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Institut de Mathématiques de Toulouse

Barcelona, december 2009

Roesch P. (IMT) KSS Barcelona, december 2009 1 / 14



Branner-Hubbard Conjecture

BH conjecture

For any degree d polynomial f , J(f ) is a Cantor set if and only if every
critical component of K (f ) is not periodic.

Koslovski-vanStrien and Qiu-Yin proved this conjecture.
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Settings

Degree d polynomial. Several critical points.

A graph Γ0 one equipotential avoiding the post-critical set.
Γn = f −1(Γn−1).

Puzzles pieces Pn(x). Impression Imp(x) := ∩Pn(x).

Assume at most one critical point in each puzzle piece.

If b is the number of critical points and δ the maximum degree over all
these critical points, we have :

Dynamics

If f : U → V is a ramified covering of degree d and A ⊂ U, B ⊂ V are
closed disks, mod(U \ A) ≥ 1

d mod(V \ B)
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Property of bounded degree

Remark

If there is no critical point after some level, then Imp(x) = x .

Definition

The point x has property (?) if :

∃z , (kn)n≥0 | f kn : Pkn+k0(x) → Pk0(z), ∀n ≥ 1, has bounded degree.

Lemma

If a point x has property (?) then Imp(x) = x .
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Accumulation

Definition

For a graph Γ, say that z accumulates y if for every n ≥ 0 there exists
k > 0 such that f k(z) ∈ Pn(y). Write y ∈ ω(z).

Lemma

Every point x falls in one of the cases:

If ω(x) ∩ Crit = ∅ then (?) is satisfied ;

If ∃c ∈ ω(x) ∩ Crit such that ω(c) ∩ Crit = ∅ then (?) is satisfied ;

If ∃c ∈ ω(x) ∩ Crit such that ∃c ′ ∈ ω(c) ∩ Crit such that c /∈ ω(c ′)
then (?) is satisfied ;

For ∀c ∈ ω(x) ∩ Crit and ∀c ′ ∈ ω(c) ∩ Crit we have that c /∈ ω(c ′)
we call it the recurrent case.
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First entrance

Let U,V be puzzle pieces. For y ∈ U, let r be the smallest integer such
that f r (y) ∈ V , then deg(f r : U → V ) ≤ δb .

Definition

Pn(c) is a successor of a puzzle piece Pi (c) if :
f n−i : Pn(c) = Pi (c) and every critical point appears at most twice in
{f j(Pn(c)) | 0 ≤ j < n − i}.

Note that the degree is bounded by δ2b−1.

Definition

A point z is non-persistently recurrent if there exists a critical point c
accumulated by x which has infinitely many successors.

Of course if z is non-persistently recurrent then (?) is satisfied
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The persistently recurrent case

Every critical point accumulated by x has finitely many successors.

Denote
by Γ(P) the last successor of P.

Lemma

Any puzzle piece has at least two successors.

Corollary

r(Γ(P)) ≥ 2r(P) where r(P) is the return time in P.

Theorem :

There exists a sequence of puzzle pieces (Kn) in the nest (Pj(c)) defined
by the operator Γ and two operators A and B of bounded degree :
Kn := A(Γb+1(Kn−1) and K ′

n := B(Γb+1(Kn−1) with the property that
K ′

n \ Kn does not intersect the postcritical set.

It is called the enhanced nest by Kozlovski, Shen, van Strien KSS
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Corollary (from the construction of the nest) :

f pn(Kn) = Kn−1, pn+1 ≥ 2pn, deg(f pn : Kn → Kn−1) ≤ C (b, δ).

h(K ′
n)− h(Kn) ≥ r(Kn−1)

r(Kn+1) ≥ 2br(Kn) so that r(Kn) →∞.

We start the inductive construction of the nest with K0 = Pn0(c).

The annulus K ′
n \ Kn is non-degenerate . Denote by µn its modulus.

Using ”Kahn-Lyubich covering Lemma”, we can prove that lim inf µn is
bounded from below. K-L

Hence Imp(c) = {c}.�
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From KSS nest to Kahn-Lyubich Lemma

For any m consider f ξ : K ′
m+2 → Km and denote by y the point f ξ(c).

Take some M-iterate of them : f M : U = Km → V = Km−Z (Z will be
chosen later) and f M(y) = z .

Take the first return of z in Km : f l(z) ∈ Km.

Pull back by f l the pieces Km ⊂ K ′
m to B ⊂ B ′ containing z ,

and then by f M to puzzle pieces A ⊂ A′ containing y .
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Claim

f ξ(Km+2) ⊂ A

the degree of f ξ
|K ′

m+2
is bounded by C1 independently of Z ,m;

the degree of f M
|A′ is bounded by C2 independently of Z ,m;

the degree of f M
|U is bounded by C independent of m;

the degree of f l
|B′ is bounded by C3 independently of Z ,m.

Hence

mod(U \ A) ≤ mod(U \ f ξ(Km+2)) ≤ 1
C1

µm+2.

mod(B ′ \ B) ≥ 1
C3

µm

Choose m so that µm+2 ≤ µk for k ≤ m + 2.

Hence we get the condition of the covering Lemma:

mod(B ′ \ B) ≥ 1

C1C3
mod(U \ A)
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So that either mod(U \ A) > ε(C1C3,D) or

mod(U \ A) ≥ 1
C1C32(C2)2

mod(V \ B).

Looking at the first entrance of z in the annuli K ′
i \ K i for

m ≤ i ≤ m − Z + 1 :

mod(V \ B) ≥ µm + µm−1 + . . . + µm−Z+1 ≥ Zµm+2.

So that the first inequality implies that

1

C1
µm+2 ≥

Z

C1C32(C2)2
µm+2.

which is not possible for large Z .
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The Covering Lemma

Theorem

Let f : U → V be a degree D ramified covering. For any η > 0, there
exists ε = ε(η, D) > 0 such that :

if A ⊂⊂ A′ ⊂⊂ U and B ⊂⊂ B ′ ⊂⊂ V are sequences of disks ;

if f is a proper map from A to B, and from A′ to B ′ with degree d ;

if mod(B ′ \ B) ≥ ηmod(U \ A) ;

Then

mod(U \ A) > ε

or mod(U \ A) > η
2d2 mod(V \ B).

retour
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The KSS nest

Given a puzzle piece I containing c there exist puzzle pieces A(I ) and B(I )
containing c such that

they are pullback of I ;

A(I ) ⊂ B(I );

the degrees A(I ) → I and B(I ) → I are bounded by C (b, δ) and one
meets c at most b + 1,resp. b times;

B(I ) \ A(I ) does not intersect the postcritical set;

The nest is defined as follows :
from Kn define In+1 = Γb+1(Kn)

then iterate the operations A and B :
let Kn+1 be A(In+1).

Then define K ′
n+1 = B(In+1). retour
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