 0 (the center of Ba). We denote by Rr
a(t) the ray stemming from r with Böttcher

coordinate t, i.e. the preimage (fn
a |Ua

)−1(R0
a(t)) which contains r in its closure.

As in Lemma 1.6 we get now the criterion for connected components in the dynamical plane
to have a common boundary point which is the landing point of rays.

Lemma 2.21. Let a ∈ C \ R− and U, V be two connected components of B̃a with center r, r′

respectively. If the rays Rr
a(t) and Rr′

a (t′) land at the same point x then either r = r ′ and t = t′

or the landing point x is eventually critical.
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Proof. We assume that the rays Rr
a(t) and Rr′

a (t′) are different. After several iterations by fa,
the image of the two rays in Ba should coincide by Lemma 1.6. Therefore we have, at some
step of the iterations, the situation of two rays landing at a common point and having the same
image under the map fa. Then the common landing point is the critical point −a.

Note that when a is the center of a connected component U of Hn, the critical value is the
center of Ua.

Lemma 2.22. Let U be a connected component of Hn with n > 0. Let Ω be a simply connected
neighbourhood of U which avoids the centers of all the components of Hj with j < n. There
exists on Ω a holomorphic map r = rU : Ω → C such that for a ∈ U , r(a) is the center of the
connected component that contains the critical value.

Proof. We apply to F (a, z) = fn
a (z) the Implicit Function Theorem in a neighbourhood of the

point (a, z) = (cU , fcU (−cU )). The only point where it is not possible to apply the Theorem are
the centers of Hj for j < n since then the critical point is sent after n iterations to 0.

Corollary 2.23. Let U ⊂ C \ R− be a connected component of Hn with n > 0. We have the

following equivalence : a ∈ RU (t) ⇐⇒ fa(−a) ∈ R
r(a)
a (t).

2.4 Landing properties

Most of the results in this subsection follow as in the classical case of quadratic polynomials,
see [DoHu1, Mi1] and also [Mi4]. Recall that for U = H∞ or H0, the ray Rs

U (t) is the one in
s(S) where s is any composition of σ and τ . Thus, it is not defined for any t ; for instance for
s = Id, the angle has to be in ∆d or in Λd. For a more detailed description and an other proof
of the following Lemma, see section 2.5.

Lemma 2.24. Let U ⊂ C \ R− be a connected component of Hn with n ∈ N ∪ {∞}. For t

rational, the ray Rs
U (t) converges. Let a0 denote the landing point. If a0 /∈ R−, the ray R

r(a0)
a0 (t)

is periodic (resp. eventually periodic) and lands at a parabolic periodic (resp. eventually periodic)
point or at fa0(−a0) which is a repelling periodic (resp. eventually periodic) point.

In the last sentence, “eventually” depends on t, meaning that the number of iterates after
which Ra0

r(a0)
(t) becomes periodic, and the period, both depend on t.

Proof. Assume that U = H∞, the proof being easier for the other components. Let a0 be
an accumulation point of Rs

∞(t). Since a0 ∈ C and t ∈ Q the ray R∞
a0

(t) is well-defined and
converges. The landing point is (eventually) periodic, either parabolic or repelling. If it is
repelling, and not eventually the critical value, by lemma 1.3 we should have the stability of
the rays R∞

a0
(t/d + k/d). But for parameters a on Rs

∞(t) near a0 the critical value is on R∞
a (t)

(by definition), so at least two of the previous rays crash on the critical point. So there exist

p, l depending only on t such that f p+l
a0 (−a0) = f l

a0
(−a0). If the landing point is eventually

parabolic, the resultant of the two polynomials f p
a0(y) − y and (f p

a0)′(y) − 1 vanishes since they
have at least a common root. In both cases a0 is a root of a polynomial. Hence the accumulation
set is a finite set and, since it is connected, it reduces to a point.

In the case where the landing point of R∞
a0

(t) is eventually repelling, let k be the first integer

such that the critical value lies on R∞
a0

(dkt). Thus the compact set R∞
a0

(dkt) moves continuously

(by R∞
a (dkt)) for a in a neighbourhood Ω of a0. In particular, for a ∈ (Rs

∞(t) ∪ {a0}) ∩ Ω,

16



the compact set R∞
a (t) is a continuous image of R∞

a (dkt) since fk
a restricts on R∞

a (t) to a
homeomorphism onto R∞

a (dkt) (the holomorphic motion of the closure is obtained using the
λ-Lemma). Therefore the critical value, which for a ∈ Rs

∞(t) ∩ Ω is in R∞
a (t), is for a = a0 in

R∞
a0

(t). Therefore R∞
a0

(t) lands at fa0(−a0).

Definition 2.25. A parameter a is Misiurewicz (or of Misiurewicz type) if for some l ≥ 1,
z = f l

a(−a) is a periodic point of fa.

Note that if f l
a(−a) is periodic (with l ≥ 1), it is necessarily a repelling point. Indeed, if

it is attracting or parabolic it would attract a critical point and there is no other “free” critical
point that can converge to it. Note also that all the Misiurewicz points are in C.

Lemma 2.26. Let a ∈ C \ R− be a Misiurewicz point. There exists t ∈ Q such that R∞
a (t)

lands at fa(−a). Moreover, the ray Rs
∞(t) lands at a, for s such that a ∈ s(S).

Proof. The proof is exactly the same as in [DoHu1].

Corollary 2.27. If d is odd, R+ = RId
∞ (0) ∪RId

0 (0) ∪ {∗} where ∗ is a Misiurewicz point.

Proof. If d = 2l + 1, R+ ∩H0 = RId
0 (0) (Remark 2.17). Let a0 be the landing point of the ray

RId
0 (0), a0 ∈ R+∗. The ray R0

a0
(0) ⊂ R+ lands at a fixed point, say x0 ∈ R+∗. If this fixed point

is parabolic, the critical point −a0 is in a Fatou component attached to x0. Thus, this Fatou
component contains a curve which joins −a0 and x0 and avoids 0. By symmetry (σ) this Fatou
component contains a curve surrounding 0 : this contradicts the fact that Fatou components are
simply connected for polynomials. Therefore x0 is repelling and a0 is a Misiurewicz parameter,
so x0 = fa0(−a0) (Lemma 2.24).

The fixed ray R∞
a0

(0) ⊂ R+ also converges to a positive fixed point, say x1. Assume that
x1 6= x0. Then, from the shape of the graph of fa0 |R+ , it is easy to see that since x0 is repelling,
either there are two other fixed points (one attracting and one repelling) or there is a parabolic
fixed point of multiplier 1. This implies that, including 0, there are at least d+ 1 fixed points in
C counted with multiplicity. This is not possible for a polynomial of degree d.

Therefore x0 = x1 and the ray R∞
a0

(0) lands at fa0(−a0). So RId
∞ (0) lands at a0 (by

Lemma 2.26).

Proposition 2.32 and Proposition 4.15 give the precise dynamical behaviour of fa for pa-
rameters on ∂H0.

The parameters on R− excluded in all the results are obtained by symmetry.

Lemma 2.28. Two different rays in U , where U is a connected component of H, cannot converge
to the same parameter.

Proof. The proof is the same in any Hi so we do it for U = H0. Assume, to get a contradiction,
that two rays of H0 converge to the same point a0. One can suppose (up to changing the rays)
that they belong to the same s(S), so that it is enough to consider the case s = Id. Let R0(t)
and R0(t′) be the two rays under consideration. Let γ be the curve R0(t)∪R0(t′) ∪ {a0} ∪ {0}.
There are infinitely many angles of the form p

q((d−1)k−1)
between t and t′, and infinitely many of

them give rays landing to Misiurewicz parameters. Indeed, for such an angle θ, the ray R0(θ)
converges to a parameter a which is either of Misiurewicz type or such that the map fa has a
parabolic point of period k with multiplier 1 since it is the landing point of a ray in Ba (see
Lemma 2.24). As there is only a finite number of parameters a satisfying the second alternative
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(they are solutions of a polynomial equation of degree at most dk), we know that infinitely
many of these landing parameters are Misiurewicz points (on ∂H0 \ {a0}) lying in the bounded
component of C\γ. This contradicts the fact that Misiurewicz parameters are landing points of
external parameter rays (Lemma 2.26) because such external rays will have to cross γ to enter
the bounded component of C \ γ.

2.5 Description of the dynamical position of the critical value.

Note that in degree d ≥ 3, the position of the critical value does not give directly the position of
the critical point as in degree 2. We will now give the Böttcher coordinate of the critical point
for any parameter a ∈ S ∩ (H∞ ∪ H0), so in this subsection we forget the exponent specifying
the sector for the parameter rays.

Lemma 2.29. For a ∈ R∞(t), the rays R∞
a

(
t
d +

b d−1
2

c

d

)
, R∞

a

(
t
d +

b d+1
2

c

d

)
crash on the critical

point −a. If a ∈ R0(t), the critical point −a belongs to R0
a

(
t

d−1 +
b d−1

2
c

d−1

)
.

Proof. For a ∈ R∞(t), fa(−a) belongs to R∞
a (t), so the two rays crashing on −a belong to the

set of rays k =
{
R∞

a

(
t
d + k

d

)
| 0 ≤ k ≤ d− 1

}
. If a ∈ R0(t), the critical point −a belongs to a

unique ray of the set i =
{
R0

a

(
t

d−1 + k
d−1

)
| 0 ≤ k ≤ d− 2

}
.

We first describe the case of parameters a ∈ R+ : this case is more visual because of the
symmetry Rp

a(−θ) = σ(Rp
a(θ)) (where σ is the complex conjugacy). Then we conclude by moving

a through S.
1) For 0 < a � 1, the critical point is on R0

a(1
2) ⊂ R−, since a ∈ H0 ∩R+. For d = 2l + 1,

a ∈ R0(0) so t = 0 ; we verify then that R0
a(1

2) = R0
a(0 + l

d−1). For d = 2l + 2, a ∈ R0(1
2 ), so

t = 1
2 ; we verify in that case that R0

a(1
2 ) = R0

a

(
1

2(d−1) + l
d−1

)
.

For a ∈ S∩H0, φ0
a(−a) is well-defined and continuous, and so it belongs to e2iπ( t

d−1
+ k

d−1
)
R+

for a ∈ R0(t). The integer k is a continuous function of a, so it is constant and therefore equal
to bd−1

2 c.

2) We consider now the case a � 1. The fixed rays R0
a( k

d−2), R∞
a ( k

d−1 ) with k ∈ N are well
defined. Indeed, −a /∈ Ka so every rational ray in Ba converges. Moreover, the only fixed rays in
k are R∞

a (0) ⊂ R+ and, if d is odd, R∞
a (1

2) =]−∞, p[ where p is the unique negative fixed point

of fa ; note that p < −a since fa(−a) > 0. By Lemma 1.6, distinct internal rays of R0
a(± k

d−2)
(k ∈ N) converge to distinct fixed points, named x±k. Those xk are repelling points (a /∈ C).
They are the landing points of external rays (see [LePr]), which are also fixed rays because of the
rotation number at xk (see also [Pe]). Those rays belong to {R∞

a ( p
d−1 ), 0 ≤ p ≤ d− 2}. Because

of the symmetry, R∞
a ( ±k

d−1) and R0
a( ±k

d−2 ) converge to x±k for 0 ≤ k < bd
2c. Thus, for l = b d−1

2 c,

γa = R∞
a

(
± l−1

d−1

)
∪ R0

a

(
± l−1

d−2

)
is a curve ”separating” C into two connected components ; let

Ua be the one which contains −a. The only rays of k entering Ua are R∞
a (d−1

2d ), R∞
a (d+1

2d ) ; so
they crash on −a for a � 1.

By Lemma 1.4, γa admits a holomorphic motion parameterized by S ∩H∞. Indeed, if −a

belongs to γa the critical value would describe on the external rays a sector of opening more
than dπ

d−1 which is impossible since it is exactly the opening of Φ∞(S). Therefore −a stays in
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Ua and the only candidates of k in Ua are R∞
a ( t

d +
b d−1

2
c

d ) and R∞
a ( t

d +
b d+1

2
c

d ), so they crash
on −a.

Corollary 2.30. For a ∈ S, if the critical point −a belongs to R∞
a (θ) then θ ∈ [ 1

2 − 1
d ,

1
2 + 1

d ],
if −a ∈ R0

a(θ) then θ ∈ [ 1
2 − 1

2(d−1) ,
1
2 + 1

d−1 ].

Proposition 2.31. For t ∈ Q, the ray R∞(t) converges to a parameter a∞(t). For l = b d−1
2 c :

1. if t
d + l

d (resp. t
d + l+1

d ) is periodic by multiplication by d, a∞(t) is a parabolic parameter.

The ray R∞
a∞(t)

(
t
d + l

d

)
(resp. R∞

a∞(t)

(
t
d + l+1

d

)
) lands at a parabolic point p, root of the

Fatou component Pt containing the critical point −a∞(t) and the ray R∞
a∞(t)

(
t
d + l+1

d

)

(resp. R∞
a∞(t)

(
t
d + l

d

)
) lands at the preimage of fa∞(t)(p) on ∂Pt;

2. otherwise a∞(t) is a Misiurewicz parameter, R∞
a∞(t)

(
t
d + l

d

)
and R∞

a∞(t)

(
t
d + l+1

d

)
land at

−a∞(t).

Figure 6: Two rays converging to the parabolic point (on the left), to the critical point (on the
right) for some parameters in C4.

Proof. We will use the notations : t0 = t
d +

b d−1
2

c

d , t1 = t
d +

b d+1
2

c

d and x0, x1 for the landing
points of R∞

a∞
(t0), R∞

a∞
(t1) respectively. We distinguish two cases according to whether t0, t1

are periodic or not.
1) t0 is periodic : The point x0, which is eventually critical or parabolic, is now periodic and in
the Julia set. So it is necessarily parabolic. If t0 is fixed the result follows. Assume now that
t0 is not fixed. Suppose, to get a contradiction, that x0 is not the root of Pt. So some ray with
angle t2 = dit0 6= t0 converges to the root of the Fatou component Pt which contains the critical
point, that is to the image f i

a(x0) belonging to ∂Pt. Since the angles { k
dj(d−1)

, k ∈ N, j ∈ N} are

dense in R/Z (the distance between two consecutive terms tends to 0), there exist three angles
of this form called θj 6= 0 separating t0, t1 and t2. Hence the external rays of angles θj with
the internal rays which have the same end points form a graph δ that separates C into three
connected components : one contains R∞

a∞(t)(t2) and the critical point, the other ones contain

R∞
a∞(t)(t0) and R∞

a∞(t)(t1). By Lemma 1.4, δ varies continuously for a ∈ R∞(t) since the critical

point cannot be on γ (Lemma 2.29). Here we get a contradiction since the critical point varies
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continuously, cannot cross δ and has to break the rays R∞
a∞(t)(t0) and R∞

a∞(t)(t1) (Lemma 2.29).

Hence x0 is the root of Pt. Let x′ be the other preimage on ∂Pt of fa∞(t)(x0). We want to prove
now that R∞

a∞(t)(t1) converges to x′. The curve γ formed by all the fixed rays (see Lemma 2.29)

varies continuously with a on R∞(t) up to a∞(t) since at this parameter the critical point is not
on γ. So the rays R∞

a∞(t)(t0) and R∞
a∞(t)(t1) are the only preimages of R∞

a∞(t)(dt0) in the same

connected component of C \ γ as Pt. So R∞
a∞(t)(t1) converges to x′.

If t1 is periodic instead of t0 the proof is the same.
2) Neither t0 nor t1 is periodic: Assume for contradiction that x0 is eventually parabolic, by
the same argument using γ as before, R∞

a∞(t)(t0) lands at the root p of Pt. But t0 is not

periodic, so there is another ray R∞
a∞(t)(d

it0) landing at p. Let k be the first integer such that

di+kt0 ≡ dkt0 mod 1 ; then fk−1
a (p) must be critical since two different rays land at this point :

R∞
a∞(t)(d

i+k−1t0) and R∞
a∞(t)(d

k−1t0) which have the same image R∞
a∞(t)(d

kt0). This gives a
contradiction. Finally, by Lemma 1.4, x0 is eventually critical.

Proposition 2.32. For t ∈ Q, let a0(t) be the landing point of R0(t). We have :

1. if t
d−1 +

b d−1
2

c

d−1 is periodic by multiplication by d− 1, then R0
a0(t)

(
t

d−1 +
b d−1

2
c

d−1

)
lands at

a parabolic point which is the root of the Fatou component Pt which contains −a0(t);

2. otherwise, R0
a0(t)

(
t

d−1 +
b d−1

2
c

d−1

)
lands at the critical point −a0(t).

Proof. The proof goes exactly as the one of Proposition 2.31.

Lemma 2.33. Let a be a Misiurewicz point on ∂Hj with j ∈ {0,∞},

R
r(a)
a (t) lands at fa(−a) ⇐⇒ Rj(t) lands at a.

Proof. The proof of the implication ⇒ is exactly the same as in degree 2 (see [DoHu1]). The
proof of ⇐ is just the case 2 of Proposition 2.31 and Proposition 2.32 since −a cannot be at the
same time eventually periodic and attracted by a parabolic point.

We can now give another proof of the following corollary :

Corollary .2.27 If d is odd, R+ = RId
∞ (0) ∪RId

0 (0) ∪ {∗} where ∗ is a Misiurewicz point.

Proof. If d = 2l + 1, R+ ∩ H0 = R0(0) so t = 0 and t
d−1 +

b d−1
2

c

d−1 = l
d−1 = 1

2 ; this angle is not

periodic by multiplication by d − 1, neither the angle l+1
d−1 since their images are l and l + 1.

Thus R0(0) converges to a parameter a0 such that R0
a0

(1
2 ) lands −a0. So a0 is a Misiurewicz

point. The unique positive fixed point is fa0(−a0) so the fixed ray R∞
a0

(0) ⊂ R+ converges to
fa0(−a0) and by Lemma 2.33, R∞(0) lands at a0.

3 Graphs, puzzles, para-graphs and para-puzzles

This section is devoted to the construction of the puzzles and the para-puzzles. We recall in
section 3.1 the graphs used in [Ro1] and we construct in section 3.2 the analoguous graphs in the
parameter plane, then we establish the relations between graphs and para-graphs (section 3.3
and 3.4) and show how to use them for the question of local connectivity (section 3.5).
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3.1 Dynamical puzzles and graphs

We define the puzzles and the graphs (as in [Ro1]) when the Julia set is connected, i.e. for
parameters in C \ R−, and obtain the puzzles in the other cases through a holomorphic motion
of these graphs.

Fix a ∈ C\R−. For large l and θ± = ± 1
(d−1)l−1

, the ray R0
a(θ±) is well defined and converges

to a point x± which is repelling (fa possesses at most one parabolic orbit). Let η± be the angle
of some external ray R∞

a (η±) landing at x± (given by Proposition 1.5). Since the internal ray
R0

a(θ±) is fixed by f l
a, the external ray R∞

a (η±) will also be fixed by f l
a so η± is periodic (see

Remark 3.2). Using these rays we construct the graphs in X
a
, where Xa = {z ∈ C | G0

a(z) <
1 and G∞

a (z) < 1}, as follows.

Definition 3.1. Let a ∈ C \ R−, θ± = ± 1
(d−1)l−1

with l large (as before). A puzzle for fa is

defined by the following graph :

Ia0 (θ±) = ∂Xa ∪
(
Xa ∩

(⋃

i≥0

(
R0

a((d− 1)iθ±) ∪R∞
a

(
diη±

))))
.

The puzzle pieces of depth n ≥ 0 are the connected components of

f−n
a (Xa) \ Ian = f−n

a (Xa \ Ia0 ), where Ian = f−n
a (Ia0 ) for all n ≥ 1.

The puzzle piece containing a given point z is denoted by P a
n (z). The puzzle pieces containing

the critical value fa(−a) are denoted simply by P a
0 , . . . , P

a
n , . . . if there is no ambiguity.

The puzzle is the union of all the puzzle pieces.

Remark 3.2. The ray R∞
a (η±) is the only external ray of the cycle R∞

a (djη±), j ≥ 0, to converge
to x±.

Proof. Assume (to get a contradiction) that R∞
a (djη±) with djη± 6= η± mod 1 converges to

x±. Since there is a finite number of rays in the cycle converging to x± we can assume (up to

changing the notations) that the angles are all in the interval (η±, d
jη±). Since the map f l−j

a is
conformal at this point, it preserves the “cyclic order” of the rays at x±. But it maps R∞

a (djη±)
to R∞

a (η±) and R∞
a (η±) to R∞

a (dl−jη±). These rays land at x± but (because of the cyclic order)
dl−jη± will not be in the interval (η±, d

jη±). So the two rays cannot be in the same cycle.

If we fix some θ as in definition 3.1 but vary the parameter a in C \ R−, we will see that
for the graph Ia0 (θ) the landing points of the rays, x±, can become parabolic, the rays Ra

∞(η±)
and R0

a(θ±) can land at different points, the rays can crash on critical points and no more be
well-defined etc... For these reasons we should restrict the domain (in the parameter space)
on which we consider the graph at each depth. The para-puzzle pieces defined in section 3.2
correspond exactly to the region were the dynamical pieces are defined by the same rays.

3.2 Para-graphs and para-puzzles

The para-graph are just the copy of dynamical graphs in the parameter plane so depend from a
preferred parameter. Let a0 ∈ C \ R− and Ia0

0 (θ) be the graph associated to this parameter by
Definition 3.1, with θ ∈ {θ±}.

Definition 3.3. For n ∈ N, let κn be the set of all the pairs (U , v) where :
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• U is a connected component of Hi with i ∈ {∞, 0, · · · , n} ;

• (d− 1)n−iv = 1 if 0 ≤ i ≤ n and dnv = 1 if i = ∞.

Let Xn be the connected component containing a0 of C \ (
⋃

(U ,v)∈κn

EU (v)).

Definition 3.4. For n ∈ N, let Θn be the set of all the pairs (U , t) where :

• U is a connected component of Hi with i ∈ {∞, 0, · · · , n} ;

• (d− 1)n−it ∈ {θ, . . . , (d− 1)l−1θ} if 0 ≤ i ≤ n ;

• dnt ∈ {djη, j ≥ 0} if i = ∞.

Figure 7: Schematic representation of a para-graphs I0 and I1 for C4.

Definition 3.5. The para-puzzle is the union of the para-puzzle pieces. The para-puzzle pieces
of depth n are the connected components of Xn \ In where

In(θ) = ∂Xn ∪
⋃

(U ,t)∈Θn

(
∪RU(t) ∩ Xn

)
.

The para-puzzle piece containing a given parameter a will be denoted by Pn(a). For the given
parameter a0 we will simply write Pn for Pn(a0).

The points of R− can be added or not to the graph. We only care of parameters in S
and for these parameters, all the para-puzzle pieces are compactly contained in C \ R− by the
following Remark.

Remark 3.6. For parameters a0 ∈ S, the para-puzzle piece P0(a0) is compactly contained in
C\R−. Moreover there is only one connected component of ∪Rp(t)\{p} in P0(a0). Thus for the
simplicity of the exposition we will forget the exponent in Rs

p(t) and call Rp(t) the parameter
ray that belongs to P0(a0).
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Proof. By definition of the para-graphs, any piece of depth 0 is bounded only by rays in H0 and
in H∞ and equipotentials. If P0(a0) intersects R+ then it is compactly contained in the interior

of S ∪ σS ∪ τ−1S. Indeed, the sector σS ∪ τ−1S = ρ−1(S ∪ σS) with ρ = e
iπ

d−1 contains all the

rays of H0 in a sector of angles of width greater than 1 +
1

d− 2
by proposition 2.4 and using the

coordinate Φ0. Therefore, P0(a0) is contained in the interior of S∪σS ∪τ−1S since by definition
P0(a0)∩H0 corresponds to angles in a sector of width less than 1. Using the same argument, if
P0(a0) intersects ρR+ then it is compactly contained in the interior of S ∪ τσS ∪ τS which is
S ∪ τ(S ∪σS). Hence, P0(a0) is compactly contained in C \R− since the interior of S ∪ρS ∪σS
is included in C \ R−.

Since by definition P0(a0) ∩ H0 corresponds to angles in a sector of width less than 1,
∪R0(t)\{0} has only one connected component in P0(a0). The same holds for ∪R∞(t)\{∞}.

3.3 Holomorphic motion of the dynamical graphs

Definition 3.7. Let Λ be a C-analytic variety. Let λ0 ∈ Λ. A holomorphic motion of a subset
Γ ⊂ C parameterized by Λ is a map Ψ: Λ × Γ → C such that Ψ(., z) is holomorphic on Λ,
Ψλ = Ψ(λ, .) is injective on Γ and Ψλ0 = Id.

For the given parameter a0 ∈ C \ R−, we define now the set of parameters for which the
graph Ia0

0 (θ) admits a holomorphic motion. Let η be the angle of the external ray converging to
the same point as R0

a0
(θ) in Ia0

0 (θ).

Lemma 3.8. Let Ωη be the set of parameters a ∈ C\R− such that for all i ≥ 0 the ray R∞
a (diη)

is well-defined and converges to a repelling periodic point.

1. Ωη is a non empty open set ;

2. The set Γ∞
a0

(η) =
⋃
i≥0

R∞
a0

(diη) admits a holomorphic motion parameterized by Ωη ;

3. The boundary ∂Ωη is a subset of R− ∪
⋃
i≥0

∪R∞(diη) without isolated points.

Proof. 1. and 2. : Since a0 ∈ Ωη, it is clearly not empty. To prove that Ωη is open, take
a1 ∈ Ωη. For each i ≥ 0, the landing point of R∞

a1
(diη) is periodic and repelling, thus not

eventually critical. Therefore the compact set R∞
a1

(diη) admits a holomorphic motion in some
neighbourhood of a1 (lemma 1.4). The set Γ∞

a1
(η) is a finite union of such compact sets, so it

admits a holomorphic motion in a neighbourhood of a1. Hence Ωη is open.
3. a) Remark that R− ⊂ C \Ωη (by definition), so there is no isolated point of ∂Ωη in R−.

Assume for contradiction that there is a point a1 of C \ R− isolated in ∂Ωη = Ωη \ Ωη. Then
there exists an open neighbourhood O of a1 such that O \ {a1} ⊂ Ωη. Since the parameter a1 is
not in Ωη, one of the rays either is not well defined or converges to a parabolic point. If the ray
R∞

a1
(diη) crashes on −a1, then fa1(−a1) belongs to R∞

a1
(di+1η) and a1 ∈ Rs

∞(di+1η) for some
s composition of τ and σ. Then for parameters a ∈ Rs

∞(di+1η) ∩ O near a1, the ray R∞
a (diη)

also crashes. This contradicts the fact that O \ {a1} ⊂ Ωη. Consider now the case where all the
rays R∞

a1
(diη) are well-defined but converge to a parabolic periodic cycle (diη is periodic). For

a ∈ O, the landing point xi(a) of the ray R∞
a (diη) defines a holomorphic map (Lemma 1.4). It is

repelling for a ∈ O \{a1} and parabolic at a1. So (fk
a )′(x(a)) can be extended to a holomorphic

23



map from O to C\D (where k denotes the period of the cycle). Its modulus reaches its minimum
at a1 ; this contradicts the maximum principle for the map a 7→ 1/(f k

a )′(x(a)).
b) For a ∈ ∂Ωη \ R−, either one ray R∞

a (diη) crashes on the critical point −a and so
a ∈ ∪R∞(di+1η), or the rays R∞

a (diη) converge to a parabolic periodic cycle and so a ∈ PA =
{a | ∃ x such that f k

a (x) = x and (fk
a )′(x) = 1} (where k is the period of η). The set PA is

finite since every a ∈ PA is a root of the discriminant of the two polynomials f k
a (z) − z and

(fk
a )′(z) − 1. Since there is no isolated points in ∂Ωη those parameters of PA ∩ ∂Ωη are in the

closure ∪R∞(diη) for i ≥ 0.

The same result holds for internal rays :

Lemma 3.9. Let Ω′
θ be the set of parameters a ∈ C \ R− such that for all i ≥ 0 the ray

R0
a((d − 1)iθ) is well-defined and converges to a repelling periodic point.

1. Ω′
θ is a non empty open set ;

2. The set Γ0
a0

(θ) =
⋃
i≥0

R0
a0

((d − 1)iθ) admits a holomorphic motion parameterized by Ω′
θ ;

3. The boundary ∂Ω′
θ is a subset of R− ∪

⋃
i≥0

∪R0((d− 1)iθ). It has no isolated points.

Corollary 3.10. In the connected component containing a0 of Ωη ∩ Ω′
θ, the rays R0

a(θ) and
R∞

a (η) land at a common point.

Proof. The landing points x0(a) of R0
a(θ), x∞(a) of R∞

a (η), are both repelling periodic points.
The period is determined by the angles θ, and η, and is at most say k. At the parameter a0

the points coincide by definition of the graph : x = x0(a0) = x∞(a0). Since x is repelling,
by Rouché’s Theorem, on some neighbourhood U of x there is exactly one point of period less
than k, for a in a neighbourhood U ⊂ Ωη ∩ Ω′

θ of a0. Moreover, the points x0(a) and x∞(a)
vary continuously for a ∈ Ωη ∩ Ω′

θ (Lemma 3.8 and Lemma 3.9). Therefore, they coincide on U
and finally on the connected component containing a0 of Ωη ∩ Ω′

θ (since they are holomorphic
maps).

Corollary 3.11. The para-puzzle piece P0 is contained in the connected component of Ωη ∩ Ω′
θ

containing a0. Therefore the graph Ia0
0 (θ) admits a holomorphic motion defined on P0(a0) so

that Ia0 (θ) is well defined (i.e. the rays of the graph are well defined).

Proof. The boundary ∂Ω′
θ is included in Ωη∪R−, except for the landing points of the rays, since

∂Ω′
θ ∩ ∂Ωη ⊂ R− ∪ (∪R0((d− 1)iθ) ∩ ∪R∞(diη)). The same holds for ∂Ωη, so the boundary of

Ωη∩Ω′
θ is simply the union ∂Ωη∪∂Ω′

θ. Thus (∂Ωη∪∂Ω′
θ)∩X0 is included in I0(θ)∪R−. Therefore

P0 is contained in the connected component of Ωη ∩ Ω′
θ containing a0 (since P0 = P0(a0) is a

connected component of C \ I0(θ) in C \ R−).
Hence, the graph Ia0 (θ) = ∂Xa∪ ((Γ∞

a (η)∪Γ0
a(θ))∩Xa) is well defined for a in P0(a0), since

P0(a0) is included in X0. The holomorphic motion of the graph Ia0
0 follows from Lemma 3.8,

Lemma 3.9 and the fact that the map (a, z) → φp
a ◦ (φp

a0)−1(z) defines a holomorphic motion of
the equipotentials Ep

a0(1) for a in X0 and p ∈ {0,∞}.

From now on through the rest of the paper, we restrict ourself to parameters a0 ∈ S
and study para-puzzles inside the open region P0(a0). Hence by Remark 3.6 we don’t need
assumptions on the sector containing the parameters considered.
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Corollary 3.12. For n ≥ 1, the points which are in P0 of In(θ) ∩ C are of Misiurewicz type.

Proof. A parameter a ∈ In(θ) ∩ ∂C is necessarily the landing point of a ray R∞(t) with dnt ∈
{djη, j ≥ 0} (by definition of In(θ)). Thus the ray R∞

a (t) belongs to Ian since its image by fn
a ,

R∞
a (dnt), belongs to Ia0 (by definition of t and of Ia

0 ). Since they are in P0, the landing points
of rays in Ia0 are repelling periodic points (Lemma 3.8 and Corollary 3.10). Therefore a is a
Misiurewicz point since we are in the second alternative of Lemma 2.24 : R∞

a (dnt) lands at a
repelling periodic point.

Lemma 3.13. For parameters a ∈ P0(a0), the following equivalence holds :

a ∈ In ⇐⇒ fa(−a) ∈ Ian .

Proof. By construction of In, the rays and equipotentials involved in In and Ian correspond to
each other via the change of coordinates (Remark 2.16 and Corollary 2.23). From Corollary 3.12
and its proof, the points in In ∩ ∂C are Misiurewicz points and fa(−a) is the landing point of
the corresponding ray in Ia

n . Conversely, if fa(−a) ∈ Ian is in the Julia set, it is the landing point
of some external ray R∞

a (t) of Ian , so dnt ∈ {djη j ≥ 0}. Since fa(−a) is eventually periodic,
a is a Misiurewicz point and by Lemma 2.26 the external ray R∞(t) lands at a. Hence, the
parameter a belongs to In (by definition of this para-graph).

Corollary 3.14. For a ∈ Pn(a0), the n-th para-puzzle piece, the critical point −a is not on any
of the graphs Ia0 , . . . , I

a
n+1.

Corollary 3.15. The para-puzzle pieces are simply connected.

Proof. It is equivalent to prove that the graph In is connected. Any part of an equipotential
involved in In ∩ Hi (i ∈ N) is connected to ∂C by a ray in In. By Corollary 3.12, this ray
converges to a Misiurewicz parameter, say a1. At this parameter, in the dynamical graph Ia1

n ,
some external ray R∞

a1
(t′) converges to fa1(−a1). Then the external parameter ray R∞(t′) of In

(by Lemma 3.13) converges to a1 (Lemma 2.26). Finally all these external rays are connected
to the external equipotential of the graph In.

Let n ≥ 1 and Pn = Pn(a0) ⊂ Pn−1 = Pn−1(a0).

Lemma 3.16. There exists a holomorphic motion hn : Pn × Ia0
n+1 → C such that :

• Ian+1 = ha
n(Ia0

n+1) for all a ∈ Pn ;

• hn coincides with hn−1 on Pn × Ia0
n ;

• for every a ∈ Pn the following diagram is commutative :

Ia0
n+1

ha

n−−−−→ Ian+1

fa0

y
yfa

Ia0
n −−−−→

ha

n−1

Ian
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Proof. By Corollary 3.11, the graph Ia0
0 admits a holomorphic motion on P0(a0). For a ∈ Pn the

critical point is not on any of the graphs Ia

k for k ≤ n+ 1 (Corollary 3.14), so we can pull-back

the holomorphic motion of Ia0
0 (by f j

a with j ≤ n+1) to get the sequence of holomorphic motions
of the graphs Ia0

j on the restricted domain Pj−1. By construction they satisfy the announced
properties.

3.4 Relation between graphs and para-graphs

Lemma 3.17. The following map Hn is a homeomorphism.

Hn :

{
Pn ∩ In+1 −→ P a0

n ∩ Ia0
n+1

a 7−→ (ha

n)−1(fa(−a))

Proof. For a in Pn∩In+1, (ha
n)−1(fa(−a)) is well-defined by Lemma 3.16 and Lemma 3.13. The

image Hn(Pn∩In+1) is clearly included in Ia0
n+1. Moreover for a = a0, the critical value fa0(−a0)

belongs to the puzzle piece P a0
n . Therefore fa(−a) belongs to the (open) puzzle piece bounded

by ha
n(∂P a0

n ), since fa(−a) and Ian = ha
n(Ia0

n ) move continuously and never meet when a ∈ Pn

(Corollary 3.14). Hence, Hn(Pn ∩ In+1) ⊂ P a0
n since (ha

n)−1 is injective on Ian+1.
By construction, the map Hn is clearly a homeomorphism on the rays and equipotentials

of In+1 ∩ Pn that are in H∞. We prove now that it is injective in H. Assume by contra-
diction that U1,U2 are two connected components of H and that there exist parameters a1,
a2 on two rays RU1(t1), RU2(t2) respectively such that Hn(a1) = Hn(a2). Since Pn is a
simply connected region (corollary 3.15) that avoids the center of all the components of Hi

for 0 ≤ i ≤ n, we can define functions rU1(a) and rU2(a) on Pn by Lemma 2.22. Since for

j = 1, 2 the critical value faj
(−aj) belongs to R

rUj
(aj)

aj
(tj) (corollary 2.23), Hn(aj) then belongs

to (h
aj
n )−1

(
R

rUj
(aj)

aj (tj)

)
= R

rUj
(a0)

a0 (tj). Since Hn(a1) = Hn(a2), the two rays have a common

point so coincide, and U1 = U2, t1 = t2. The same arguments work (simpler) for the injectivity
on the equipotentials in H ∩ In+1.

To achieve the proof of injectivity, it is enough to show that Hn is injective on In+1 ∩ ∂C.
Thus, we consider two distinct rays RU1(t1),RU2(t2) ⊂ In+1 landing at points a1,a2 ∈ Pn such
that Hn(a1) = Hn(a2), with Uj connected components of H∪H∞. As before, the corresponding

dynamical rays R
rUj

(aj)
aj

(tj) for j = 1, 2 are pulled back by the holomorphic motion to the

rays R
rUj

(a0)
a0 (tj). These rays land at a common point : Hn(a1) = Hn(a2). Since this point is

eventually repelling and not eventually critical, this situation is possible only if one (at least)
of the centers rU1(a0) or rU2(a0) is at ∞ (Lemma 2.21 and Lemma 1.6), or in the trivial case
where U1 = U2, t1 = t2. Say rU2(a0) = ∞, so U2 = H∞ and rU2(a) = ∞ for every a ∈ Pn.
Now, pulled back to the dynamical plane of a1 (through the holomorphic motion) the rays

R∞
a1

(t2) and R
rU1

(a1)
a1 (t1) still land at a common point, by Corollary 3.10. This common point

is ha1
n (Hn(a1)) = fa1(−a1). This implies that R∞(t2) lands at a1 (Lemma 2.26) and therefore

that a1 = a2.
The surjectivity follows from the same kind of arguments. The map is clearly surjective on

the part of Ia0
n+1 ∩ P

a0
n which is in Ba0(∞) (the closure of the basin of ∞) by construction and

by Lemma 2.26. Now let z be a point in P a0
n on Ia0

n+1 ∩ B̃a0 , so z ∈ Rr
a0

(t) for some center r
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and angle t. Let z1 be the landing point of this ray. By Remark 3.2 and Corollary 3.14 there is
only one external ray in Ia0

n+1 that also lands at z1, say R∞
a0

(t′). Thus, the ray R∞(t′) belongs
to the para-graph In+1 (by the surjectivity). It lands at a parameter a1 and there is only one
ray in In+1 that also lands at a1 (by the injectivity of Hn). Consider the simple arc formed by
the union of this ray, {a1} and R∞(t′). Its image by Hn must contain z, by the injectivity of
Hn and since there is no other branch of Ia0

n+1 at z1. This reasoning extends to the parameters
of In+1 lying on equipotentials.

Corollary 3.18. Let a ∈ Pn−1. The parameter a belongs to the annulus Pn−1 \Pn if and only if
the critical value fa(−a) lies in P a

n−1 \C
a
n where Ca

n is the puzzle piece bounded by ha
n−1(∂P a0

n ).

Proof. By definition, a ∈ Pn−1 implies that fa(−a) ∈ P a
n−1. In the proof of Lemma 3.17 we

showed that the piece P a
n is bounded by ha

n−1(∂P a0
n ), for a ∈ Pn. Thus if fa(−a) lies in P a

n−1\C
a
n,

then the parameter a is in Pn−1 \ Pn.
Conversely, suppose a belongs to Pn−1 \Pn and denote by Pn(a) the new para-puzzle piece

of depth n containing a (if a ∈ Xn−1 \ Xn the result is clear). We construct a continuous path
at ⊂ Pn−1 joining a0 to a1 = a, crossing ∂Pn (resp. ∂Pn(a)) at exactly one point at0 (resp. at1)
on equipotentials of In and avoiding In \ {at0 ,at1}. For this, we connect a0 by a path in Pn to
a point a′ ∈ H∞ ∩ Pn then we follow the ray containing a′ and cross ∂Pn at an equipotential,
we then take an equipotential contained in Xn−1 \ Xn and join a1 by a ray entering Pn(a) and
a piece of path, as before, inside Pn(a).

Thus, for t < t0, the critical value fat(−at) belongs to the puzzle piece bounded by
hat

n−1(∂P a0
n ). Moreover, since the parameter path at crosses In at t = t0 on a ray (chang-

ing so the value of its potential) the critical value fat(−at) goes out of the piece bounded by
ha

n−1(∂P a0
n ) when t passes over t0. Then Lemma 3.17 insures that, for t0 < t < t1, the critical

value does not cross Iat
n again. Hence the critical value fat(−at) is outside the piece bounded by

hat

n−1(∂P a0
n ). Now at t1, the critical value fat1

(−at1) belongs to I
at1
n , but not to h

at1
n−1(∂P a0

n ) since
Hn−1(at1) /∈ ∂P a0

n by the injectivity of Hn (see Lemma 3.17). Thus as before going inside Pn(a)
along a ray, the critical value enters a new puzzle piece which is not bounded by hat

n−1(∂P a0
n ).

Corollary 3.19. If P a0
n ⊂ P a0

n−1 then Pn ⊂ Pn−1.

Proof. Assume, to get a contradiction, that ∂Pn ∩ ∂Pn−1 6= ∅. In the graph Ia0
0 (θ) two rays

never converge to the same point, nor do they in Ia0
n (θ) by pullback, nor in In by isomorphism

(or Lemma 2.26). Therefore, the intersection ∂Pn ∩ ∂Pn−1 contains at least a part of external
rays. Indeed, if it contains a part of internal ray it then also contains a part of external ray, so
we only have to consider case of the external rays. Let a1 be such an intersection point contained
in some ray R∞(t). So dnt ∈ {djη, j ≥ 0} but also dn−1t ∈ {djη, j ≥ 0}. Through a path in
Pn one can go from a1 to the “center” a0 of Pn without crossing the graph In (outside a1).
Since the graph admits a holomorphic motion in Pn, the critical value fa(−a) enters the piece
P a

n which is bounded by ha
n−1(∂P a0

n ) (this is clear taking a path which starts by some part of
equipotential). On the path and by holomorphic motion, the ray R∞

a (t)∩Xa
n is in the boundary

∂P a
n = ha

n−1(∂P a0
n ). Therefore R∞

a0
(t) belongs to Ia0

n . But, since dn−1t ∈ {djη, j ≥ 0}, the ray
R∞

a0
(t) is also in Ia0

n−1. Therefore, ∂P a0
n ∩ ∂P a0

n 6= ∅ which contradicts the hypothesis.

Corollary 3.20. If ∂Pn+1 ⊂ Pn, then Hn induces a homeomorphism between ∂Pn+1 and ∂P a0
n+1.

Proof. Since Hn is not well defined on ∂Pn we need the assumption that ∂Pn+1 ⊂ Pn. Then
the result follows from Lemma 3.17.
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3.5 Graphs and renormalization

In the dynamical plane, the graphs of Definition 3.1 are used to prove the following Theorem
(see [Ro1]) :

Theorem [Fa, Ro1]. 6 The boundary of Ba, as well as of any connected component of B̃a, is a
Jordan curve for any a ∈ C.

It follows (by Remark 3.21) from Proposition 3.22 which is a formulation of Yoccoz’ Theorem
in the context of the family (fa).

Remark 3.21. Let p be a point in some region U ⊂ C. If a sequence of disjoint annuli Ak are
homotopic in U \ {p} and satisfy

∑
k≥0 modAk = ∞ then the diameter of Uk, the connected

component of U \ Ak containing p, shrinks to 0.

Proof. This is a direct consequence of the following classical results (see [Ah]) :
• Grötzsch inequality : modA ≥

∑
i modAi when Ai are disjoint sub-annuli of A homotopic

to A ;
• for any compact K contained in a disk D, if the annulus D \K has infinite modulus, then

K is just a point.

Proposition 3.22. Let a ∈ C \ R−. There exist ε = ±1 and l0 such that for l ≥ l0 the puzzle
defined by Ia0 (θ) with θ = ε

(d−1)l−1
gives a sequence of non-degenerate annuli Aa

ni
satisfying :

1. for i ≥ 1, Aa
ni

= P a
ni

\ P a
ni+1 ; so Aa

ni
surrounds the critical value for i ≥ 1 but maybe not

for i = 0 ;

2. fni−n0
a induces a non-ramified covering map from Aa

ni
onto Aa

n0
;

3. either
∑

i≥0 modAa
ni

= ∞ (where modAa
ni

denotes the modulus of Aa
ni

) or there exists

k > 1 such that fk
a : P a

n+k → P a
n is a quadratic-like map for every large n.

The proof of this proposition can be found in [Ro1] as a consequence of Lemma 2.9,
Lemma 2.10 and Theorem 1.10 (Theorem of Yoccoz) in this article. Similar formulations can be
found in [Fa, Mi3]. It will be used several times latter.

Definition 3.23. A proper holomorphic map f : U → V is quadratic-like if U, V are topological
disks with U ⊂ V and if the degree of f is 2.

A map f is said to be renormalizable if there exist disks U, V and some integer k > 1 such
that fk : U → V is quadratic-like and if the orbit of the unique critical point x of the restriction
fk
|U stays in U , i.e. f kn(x) ∈ U for all n ≥ 0. The integer k is called the period.

Lemma 3.24. The map fa is renormalizable if and only if there exists l1 > l0 such that for
l ≥ l1 the second case of the alternative of Proposition 3.22.3. occurs for the graphs I a

0 (θ) defined
by θ = ε

(d−1)l−1
.

Proof. First we suppose that fa satisfies the second case of the alternative of Proposition 3.22.3.
Then, there exists n0 and k > 1 such that f k

a : P a

n+k → P a
n is a quadratic-like map for every n ≥

n0. Since fa(−a) belongs to P a
n , the critical point −a belongs to f k−1

a (P a

n+k) = P a
n−1(fk

a (−a))

for every n ≥ n0 and the restriction f k−1
a : P a

n+k → P a
n−1(fk

a (−a)) is a homeomorphism. Denote

6For completeness, we will sketch its proof in section 6.
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by xa the unique preimage of −a by the restriction. Since the pieces are nested, this preimage
does not depend on n and xa ∈ Pi for every i ≥ k. The point xa is the critical point of the
restriction fk

a : P a

n+k → P a
n for every n ≥ n0. To prove that fa is renormalizable it is enough to

see that if we fix some n ≥ n0, the image fki
a (xa) belongs to P a

n+k for all i ≥ 0. This follows

from the fact that xa ∈ P a

n+k+ki for every i ≥ 0 so that f ki
a (xa) ∈ P a

n+k.

Now we assume that fa is renormalizable, and that the first alternative of 3 of Proposi-
tion 3.22 does not hold. Let Ka denote its filled Julia set of the renormalization and k the
period : Ka = ∩i≥0(fk

a )−i(U) for U as in Definition 3.23. We prove first that the intersection
Ka∩∂Ba contains at most one point. Assume that there is at least two points in this intersection
but also that Ka is not contained in ∂Ba. Then there is a bounded connected component in
C \ (∂Ba ∪Ka) so there are points on the boundary of this connected component (and also on
∂Ba) which are not in ∂Ba(∞) ; this is not possible for a polynomial. If Ka ⊂ ∂Ba we would
deduce by iteration that ∂Ba = Ka, since ∂Ba is a Jordan curve ; this is not possible for a
polynomial (namely for f k

a ). Now we can prove that Ka is included in the puzzle pieces P a
n (−a)

as follows. If Ka is cut by ∂P a
n (−a) there are some rays in B̃a converging to points of Ka, so by

iteration some ray of the graph of depth 0 converges to a point of Ka ∩ ∂Ba. The intersection
point has to be fixed by f k

a (else there is more than one point in the intersection). For l1 > l0,
the rays of the graphs defined for l ≥ l1 are not k-periodic so cannot converge to Ka ∩ ∂Ba.
Therefore Ka is included in all the puzzle pieces P a

i (−a), so fk
a : P a

n+k → P a
n is quadratic-like

and we are in the second case of the alternative of Proposition 3.22.3. for those graphs.

Definition 3.25. A set M0 is a copy of M if there exists a homeomorphism χ and an integer
k > 1 (the period) such that

1. M0 = χ−1(M),

2. χ−1(∂M) ⊂ ∂C and for every a ∈ M0,

3. fa is renormalizable near the critical point −a with f k
a topologically conjugated to z2+χ(a)

on neighbourhoods of the filled Julia sets.

Proposition 3.26. If fa0 is renormalizable, Ma0 =
⋂

n≥0
Pn(a0) is a copy of M.

Proof. Since fa0 is renormalizable, there exist l1 > l0 such that the graphs defined in Lemma 3.24
satisfy the second case of the alternative of Proposition 3.22.3. We prove that {f k

a : P a
n →

P a

n−k, a ∈ Pn(a0)} form a Mandelbrot-like family.
For n ≥ n0 and Pn = Pn(a0), we consider the mapping f : W ′ → W defined by W = {(a, z) | a ∈
Pn, z ∈ P a

n−k}, W ′ = {(a, z) | a ∈ Pn, z ∈ P a
n } and f(a, z) = (a, f k

a (z)). They form an analytic
family of quadratic-like maps in the sense of Douady and Hubbard [DoHu2, p.304] since they
satisfy the following three properties :

• the map f : W ′ → W is holomorphic and proper ;

• the holomorphic motion of the disk P a
n , resp. P a

n−k, is a homeomorphism between W’,
resp. W, and Pn ×D which is fibered over Pn (since a ∈ Pn) ;

• the projection W
′
∩W → Pn (i.e. the first coordinate) is proper, since W

′
∩W = {(a, z) |

a ∈ Pn, z ∈ P a
n }.
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Let Mf = {a | K(fk
a ) is connected} denote the connectedness locus of f , where K(f k

a ) =⋂
i≥0

(fk
a )−i(P a

n ) denote its filled Julia set. Then Mf coincides with Ma0 . Indeed, for a ∈ Ma0 , the

critical point −a, and its orbit under fa, does never cross the graphs Ia
j (j ≥ 0) since a belongs

to every para-puzzle piece. Therefore the critical point xa of fk
a |Pa

n
never escapes the piece P a

n

(by iteration by f k
a ). Hence K(fk

a ) is connected and a ∈ Mf . Conversely, for a ∈ Pn \Pn+1, the
critical value belongs to Aa

n (by Corollary 3.18). Thus f k
a (fa(−a)) is not in P a

n−k and therefore

the critical point of f k
a escapes the domain ; then the filled Julia set is not connected anymore

so that a /∈ Mf .
Moreover, by Corollary 3.19 and Proposition 3.22, there exists a sequence ni such that

Pni+1 ⊂ Pni
. Thus Ma0 is also the intersection of the closed pieces : Ma0 =

⋂
n≥0

Pn and

therefore is compact.
Now, the theory of Mandelbrot-like families of Douady and Hubbard (see [DoHu2], Theorem

II.2, Propositions II.14 and IV.21) gives a continuous map χ : Pn → C such that the maps f k
a

and z2 + χ(a) are quasi-conformally conjugated on a neighbourhood of the filled Julia sets, for
every a ∈ Pn.

Moreover, since Mf is compact, the map χ induces a homeomorphism between Mf and the
Mandelbrot set M if we are in the following situation (see [DoHu2]) : for a closed disk ∆ ⊂ Pn

containing Mf in its interior, the quantity f k
a (xa) − xa, (where xa denotes the critical point of

fk
a |Pa

n
should turn exactly once around 0 when a describes ∂∆. We verify this property now.

Take some piece Pp(a0) = ∆, compactly contained Pn(a0) (see Corollary 3.19). It is a
topological disk containing Ma0 in its interior. To compute the degree on ∂∆ of γ(a) = f k

a (xa)−
xa we make a homotopy of this curve γ to the curve Hp−1(a)− xa0 as follows, where Hp is as in
Lemma 3.17. The critical point xa of fk

a satisfies that f k−1
a (xa) = −a, so γ(a) = fa(−a)−xa. Let

h(a, z) = hp−1(a, z) − xa, then γ(a) = h(a,Hp−1(a)). Assume that Pp−1 is a round disk (if not
use a conformal representation) ; then the homotopy is simply G(t,a) = h(a0+t(a−a0),Hp−1(a))
joining G(0,a) = Hp−1(a) − xa0 and G(1,a) = fa(−a) − xa.

Since Hp−1 is a homeomorphism from ∂Pp to ∂P a0
p (piece that surrounds xa0), the degree

of Hp−1(a) − xa0 around 0 is exactly 1, when a describes ∂Pp.

Proposition. 1. If fa has a periodic point x 6= 0 of multiplier ρ with |ρ| ≤ 1, then fa is
renormalizable near x and a belongs to a copy of M.

Proof. Since x 6= 0, it is not in B̃a and, since it is not eventually repelling, it is not on any
of the graphs. So we can consider the sequence (P a

n (x)) of puzzle pieces containing x. Since
x is periodic, this sequence of pieces is periodic i.e., f k

a (P a

n+k(x)) = P a
n (x) for any large n and

for some k > 1. Choose the smallest k with this property. There exists some i ≤ k such that
the critical point −a belongs to the piece P a

n (f i
a(x)), for every sufficiently large n. Otherwise

the map fk
a : P a

n+k(x) → P a
n (x) would be invertible and its inverse g : P a

n (x) → P a
n (x) either

would be an automorphism or has an attracting fixed point (by Schwarz’ Lemma). This is not
possible since on the one hand |g′(x)| ≥ 1 and on the other hand the sequence P a

n (x) is strictly
decreasing (∃ n | P a

n+k(x) = g(P a
n (x)) 6= P a

n (x)). This integer i is independent of n since the

pieces P a
n (f j

a(−a)) are disjoint for j < k. Therefore the map f k
a : P a

n+k(f i
a(x)) → P a

n (f i
a(x)) is

quadratic-like. Hence we are in the situation of Lemma 3.24 where we proved that a belongs to
a copy of the Mandelbrot set M (see Proposition 3.26).
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Corollary. 1. Any bounded hyperbolic component either is a connected component of H or a
hyperbolic component of a copy of M.

Proof. Let U be a hyperbolic component which is not in H. For a ∈ U , the map fa has
an attracting periodic cycle, which is not the fixed point 0. Thus we are in the situation of
Proposition 1 so that the parameter a belongs to a copy of M.

Corollary. 2. If fa has a periodic point x of multiplier λ = e2iπθ with θ ∈ R \ Q, then fa is
linearizable near x if and only if θ ∈ B. Moreover, if θ /∈ B there exist periodic cycles in any
neighbourhood of x.

Proof. The map fa is renormalizable by Proposition 1. So there is a homeomorphism that con-
jugates fk

a to a quadratic polynomial z2 +χ(a) on a neighbourhood of its Julia set (see [DoHu2]).
The multiplier at the fixed points are the same by Näıshul’ Theorem (see [Na]). So the result
follows from Yoccoz’ and Brjuno’s work (see [Yo]).

4 Local connectivity

Fix a0 ∈ ∂C ∩ S. Take l0 ≥ l1 given by Proposition 3.22 and Lemma 3.24, and θ ∈
{
± 1

(d−1)l−1

}

with l ≥ l0.
Recall that the sequence of graphs Ia0

n (θ) and the para-graph In(θ) associated in Defini-
tion 3.5 satisfy the following properties :

• The sequence of puzzle pieces P a0
n containing the critical value is well-defined since the

critical value fa0(−a0) is on none of the graphs Ia0
n , n ≥ 0.

• The sequence of para-puzzle pieces (Pn)n∈N
containing a0 is well-defined by Lemma 3.17

(since the parameter a0 also never belongs to a graph In).

• There exists a sequence of (non-degenerate) annuli
(
Aa0

ni

)
i∈N

such that, for i ≥ 1, Aa0
ni

=

P a0
ni

\ P a0
ni+1 (so surrounds the critical value fa0(−a0)) and the map fni−n0

a0
: Aa0

ni → Aa0
n0

induces a non-ramified covering map (Proposition 3.22) ;

• The annuli Ani
= Pni

\ Pni+1 are non-degenerate (Corollary 3.19) and surround a0.

4.1 Tools for proving local connectivity: estimation of moduli and connec-

tivity questions

The next Proposition follows from Shishikura’ trick to compare moduli of annuli.

Proposition 4.1. There exists a constant K > 1 such that, for i ≥ 0,

1

K
modAa0

ni
≤ modAni

≤ K modAa0
ni
.

Proof. The idea is to get a K-quasi-conformal homeomorphism between Ani
and Aa0

ni
extending

the map Hni
(via S lodkovksi’s Theorem and the dynamical covering).

Fix n ∈ {ni, i ≥ 0} and let dn be the degree of fn−n0
a0

: Aa0
n → Aa0

n0
. For every a ∈ Pn we

define, for m ≤ n, the dynamical annuli Aa
m, “motion” of Aa0

m , by the connected component of
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P a
m \ ha

m(∂P a0
m+1) that intersects Iam+1 in its interior. By definition (Lemma 3.16) the following

diagram is commutative for a ∈ Pn.

∂Aa0
n

ha

n−−−−→ ∂Aa
n

f
n−n0
a0

y
yf

n−n0
a

∂Aa0
n0

−−−−→
ha

n0

∂Aa
n0

Thus fn−n0
a maps Aa

n to Aa
n0

and induces a non-ramified covering. Indeed, the critical value
fa(−a) remains outside Ia

n so that the critical point −a and all its preimages cannot enter
Aa

n. At depth n0 we extend the holomorphic motion hn0 : Pn0 × ∂Aa0
n0

→ C by S lodkowski’s

Theorem [Sl] to a holomorphic motion h̃n0 : Pn0 × C −→ C. For every a ∈ Pn0 , the map h̃a
n0

is a Ka-quasi-conformal homeomorphism, with Ka = 1+|φ(a)|
1−|φ(a)| where φ : Pn0 → D is a conformal

representation sending a0 to 0. For every a ∈ Pn the homeomorphism h̃a
n0

: Aa0
n0 → Aa

n0
lifts—

via the holomorphic covering maps fn−n0
a0

and fn−n0
a —to a quasi-conformal homeomorphism

h̃a
n : Aa0

n −→ Aa
n with the same dilatation Ka. Moreover the identity fn−n0

a ◦ ha
n = ha

n0
◦ fn−n0

a0

ensures that the map h̃n : Pn×A
a0
n → C, (a, z) 7→ h̃a

n(z), is a holomorphic motion that extends
hn. From Corollary 3.18 we know that a belongs to An if and only if fa(−a) belongs to Aa

n so
that a belongs to An if and only if fa(−a) belongs to Aa

n or equivalently a belongs to An∪∂Pn+1

if and only if (h̃a
n)−1(fa(−a)) ∈ Aa0

n ∪ ∂P a0
n+1. Therefore the following map H̃n is well-defined

H̃n :





An ∪ ∂Pn+1 −→ Aa0
n ∪ ∂P a0

n+1,

a 7−→ H̃n(a) =
(
h̃a

n

)−1
(fa(−a))

From [DoHu2, IV.3] the map H̃n is Kn-quasi-regular with Kn = sup
{
Ka, a ∈ Pn

}
(see

also [Ro2]). Moreover H̃n is a bijection since it agrees with Hn on ∂Pn+1 (Lemma 3.17). There-
fore H̃n is a K-quasi-conformal homeomorphism from An to Aa0

n with K = sup
{
Ka, a ∈

Pn0+1

}
< +∞. The result then follows.

In the rest of this subsection we prove the connectedness of the intersection of the para-
puzzle pieces with ∂C and ∂U .

Lemma 4.2. Let U be a connected component of H. For every n ≥ 0, the intersection of U and
Pn is a sector of U bounded by

∂Pn ∩ U =
(
Xn ∩ (RU (tn) ∪RU (t′n))

)
∪ ẼU(vn),

where ẼU (vn) is a part of the equipotential EU(vn) and tn ≤ t′n. Moreover, as n tends to infinity,
vn → 0 and tn, t

′
n converge to a common value.

Proof. Since every ray of ∂Pn ∩ U is associated to an external ray, it is not possible to have
more than two rays in ∂Pn ∩ U (two consecutive internal rays are connected by a section of
equipotential and similarly for two consecutive external rays). So tn, t

′
n are consecutive angles

in Θn. We prove that tn − t′n → 0 for H0 ; the proof is the same for any U . By definition of
the graphs, any puzzle piece of depth 0 intersects H0 under an angular sector of width less than
1/d. Therefore the puzzle pieces of greater depth have rays in H0 whose angles are consecutive
angles divided d− 1. Thus |t′n − tn| ≤

1
d(d−1)n , so lim tn = lim t′n = t (since both sequences are

monotone).
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Lemma 4.3. For every connected component U of H, the intersection P n ∩ ∂U is a connected
set for all n ≥ 0.

Proof. From Lemma 4.2, we know that ∂U∩Pn is just the decreasing intersection of the compact
connected sets ΦU (Sn

k ) where Sn
k is the sector in the disk between the angles tn and t′n and of

potential less than vn
k , where (vn

k )k∈N s a sequence which tends to 0 with k. Therefore it is
compact and connected.

Lemma 4.4. For every n ≥ 0, the intersection Pn ∩ ∂C is connected.

Proof. The property of the para-puzzle pieces we use here are to be a disk whose boundary is a
succession of arcs of the following form : a part of an equipotential in H∞ followed by a part of
a ray in Xn converging to a point of ∂C and another part of a ray in Xn followed by a part of
an equipotential in H (by Remark 3.2 and Lemma 3.17). We denote the property by (∗). Fix
n and let Gn be the bounded connected component of C \ E∞(1/dn). Consider B(k) the set of
disks D ⊂ Gn satisfying Property (*) and such that Gn \ D has k connected components.

We prove by recurrence on k that for any disk D ∈ B(k), D ∩ ∂C is connected.
Let D ∈ B(1), we prove by contradiction that D∩∂C is connected. Let V be the complement

Gn \ D. Since D belongs to B(1) there is only two parts of equipotentials in its boundary : one
part of E∞(1/dn) and one part of an equipotential in a component U of H. The complement
V has the same property. Therefore the intersection ∂V ∩ C is reduced to the landing points
of the external rays so is included into ∂U ∩ C. Assume now that D ∩ ∂C is not connected :
D ∩ ∂C = A t B where A and B are non empty, closed and disjoint. The intersection D ∩ ∂U
is connected (it is the intersection of a decreasing sequence of connected compacts as in the
previous Lemma 4.3) so we can assume that it is contained in A. Therefore A′ = (V ∩ ∂C) ∪A
is closed since the closure of V ∩ ∂C is included in A. Moreover A′ is disjoint from B and
A′ tB = ∂C. This contradicts the fact that ∂C is connected.

Now fix some integer k ≥ 1. Assume that we have proved the result for B(i) with i ≤ k.
Take D a disk of B(k + 1). There exists at least a connected component, V, of Gn \ D whose
boundary intersects E∞(1/dn) under exactly one component. Then D ∪V is a disk in B(k). So,
with the same argument used before for k = 1, if D ∩ ∂C is not connected then (D ∪ V) ∩ ∂C is
not connected neither. This gives the contradiction.

Now we can conclude in the non-renormalizable case.

Lemma 4.5. If the map fa0 is not renormalizable, then ∂C and ∂U are locally connected at a0,
where U is any connected component of H.

Proof. By Lemma 3.24 if the map fa0 is not renormalizable it satisfies the first alternative of
Proposition 3.22.3. The sequence of annuli considered in Proposition 3.22 has the property that∑

i≥0 modAa0
ni

= ∞. Hence
∑

i≥0 modAni
= ∞ by Proposition 4.1. Thus the diameter of Pni

shrinks to 0 by Remark 3.21.
Finally, Pni

∩ ∂U , resp. Pni
∩ ∂C, form a basis of connected neighbourhoods of a0 in ∂U ,

resp. in ∂C, by Lemma 4.3, resp. Lemma 4.4 (since Pni
is a neighbourhood of a0).

Corollary 4. ∂C is locally connected at a0 as soon as a0 does not belong to a copy of M.

Proof. By Proposition 3.26 we are in the first alternative of Proposition 3.22.3., so the result
follows from Lemma 4.5.
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4.2 Local connectivity of ∂H0 and Wakes of H0

Proposition 4.6. Let a0 ∈ ∂H0 ∩ S. If fa0 is renormalizable of period k, there exist k-periodic
angles t ( under multiplication by d− 1) and ζ, ζ ′ ( under multiplication by d) such that the rays
R0(t), R∞(ζ) and R∞(ζ ′) converge to a0. Moreover the curve R∞(ζ)∪R∞(ζ ′)∪{a0} separates
Ma0 \ {a0} from H0 where Ma0 =

⋂
n≥0

Pn(a0). In the dynamical plane, the rays R0
a0

(t), R∞
a0

(ζ),

R∞
a0

(ζ ′) converge to the same point which is a parabolic periodic point and R∞
a0

(ζ)∪R∞
a0

(ζ ′)∪{a0}
separates fa0(−a0) from Ba0.

R∞(ζ)

R∞(ζ ′)

R0(t)

Figure 8: Separation of Ma0 (copy of M) from H0 by rays.

Proof. The para-puzzle piece Pn = Pn(a0) intersects H0 since it is a neighbourhood of a0 ∈
∂H0. In particular, its boundary ∂Pn contains two rays in H0, say R0(tn),R0(t′n), landing at
parameters called an,a

′
n respectively and two external rays say R∞(ζn),R∞(ζ ′n) also landing at

an and a′
n respectively. The sequences of angles (tn), (t′n) converge to some common value t with

tn ≤ t ≤ t′n ( see Lemma 4.2). Moreover, the sequence of intervals (ζn, ζ
′
n) is decreasing, so the

angles ζn, ζ
′
n converge to some values ζ, ζ ′.

The boundary of the dynamical puzzle pieces P a
n is given for the subsequence ni such

that ∂Pni+1 ⊂ Pni
by the bijection described in Corollary 3.20. It contains parts of the rays

R0
a0

(tni
), R0

a0
(t′ni

) and R∞
a0

(ζni
), R∞

a0
(ζ ′ni

) landing at points zni
(a0), z′ni

(a0) respectively. Since fa0

is renormalizable, the puzzle pieces are “periodic” i.e., f k
a0

(P a0
n+k) = P a0

n by Lemma 3.24. Hence

the angles satisfy the relation (d−1)kθn+k = θn mod 1 for the rays in Ba and dkθn+k = θn mod 1
for the external rays. This is clear for the rays in Ba0 since there are only two rays in ∂P a0

n ∩Ba0

and it follows for the external rays since they converge to the same points zn, z
′
n. Then the angles

t, ζ, ζ ′ satisfy the same relations and therefore are of the form p
(d−1)k−1

, q
dk−1

, q′

dk−1
respectively.

We prove now that R0(t), R∞(ζ) and R∞(ζ ′) converge to χ−1
a0

(1/4) where χa0 is the home-
omorphism that maps Ma0 to M. The proof is the same for the three rays, we do it for R0(t).
The ray R0(t) converges, since t is rational, to some parameter a1. For every n ≥ 0 the part of
the ray R0(t)∩Xn is in Pn, because of the bijection between ∂Pni

and ∂P a0
ni

and of Lemma 4.2.
Thus a1 belongs to Ma0 . In the dynamical plane, the ray R0

a1
(t) lands at a periodic point

z1, since t is periodic. Its period, say k, is the period of t (two rays in Ba1 cannot land at
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the same point). The point z1 cannot be eventually critical since t is periodic. It is parabolic
by Lemma 1.4 since the ray R0

a1
(t) is not stable in any neighbourhood of a1 by the following

remarks. For a ∈ R0(t) near a1, the critical value is on R0
a(t) = R0

a((d − 1)kt). Moreover the
critical point −a is in f k−1

a (P a

n+k) since fa1 is renormalizable and a is very close to a1. So −a

is on the preimage of R0
a(t) that belongs to f k−1

a (P a

n+k), i.e. on R0
a((d − 1)k−1t). Thus the ray

R0
a1

((d− 1)k−1t), as well as its iterated preimage R0
a1

(t), is not stable. Then the point z1 is, for
the return map f k

a1
, a parabolic fixed point. Moreover its multiplier is 1 since the ray R0

a1
(t) is

fixed (by fk
a1

). Therefore, under the bijection χa0 the parameter a1 corresponds to the cusp of
M, i.e. a1 = χ−1

a0
(1/4).

Finally, the three rays R0(t), R∞(ζ), R∞(ζ ′) converge to the same parameter a1 = χ−1
a0

(1/4)
of Ma0 and, the proof above shows that Ma0 ⊂ Pn is in the connected component of C\(R0(tn)∪
R0(t′n)∪R∞(ζn)∪R∞(ζ ′n)) that contains a0. Therefore, Ma0 is in the closure of the connected
component of C \ (R∞(ζ) ∪ R∞(ζ ′)) not containing H0. (Misiurewicz parameters in Ma0 are
accessible by external rays R∞(θ) with θ ∈ (ζ, ζ ′).) Then the only possible intersection between
Ma0 and H0 is the cusp a1. Therefore a1 = a0.

The three rays R0
a0

(t), R∞
a0

(ζ), R∞
a0

(ζ ′) converge to points in ∩P a0
n , fixed by fk

a0
. But

Ka0,k = ∩P a0
n contains only one fixed point with rotation number 1 called β. Thus the three

rays land at the same point : β. They separate Ka0,k from Ba0 , i.e. fa0(−a0) from Ba0 . Indeed,
any eventually repelling periodic point in Ka0,k (for instance β ′ the preimage of β by f k

a0
) is

accessible by an external ray whose angle is between ζn and ζ ′n, so at the limit between ζ and
ζ ′.

Definition 4.7. A parameter, a, is called parabolic (or of parabolic type) if fa has a parabolic
periodic point.

Corollary 4.8. Any a0 ∈ ∂H0, for which fa0 is renormalizable, is the cusp of a copy of M.
More precisely, the intersection Ma0 ∩ ∂H0 reduces to {a0} for Ma0 = ∩Pn(a0). Moreover
a0 = χ−1

a0
(1/4) where M = χa0(Ma0), so a0 is parabolic.

Proof. This follows from Proposition 4.6, its proof above and the use of symmetries.

Corollary 4.9. The boundary of H0 is locally connected.

Proof. It is locally connected at parameters a ∈ ∂H0 which are not renormalizable (Lemma 4.5).
For parameters a0 ∈ ∂H0 which are renormalizable, we consider the sequence Qn of subsets of
∂H0 defined by Qn = Pn ∩ ∂H0. These subsets are connected neighbourhoods of a0 in ∂H0

(Lemma 4.3). Moreover they form a basis since (
⋂

n≥0
Pn ∩ ∂H0) ⊂ (Ma0 ∩ ∂H0) = {a0} by

Corollary 4.8.

The following Lemma is used in Theorem 3.

Lemma 4.10. Let a ∈ C. For any point z ∈ ∂Ba, there are at most two external rays converging
to z. Moreover, if z is not eventually critical and if there are two external rays converging to z,
then z is (eventually) periodic ; moreover the two rays define two connected components, each of
them contains at least one critical point of f k

a for some k ≥ 0.

Proof. Assume that z is not eventually critical. Consider the closure of all the external rays
converging to z and let V be a connected component of its complement. Assume to get a
contradiction that there is no critical point of f k

a in V (for every k ≥ 0). Then the iterates f k
a
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restrict to homeomorphisms on V . This contradicts the fact that the map is doubling the angles
on Ba(∞) so that the image of V by some f k

a will contain all Ba(∞) and fk+1
a will no more be

injective on V .
Assume now that there are at least three external rays converging to z. Let V0 be the

component containing the critical point 0 and (up to iterating) one component V1 contains the
first inverse image of Ba. Note that this implies that −a ∈ V1. Take V2 to be a third component.
Since V2 contains a critical point of f i

a (for some i ≥ 0) it is mapped by some iterate of fa, to
V1 (which contains −a and the preimage of Ba). Indeed, all these sectors are mapped to sectors
attached to ∂Ba as long as they do not contain a critical point. Therefore z is a periodic point,
of period say k. Then the fact that V2 is mapped to V1 contradicts the fact that f k

a preserves
the cyclic order of the rays landing at z since there is a finite number of external rays landing
at z (see for instance [Pe]).

If a critical point c is on the boundary of Ba, by the previous description it is not possible
that two external rays converge to f(c). Therefore, f(c) is the landing point of exactly one
external ray and c of exactly 2 and so for every z which is eventually critical.

Now we can describe more precisely the boundary of ∂H0 :

Theorem. 3. Let a ∈ ∂H0 \ R− ; there exists a unique parameter ray in H0 landing at a, say
Rs

0(t). The following dichotomy holds :

• there is a unique external parameter ray converging to a. In this case fa is not renor-
malizable so that a does not belong to a copy of M. Moreover in the dynamical plane,
the ray R0

a(t) lands at the critical value fa(−a) ∈ ∂Ba and there is a unique external ray
converging to fa(−a) ;

• there are exactly two external parameter rays converging to a. In this case a is the cusp
of a copy of M. Furthermore, in the dynamical plane, the ray R0

a(t) lands at a parabolic
point on ∂Ba. The angle t is necessarily periodic by multiplication by d− 1.

Note that in the first case, the angle t can be periodic by multiplication by d − 1 in this
case a is a Misiurewicz parameter. In Proposition 2.32, we give the exact conditions on t ∈ Q

so that a is of parabolic or of Misiurewicz type. If t ∈ R \ Q we are clearly in the first case.

Proof. We do the proof in several steps.
Any parameter a of ∂H0 \R− is the landing point of a ray in H0 :

We consider the fundamental domain s(S) containing a. For d > 3, the map Φ0 restricts to a
homeomorphism Φ̌0 from s(S)∩H0 onto ∆d (see Proposition 2.4). Since the boundary of H0 and
therefore of s(S) ∩ H0 (Remark 2.17) is locally connected, the inverse map Ψ0 = Φ̌−1

0 extends
continuously to the boundaries : Ψ0 : ∆d → s(S) ∩H0. The analogue statement for d = 3 gives
a continuous extension Ψ0 from D \R+ into s(Ṡ)∩H0 (one can use a double covering argument
to see this). Therefore the parameter a on the boundary of H0 is the limit of a ray Rs

0(t).

Now we suppose first that fa is not renormalizable.
Note that a does not belong to a copy of M by the definition of “renormalizable”.
In the dynamical plane, the sequence of puzzle pieces (P a

n ) shrinks to one point namely
fa(−a). Moreover, taking the subsequence ni such that Pni+1 ⊂ Pni

, the existence of the
homeomorphism between ∂Pni+1 and ∂P a

ni+1 preserving angles and potentials (Corollary 3.20)
insures that the ray R0

a(t) enters all the puzzle pieces P a
ni+1 for i ≥ 0. Thus R0

a(t) converges to
fa(−a).
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Figure 9: Points on ∂H0 and rays converging to them.

By Lemma 4.10, there is only one external ray landing at z = fa(−a) since −a ∈ ∂Ba.
Assume now that two external rays R∞(ξ),R∞(ξ′) land at a. These two rays enter any para-
puzzle piece Pn(a) so by the homeomorphism of Corollary 3.20 the rays Ra

∞(ξ) and Ra
∞(ξ′) enter

all the pieces P a
n . Since the intersection

⋂
n≥0

P a
n reduces to fa(−a), the rays both converge to

the same point z = fa(−a). But we have just seen that this is not possible.

Now we consider the second case of the dichotomy : fa is renormalizable.
In this case Proposition 3.26 insures that Ma = ∩Pn(a) is a copy of M and a is the cusp

χ−1(1/4) where χ is the homeomorphism between Ma and M. There are two external rays
R∞(ζ),R∞(ζ ′) converging to a by Proposition 4.6 and in the dynamical plane the ray R0

a(t)
converges to a point z ∈ ∂Ba which is a parabolic periodic point. Hence the angle t is periodic
by multiplication by d− 1.

To prove that there is only two external parameter rays converging to a we proceed by
contradiction. Assume that there is a third ray ξ converging to a. To fixe the ideas assume
that the cyclic order at ∞ is ζ ′, ξ, ζ. Then the Mandelbrot copy belongs to one connected
component of the complement of R∞(ξ) ∪ R∞(ζ) ∪ R∞(ζ ′) ∪ {a}, say the one containing the
rays of angle between ζ ′ and ξ. Since the ray R∞(ξ) enters every para-puzzle piece, the ray
R∞

a (ξ) enters every puzzle piece P a
n by the homeomorphism of Corollary 3.20. So the ray R∞

a (ξ)
converges to a point z of J(f k

a ) (the Julia set of the renormalized map). There exist points in
J(fk

a ) that are accessible by external ray of angle ξ ′ ∈ Q between ξ and ζ such that neither
t
d +

b d−1
2

c

d nor t
d +

b d−1
2

c+1

d is periodic by multiplication by d. Then the ray R∞(ξ′) lands at a
Misiurewicz parameter by Proposition 2.31. This Misiurewicz parameter belongs to Ma since
the ray R∞(ξ′) enters every para-puzzle piece Pn (by the homeomorphism of Corollary 3.20).
But this contradicts the fact that Ma belongs to connected component containing the rays of
angle between ζ ′ and ξ.

Remark 4.11. The fact that t is k-periodic by multiplication by d− 1 does not imply that fa

is renormalizable.
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Proof. It is possible that the sequence f i
a(P a

n+k) avoids the critical point since there are other
preimages of fa(−a) on ∂Ba in degree d > 3. See Proposition 2.32.

Definition 4.12. We define the wake W(a0) of any point a0 ∈ ∂H0 ∩ S as follows.
If fa0 is not renormalizable let us take W(a0) = ∅ ; else let W(a0) be the connected compo-

nent of
C \

(
R∞(ζ0) ∪R∞(ζ ′0)

)
containing Ma0 \ {a0}

where ζ0, ζ ′0 are periodic angles (by multiplication by d) such that the rays R∞(ζ0) and R∞(ζ ′0)
converge to a0. For parameters not in S we use the symmetries to define the wake.

Remark 4.13. By Theorem 3 there are at most two rays converging to a parameter a ∈ ∂H0

(those defined in Proposition 4.6) so that the wake is well defined. Moreover since a is the
landing point of a ray Rs

0(t), we can also call Ws(t) the wake W(a). Note that the wake of a
parameter a ∈ S is not necessarily contained in S.

Lemma 4.14. For any parameter a in W(a0), the rays R∞
a (ζ0), R∞

a (ζ ′0) and R0
a(t0) converge

to the same point which is repelling of period k (the period of Ma0), where ζ0, ζ
′
0 define the wake

W(a0) and Rs
0(t0) is landing at a0. For a = a0 these three dynamical rays also land at a common

point, which is k-periodic parabolic point. Moreover, for a ∈ W(a0) ∪ {a0}, the critical value is
in the corresponding dynamical wake : the connected component of C \ (R

∞
a (ζ0)∪R

∞
a (ζ ′0)) which

does not contain Ba.

Ra
0(t)

Ra
∞(ζ)

Ra
∞(ζ′)

Figure 10: Illustration of Lemma 4.14, a ∈ Ma0 of figure 8.

Proof. Note first that, for every parameter a ∈ Ma0 , the three rays R∞
a (ζ0), R∞

a (ζ ′0) and R0
a(t0)

converge to the same k-periodic point. For a = a0, this follows from Proposition 4.6. Then it is
easy to check that all the arguments of Proposition 4.6 go through for the parameters a in Ma0 .
Indeed, the boundary of the puzzle pieces ∂P a

n and ∂P a0
n are identified through the holomorphic

motion defined on the neighbourhood Pn−1 of Ma0 .
After this remark, the proof goes exactly as point 3 of Lemma 3.8 and Corollary 3.10,

so we give here just the steps of the argumentation. We consider the set Ω of parameters a

such that R∞
a (ζ0), R∞

a (ζ ′0) and R0
a(t0) converge to the same point which is a repelling peri-

odic point of period k. Then Ω is open and non empty. Its boundary is included in PPk ∪⋃
i≥0

(
R0((d− 1)it1) ∪ ∪R∞(diζ0) ∪ ∪R∞(diζ ′0)

)
(see definition 2.11), where PPk is the set of pa-

rameters a such that fa has a parabolic point of period k and multiplier 1. We claim that, in
the region W(a0) there are no parameter rays of ∪R∞(diζ0), ∪R∞(diζ ′0) and R0((d−1)it0) with
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i ≥ 0. For this we look first in the dynamical plane of fa0 . The angles ζ0, ζ ′0 are the limits
of the sequences (ζn)n≥2, (ζ ′n)n≥2 defined as follows : the two internal rays R0

a0
(tn), R0

a0
(t′n) of

∂P a0
n converge to points zn, z

′
n to which are attached the external rays R∞

a0
(ζn), R∞

a0
(ζ ′n) of ∂P a0

n .
There is no iterate of R∞

a0
(ζn), R∞

a0
(ζ ′n) in Qn, the connected component containing fa0(−a0) of

C \
(
R0

a0
(tn) ∪R0

a0
(t′n) ∪R∞

a0
(ζn) ∪R∞

a0
(ζ ′n)

)
.

Otherwise, such an iterate would be attached to an internal ray of some ∂P a0
j for j ≤ n, with

angle in (tn, t
′
n). But this is not possible since ∂P a0

n contains only two rays in Ba0 , they are in
∂Qn, and since P a0

n ⊂ P a1
j . Therefore, there is no element of diζ0, diζ ′0 in the segment (ζn, ζ

′
n)

“defining” the region Qn, and so neither in the limit interval (ζ0, ζ
′
0). Thus there are no rays of

∪R∞(diζ0),∪R∞(diζ ′0), i ≥ 0 in W(a0). On the other hand, there is no point of PPk in W(a0) :
otherwise this would contradict the maximum principle for the multiplier of the landing point
of R0

a(t0) (as in Lemma 3.8). Therefore, W(a0) ⊂ Ω.

4.3 Local connectivity of ∂U for a component U of H \H0.

Proposition 4.15. Let U be a connected component of H \ H0. Let a0 ∈ ∂U ∩ S be such
that fa0 is renormalizable and denote by χa0 the homeomorphism between Ma0 and M where
Ma0 = ∩Pn(a0) (see Proposition 4.6). Then :

• ∂U ∩Ma0 = {a0} ;

• Ma0 ∩ ∂H0 = χ−1
a0

(1/4) := a1 the cusp of Ma0 ;

• U ⊂ W(a1) the wake of a1 ;

• a0 is the landing point of three rays RU(t1), R∞(η) and R∞(η′) where diη = ζ1, diη′ = ζ ′1
with t1 and ζ1, ζ

′
1 k-periodic by multiplication by d− 1, and by d respectively. Here i is the

depth of U i.e., U ⊂ Hi \ Hi−1, and t1, ζ1, ζ
′
1 are associated to a1 by Proposition 4.6 ;

• The curve R∞(η) ∪R∞(η′) separates U from Ma0.

Proof. We will not prove the items in the order they appear. The proof is very similar to
that of Proposition 4.6. Using Lemma 2.22, we can define in Pn = Pn(a0) a holomorphic
function r(a) which coincides, for a ∈ U , with the center of U(a), the connected component
of B̃a containing the critical value. Since Pn intersects U , ∂Pn contains two internal rays
RU(τn),RU (τ ′n) (Lemma 4.2) with landing points un, u

′
n respectively, but also external rays

R∞(ηn),R∞(η′n) landing at un, u
′
n respectively. Using the homeomorphism of Corollary 3.20,

the boundary ∂P a0
n contains the part in Xn of the rays R

r(a0)
a0 (τn), R

r(a0)
a0 (τ ′n) and R∞

a0
(ηn),

R∞
a0

(η′n) (Corollary 2.23), with common landing points, say zn, z
′
n respectively, at least for n in

the subsequence (ni)i≥0 given in Proposition 3.22.
1. We prove first that ∂Pn ∩H0 6= ∅ and that Ma0 ∩ ∂H0 = χ−1

a0
(1/4) := a1 :

Since for every m ≥ 0, P a0
m intersects U(a), which is of depth i, the image f i

a0
(P a0

m ) intersects

Ba0 . Then, for i ≤ kj ≤ m, the image f kj
a0 (P a0

m ) which is the puzzle piece P a0
m−kj containing

the critical value, intersects Ba0 . Thus, P a0
n ∩ Ba0 6= ∅ for any n. By the homeomorphism

of Corollary 3.20, we deduce that Pn ∩ H0 6= ∅. So there is some point a1 in the intersection⋂
n≥0

Pn∩H0 = Ma0 ∩H0. Applying Proposition 4.6 (or Corollary 4.8) to this point a1, we deduce
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R∞(η′)

R∞(η)

R0(t)

RU (t)

R∞(ζ)

R∞(ζ′)

Figure 11: Intersection of U and the copy M0 of M.

that Ma0 ∩ ∂H0 is reduced to a1 and is the cusp of χ−1
a0

(1/4) of Ma0 since Ma1 = Ma0 . Indeed,
a1 ∈ Ma0 = ∩Pn, the pieces Pn(a0) and Pn(a1) coincide.

2. We prove here that Pn contains in its boundary the part in Xn of the rays R0(τn+i),
R0(τ ′n+i), R∞(ζn+i), R∞(ζ ′n+i) with ζn = diηn and ζ ′n = diη′n, at least for infinitely many
n ∈ N :
We prove it for the dynamical puzzle piece P a0

n and then use the homeomorphism of Corol-
lary 3.20. We have seen in point 1 above that the puzzle piece P a0

n+i contains in its boundary

the rays R
r(a0)
a0 (τn+i), R

r(a0)
a0 (τ ′n+i) and also R0

a0
(tn+i), R

0
a0

(t′n+i). Since f i
a0

(P a0
n+i) is the piece

P a0
n (f i

a0
(fa0(−a0))), it contains only two rays of Ba0 in its boundary, so that the rays R

r(a0)
a0 (τn+i)

and R0
a0

(t′n+i) have the same image by f i
a0

. In particular, (d − 1)it′n+i = τn+i = t′n. Therefore
the puzzle piece f i−1

a0
(P a0

n+i) contains the critical point −a0 since it is simply connected and
fa0 maps its boundary with degree two on its image. Thus f i

a0
(P a0

n+i) = P a0
n so that i is a

multiple of k. The piece P a0
n contains in its boundary the rays R0

a0
(τn+i), R

0
a0

(τ ′n+i), with end
points zn+i, z

′
n+i respectively, to which converge the external rays R∞

a0
(ζn+i), R

∞
a0

(ζ ′n+i) with
ζn+i = diηn+i, ζ

′
n+i = diη′n+i.

Using the homeomorphism of Corollary 3.20 we deduce that the para-puzzle piece Pn con-
tains in its boundary the rays R0(τn+i), R∞(ζn+i) landing at a common parameter an+i and
R0(τ ′n+i), R∞(ζ ′n+i) landing at some other parameter a′

n+i, at least for n in the subsequence
(nj)j≥0 defined in Proposition 3.22.

3. We prove now that U ⊂ W(a1) :
The pieces Pn(a0) and Pn(a1) coincide. As in Proposition 4.6 applied to a1, the sequences of
angles (τn), (τ ′n) admit a common limit τ which is, by point 2 above, equal to the common limit
t1 of the sequences (tn)n≥2, (t

′
n)n≥2. The monotone sequences (ζn)n≥2, (ζ ′n)n≥2 converge to limits

ζ1, ζ ′1 respectively. By Proposition 4.6, the angle τ is k-periodic by multiplication by d− 1, the
angles ζ1, ζ ′1 are k-periodic by multiplication by d and the rays R0(t1), R∞(ζ1), R∞(ζ ′1) land at
a1 = χ−1

a0
(1/4). The curve R∞(ζ1) ∪R∞(ζ ′1) bounds W(a1).

Let Qn be the connected component containing a0 of

C \
(
R0(τn+i) ∪R0(τ ′n+i) ∪R∞(ζn+i) ∪R∞(ζ ′n+i)

)
.
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The para-puzzle piece Pn is contained in Qn and RU (τn) is in the boundary of Pn. Thus U is
included in Qn since U ∩ ∂Qn = ∅. Thus the component U is totally included in W(a1).

4. Finally, we prove that RU (t1), R∞(η), R∞(η′) land at the same parameter, which is
a0, and that the curve γ = R∞(η) ∪R∞(η′) separates U from Ma0 :
Since t1, η, η

′ are rational (diη = ζ1 and diη′ = ζ ′1) the rays RU (t1), R∞(η), R∞(η′) converge to
parameters at1 , aη, aη′ respectively which are either parabolic or Misiurewicz parameters after
Lemma 2.24.

If at1 is a Misiurewicz parameter, the ray R
r(at1)
at1

(t1) converges to fat1
(−at1) (Lemma 2.24).

Moreover, the rays R0
at1

(t1), R∞
at1

(ζ1) and R∞
at1

(ζ ′1) land at the same point which is repelling

(Lemma 4.14). Indeed, at1 is in W(a1) since RU (t1) ⊂ W(a1) ∪ {a1} but at1 6= a1 since a1 is

a parabolic parameter. Pulling back along the critical orbit we obtain that R
r(at1)
at1

(t1), R∞
at1

(η)

and R∞
at1

(η′) land at the same point i.e., at fat1
(−at1). Therefore, by Lemma 2.26 the rays

RU(t1), R∞(η), R∞(η′) land at the same parameter at1 . The proof is exactly the same in case
aη, or aη′ , is of Misiurewicz type.

Assume now that every parameter a ∈ {at1 ,aη,aη′} is parabolic. Then, the landing point
of R0

a(t1) is a parabolic periodic point. Thus, the map f k
a possesses a parabolic fixed point of

multiplier 1. Then, the only possibility for a ∈ Ma0 is to be the cusp of Ma0 , i.e. a = χ−1
a0

(1/4)
so at1 = aη = aη′ .

In both cases, the curve γ = R∞(η) ∪R∞(η′) ∪ {at1} separates the plane into two compo-
nents. Let V denotes the one containing U (since U∩γ = ∅). The para-puzzle piece Pn intersects
V and U . Using Lemma 4.3 one can see that for any ray R∞(ξ) in V ∩Pn, the angle ξ is either
in (η′, η′n) or in (ηn, η). Assume (to get a contradiction) that Ma0 intersects V . Then let a be
a Misiurewicz parameter in the intersection Ma0 ∩ V . It is the landing point of an external ray
R∞(ξ). This ray belongs to V but also enters every Pn since it converges to a ∈ Ma0 . Hence
ξ is either in (η′, η′n) or in (ηn, η), so ξ = η or ξ = η′. Then a = at1 but this contradicts the
fact that a ∈ V (since at1 ∈ ∂V ). Therefore, the curve γ separates Ma0 from U and the unique
possible intersection between U and Ma0 is at1 , so that a0 = at1 since a0 ∈ Ma0 and a0 ∈ U .

We will see in Theorem 4 that a0 is always a Misiurewicz parameter.

Corollary 4.16. If U is a connected component of H \ H0, there exists at most one param-
eter a on ∂U such that fa is renormalizable. If it exists it is the parameter characterized in
Proposition 4.15.

Proof. Let a be a parameter on ∂U such that fa is renormalizable. By Proposition 4.15 Ma =
∩Pn(a) intersects H0 and U . So if there is another point a′ like this, one can find a loop in
H0 ∪ U ∪Ma ∪Ma′ surrounding points of H∞ and this contradicts the fact that H∞ ∪ {∞} is
simply connected.

Corollary 4.17. The boundary of U is locally connected.

Proof. Let a0 ∈ ∂U . If fa0 is not renormalizable the result follows from Lemma 4.5. If fa0 is
renormalizable, we are in the situation of Proposition 4.15. The sequence Pn ∩ ∂U of connected
neighbourhoods of a0 (Lemma 4.3) form a basis since (

⋂
n≥0

Pn ∩ ∂U) ⊂ (Ma0 ∩ ∂U) = {a0}.

Theorem. 2. For every connected component U of H, the boundary ∂U is a Jordan curve.
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Proof. Every component U of H is simply connected (Lemma 1.12) and its boundary is locally
connected (Corollary 4.17). Therefore any conformal map Ψ: D → U extends continuously to
a map Ψ: D → U by Caratheodory’s Theorem. Thus the boundary ∂U is the curve : Ψ(S1).
We prove that it is a Jordan curve by contradiction. If Ψ(S1) is not a simple curve, there is a
crossing point z of Ψ(S1) and one can find a simple closed cuve γ in U∪{z} surrounding points of
H∞ (since Ψ(S1) ⊂ ∂H∞). This contradicts the maximum principle, exactly as in Lemma 1.12,
applied to the map a 7→ fN

a (−a) for some large N .

Theorem. 1. The boundary of every bounded hyperbolic component is a Jordan curve.

Proof. The boundary of a hyperbolic component which is contained in H is a Jordan curve by
Theorem 2 above. The other bounded hyperbolic components are connected components of the
interior of a copy of M (by Corollary 1). Thus the boundary of such a component is the image
by a homeomorphism of the boundary of a hyperbolic component of the interior of M. Therefore
it is a Jordan curve.

The following result is the analogue of Theorem 3 for the captures components. We can go
out of a capture component U (and stay in C) only through the landing point of rays of angles
ξ such that (d− 1)jξ = t1 where U ⊂ Ws(t1).

Theorem. 4. Let U be a connected component of Hi \H0 (with i ∈ N). Any parameter a ∈ ∂U

is the landing point of a unique ray RU (ξ). In the dynamical plane, R
r(a)
a (ξ) converges to fa(−a),

which is not on ∂Ba but f i+1
a (−a) ∈ ∂Ba. No parameter a ∈ ∂U can be of parabolic type. If

ξ ∈ Q the parameter a is of Misiurewicz type. Moreover, let t1 be such that U ⊂ Ws(t1) (see
Proposition 4.15). Then :

• if (d− 1)jξ = t1, there are exactly two external parameter rays converging to a ;

• otherwise there is exactly one external parameter ray converging to a.

Figure 12: Zoom on a point of ∂U where U 6= H0 is a capture.
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Proof. The proof is similar to that of Theorem 3. The boundary ∂U is locally connected by
Theorem 2. So, the coordinate Φ−1

U : D → U extends to a continuous map from the closure D

to U . Hence, any point a of ∂U is the landing point of a unique ray RU (ξ). Let Ua be the
connected component of B̃a containing fa(−a) for a ∈ U , let r(a) be its center. The dynamical

ray R
r(a)
a (ξ) converges to a point z(a) ∈ ∂Ua since ∂Ua is locally connected.

If fa is not renormalizable then z(a) = fa(−a) :
As in the proof of Theorem 3, the point z(a) belongs to every P a

n for n ≥ 0 so that ∩P a
n = fa(−a).

Thus z(a) = fa(−a).
If fa is renormalizable then z(a) is (eventually) parabolic or z(a) = fa(−a) :

If fa is renormalizable, Proposition 4.15 insures that ξ is rational (with the uniqueness proved just
above). Then z(a) is either a (eventually) parabolic point or z(a) = fa(−a) (see Lemma 2.24).

The critical value is not on ∂Ba :
Assume, to get a contradiction, that fa(−a) ∈ ∂Ba. Then, it is the landing point of exactly one
ray of Ba, say R0

a(ξ′). Note that the parameter a cannot be of parabolic type since fa(−a) is
not in a Fatou component. Then z(a) = fa(−a) by the two remarks above. Thus the two rays

f i
a(R

r(a)
a (ξ)) = R0

a(ξ) and f i
a(R0

a(ξ′)) = R0
a((d− 1)iξ′) converge to f i

a(z(a)). By Lemma 1.6, this

implies that (d − 1)iξ′ = ξ. Then, the two different rays R0
a((d − 1)i−1ξ′) and f i−1

a (R
r(a)
a (ξ))

landing at f i−1
a (z(a)) have the same image by fa. Thus, f i−1

a (z(a)) = −a, so f i
a(−a) = −a but

this is not possible since the critical point would be periodic on the Julia set.
The parameter a is not parabolic :

Assume to get a contradiction that a is of parabolic type. Then, by Proposition 1, fa is renor-
malizable, so that ξ is in Q and z(a) is a (eventually) parabolic periodic point. Proposition 4.15
insures that U is in some wake W(a1) where a1 ∈ ∂H0. Then a ∈ W(a1), but in W(a1) the
point z(a) should be eventually repelling, so a = a1. Hence, the four parameter rays (of Propo-
sition 4.15) R∞(ζ1), R∞(ζ ′1), R∞(η) and R∞(η′) land at the same point a1. But this is not
possible by Theorem 3 since a1 ∈ ∂H0.

If ξ is rational a is of Misiurewicz type :
The conclusion of the points before is that z(a) = fa(−a). Then fa(−a) is eventually repelling
(since ξ is eventually periodic by multiplication by d). Thus a is of Misiurewicz type.

The iterate f i+1
a (−a) belongs to ∂Ba :

Indeed, z(a) = fa(−a) ∈ ∂Ua so that f i
a(fa(−a)) ∈ ∂Ba.

Finally, we consider the number of external parameter rays converging to a :

We have seen above that a is of Misiurewicz type and that the ray R
r(a)
a (ξ) is landing at fa(−a).

First case : (d − 1)jξ = t1. Since a ∈ W(a1), the rays R0
a(t1), R∞

a (ζ1) and R∞
a (ζ ′1) land

at a common point y. We can pull back these rays and get that two external rays R∞
a (η) and

R∞
a (η′) landing at the same point as R

r(a)
a (ξ), that is at fa(−a). Since a is of Misiurewicz type,

the external parameter rays R∞(η),R∞(η′) land at a. Assume (to get a contradiction) that
there is a third external parameter ray R∞(ξ′) converging to a, ξ′ /∈ {η, η′}. Then, since a is
of Misiurewicz type, the ray R∞

a (ξ′) lands at fa(−a) (Lemma 2.24). Thus, since (d− 1)jξ = t1,
f i
a(R∞

a (ξ′)) gives a third external ray converging to y, since diξ′ /∈ {ζ1, ζ
′
1}. But this contradicts

Lemma 4.10 which insures that at most two external rays land at a point of ∂Ba.
Now we do the other cases. Assume (to get a contradiction) that there are (at least) two

external dynamical rays converging to fa(−a). Since fa(−a) is not on ∂Ba but y = f i
a(fa(−a)) ∈

∂Ba, we iterate the three rays i-times and get R0
a(ξ) and two external rays, say R∞

a (θ1) and
R∞

a (θ2), converging to y. The two external rays separate C into two connected components.
Let V be the one containing Ba and V0 be the other one. Note that, as long as the Vj = f j(V0)
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does not contain a critical point of fa, its image by fa is still a sector not containing Ba and
attached by f i+1(y) to ∂Ba (since −a is not in the orbit of y). From Lemma 4.10, some iterate
of V0 has to contain a critical point. If Vj contains 0, then Vj−1 contains B ′

a and so the preimage
of f j(y) on ∂B′

a. Then fa : Vj−1 → Vj is not a homeomorphism so −a ∈ Vj−1. We consider the

first j such that −a ∈ Vj−1. The sector Vj−1 contains a preimage of R∞
a (djθ1) and of R∞

a (djθ2)

landing at a preimage of f j
a(y). Let V ′

j be the connected component of C\(R∞
a (djθ1)∪R∞

a (djθ2))

containing the critical value. Denote by V ′
j−1 the connected component of f−1

a (V ′
j ) containing

−a. Then V ′
j−1 ⊂ Vj−1. Applying Lemma 4.10 to V ′

j , we get that some iterate f r
a(V ′

j ) contains
−a, so if r is the smallest iterate to satisfy this condition one has : f r

a(V ′
j ) = Vj−1. Hence the

landing point f j−1
a (y) = f j+r

a (y) is a repelling periodic point. We thicken the sector Vj−1 by

adding a small disk D around f j−1
a (y) which satisfies f r+1

a (D) ⊃ D and by taking external rays
close to R∞

a (dj−1θ1) and R∞
a (dj−1θ2) landing at points in D. Denote by V ′′

j+r this new domain :
the domain V ′′

j+r is bounded by these two rays union a part of ∂D and containing D ∪ Vj−1.

Take the inverse image of V ′′
j+r by f r+1

a along the previous orbit (i.e. backward along the orbit

{f j−1
a (y), · · · , f j+r

a (y)}). We obtain a domain V ′′
j−1 with V ′′

j−1 ⊂ V ′′
j+r−1 and f r

a : V ′′
j−1 → V ′′

j+r−1

is proper of degree two. Hence, since y = f i
a(fa(−a)), the forward orbit by f r+1

a of −a will stay
in V ′′

j−1 so that fa is renormalizable. This contradicts the fact that two external rays converge
to fa(−a) in the non renormalizable case.

Assume now that two external rays R∞(ξ′),R∞(ξ′′) land at a. These two rays enter any
para-puzzle piece Pn(a) so by the homeomorphism of Corollary 3.20 the rays Ra

∞(ξ′) and Ra
∞(ξ′′)

enter all the pieces P a
n . Since the intersection

⋂
n≥0

P a
n reduces to fa(−a), the rays both converge

to the same point z = fa(−a). But we have just seen that this is not possible.

Corollary. 3. There is no parameter a on the boundary of a connected component of H such
that fa has an irrational indifferent periodic point.

Proof. Let U be a connected component of H and let a be a parameter of ∂U . Assume to get a
contradiction that fa admits an irrational indifferent periodic point denoted by x. If U = H0,
Proposition 1 asserts that fa is renormalizable, then Proposition 4.6 implies that a is of parabolic
type. If U ∈ Hi \ H0 for some i > 0, Theorem 4 gives that f i+1

a (−a) ∈ ∂Ba. Therefore x ∈ ∂Ba

since a subsequence of (fn
a (−a)) accumulates x. Denote by R0

a(ξ) the ray landing at x (∂Ba is
a Jordan curve). Since x is periodic, ξ ∈ Q (Lemma 1.6). This contradicts the Snail Lemma
(see [Mi1]) which asserts that the landing point of a periodic ray either is a repelling periodic
point or has multiplier equal to 1.

5 Description of C and size of the limbs of H0.

5.1 Connections in C

Definition 5.1. Let M0 be a copy of M, let U be a hyperbolic component. We say that M0

and U are attached if M0 intersects U .

Definition 5.2. A tip of M is the landing point of an external ray of the form RM(p/2n) with
0 < p < 2n. Equivalently it is a parameter c such that P j

c (0) = βc for some j > 0 where βc is
the non-separating fixed point of K(Pc) (here Pc(z) = z2 + c).

A tip of a copy M0 of M is the image χ−1(c) of a tip c of M, where M0 = χ−1(M).
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Proposition. 2. Let M0 be a copy of M and U be any connected component of H. If the
intersection M0 ∩ U 6= ∅, then it reduces to exactly one point. Moreover this intersection point
is :

• the cusp of M0, if U = H0 ;

• a tip of M0, if U 6= H0. Moreover, in this case M0 is also attached to H0 (by its cusp).

Figure 13: Components U attached to the tips of a copy M0 of M.

Proof. Let a be in M0∩∂U . Since fa is renormalizable, the intersection Ma = ∩Pn(a) is a copy
of M (Proposition 4.15). We first prove that M0 = Ma.

If U = H0, the puzzle pieces Pn(a) intersect H0 along a sector that contains a in its
boundary. Thus, they cannot cut Card0, the main cardioid of M0. Then Card0 is contained in
every Pn(a) so in the intersection Ma. Thus Ma = M0. The proof of Theorem 3 insures that
a is the cusp of Ma. Hence, M0 ∩ ∂H0 = {a} the cusp of M0.

If U 6= H0, Ma is attached to H0 by Proposition 4.15. Hence Ma = M0, otherwise one can
find a loop in Ma∪M0∪H0 surrounding points of H∞, which contradicts the fact that H∞∪{∞}
is connected. Then, from Proposition 4.15 we get that Ma ∩U = {a}. Now we prove that a is a
tip of M0. From Theorem 4, the parameter a is of Misiurewicz type since x := f i+1

a (−a) ∈ ∂Ba

is an (eventually) repelling periodic point. Some iterate z = f r
a(x) belongs to K(f k

a ) = ∩P a
n .

Then z is a repelling fixed point of f k
a which does not separate K(f k

a ). So z corresponds to the
β fixed point of z2 + χ(a), the quadratic polynomial to which f k

a is conjugated. Therefore, a is
a tip of M0.

Corollary 5.3. Let M0 be a copy of M attached to H0 and contained in a wake Ws(t). Let U
be a connected component of H\H0 attached to M0. The landing point of an internal ray of U ,
RU(ξ), is a tip of M0 if and only if ξ = t.

Proof. Let a be the landing point of RU (ξ) and let a0 be the intersection point U ∩ M0 (there
is only one point by Proposition 2). we prove first that a0 is the landing point of RU (t).

Since fa0 is renormalizable we can apply Proposition 4.15. Namely, the intersection Ma0 =
∩Pn(a0) is attached to H0 and the intersection point is the landing point of R0(t), since a0 ∈
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Ws(t) and since the curve R∞(ζ) ∪ R∞(ζ ′) separates H0 from the points of Ws(t). Thus,
M0 = Ma0 ; otherwise one can find a loop in M0 ∪ Ma0 ∪H0 surrounding points of H∞ which
contradicts the fact that H∞ ∪ {∞} is connected. Then Proposition 4.15 insures that a0 is the
landing point of RU (t).

Now, if a is a tip of M0, a = a0 since it is the only intersection point between U and
Ma0 (Proposition 2). Therefore a is the landing point of RU (t) and t = ξ by the uniqueness of
Theorem 4.

Conversely, if ξ = t since a is the landing point of RU (ξ) and a0 is the landing point of
RU(t), a = a0 so that a is a tip of M0 (Proposition 2).

Proposition. 3. If a copy M0 of M is attached to H0, then at any of its tips, there is a
connected component U of H \ H0 which is attached.

Proof. Let a be a tip of M0 and a0 = M0 ∩ H0 ; a0 is the cusp of M0 by Proposition 2.
Moreover, M0 = Ma0 and Pn(a) = Pn(a0) for all n ≥ 0, also from the proof of Proposition 2
above. Since M0 is attached to H0 every para-puzzle piece Pn(a) intersects H0. Therefore, the
puzzle pieces P a

n intersect the basin Ba (applying the homeomorphism of Corollary 3.20). Then,
the intersection Ka = ∩P a

n intersects Ba and since K(fa) is full, Ka ∩Ba reduces to one point,
say x. Since fa is renormalizable, there exists k > 0 such that f k

a maps P a

n+k onto P a
n , so the

point x is k-periodic. Since x ∈ ∂Ba, x is the landing point of a unique ray, say R0
a(τ). The

uniqueness implies that τ is k-periodic by multiplication by d−1, so that x is the non separating
fixed point of the renormalized map f k

a . Since a is a tip of M0, fa(−a) is mapped by some

iterate of fk
a to x. Thus some iterated preimage R

r(a)
a (τ) of R0

a(τ) is landing at fa(−a) 6= x
with r(a) the center of some connected component Ua of B̃a \ Ba (since K(fa) is full). The

puzzle pieces P a
n intersect Ua for all n ≥ 0. Denote by R

r(a)
a (τn) and R

r(a)
a (τ ′n) the rays involved

in Ua ∩ ∂P a
n and by R∞

a (ηn), respectively R∞
a (η′n), the external rays of ∂P a

n converging to the
landing points of the rays in Ua. By the homeomorphism of Corollary 3.20, the para-puzzle
pieces Pn(a) should intersect some component U of H\H0 and the rays involved in ∂Pn(a)∩U
are RU (τn) and RU (τ ′n) converging to the same points as the external rays R∞(ηn) and R∞(η′n)
respectively (at least for infinitely many n ∈ N). The sequences (τn), (τ ′n) converge to τ and the
sequence (ηn), resp. (η′n) converges to η, resp. η′ by Propositions 4.6 and 4.15. In the dynamical

plane R
r(a)
a (τ), R∞

a (η) and R∞
a (η′) converge to the same point fa(−a). Since a is a Misiurewicz

parameter, R∞(η) lands at a (Lemma 2.26). Assume that the internal ray RU (τ) lands at a
parameter a′ 6= a. Since RU (τ) enters every puzzle pieces Pn(a), the parameter a′ belongs to
Ma = M0. This contradicts the fact that R∞(η) will have to land at a′ by Proposition 4.15. So
U is attached to M0 at a.

Lemma. 1. Any two distinct components of H have disjoint closures.

Proof. Assume, to get a contradiction, that there exist U1, U2 two distinct components of H
and a ∈ U1 ∩ U2. Since one connected component is distinct from H0, the parameter a is a
Misiurewicz point by Theorem 4. Moreover Theorem 4 and Theorem 3 insure that there exist

ξ1, ξ2 such that RU1(ξ1), RU2(ξ2) land at a and R
r1(a)
a (ξ1), R

r2(a)
a (ξ2) land at fa(−a) for some

adapted centers r1(a), r2(a). This is impossible since fa(−a) would be eventually critical by
Lemma 2.21, although the critical point cannot be periodic on the Julia set.

Theorem. 5. The only intersections between closures of hyperbolic components, and also copies
of M are the following :
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• The central component H0 has Mandelbrot copies Mt attached to it at angles t which are
(d− 1)-periodic (a full characterization of these values is given in Proposition 2.32) :

• At every tip of such a satellite Mt, a capture component U of H \H0 is attached.

Nevertheless, there are infinitely many copies of M in C and infinitely many captures components
not contained in the category described above.

Figure 14: At the center a Mandelbrot copy without connections with H.

Proof. The description of the intersections of copies of M with components of H follows from
Proposition 2 and 3. The intersections between components of H follows from Lemma 1.

There are other copies of M in C (see figure 14) which are not attached to components of
H since Mandelbrot copies are dense in C by [McMu].

We prove now that there are capture components V of H \ H0 which are not attached to
Mandelbrot copies (and also not attached to hyperbolic components by Lemma 1).

We start with a capture component U attached to some satellite copy Mt. Let a be the
landing point of RU (ξ) with (d− 1)ξ = t. In the dynamical plane for a, the critical value is on
the boundary of some component Ua which is mapped by some f i

a to Ba. Since U is in Ws(t),
the critical value fa(−a) is separated from Ba by two external rays R∞

a (θ1), R∞
a (θ2) landing at

f i
a(fa(−a)) a repelling periodic point (Proposition 4.15 and Lemma 4.14). Then, considering

the puzzle pieces, there is some n such that ∂P a
n involves rays in Ua and other rays in some

iterated inverse image of Ua denoted by Va. Using the homeomorphism of Corollary 3.20 we
get that ∂Pn(a) ∩Pn−1(a) contains rays in some capture component V (because of the external
parameter rays). This para-puzzle piece is contained in W s(t) so that V is contained in Ws(t).
Therefore, V cannot be attached to a Mandelbrot copy. Otherwise this copy is attached to H0

(Proposition 4.15) so would coincide with M0. Therefore U and V cannot be connected by an
arc avoiding M0, else one can complete it by an arc in U ∪M0∪V to get a loop in C surrounding
points of H∞ which contradicts the fact that H∞ ∪ {∞} is connected. But since C ∩ Pn(a)
is connected, we get that U and V are connected outside M0. Hence, V is not attached to a
Mandelbrot copy.
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5.2 Size of the limbs

Definition 5.4. For any a ∈ ∂H0, we denote by limb containing a the intersection L(a) =
W(a) ∩ C if W(a) 6= ∅ and else L(a) = {a}.

Remark 5.5. By Lemma 4.14, the definition of the limbs coincides with the one given by Milnor
in [Mi4].

Remark 5.6. Note that L(a) ∩ ∂H0 = {a}. We will adopt sometimes the notation Ls(t) for a
limb L(a) where a is the landing point of Rs

0(t).

The following result was conjectured in [Mi4] (with another parametrization of the rays).
It follows from Theorem 3.

Corollary 5.7. A limb Ls(t) contains more than one point if and only if the angle t
d−1 +

b d−1
2

c

d−1
is periodic by multiplication by d− 1.

Proof. Let a0 be the point of ∂H0 ∩ Ls(t), so Ls(t) = L(a0). From Theorem 3 there are two
external rays converging to a0 if and only if a0 is of parabolic type. This corresponds to the
statement about periodicity of proposition 2.32.

Theorem. 7. For any ε > 0, there exists only a finite number of limbs with diameter greater
than ε.

Proof. This proof is inspired by Milnor’s one in the quadratic case. It proceeds in two steps.
1. Every point of C \ H0 belongs to a unique limb.

Let a ∈ C ∩ S \ H0. For every n, there exists a sector Sn(a) containing a such that
Xn ∩ ∂Sn(a) ⊂ In is the union of two rays in H0 and two external rays. This sector contains a
para-puzzle piece, say Pn, which intersects H0 along two internal rays R0(tn), R0(t′n) and H∞

along two external rays R∞(ζn), R∞(ζ ′n).
The study of the para-puzzle pieces (Lemma 4.2, Proposition 4.6) gives the following infor-

mations. The sequences of angles tn, t′n converge to the common limit t. Let a0 be the landing
point of R0(t). Assume that fa0 is renormalizable. Then the sequences (ζn), (ζ ′n) converge to
different angles : ζ and ζ ′ respectively, with R∞(ζ), R∞(ζ ′) landing at a0 (Theorem 3). Thus
a belongs to the wake W(a0) so to the limb L(t). If, fa0 is not renormalizable, a = a0 since
a ∈ ∩Pn = {a0}, so ∩P a0

n = fa(−a) and ∩Pn = {a}. If two external parameter rays enter
the para-puzzle pieces Pn, by the homeomorphism of Corollary 3.20 the two corresponding dy-
namical rays enter the puzzle pieces P a0

n , so converge to fa0(−a0). This contradicts Theorem 3.
Therefore the two external rays R∞(ζn) and R∞(ζ ′n) converge to an external ray R∞(ζ) which
lands at a0. Thus W(a0) = ∅ and a = a0 = L(t).
2. We assume (to get a contradiction) that there exists a sequence L(tn) of limbs which accu-
mulates at two points a1 6= a2.

First suppose that a1,a2 belong two different limbs L(t1) and L(t2) respectively. There
exists t ∈ (t1, t2) such that R0(t) lands at a Misiurewicz parameter a. Then this point is the
landing point of an external ray R∞(ζ). The curve R0(t)∪R∞(ζ) separates a1 from a2 so that
the sequence L(tn) cannot accumulate on both a1 and a2.

Now suppose that a1 and a2 belong to the same limb L(t), we can assume that a1 /∈ ∂H0

(since ∂H0 is locally connected), so there exists r > 0 such that B(a1, r) ⊂ W(a1). Therefore,
if a sequence an ∈ L(tn) accumulates a1, then for large n the parameter an belongs to the ball
B(a, r) so to W(a1) and therefore to L(t) so tn = t.
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5.3 Local connectivity of ∂C

Theorem. 6. ∂C is locally connected at every point which is not in a copy of M and at any
point of ∂U for every connected component U of H.

Proof. Corollary 4 gives the local connectivity for parameters which are not in a copy of M. Let
a0 ∈ ∂U where U is a connected component of Hi and Pn be the para-puzzle piece containing
a0. If a0 is not parabolic, ∩Pn = {a0} then ∂C is locally connected at this point by Lemma 4.4.
If a0 is parabolic, then the intersection ∩Pn is a copy M0 of M. So to get the local connectivity
at a0 we consider the restricted puzzle pieces P ′

n as follows. Let γ be the parametrization by the
internal angle of the boundary of the main cardioid of M0 with γ(0) at the cusp. We consider
an external ray converging to γ(1/n) and another to γ(−1/n) then we complete their union to
get with ∞ a closed curve δn by adding some segment of curve cn inside the main cardioid.
Let P ′

n be the connected component of Pn \ δn containing a0. The choice of cn is such that
the intersection of P ′

n with the cardioid of M0 is a sequence decreasing to the cusp of M0 (the
boundary of cardioid is locally connected). We prove now that the sequence P ′

n is a basis of
neighbourhoods of a0. Assume that there is a point a 6= a0 in ∩P ′

n. The parameter a is not on
the cardioid of M0, otherwise it would be some γ(t) with −1

n ≤ t ≤ 1
n so can only be a0. Then,

since the intersection of Pn is M0, the parameter a belongs to a Limb of M0 (the image of a
limb of M by the homeomorphism) say LM(t). Thus for n such that 1/n < |t| the point a does
not belong to P ′

n. This gives the contradiction. The intersection C ∩ P ′
n is clearly connected by

the same arguments as in Lemma 4.4 since we cut nicely the piece Pn with the curve δn.

6 Appendix

For the completeness of the article, we recall here the proof of the following result :

Theorem [Fa, Ro1]. The boundary of every connected component of B̃a is a Jordan curve.

6.1 Yoccoz’ Theorem for rational-like maps

Definition 6.1. A map f : X ′ → X is rational-like if :

• X,X ′ are connected open sets of C with smooth boundary, such that X ⊃ X ′ and ∂X has
a finite number of connected components ;

• f : X ′ → X is a holomorphic proper map with a finite number of critical points and extends
to a continuous map from X ′ to X.

For a rational-like map f : X ′ → X, a graph Γ is admissible if :

• Γ is connected, finite, included in X and contains ∂X ;

• Γ is stable, i.e. f−1(Γ) ⊃ Γ ∩X ′ ;̇

• the forward orbits of the critical points are disjoint from Γ.

To an admissible graph, Γ, a puzzle is associated :
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Definition 6.2. The puzzle pieces of depth n are by definition the connected components of
f−n(X \ Γ).

The end of a point x is the nested sequence (P0(x), P1(x), · · · , Pn(x), · · · ) of the puzzle
pieces containing x.

The end of x is periodic if there exists k,N such that f k(Pk+n(x)) = Pn(x) for n ≥ N .
The impression of x is the intersection ∩n≥0Pn(x) of the puzzle pieces containing x.
The point x is surrounded at depth i if the annulus Ai = Pi \ P i+1 surrounds x, i.e. if

x ∈ Pi+1 and Pi+1 ⊂ Pi.

Yoccoz’ Theorem can be stated in the context of rational-like maps as follows :

Theorem. Let f : X ′ → X be a rational-like map with a unique critical point x0 of multiplicity 2
and x be a point of K(f). If Γ is an admissible graph that surrounds x0 and surrounds infinitely
many times x then :

• if the end of x0 is not periodic, then the impression of x is equal to {x} ;

• otherwise, let k be the period of the end of x0, the map fk : Pl+k(x0) → Pl(x0) is quadratic-
like for l large enough and the impression of x0 is the filled Julia set K(f k|Pl+k(x0)) of the
renormalized map. Moreover the impression of x reduces to x or to a preimage of the
impression of x0 if some iterate of x falls in the impression of x0.

Remark 6.3. Let C be a forward invariant set under a rational-like map f . A compactness argu-
ment shows that instead of finding one admissible graph and infinitely many annuli surrounding
x ∈ C with this graph, it is enough to find a finite number of admissible graphs Γ0, · · · ,Γl such
that every point of C is surrounded at bounded depth by one of these graphs which surrounds
also the critical point x0.

6.2 Application to the family fa

It is enough to prove that Ba is locally connected : one gets then the result for every connected
component of B̃a by pulling back .

Remark 6.4. If a /∈ C the connected components of the Julia set are locally connected since fa

is hyperbolic. Thus we consider only parameters a ∈ C.

Let X be the connected component of C \ (E∞
a (1) ∪ E0

a(1)) containing J(fa) and X ′ =
f−1
a (X). The map fa : X ′ → X is a rational-like map. We consider the graphs given in section 3.

They are clearly admissible. We prove now that they satisfy the conditions of Yoccoz’ Theorem :
using Remark 6.3 it suffices to show that every point x ∈ ∂Ba is surrounded, at bounded depth,
by one of the graphs which also surrounds the critical point −a.

Lemma 6.5. For θ = 1
(d−1)l−1

and θ′ = 1
(d−1)l′−1

with l′ > l+ 1 and l large enough, every point

of ∂Ba is surrounded by one of the graphs at bounded depth.

Proof. Let U(θ) be the connected component of C \ γ containing R0
a(0) where γ denotes the

curve in Ia1 (θ) = f−1
a (Ia0 (θ)) formed by the internal rays R0

a(θ + 1
d−1 ) and R0

a( θ
d−1 ) and the

corresponding external rays. One sees that every point of ∂Ba which is in U(θ) but not on the
graph Ia1 (θ) is surrounded at depth 0 by the graph I0(θ). Now the points on ∂Ba of I1(θ) and
of I1(θ′) are distinct. Moreover the union V = U(θ) ∪ U(θ ′) is the connected component of the
complement of δ containing R0

a(0), where δ is the curve formed by the internal rays R0
a(θ′ + 1

d−1)
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and R0
a( θ

d−1 ) and the corresponding external rays. Then for n such that 1
n(θ′ + 1

d−1 ) < θ
d−1 , the

union
⋃

i≤n
f−i
a (V ) covers C \ {0}. Thus every point of ∂Ba is surrounded at depth less than n by

I0(θ) or by I0(θ′).

Remark 6.6. This result clearly holds also for θ = −1
(d−1)l−1

and θ′ = −1
(d−1)l′−1

.

Lemma 6.7. There exists k0 and ε ∈ {±1} (depending on a) such that for every k > k0 the
critical point −a is surrounded at depth 1 by the graph I0(εθ) where θ = 1

(d−1)k−1
.

Proof. We take the open set U(θ) defined in previous Lemma. For d > 3 it is clear that the
union U(θ)∪U(−θ) covers Ba \{0} and therefore all C\{0}. This solves the question for d > 3.

For d = 3, the union U(θ) ∪ U(−θ) ∪ f−1
a (U(θ) ∪ U(−θ)) covers all Ba \ {0} and therefore

all C \ {0}.

The proof that the intersection Pn(x) ∩ ∂Ba is a connected set is exactly the same as the
proof of Lemma 4.3 (in the parameter plane).

Yoccoz’ Theorem (stated in section 6.1) and the previous lemmas allow us to conclude that
if the end of the critical point −a is not periodic, the boundary ∂Ba is locally connected. Then
Caratheodory’s Theorem together with Lemma 1.6 insures that ∂Ba is a Jordan curve.

We now consider the case where the end of the critical point −a is periodic of period k.
The map fk

a : Pn+k(−a) → Pn(−a) is quadratic-like and the orbit of the critical point never
escapes the puzzle piece Pn(−a). So by the straightening theorem of [DoHu2], the restriction
of fk

a is conjugated to a unique quadratic polynomial z2 + c. Let Ka = K(fk
a ) denote the filled

Julia set of the restriction and K the filled Julia set of the quadratic polynomial.
We assume that Ka ∩ ∂Ba 6= ∅.

Lemma 6.8. There exists an internal ray R0
a(η) of period k converging to the non separating

fixed point βa of fk
a in Ka and two external rays R∞

a (ζ), R∞
a (ζ ′) converging to βa and separating

Ka from Ba.

Proof. The angles of the internal rays that bound the puzzle piece Pn(−a) are of the form ηn < η′n
with (d − 1)kηn+k = ηn mod 1 (and the same for η′n) with |η′n − ηn| <

1
(d−1)n−1 . Therefore they

converge to a common limit η which is periodic of period k. Moreover the ray R0
a(η) lies in all

the puzzles pieces Pn(−a) so its landing point is in ∂Ba∩Ka. Since it is a fixed point of f k
a with

rotation number 0 it is the non-separating fixed point of Ka, i.e. βa.
For the external rays the proof is the same. The external rays attached to R0

a(ηn) and
R0

a(η′n) which are in the boundary of Pn(−a) are of the form R0
a(ζn) and R0

a(ζ ′n) and the angle
satisfies the equations dkζn+k = ζn and dkζ

′

n+k = ζ
′

n respectively. Thus they converge to periodic
angles ζ, ζ ′. The rays R∞

a (ζ) and Ra(ζ ′) converge to βa by the same argument as before. To see
that the curve R∞

a (ζ) ∪R∞
a (ζ ′) ∪ βa separates Ba from Ka \ {βa} it is enough to note that the

preimage β ′
a of βa in Ka is the landing point of a ray of the form R∞

a ( ζ
d + i

d) which is always
contained in Pn(−a) so converges to Ka and separates R∞

a (ζ) from R∞
a (ζ ′).

Corollary 6.9. The boundary of ∂Ba is locally connected.

Proof. When the end of the critical point −a is periodic, the impression of the end is Ka. If
Ka∩∂Ba is empty the end of any point forms a basis of connected neighbourhoods of that point.
If Ka ∩ ∂Ba is not empty, we take for sequence of neighbourhoods of βa in ∂Ba the intersection
Un = Vn ∩ ∂Ba where Vn is the connected component of Pn(βa) \ (R∞

a (ζ) ∪R∞
a (ζ ′) ∪ βa) which
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intersects Ba. It is easy to see that the sequence (Un) forms a basis of connected neighbourhoods
of βa in ∂Ba since the intersection ∩Un reduces to ∂Ba ∩ Ka = βa. Then we pull back those
neighbourhoods along the backward orbit of βa.
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