No invariant line field on the boundary of bounded Fatou components

Pascale Roesch

Institut de Mathématiques de Toulouse

Final Cody Conference, Warwick 2010

Let P be a polynomial and U a bounded Fatou component, that is not eventually a Siegel disk.

Theorem [Yin, R] The boundary of U is locally connected.

Let P be a polynomial and U a bounded Fatou component, that is not eventually a Siegel disk.

Theorem [Yin, R] The boundary of U is locally connected.

Let P be a polynomial and U a bounded Fatou component, that is not eventually a Siegel disk.

Theorem [Yin, R] The boundary of U is locally connected.

Question : is the measure of ∂U zero?

Let P be a polynomial and U a bounded Fatou component, that is not eventually a Siegel disk.

Theorem [Yin, R] The boundary of U is locally connected.

Question : is the measure of ∂U zero?

Theorem [Yin, R] The boundary of *U* does not support an invariant line field.

Let P be a polynomial and U a bounded Fatou component, that is not eventually a Siegel disk.

Theorem [Yin, R] The boundary of U is locally connected.

Question : is the measure of ∂U zero?

Theorem [Yin, R] The boundary of U does not support an invariant line field.

There can be indifferent irrational points, the polynomial can be infinitely renormalizable.

Invariant line field

A measurable line field supported on J

is the data of a real line through the origin in the tangent space at each point $z \in E$ where $E \subset J$ has positive Lebesgue measure, such that the slope is a mesurable function of z.

This line field is invariant if $f^{-1}(E) = E$ and f' maps the line at z to the line at f(z).

To a quasi-conformal homeomorphism ϕ on \mathbb{C} , one associates a Beltrami coefficient $\mu(z) = \frac{\overline{\partial}\phi}{\partial\phi} \in B_1(L^{\infty})$

To a quasi-conformal homeomorphism ϕ on \mathbb{C} , one associates a Beltrami coefficient $\mu(z) = \frac{\overline{\partial}\phi}{\partial\phi} \in B_1(L^{\infty})$ and a Beltrami differential $\mu = \mu(z)\frac{\overline{dz}}{dz}$

To a quasi-conformal homeomorphism ϕ on \mathbb{C} , one associates a Beltrami coefficient $\mu(z) = \frac{\overline{\partial}\phi}{\partial\phi} \in B_1(L^{\infty})$ and a Beltrami differential $\mu = \mu(z)\frac{\overline{dz}}{dz}$

If ϕ is conjugating two holomorphic maps : $\phi \circ f = g \circ \phi$, then $\mu(f(z))\frac{\overline{f'(z)}}{f'(z)} = \mu(z)$ i.e. $f^*\mu = \mu$.

To a quasi-conformal homeomorphism ϕ on \mathbb{C} , one associates a Beltrami coefficient $\mu(z) = \frac{\overline{\partial}\phi}{\partial\phi} \in B_1(L^{\infty})$ and a Beltrami differential $\mu = \mu(z)\frac{\overline{dz}}{dz}$

If ϕ is conjugating two holomorphic maps : $\phi \circ f = g \circ \phi$, then $\mu(f(z))\frac{\overline{f'(z)}}{\overline{f'(z)}} = \mu(z)$ i.e. $f^*\mu = \mu$.

To such a Beltrami coefficient is associated the line field defined by a measurable map ν with $|\nu(z)| = 1$ and of slope $\frac{1}{2} \arg \mu(z)$.

To a quasi-conformal homeomorphism ϕ on \mathbb{C} , one associates a Beltrami coefficient $\mu(z) = \frac{\overline{\partial}\phi}{\overline{\partial}\phi} \in B_1(L^{\infty})$ and a Beltrami differential $\mu = \mu(z)\frac{\overline{dz}}{dz}$

If ϕ is conjugating two holomorphic maps : $\phi \circ f = g \circ \phi$, then $\mu(f(z))\frac{\overline{f'(z)}}{f'(z)} = \mu(z)$ i.e. $f^*\mu = \mu$.

To such a Beltrami coefficient is associated the line field defined by a measurable map ν with $|\nu(z)| = 1$ and of slope $\frac{1}{2} \arg \mu(z)$.

If $\phi \circ f = g \circ \phi$ then ν is a line field invariant by f.

To a quasi-conformal homeomorphism ϕ on \mathbb{C} , one associates a Beltrami coefficient $\mu(z) = \frac{\overline{\partial}\phi}{\overline{\partial}\phi} \in B_1(L^{\infty})$ and a Beltrami differential $\mu = \mu(z)\frac{\overline{dz}}{dz}$

If ϕ is conjugating two holomorphic maps : $\phi \circ f = g \circ \phi$, then $\mu(f(z))\frac{\overline{f'(z)}}{f'(z)} = \mu(z)$ i.e. $f^*\mu = \mu$.

To such a Beltrami coefficient is associated the line field defined by a measurable map ν with $|\nu(z)| = 1$ and of slope $\frac{1}{2} \arg \mu(z)$.

If $\phi \circ f = g \circ \phi$ then ν is a line field invariant by f.

The line field corresponds to the big axis of the ellipse field of the tangent map.

Idea of the proof

- we construct sequences of neighborhoods of points of ∂U
 (puzzle pieces P_n(z))
- either there exists a sequence (i_n) , some D > 0 such that

$$\deg(f^{i_n}:P_{i_n}(x)\to P_0)\leq D \qquad \qquad (*)$$

• or we can construct enhanced nests $\widetilde{K_n} \subset K_n \subset K'_n$ around recurrent critical points

The enhanced nest has the property $K'_n \setminus K_n$ and $K_n \setminus \widetilde{K_n}$ do not intersect the post-critical set, and the moduli are bounded from below.

Let X be our set. Assume that we have a graph Γ_0 that cut X in pieces. Denote by $\Gamma_n = f^{-n}(\Gamma_0)$, by $P_n(x)$ the connected components of $\mathbb{C} \setminus \Gamma_n$.

Let X be our set. Assume that we have a graph Γ_0 that cut X in pieces. Denote by $\Gamma_n = f^{-n}(\Gamma_0)$, by $P_n(x)$ the connected components of $\mathbb{C} \setminus \Gamma_n$.

Assume the property $P_j(x) \cap P_i(y) = \emptyset$ or $P_j(x) \subset P_i(y)$ with $j \ge i$ and equality only if i = j.

Let X be our set. Assume that we have a graph Γ_0 that cut X in pieces. Denote by $\Gamma_n = f^{-n}(\Gamma_0)$, by $P_n(x)$ the connected components of $\mathbb{C} \setminus \Gamma_n$.

Assume the property $P_j(x) \cap P_i(y) = \emptyset$ or $P_j(x) \subset P_i(y)$ with $j \ge i$ and equality only if i = j.

x accumulate y within this partition if

$$\forall n > 0 \exists k > 0 \mid f^k(x) \in P_n(y)$$

denote it by $\overline{y \in \omega_{comb}(x)}$

Let X be our set. Assume that we have a graph Γ_0 that cut X in pieces. Denote by $\Gamma_n = f^{-n}(\Gamma_0)$, by $P_n(x)$ the connected components of $\mathbb{C} \setminus \Gamma_n$.

Assume the property $P_j(x) \cap P_i(y) = \emptyset$ or $P_j(x) \subset P_i(y)$ with $j \ge i$ and equality only if i = j.

x accumulate y within this partition if

$$\forall n > 0 \; \exists k > 0 \mid f^k(x) \in P_n(y)$$

denote it by $\overline{y \in \omega_{comb}(x)}$

We say that $P_{n+k}(c)$ is a successor of $P_n(c)$ if $f^k(P_{n+k}(c)) = P_n(c)$ and each critical point appears at most twice in the sequence of pieces $\{f^i(P_n(c)) \mid 0 \le i \le k\}$

We decompose

$X = X_1 \cup X_2 \cup X_3 \cup X_4$

We decompose

$$X = X_1 \cup X_2 \cup X_3 \cup X_4$$

• $X_1 = \{z \in X \mid \text{eventually periodic or critical}\},$

We decompose

$$X = X_1 \cup X_2 \cup X_3 \cup X_4$$

• $X_1 = \{z \in X \mid \text{eventually periodic or critical}\},$

• $X_2 = \{z \in X \setminus X_1 \mid \omega(z) \text{ contains a periodic point}\},\$

We decompose

$$X = X_1 \cup X_2 \cup X_3 \cup X_4$$

• $X_1 = \{z \in X \mid \text{eventually periodic or critical}\},$

- $X_2 = \{z \in X \setminus X_1 \mid \omega(z) \text{ contains a periodic point}\},$
- X₄ is the set of point z ∈ X \ (X₁ ∪ X₂) such that ω_{comb}(z) ≠ Ø and for all (c, c') ∈ ω_{comb}(z), c ∈ ω_{comb}(c') and c' ∈ ω_{comb}(c), moreover any P_n(c) for c ∈ ω_{comb}(z) has only finitely many succesors.

Remark : $Leb(X_1) = 0$

We decompose

$$X = X_1 \cup X_2 \cup X_3 \cup X_4$$

• $X_1 = \{z \in X \mid \text{eventually periodic or critical}\},$

- $X_2 = \{z \in X \setminus X_1 \mid \omega(z) \text{ contains a periodic point}\},$
- X₄ is the set of point z ∈ X \ (X₁ ∪ X₂) such that ω_{comb}(z) ≠ Ø and for all (c, c') ∈ ω_{comb}(z), c ∈ ω_{comb}(c') and c' ∈ ω_{comb}(c), moreover any P_n(c) for c ∈ ω_{comb}(z) has only finitely many succesors.

Remark : $Leb(X_1) = 0$

Lemme : The points of $X_2 \cup X_3$ satisfy (*).

We decompose

$$X = X_1 \cup X_2 \cup X_3 \cup X_4$$

• $X_1 = \{z \in X \mid \text{eventually periodic or critical}\},$

- $X_2 = \{z \in X \setminus X_1 \mid \omega(z) \text{ contains a periodic point}\},$
- X_4 is the set of point $z \in X \setminus (X_1 \cup X_2)$ such that $\omega_{comb}(z) \neq \emptyset$ and for all $(c, c') \in \omega_{comb}(z)$, $c \in \omega_{comb}(c')$ and $c' \in \omega_{comb}(c)$, moreover any $P_n(c)$ for $c \in \omega_{comb}(z)$ has only finitely many succesors.

Remark : $Leb(X_1) = 0$

Lemme : The points of $X_2 \cup X_3$ satisfy (*).

Corollary : Leb $(X_2 \cup X_3) = 0$.

We decompose

$$X = X_1 \cup X_2 \cup X_3 \cup X_4$$

• $X_1 = \{z \in X \mid \text{eventually periodic or critical}\},$

- $X_2 = \{z \in X \setminus X_1 \mid \omega(z) \text{ contains a periodic point}\},$
- X_4 is the set of point $z \in X \setminus (X_1 \cup X_2)$ such that $\omega_{comb}(z) \neq \emptyset$ and for all $(c, c') \in \omega_{comb}(z)$, $c \in \omega_{comb}(c')$ and $c' \in \omega_{comb}(c)$, moreover any $P_n(c)$ for $c \in \omega_{comb}(z)$ has only finitely many succesors.

Remark : $Leb(X_1) = 0$

Lemme : The points of $X_2 \cup X_3$ satisfy (*).

Corollary : Leb $(X_2 \cup X_3) = 0$.

Proposition : If ν is an invariant line field on X, then $\nu = 0$ on X_4

We decompose

$$X = X_1 \cup X_2 \cup X_3 \cup X_4$$

• $X_1 = \{z \in X \mid \text{eventually periodic or critical}\},$

- $X_2 = \{z \in X \setminus X_1 \mid \omega(z) \text{ contains a periodic point}\},$
- X_4 is the set of point $z \in X \setminus (X_1 \cup X_2)$ such that $\omega_{comb}(z) \neq \emptyset$ and for all $(c, c') \in \omega_{comb}(z)$, $c \in \omega_{comb}(c')$ and $c' \in \omega_{comb}(c)$, moreover any $P_n(c)$ for $c \in \omega_{comb}(z)$ has only finitely many succesors.

Remark : $Leb(X_1) = 0$

Lemme : The points of $X_2 \cup X_3$ satisfy (*).

Corollary : Leb $(X_2 \cup X_3) = 0$.

Proposition : If ν is an invariant line field on X, then $\nu = 0$ on X_4

Let x be a point such that $\nu(x) = 1$ and ν is almost continuous at x

$$\forall \varepsilon > 0, \ \frac{Leb\{z \in D(x,r) \mid |\nu(z) - \nu(x)| > \varepsilon\}}{LebD(x,r)} \to 0$$

Let x be a point such that $\nu(x) = 1$ and ν is almost continuous at x

$$orall arepsilon > 0, \; rac{Leb\{z \in D(x,r) \mid |
u(z) -
u(x)| > arepsilon\}}{LebD(x,r)}
ightarrow 0$$

Using the nest $K'_n \supset K_N \supset \widetilde{K_n}$, one can define maps $g_n : U_n(x) \rightarrow V_n(x)$

- that preserve ν
- of degree $d \in [2, N]$
- such that $shape(U_n(x), x) \le M$ and $shape(V_n(x), x) \le M$ for some M.
- $diam(U_n(x)) \rightarrow 0$ and $diam(V_n(x)) \rightarrow 0$.

Let x be a point such that $\nu(x) = 1$ and ν is almost continuous at x

$$orall arepsilon > 0, \; rac{Leb\{z \in D(x,r) \mid |
u(z) -
u(x)| > arepsilon\}}{LebD(x,r)}
ightarrow 0$$

Using the nest $K'_n \supset K_N \supset \widetilde{K_n}$, one can define maps $g_n : U_n(x) \rightarrow V_n(x)$

- that preserve ν
- of degree $d \in [2, N]$
- such that $shape(U_n(x), x) \le M$ and $shape(V_n(x), x) \le M$ for some M.
- $diam(U_n(x)) \rightarrow 0$ and $diam(V_n(x)) \rightarrow 0$.

where

$$shape(P,x) = rac{max_{z\in\partial P}d(z,x)}{d(x,\partial P)}$$

P.Roesch (IMT

 $\alpha_n: (X_n, 0) \to (U_n(x), x)$ $\beta_n: (Y_n, 0) \to (V_n(x), x)$

 $\begin{array}{l} \alpha_n : (X_n, 0) \to (U_n(x), x) \\ \beta_n : (Y_n, 0) \to (V_n(x), x) \end{array}$

with $d(0,\partial X_n)=1$ and $d(0,\partial Y_n)=1$,

by bounded geometry property $X_n \supset B(0, 1/M)$, $Y_n \supset B(0, 1/M)$.

 $\begin{array}{l} \alpha_n : (X_n, 0) \to (U_n(x), x) \\ \beta_n : (Y_n, 0) \to (V_n(x), x) \\ \text{with } d(0, \partial X_n) = 1 \text{ and } d(0, \partial Y_n) = 1 \text{ ,} \\ \text{by bounded geometry property } X_n \supset B(0, 1/M), \ Y_n \supset B(0, 1/M). \end{array}$

The map $h_n = \beta_n^{-1} \circ g_n \circ \alpha_n$ admits a limit *h* defined at least on B(0, 1/M) which is holomorphic of degree in [2, N].

Assume that $h'(z) \neq 0$ on $D \subset B(0, 1/M)$ then $h'(z) \geq \delta$ on D for some $\delta > 0$.

 $\begin{array}{l} \alpha_n : (X_n, 0) \to (U_n(x), x) \\ \beta_n : (Y_n, 0) \to (V_n(x), x) \\ \text{with } d(0, \partial X_n) = 1 \text{ and } d(0, \partial Y_n) = 1 \text{ ,} \\ \text{by bounded geometry property } X_n \supset B(0, 1/M), \ Y_n \supset B(0, 1/M). \end{array}$

The map $h_n = \beta_n^{-1} \circ g_n \circ \alpha_n$ admits a limit *h* defined at least on B(0, 1/M) which is holomorphic of degree in [2, N]. Assume that $h'(z) \neq 0$ on $D \subset B(0, 1/M)$ then $h'(z) \geq \delta$ on *D* for some $\delta > 0$.

Let $\mu_n = \alpha_n^* \nu$ and $\nu_n = \beta_n^* \nu$ then $\mu_n = h_n^* \nu$ Then

$$Leb\{z \in B(0,1/M) \mid |\mu_n(z)-1| \geq arepsilon\}
ightarrow 0$$

 $Leb\{z \in B(0, 1/M) \mid |\nu_n(z) - 1| \geq \varepsilon\} \to 0$

$$Leb(\{z \in D \mid |\nu_n(h_n(z)) - 1| \ge \varepsilon\}) \le \frac{N}{\delta^2} Leb\{w \in h_n(D) \mid |\nu_n(w) - 1| \ge \varepsilon\}$$

$$Leb(\{z \in D \mid |\nu_n(h_n(z)) - 1| \ge \varepsilon\}) \le \frac{N}{\delta^2} Leb\{w \in h_n(D) \mid |\nu_n(w) - 1| \ge \varepsilon\}$$

Since a.e.

$$\mu_n(z) = \nu_n(h_n(z)) \frac{\overline{h'_n(z)}}{h'_n(z)}$$

$$Leb(\{z \in D \mid |\nu_n(h_n(z)) - 1| \ge \varepsilon\}) \le \frac{N}{\delta^2} Leb\{w \in h_n(D) \mid |\nu_n(w) - 1| \ge \varepsilon\}$$

Since a.e.

$$\mu_n(z) = \nu_n(h_n(z)) \frac{\overline{h'_n(z)}}{h'_n(z)}$$

$$Leb(\{z\in D\mid |rac{h_n'(z)}{h_n'(z)}|\geq 2arepsilon\})$$

is less than

$$\frac{N}{\delta^2} Leb\{w \in h_n(D) \mid |\nu_n(w) - 1| \geq \varepsilon\} + Leb\{z \in D \mid |\mu_n(w) - 1| \geq \varepsilon\} \to 0$$

$$Leb(\{z \in D \mid |\nu_n(h_n(z)) - 1| \ge \varepsilon\}) \le \frac{N}{\delta^2} Leb\{w \in h_n(D) \mid |\nu_n(w) - 1| \ge \varepsilon\}$$

Since a.e.

$$\mu_n(z) = \nu_n(h_n(z)) \frac{\overline{h'_n(z)}}{h'_n(z)}$$

$$Leb(\{z\in D\mid |rac{\overline{h_n'(z)}}{h_n'(z)}|\geq 2arepsilon\})$$

is less than

$$\frac{N}{\delta^2} Leb\{w \in h_n(D) \mid |\nu_n(w) - 1| \ge \varepsilon\} + Leb\{z \in D \mid |\mu_n(w) - 1| \ge \varepsilon\} \to 0$$

Therefore $Leb(\{z \in D \mid |\overline{\frac{h'(z)}{h'(z)}}| \ge 2\varepsilon\}) = 0$ so $h' = Constant$

$$Leb(\{z \in D \mid |\nu_n(h_n(z)) - 1| \ge \varepsilon\}) \le \frac{N}{\delta^2} Leb\{w \in h_n(D) \mid |\nu_n(w) - 1| \ge \varepsilon\}$$

Since a.e.

$$\mu_n(z) = \nu_n(h_n(z)) \frac{\overline{h'_n(z)}}{h'_n(z)}$$

$$Leb(\{z\in D\mid |rac{h_n'(z)}{h_n'(z)}|\geq 2arepsilon\})$$

is less than

$$\frac{N}{\delta^2} Leb\{w \in h_n(D) \mid |\nu_n(w) - 1| \ge \varepsilon\} + Leb\{z \in D \mid |\mu_n(w) - 1| \ge \varepsilon\} \to 0$$

Therefore $Leb(\{z\in D\mid |rac{h'(z)}{h'(z)}|\geq 2arepsilon\})=0$ so h'= Constant

But $deg(h) \ge 2$ in B(0, 1/M). Contradiction.

P.Roesch (IMT

Let c_0 be a critical point accumulated by x.

Let c_0 be a critical point accumulated by x.

Let
$$V_n'(x) \supset V_n(x) \supset \widetilde{V_n(x)}$$
 the pullback of $K_n' \supset K_n \supset \widetilde{K_n}$

Let c_0 be a critical point accumulated by x.

Let $V'_n(x) \supset V_n(x) \supset \widetilde{V_n(x)}$ the pullback of $K'_n \supset K_n \supset \widetilde{K_n}$

Let c be the first critical point that $f^i(V_n(x))$ contains.

Let c_0 be a critical point accumulated by x.

Let $V'_n(x) \supset V_n(x) \supset \widetilde{V_n(x)}$ the pullback of $K'_n \supset K_n \supset \widetilde{K_n}$

Let c be the first critical point that $f^i(V_n(x))$ contains.

Then denote the images by $\Lambda'_n(c) \supset \Lambda_n(c) \supset \widetilde{\Lambda_n(c)}$ and by f^{t_n} the homeomorphism $V'_n(x) \to \Lambda'_n(c)$

Let c_0 be a critical point accumulated by x.

Let $V'_n(x) \supset V_n(x) \supset \widetilde{V_n(x)}$ the pullback of $K'_n \supset K_n \supset \widetilde{K_n}$

Let c be the first critical point that $f^i(V_n(x))$ contains.

Then denote the images by $\Lambda'_n(c) \supset \Lambda_n(c) \supset \widetilde{\Lambda_n(c)}$ and by f^{t_n} the homeomorphism $V'_n(x) \to \Lambda'_n(c)$

Since c accumulate itself, one can pullback one time around c and another time back to x.

Let c_0 be a critical point accumulated by x.

Let $V'_n(x) \supset V_n(x) \supset \widetilde{V_n(x)}$ the pullback of $K'_n \supset K_n \supset \widetilde{K_n}$

Let c be the first critical point that $f^i(V_n(x))$ contains.

Then denote the images by $\Lambda'_n(c) \supset \Lambda_n(c) \supset \widetilde{\Lambda_n(c)}$ and by f^{t_n} the homeomorphism $V'_n(x) \to \Lambda'_n(c)$

Since c accumulate itself, one can pullback one time around c and another time back to x.

We get $U'_n(x) \supset U_n(x) \supset \widetilde{U_n(x)}$. Denote the map $f^{r_n}: U'_n \to \Lambda'_n(c)$

Let c_0 be a critical point accumulated by x.

Let $V'_n(x) \supset V_n(x) \supset \widetilde{V_n(x)}$ the pullback of $K'_n \supset K_n \supset \widetilde{K_n}$

Let c be the first critical point that $f^i(V_n(x))$ contains.

Then denote the images by $\Lambda'_n(c) \supset \Lambda_n(c) \supset \widetilde{\Lambda_n(c)}$ and by f^{t_n} the homeomorphism $V'_n(x) \to \Lambda'_n(c)$

Since c accumulate itself, one can pullback one time around c and another time back to x.

We get $U_n'(x) \supset U_n(x) \supset \widetilde{U_n(x)}$. Denote the map $f^{r_n}: U_n' \to \Lambda_n'(c)$

The maps g_n are $f^{-t_n} \circ f^{r_n}$.

Idea of the proof that $Leb(X_2 \cup X_3) = 0$ 1) We can find P_r with $\overline{P_r} \subset P_0$ such that $f^{i_n}(x) \in P_r$ with r > 0.

Idea of the proof that $Leb(X_2 \cup X_3) = 0$ 1) We can find P_r with $\overline{P_r} \subset P_0$ such that $f^{i_n}(x) \in P_r$ with r > 0.

2) Because of (*): deg $(f^{i_n} : P_{i_n}(x) \to P_0) \leq D$. shape $(P_{i_n+r}(x), x) \leq C$ depending only on $mod(P_0 \setminus P_r)$, on D and on $shape(P_r(x_0), x_0)$ where $f^{i_n}(x)$ tends to x_0 .

Idea of the proof that $Leb(X_2 \cup X_3) = 0$ 1) We can find P_r with $\overline{P_r} \subset P_0$ such that $f^{i_n}(x) \in P_r$ with r > 0.

2) Because of (*): deg $(f^{i_n} : P_{i_n}(x) \to P_0) \leq D$. shape $(P_{i_n+r}(x), x) \leq C$ depending only on $mod(P_0 \setminus P_r)$, on D and on $shape(P_r(x_0), x_0)$ where $f^{i_n}(x)$ tends to x_0 .

3) Then let $B = D(y, \varepsilon)$ be a ball in $P_r \cap \mathcal{F}$, then $shape(B_{i_n+r}(y_n), y_n) \leq C'$ where $B_{i_n+r}(y_n)$ is a component of $f^{-i_n}(B)$ in $P_{i_n+r}(x)$;

Idea of the proof that $Leb(X_2 \cup X_3) = 0$ 1) We can find P_r with $\overline{P_r} \subset P_0$ such that $f^{i_n}(x) \in P_r$ with r > 0.

2) Because of (*): deg $(f^{i_n} : P_{i_n}(x) \to P_0) \leq D$. shape $(P_{i_n+r}(x), x) \leq C$ depending only on $mod(P_0 \setminus P_r)$, on D and on $shape(P_r(x_0), x_0)$ where $f^{i_n}(x)$ tends to x_0 .

3) Then let $B = D(y, \varepsilon)$ be a ball in $P_r \cap \mathcal{F}$, then $shape(B_{i_n+r}(y_n), y_n) \leq C'$ where $B_{i_n+r}(y_n)$ is a component of $f^{-i_n}(B)$ in $P_{i_n+r}(x)$;

4) One can deduce that

$$\frac{Leb(P_{i_n+r}(x)\cap J)}{Leb(P_{i_n+r}(x))} < 1$$

therefore x is not a density point.

$Construction \ of \ the \ puzzle$

Take a critical bounded Fatou component that is periodic.

Assumptions: One can always assume that the Julia set is connected and that there is a unique critical point in the bassin.

Construction of the puzzle

Take a critical bounded Fatou component that is periodic.

Assumptions: One can always assume that the Julia set is connected and that there is a unique critical point in the bassin.

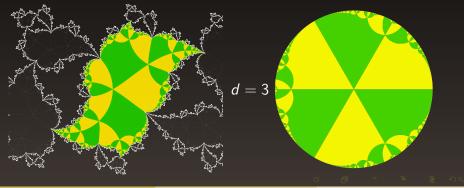


Universality

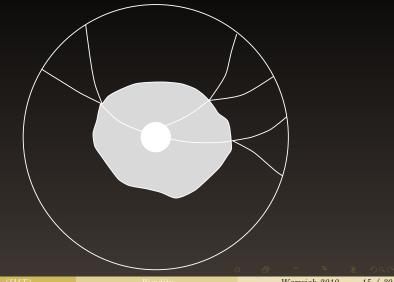
Consequence: the return map in U is conjugate

- either to $z \mapsto z^d$
- or to the Blaschke product of degree d having a parabolic point:

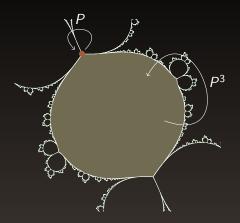
$$B(z) = rac{z^d + v_d}{1 + v_d z^d}, \ v_d = rac{d-1}{d+1}$$



Construction of Puzzles in the attracting case

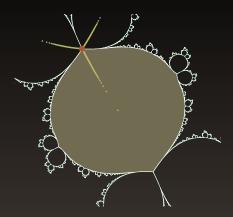


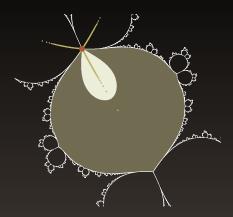
P.Roesch (IMT)

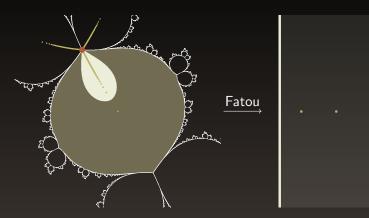


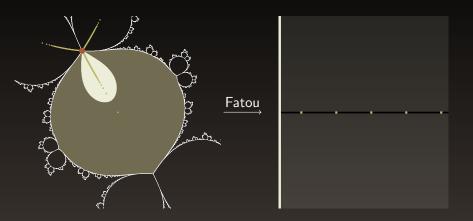
P.Roesch (IMT)

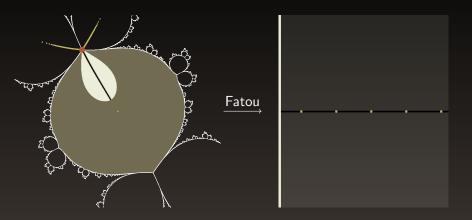
Warwick 2010 16 / 30

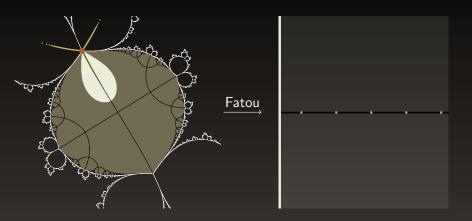


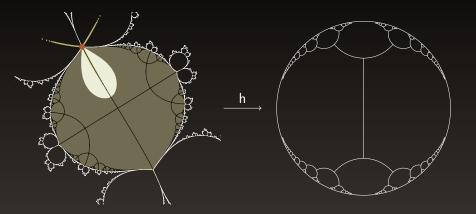


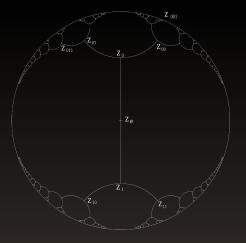


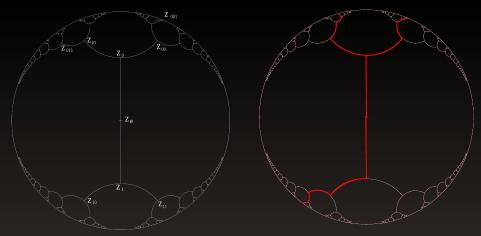








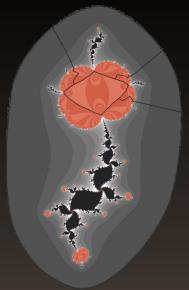




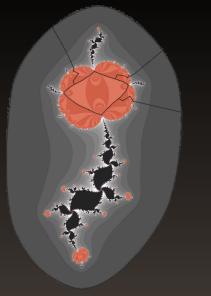
For any itinerary $\underline{\varepsilon} = \varepsilon_0 \cdots \varepsilon_n \cdots$ with $\varepsilon_i \in \{0, 1\}$ define the parabolic ray γ_{ε} to be the minimal arc in the tree joining the points $z_{\varepsilon_0 \cdots \varepsilon_n}$ and z_{\emptyset} .

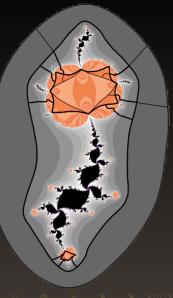
$$B(\gamma_{arepsilon}) = \gamma_{\sigma(arepsilon)} \cup [0, rac{1}{3}]$$

Construction of puzzles



Construction of puzzles



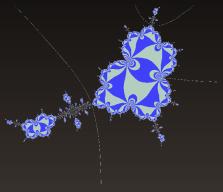


The periodic case

PROPOSITION: If x is eventually periodic on ∂U ,

• either $E(x) := \cap \overline{P_n(x)} = \{x\}$

• or there exist external rays $R_{\infty}(\zeta)$, $R_{\infty}(\zeta')$ landing at x and separating \overline{U} from $E(x) \setminus \{x\}$.



Proof of the proposition We assume that x is fixed (thus E(x)) and that $E(x) \neq \{x\}$.

We assume that x is fixed (thus E(x)) and that $E(x) \neq \{x\}$.

We consider the "external class" g of f on E(x):

We assume that x is fixed (thus E(x)) and that $E(x) \neq \{x\}$.

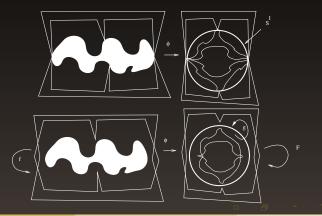
We consider the "external class" g of f on E(x):

The Riemann map $\Phi : \overline{\mathbf{C}} \setminus E(x) \to : \overline{\mathbf{C}} \setminus \overline{\mathbf{D}}$ allows to transport the map f to a non ramified covering F on some neighborhood of \mathbf{S}^1 .

We assume that x is fixed (thus E(x)) and that $E(x) \neq \{x\}$.

We consider the "external class" g of f on E(x):

The Riemann map $\Phi : \overline{\mathbf{C}} \setminus E(x) \to : \overline{\mathbf{C}} \setminus \overline{\mathbf{D}}$ allows to transport the map f to a non ramified covering F on some neighborhood of \mathbf{S}^1 .



P.Roesch (IMT)

Remark

Fixed points for f in E(x) with a fixed access correspond to fixed points of $g = F_{|S^1|}$ in **S**¹ with a fixed access (by F).

Remark

Fixed points for f in E(x) with a fixed access correspond to fixed points of $g = F_{|S^1|}$ in **S**¹ with a fixed access (by F).

We have actually three accessible fixed points in E(x) obtained as the limits of the rays bounding the "fixed" nest $P_n(x)$:

- the boundary rays $R_{\infty}(\zeta_n)$ give $\zeta_n \uparrow \zeta$ so a fixed ray $R_{\infty}(\zeta)$ landing at y in E(x);
- the boundary rays $R_{\infty}(\zeta'_n)$ give $\zeta'_n \downarrow \zeta'$ so a fixed ray $R_{\infty}(\zeta')$ landing at y' in E(x);
- the third one $x \in \partial U$ so it is accessible by an external ray, say $R_{\infty}(\zeta'')$.

Remark

Fixed points for f in E(x) with a fixed access correspond to fixed points of $g = F_{|S^1|}$ in **S**¹ with a fixed access (by F).

We have actually three accessible fixed points in E(x) obtained as the limits of the rays bounding the "fixed" nest $P_n(x)$:

- the boundary rays $R_{\infty}(\zeta_n)$ give $\zeta_n \uparrow \zeta$ so a fixed ray $R_{\infty}(\zeta)$ landing at y in E(x);
- the boundary rays $R_{\infty}(\zeta'_n)$ give $\zeta'_n \downarrow \zeta'$ so a fixed ray $R_{\infty}(\zeta')$ landing at y' in E(x);
- the third one $x \in \partial U$ so it is accessible by an external ray, say $R_{\infty}(\zeta'')$.

Denote by τ, τ' and 1 the points on S^1 corresponding to y, y' and x.

Claim : The fixed points of g are weakly repelling, *i.e.* $|g(z) - p|_{S^1} > |z - p|_{S^1}$.

Claim :

The fixed points of g are weakly repelling, *i.e.* $|g(z) - p|_{S^1} |z - p|_{S^1}$.

Corollary

Between two fixed points of g there is a strict inverse image of 1.

Claim :

The fixed points of g are weakly repelling, *i.e.* $|g(z) - p|_{S^1} | z - p|_{S^1}$.

Corollary

Between two fixed points of g there is a strict inverse image of 1.

Here in each interval of $S^1 \setminus \{\tau, \tau', 1\}$.

Therefore some strict inverse image of $R_{\infty}(\zeta'')$, say $R_{\infty}(\eta)$, lands on E(x) at a preimage of x.

So $R_{\infty}(\eta)$ lies between $R_{\infty}(\zeta_n)$ and $R_{\infty}(\zeta)$ (or $R_{\infty}(\zeta'_n)$ and $R_{\infty}(\zeta')$).

Claim :

The fixed points of g are weakly repelling, *i.e.* $|g(z) - p|_{S^1} > |z - p|_{S^1}$.

Corollary

Between two fixed points of g there is a strict inverse image of 1.

Here in each interval of $S^1 \setminus \{\tau, \tau', 1\}$.

Therefore some strict inverse image of $R_{\infty}(\zeta'')$, say $R_{\infty}(\eta)$, lands on E(x) at a preimage of x.

So $R_{\infty}(\eta)$ lies between $R_{\infty}(\zeta_n)$ and $R_{\infty}(\zeta)$ (or $R_{\infty}(\zeta'_n)$ and $R_{\infty}(\zeta')$).

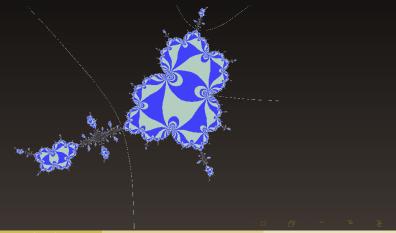
Hence $\eta=\zeta$ or ζ'

contradiction.

Therefore x = y = y', the rays $R_{\infty}(\zeta)$ and $R_{\infty}(\zeta')$ land at x.

Therefore x = y = y', the rays $R_{\infty}(\zeta)$ and $R_{\infty}(\zeta')$ land at x.

Using the same kind of argument and Denjoy Wolff's Theorem, we obtain that E(x) is separated from U by these two rays.



If x is not eventually periodic but accumulates an eventually periodic point then it has property (\star)

If x is not eventually periodic but accumulates an eventually periodic point then it has property (\star)

Assume x accumulates y that is fixed. For k > 0, for any n such that $f^k(x) \in P_n(y)$, there exists $m \ge n$ such that $f^k(x) \notin P_{m+1}(y)$.

If x is not eventually periodic but accumulates an eventually periodic point then it has property (\star)

Assume x accumulates y that is fixed. For k > 0, for any n such that $f^k(x) \in P_n(y)$, there exists $m \ge n$ such that $f^k(x) \notin P_{m+1}(y)$.

Else $E(f^k(x)) = E(y)$ but $E(y) \cap \partial U = \{y\}$ would imply $f^k(x) = y$.

If x is not eventually periodic but accumulates an eventually periodic point then it has property (\star)

Assume x accumulates y that is fixed. For k > 0, for any n such that $f^k(x) \in P_n(y)$, there exists $m \ge n$ such that $f^k(x) \notin P_{m+1}(y)$.

Else $E(f^k(x)) = E(y)$ but $E(y) \cap \partial U = \{y\}$ would imply $f^k(x) = y$.

Then the map $f^m: P_{m+1}(f^k(x)) \to P_1(f^{k+m}(x))$ is an homeomorphism.

If x is not eventually periodic but accumulates an eventually periodic point then it has property (\star)

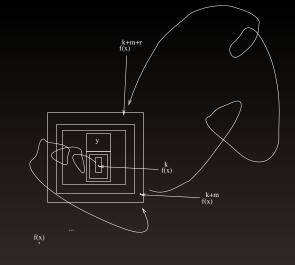
Assume x accumulates y that is fixed. For k > 0, for any n such that $f^k(x) \in P_n(y)$, there exists $m \ge n$ such that $f^k(x) \notin P_{m+1}(y)$. Else $E(f^k(x)) = E(y)$ but $E(y) \cap \partial U = \{y\}$ would imply $f^k(x) = y$. Then the map $f^m : P_{m+1}(f^k(x)) \to P_1(f^{k+m}(x))$ is an homeomorphism. Indeed, $P_{t+1}(y)$ is the unique inverse image of $P_t(y)$ in $P_0(y)$,

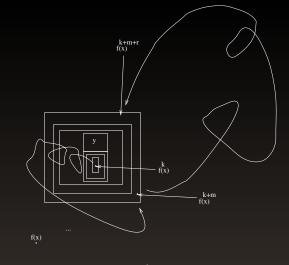
If x is not eventually periodic but accumulates an eventually periodic point then it has property (\star)

Assume x accumulates y that is fixed. For k > 0, for any n such that $f^k(x) \in P_n(y)$, there exists $m \ge n$ such that $f^k(x) \notin P_{m+1}(y)$. Else $E(f^k(x)) = E(y)$ but $E(y) \cap \partial U = \{y\}$ would imply $f^k(x) = y$. Then the map $f^m : P_{m+1}(f^k(x)) \to P_1(f^{k+m}(x))$ is an homeomorphism. Indeed, $P_{t+1}(y)$ is the unique inverse image of $P_t(y)$ in $P_0(y)$, so $y \notin f^i(P_{m+1}(f^k(x))) \subset P_0(y)$,

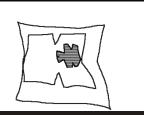
If x is not eventually periodic but accumulates an eventually periodic point then it has property (\star)

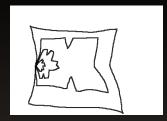
Assume x accumulates y that is fixed. For k > 0, for any n such that $f^k(x) \in P_n(y)$, there exists $m \ge n$ such that $f^k(x) \notin P_{m+1}(y)$. Else $E(f^k(x)) = E(y)$ but $E(y) \cap \partial U = \{y\}$ would imply $f^k(x) = y$. Then the map $f^m : P_{m+1}(f^k(x)) \to P_1(f^{k+m}(x))$ is an homeomorphism. Indeed, $P_{t+1}(y)$ is the unique inverse image of $P_t(y)$ in $P_0(y)$, so $y \notin f^i(P_{m+1}(f^k(x))) \subset P_0(y)$, it is off-critical.





For every *n* take the first *k* such that $f^{k}(x) \in P_{n}(y)$, the first $m \ge n$ such that $f^{k}(x) \in P_{m}(y) \setminus \overline{P_{m+1}(y)}$ and the first *r* such that $f^{r}(f^{k+m}(x)) \in P_{1}(y)$. The map $f^{k+m+r} : P_{k+m+r+1}(x) \to P_{1}(y)$ has bounded degree.





Fix some graph Γ. Note that the intersections of the boundaries of puzzle pieces can occur only at eventually periodic points of ∂U. Therefore such an infinite intersection at the same point, implies that O has to accumulate an eventually periodic point.

- Fix some graph Γ. Note that the intersections of the boundaries of puzzle pieces can occur only at eventually periodic points of ∂U. Therefore such an infinite intersection at the same point, implies that O has to accumulate an eventually periodic point.
- If \mathcal{O} accumulates an eventually periodic point up to iterating f, one can assume that this point y is fixed and not parabolic. We can easily find graphs such that $\overline{P_1(y)} \subset P_0(y)$.

- Fix some graph Γ. Note that the intersections of the boundaries of puzzle pieces can occur only at eventually periodic points of ∂U. Therefore such an infinite intersection at the same point, implies that O has to accumulate an eventually periodic point.
- If \mathcal{O} accumulates an eventually periodic point up to iterating f, one can assume that this point y is fixed and not parabolic. We can easily find graphs such that $\overline{P_1(y)} \subset P_0(y)$.

Corollary : If x has property (*) then $E(x) = \{x\}$.

- Fix some graph Γ. Note that the intersections of the boundaries of puzzle pieces can occur only at eventually periodic points of ∂U. Therefore such an infinite intersection at the same point, implies that O has to accumulate an eventually periodic point.
- If \mathcal{O} accumulates an eventually periodic point up to iterating f, one can assume that this point y is fixed and not parabolic. We can easily find graphs such that $\overline{P_1(y)} \subset P_0(y)$.

Corollary : If x has property (*) then $E(x) = \{x\}$.

Every critical point accumulated by x has finitely many successors.

Every critical point accumulated by x has finitely many successors. Denote by $\Gamma(P)$ the last successor of P.

Lemma: Any puzzle piece has at least two successors.

Every critical point accumulated by x has finitely many successors. Denote by $\Gamma(P)$ the last successor of P.

Lemma: Any puzzle piece has at least two successors.

Theorem (Kozlovski, Shen, van Strien) : There exists sequences of puzzle pieces $(K_n), (K'_n), (\widetilde{K_n})$ in the nest $(P_j(c))$ with the property that $K'_n \setminus K_n$ and $K_n \setminus \widetilde{K_n}$ do not intersect the postcritical set.

• $f^{p_n}(K_n) = K_{n-1}, \ p_{n+1} \ge 2p_n, \ deg(f^{p_n}: K_n \to K_{n-1}) \le C(b, \delta).$

Every critical point accumulated by x has finitely many successors. Denote by $\Gamma(P)$ the last successor of P.

Lemma: Any puzzle piece has at least two successors.

Theorem (Kozlovski, Shen, van Strien) : There exists sequences of puzzle pieces $(K_n), (K'_n), (\widetilde{K_n})$ in the nest $(P_j(c))$ with the property that $K'_n \setminus K_n$ and $K_n \setminus \widetilde{K_n}$ do not intersect the

postcritical set. • $f^{p_n}(K_n) = K_{n-1}, p_{n+1} \ge 2p_n, deg(f^{p_n} : K_n \to K_{n-1}) \le C(b, \delta).$

• $h(K'_n) - h(K_n) \ge r(K_{n-1}) \to \infty$

Every critical point accumulated by x has finitely many successors. Denote by $\Gamma(P)$ the last successor of P.

Lemma: Any puzzle piece has at least two successors.

Theorem (Kozlovski, Shen, van Strien) : There exists sequences of puzzle pieces $(K_n), (K'_n), (\widetilde{K_n})$ in the nest $(P_j(c))$ with the property that $K'_n \setminus K_n$ and $K_n \setminus \widetilde{K_n}$ do not intersect the

postcritical set. • $f^{p_n}(K_n) = K_{n-1}, p_{n+1} \ge 2p_n, deg(f^{p_n} : K_n \to K_{n-1}) \le C(b, \delta).$

• $h(K'_n) - h(K_n) \ge r(K_{n-1}) \to \infty$

Every critical point accumulated by x has finitely many successors. Denote by $\Gamma(P)$ the last successor of P.

Lemma: Any puzzle piece has at least two successors.

Theorem (Kozlovski, Shen, van Strien) : There exists sequences of puzzle pieces $(K_n), (K'_n), (\widetilde{K_n})$ in the nest $(P_j(c))$ with the property that $K'_n \setminus K_n$ and $K_n \setminus \widetilde{K_n}$ do not intersect the

postcritical set. • $f^{p_n}(K_n) = K_{n-1}, p_{n+1} \ge 2p_n, deg(f^{p_n} : K_n \to K_{n-1}) \le C(b, \delta).$

• $h(K'_n) - h(K_n) \ge r(K_{n-1}) \to \infty$

Since we are not in a periodic case, we can find $P_{n_0}(c)$ that is compactly contained in $P_0(c)$. It gives a non-degenerate annulus.

Since we are not in a periodic case, we can find $P_{n_0}(c)$ that is compactly contained in $P_0(c)$. It gives a non-degenerate annulus.

We start the inductive construction of the nest with $K_0 = P_{n_0}(c)$.

Therefore, for *n* such that $h'_n - h_n \ge n_0$, the annulus $K'_n \setminus \overline{K}_n$ is non-degenerate. Denote by μ_n its modulus.

Since we are not in a periodic case, we can find $P_{n_0}(c)$ that is compactly contained in $P_0(c)$. It gives a non-degenerate annulus.

We start the inductive construction of the nest with $K_0 = P_{n_0}(c)$.

Therefore, for *n* such that $h'_n - h_n \ge n_0$, the annulus $K'_n \setminus \overline{K}_n$ is non-degenerate. Denote by μ_n its modulus.

Using "Kahn-Lyubich covering Lemma", we can prove that $\liminf \mu_n$ is bounded from below.

Hence $E(c) = \{c\}.\square$

The Covering Lemma

Theorem

Let $f: U \to V$ be a degree D ramified covering. For any $\eta > 0$, there exists $\varepsilon = \varepsilon(\eta, D) > 0$ such that :

• if $A \subset A' \subset U$ and $B \subset B' \subset V$ are sequences of disks;

• if f is a proper map from A to B, and from A' to B' with degree d;

• if $mod(B' \setminus B) \geq \eta mod(U \setminus A)$;

The Covering Lemma

Theorem

Let $f: U \to V$ be a degree D ramified covering. For any $\eta > 0$, there exists $\varepsilon = \varepsilon(\eta, D) > 0$ such that :

• if $A \subset A' \subset U$ and $B \subset B' \subset V$ are sequences of disks;

if f is a proper map from A to B, and from A' to B' with degree d;
if mod(B' \ B) ≥ ηmod(U \ A);

Then

• $mod(U \setminus A) > \varepsilon$

• or $mod(U \setminus A) > \frac{\eta}{2d^2} mod(V \setminus B)$.

Thank you for your attention

Thank you for your attention

some of the pictures were done by :

Thank you for your attention some of the pictures were done by :

A. Chéritat

Thank you for your attention some of the pictures were done by : A. Chéritat

me with the program of Dan Sørensen