PUZZLES WITH SEVERAL CRITICAL POINTS

Pascale Roesch

Institut de Mathématiques de Toulouse

Barcelona, december 2009

Branner-Hubbard Conjecture

BH conjecture

For any degree d polynomial f, J(f) is a Cantor set if and only if every critical component of K(f) is not periodic.

Branner-Hubbard Conjecture

BH conjecture

For any degree d polynomial f, J(f) is a Cantor set if and only if every critical component of K(f) is not periodic.

Koslovski-vanStrien and Qiu-Yin proved this conjecture.

Degree *d* polynomial. Several critical points.

Degree *d* polynomial. Several critical points.

A graph Γ_0 one equipotential avoiding the post-critical set. $\Gamma_n = f^{-1}(\Gamma_{n-1}).$

Degree *d* polynomial. Several critical points.

A graph Γ_0 one equipotential avoiding the post-critical set. $\Gamma_n = f^{-1}(\Gamma_{n-1}).$

Puzzles pieces $P_n(x)$. Impression $Imp(x) := \cap \overline{P_n(x)}$.

Degree *d* polynomial. Several critical points.

A graph Γ_0 one equipotential avoiding the post-critical set. $\Gamma_n = f^{-1}(\Gamma_{n-1}).$

Puzzles pieces $P_n(x)$. Impression $Imp(x) := \cap \overline{P_n(x)}$.

Assume at most one critical point in each puzzle piece.

Degree *d* polynomial. Several critical points.

A graph Γ_0 one equipotential avoiding the post-critical set. $\Gamma_n = f^{-1}(\Gamma_{n-1}).$

Puzzles pieces $P_n(x)$. Impression $Imp(x) := \cap \overline{P_n(x)}$.

Assume at most one critical point in each puzzle piece.

If *b* is the number of critical points and δ the maximum degree over all these critical points, we have :

Degree *d* polynomial. Several critical points.

A graph Γ_0 one equipotential avoiding the post-critical set. $\Gamma_n = f^{-1}(\Gamma_{n-1}).$

Puzzles pieces $P_n(x)$. Impression $Imp(x) := \cap \overline{P_n(x)}$.

Assume at most one critical point in each puzzle piece.

If *b* is the number of critical points and δ the maximum degree over all these critical points, we have :

Dynamics

If $f: U \to V$ is a ramified covering of degree d and $A \subset U$, $B \subset V$ are closed disks, $mod(U \setminus A) \ge \frac{1}{d}mod(V \setminus B)$

Property of bounded degree

Remark

If there is no critical point after some level, then Imp(x) = x.

Property of bounded degree

Remark

If there is no critical point after some level, then Imp(x) = x.

Definition

The point x has property (\star) if :

 $\exists z, (k_n)_{n\geq 0} \mid f^{k_n} : P_{k_n+k_0}(x) \rightarrow P_{k_0}(z), \ \forall n \geq 1, \text{ has bounded degree.}$

Property of bounded degree

Remark

If there is no critical point after some level, then Imp(x) = x.

Definition

The point x has property (\star) if :

$$\exists z, (k_n)_{n\geq 0} \mid f^{k_n}: P_{k_n+k_0}(x) \to P_{k_0}(z), \ \forall n\geq 1, \ \text{ has bounded degree}.$$

Lemma

If a point x has property (\star) then Imp(x) = x.

Definition

For a graph Γ , say that z accumulates y if for every $n \ge 0$ there exists k > 0 such that $f^k(z) \in P_n(y)$. Write $y \in \omega(z)$.

Lemma

Every point x falls in one of the cases:

• If $\omega(x) \cap Crit = \emptyset$ then (*) is satisfied;

Definition

For a graph Γ , say that z accumulates y if for every $n \ge 0$ there exists k > 0 such that $f^k(z) \in P_n(y)$. Write $y \in \omega(z)$.

Lemma

Every point x falls in one of the cases:

- If $\omega(x) \cap Crit = \emptyset$ then (*) is satisfied;
- If $\exists c \in \omega(x) \cap Crit$ such that $\omega(c) \cap Crit = \emptyset$ then (*) is satisfied;

Definition

For a graph Γ , say that z accumulates y if for every $n \ge 0$ there exists k > 0 such that $f^k(z) \in P_n(y)$. Write $y \in \omega(z)$.

Lemma

Every point x falls in one of the cases:

- If $\omega(x) \cap Crit = \emptyset$ then (*) is satisfied;
- If $\exists c \in \omega(x) \cap Crit$ such that $\omega(c) \cap Crit = \emptyset$ then (*) is satisfied;
- If ∃c ∈ ω(x) ∩ Crit such that ∃c' ∈ ω(c) ∩ Crit such that c ∉ ω(c') then (*) is satisfied;

Definition

For a graph Γ , say that z accumulates y if for every $n \ge 0$ there exists k > 0 such that $f^k(z) \in P_n(y)$. Write $y \in \omega(z)$.

Lemma

Every point x falls in one of the cases:

- If $\omega(x) \cap Crit = \emptyset$ then (*) is satisfied;
- If $\exists c \in \omega(x) \cap Crit$ such that $\omega(c) \cap Crit = \emptyset$ then (*) is satisfied;
- If ∃c ∈ ω(x) ∩ Crit such that ∃c' ∈ ω(c) ∩ Crit such that c ∉ ω(c') then (*) is satisfied;
- For $\forall c \in \omega(x) \cap Crit$ and $\forall c' \in \omega(c) \cap Crit$ we have that $c \notin \omega(c')$ we call it the recurrent case.

Let U, V be puzzle pieces. For $y \in U$, let r be the smallest integer such that $f^r(y) \in V$, then $deg(f^r : U \to V) \le \delta^b$.

Let U, V be puzzle pieces. For $y \in U$, let r be the smallest integer such that $f^r(y) \in V$, then $deg(f^r : U \to V) \le \delta^b$.

Definition

 $P_n(c)$ is a successor of a puzzle piece $P_i(c)$ if : $f^{n-i}: P_n(c) = P_i(c)$ and every critical point appears at most twice in $\{f^j(P_n(c)) \mid 0 \le j < n-i\}.$

Let U, V be puzzle pieces. For $y \in U$, let r be the smallest integer such that $f^r(y) \in V$, then $deg(f^r : U \to V) \le \delta^b$.

Definition

 $P_n(c)$ is a successor of a puzzle piece $P_i(c)$ if : $f^{n-i}: P_n(c) = P_i(c)$ and every critical point appears at most twice in $\{f^j(P_n(c)) \mid 0 \le j < n-i\}.$

Note that the degree is bounded by δ^{2b-1} .

Let U, V be puzzle pieces. For $y \in U$, let r be the smallest integer such that $f^r(y) \in V$, then $deg(f^r : U \to V) \le \delta^b$.

Definition

 $P_n(c)$ is a successor of a puzzle piece $P_i(c)$ if : $f^{n-i}: P_n(c) = P_i(c)$ and every critical point appears at most twice in $\{f^j(P_n(c)) \mid 0 \le j < n-i\}.$

Note that the degree is bounded by δ^{2b-1} .

Definition

A point z is *non-persistently recurrent* if there exists a critical point c accumulated by x which has infinitely many successors.

Let U, V be puzzle pieces. For $y \in U$, let r be the smallest integer such that $f^r(y) \in V$, then $deg(f^r : U \to V) \le \delta^b$.

Definition

 $P_n(c)$ is a successor of a puzzle piece $P_i(c)$ if : $f^{n-i}: P_n(c) = P_i(c)$ and every critical point appears at most twice in $\{f^j(P_n(c)) \mid 0 \le j < n-i\}.$

Note that the degree is bounded by δ^{2b-1} .

Definition

A point z is *non-persistently recurrent* if there exists a critical point c accumulated by x which has infinitely many successors.

Of course if z is non-persistently recurrent then (\star) is satisfied

Every critical point accumulated by x has finitely many successors.

Every critical point accumulated by x has finitely many successors. Denote by $\Gamma(P)$ the last successor of P.

Lemma

Any puzzle piece has at least two successors.

Every critical point accumulated by x has finitely many successors. Denote by $\Gamma(P)$ the last successor of P.

Lemma

Any puzzle piece has at least two successors.

Corollary $r(\Gamma(P)) \ge 2r(P)$ where r(P) is the return time in P.

Every critical point accumulated by x has finitely many successors. Denote by $\Gamma(P)$ the last successor of P.

Lemma

Any puzzle piece has at least two successors.

Corollary

 $r(\Gamma(P)) \ge 2r(P)$ where r(P) is the return time in P.

Theorem :

There exists a sequence of puzzle pieces (K_n) in the nest $(P_j(c))$ defined by the operator Γ and two operators \mathcal{A} and \mathcal{B} of bounded degree: $K_n := \mathcal{A}(\Gamma^{b+1}(K_{n-1}) \text{ and } K'_n := \mathcal{B}(\Gamma^{b+1}(K_{n-1}) \text{ with the property that} K'_n \setminus K_n \text{ does not intersect the postcritical set.}$

Every critical point accumulated by x has finitely many successors. Denote by $\Gamma(P)$ the last successor of P.

Lemma

Any puzzle piece has at least two successors.

Corollary

 $r(\Gamma(P)) \ge 2r(P)$ where r(P) is the return time in P.

Theorem :

There exists a sequence of puzzle pieces (K_n) in the nest $(P_j(c))$ defined by the operator Γ and two operators \mathcal{A} and \mathcal{B} of bounded degree: $K_n := \mathcal{A}(\Gamma^{b+1}(K_{n-1}) \text{ and } K'_n := \mathcal{B}(\Gamma^{b+1}(K_{n-1}) \text{ with the property that} K'_n \setminus K_n \text{ does not intersect the postcritical set.}$

It is called the enhanced nest by Kozlovski, Shen, van Strien

Roesch P. (IMT)

7 / 14

• $f^{p_n}(K_n) = K_{n-1}, \ p_{n+1} \ge 2p_n, \ deg(f^{p_n}: K_n \to K_{n-1}) \le C(b, \delta).$

•
$$f^{p_n}(K_n) = K_{n-1}, \ p_{n+1} \ge 2p_n, \ deg(f^{p_n}: K_n \to K_{n-1}) \le C(b, \delta).$$

• $h(K'_n) - h(K_n) \ge r(K_{n-1})$

•
$$f^{p_n}(K_n) = K_{n-1}, \ p_{n+1} \ge 2p_n, \ deg(f^{p_n}: K_n \to K_{n-1}) \le C(b, \delta).$$

•
$$h(K'_n) - h(K_n) \ge r(K_{n-1})$$

•
$$r(K_{n+1}) \geq 2^b r(K_n)$$
 so that $r(K_n) \to \infty$.

•
$$f^{p_n}(K_n) = K_{n-1}, \ p_{n+1} \ge 2p_n, \ deg(f^{p_n}: K_n \to K_{n-1}) \le C(b, \delta).$$

• $h(K'_n) - h(K_n) \ge r(K_{n-1})$

•
$$r(K_{n+1}) \geq 2^b r(K_n)$$
 so that $r(K_n) \to \infty$.

We start the inductive construction of the nest with $K_0 = P_{n_0}(c)$.

The annulus $K'_n \setminus \overline{K}_n$ is non-degenerate . Denote by μ_n its modulus.

•
$$f^{p_n}(K_n) = K_{n-1}, \ p_{n+1} \ge 2p_n, \ deg(f^{p_n}: K_n \to K_{n-1}) \le C(b, \delta).$$

• $h(K'_n) - h(K_n) \ge r(K_{n-1})$

•
$$r(K_{n+1}) \geq 2^b r(K_n)$$
 so that $r(K_n) \to \infty$.

We start the inductive construction of the nest with $K_0 = P_{n_0}(c)$.

The annulus $K'_n \setminus \overline{K}_n$ is non-degenerate . Denote by μ_n its modulus.

Using "Kahn-Lyubich covering Lemma", we can prove that $\liminf \mu_n$ is bounded from below.

Hence $Imp(c) = \{c\}.\Box$

For any m consider $f^{\xi}: K'_{m+2} \to K_m$ and denote by y the point $f^{\xi}(c)$.

For any *m* consider $f^{\xi}: K'_{m+2} \to K_m$ and denote by *y* the point $f^{\xi}(c)$.

Take some *M*-iterate of them : $f^M : U = K_m \rightarrow V = K_{m-Z}$ (*Z* will be chosen later) and $f^M(y) = z$.

For any *m* consider $f^{\xi}: K'_{m+2} \to K_m$ and denote by *y* the point $f^{\xi}(c)$.

Take some *M*-iterate of them : $f^M : U = K_m \rightarrow V = K_{m-Z}$ (*Z* will be chosen later) and $f^M(y) = z$.

Take the first return of z in K_m : $f'(z) \in K_m$.

For any *m* consider $f^{\xi}: K'_{m+2} \to K_m$ and denote by *y* the point $f^{\xi}(c)$.

Take some *M*-iterate of them : $f^M : U = K_m \rightarrow V = K_{m-Z}$ (*Z* will be chosen later) and $f^M(y) = z$.

Take the first return of z in K_m : $f'(z) \in K_m$.

Pull back by f' the pieces $K_m \subset K'_m$ to $B \subset B'$ containing z, and then by f^M to puzzle pieces $A \subset A'$ containing y.

Claim

- $f^{\xi}(K_{m+2}) \subset A$
- the degree of $f_{|K'_{m+2}}^{\xi}$ is bounded by C_1 independently of Z, m;
- the degree of $f_{|A'|}^M$ is bounded by C_2 independently of Z, m;
- the degree of $f_{|U|}^M$ is bounded by C independent of m;
- the degree of $f'_{|B'}$ is bounded by C_3 independently of Z, m.

Claim

- $f^{\xi}(K_{m+2}) \subset A$
- the degree of $f_{|K'_{m+2}}^{\xi}$ is bounded by C_1 independently of Z, m;
- the degree of $f_{|A'|}^M$ is bounded by C_2 independently of Z, m;
- the degree of $f_{|U|}^M$ is bounded by C independent of m;
- the degree of $f_{|B'|}^{l}$ is bounded by C_3 independently of Z, m.

Hence

•
$$mod(U \setminus A) \leq mod(U \setminus f^{\xi}(K_{m+2})) \leq \frac{1}{C_1}\mu_{m+2}.$$

- $mod(B' \setminus B) \geq \frac{1}{C_3}\mu_m$
- Choose *m* so that $\mu_{m+2} \leq \mu_k$ for $k \leq m+2$.

Hence we get the condition of the covering Lemma:

$$mod(B'\setminus B)\geq rac{1}{C_1C_3}mod(U\setminus A)$$

So that either $mod(U \setminus A) > \epsilon(C_1C_3, D)$ or

 $mod(U \setminus A) \geq \frac{1}{C_1 C_3 2(C_2)^2} mod(V \setminus B).$

So that either $mod(U \setminus A) > \epsilon(C_1C_3, D)$ or

$$mod(U \setminus A) \geq \frac{1}{C_1 C_3 2(C_2)^2} mod(V \setminus B).$$

Looking at the first entrance of z in the annuli $K'_i \setminus \overline{K}_i$ for $m \le i \le m - Z + 1$:

 $mod(V \setminus B) \geq \mu_m + \mu_{m-1} + \ldots + \mu_{m-Z+1} \geq Z\mu_{m+2}.$

So that either $mod(U \setminus A) > \epsilon(C_1C_3, D)$ or

$$mod(U \setminus A) \geq \frac{1}{C_1 C_3 2(C_2)^2} mod(V \setminus B).$$

Looking at the first entrance of z in the annuli $K'_i \setminus \overline{K}_i$ for $m \le i \le m - Z + 1$:

 $mod(V \setminus B) \geq \mu_m + \mu_{m-1} + \ldots + \mu_{m-Z+1} \geq Z\mu_{m+2}.$

So that the first inequality implies that

$$\frac{1}{C_1}\mu_{m+2} \geq \frac{Z}{C_1C_32(C_2)^2}\mu_{m+2}.$$

which is not possible for large Z.

The Covering Lemma

Theorem

Let $f : U \to V$ be a degree D ramified covering. For any $\eta > 0$, there exists $\epsilon = \epsilon(\eta, D) > 0$ such that :

- if $A \subset A' \subset U$ and $B \subset B' \subset V$ are sequences of disks;
- if f is a proper map from A to B, and from A' to B' with degree d;
- if $mod(B' \setminus B) \ge \eta mod(U \setminus A)$;

The Covering Lemma

Theorem

Let $f : U \to V$ be a degree D ramified covering. For any $\eta > 0$, there exists $\epsilon = \epsilon(\eta, D) > 0$ such that :

- if $A \subset A' \subset U$ and $B \subset B' \subset V$ are sequences of disks;
- if f is a proper map from A to B, and from A' to B' with degree d;
- if $mod(B' \setminus B) \ge \eta mod(U \setminus A)$;

Then

- $mod(U \setminus A) > \epsilon$
- or $mod(U \setminus A) > \frac{\eta}{2d^2} mod(V \setminus B)$.

▶ retour

Given a puzzle piece I containing c there exist puzzle pieces A(I) and B(I) containing c such that

- they are pullback of *I*;
- $\mathcal{A}(I) \subset \mathcal{B}(I);$
- the degrees A(I) → I and B(I) → I are bounded by C(b, δ) and one meets c at most b + 1,resp. b times;
- $\mathcal{B}(I) \setminus \mathcal{A}(I)$ does not intersect the postcritical set;

Given a puzzle piece I containing c there exist puzzle pieces $\mathcal{A}(I)$ and $\mathcal{B}(I)$ containing c such that

- they are pullback of *I*;
- $\mathcal{A}(I) \subset \mathcal{B}(I);$
- the degrees A(I) → I and B(I) → I are bounded by C(b, δ) and one meets c at most b + 1,resp. b times;
- $\mathcal{B}(I) \setminus \mathcal{A}(I)$ does not intersect the postcritical set;

The nest is defined as follows :

from K_n define $I_{n+1} = \Gamma^{b+1}(K_n)$

Given a puzzle piece I containing c there exist puzzle pieces $\mathcal{A}(I)$ and $\mathcal{B}(I)$ containing c such that

- they are pullback of *I*;
- $\mathcal{A}(I) \subset \mathcal{B}(I);$
- the degrees A(I) → I and B(I) → I are bounded by C(b, δ) and one meets c at most b + 1,resp. b times;
- $\mathcal{B}(I) \setminus \mathcal{A}(I)$ does not intersect the postcritical set;

The nest is defined as follows :

```
from K_n define I_{n+1} = \Gamma^{b+1}(K_n)
```

then iterate the operations ${\cal A}$ and ${\cal B}$:

```
let K_{n+1} be \mathcal{A}(I_{n+1}).
```

Given a puzzle piece I containing c there exist puzzle pieces A(I) and B(I) containing c such that

- they are pullback of *I*;
- $\mathcal{A}(I) \subset \mathcal{B}(I);$
- the degrees A(I) → I and B(I) → I are bounded by C(b, δ) and one meets c at most b + 1,resp. b times;
- $\mathcal{B}(I) \setminus \mathcal{A}(I)$ does not intersect the postcritical set;

The nest is defined as follows :

```
from K_n define I_{n+1} = \Gamma^{b+1}(K_n)
```

then iterate the operations ${\cal A}$ and ${\cal B}$:

let
$$K_{n+1}$$
 be $\mathcal{A}(I_{n+1})$.

Then define $K'_{n+1} = \mathcal{B}(I_{n+1})$. \frown retour