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Rigidity Question :

Two rational maps acting on Ĉ

with an ”equivalent” action on the Julia set
( or in a neighborhood of J)

are they Moebius conjugate?
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Different kind of equivalences

1 Combinatorial equivalence : the combinatorics with respect to
some partition are identical or the dynamics are associated to the
same laminations ;

2 Topological equivalence : involves a conjugacy by a
homeomorphism preserving the orientation ;

3 Quasi-conformal equivalence : the conjugacy is a
quasi-conformal homeomorphism ;

4 Conformal equivalence : the conjugacy is a Moebius map.
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Without hypothesis 1 6=⇒ 2

Take the combinatorial equivalence given by the rational lamination

”identifying” rational angles when
the external rays ”co-land”.

C. Henriksen
There exist cubic polynomials which are combinatorially equivalent but not
topologically conjugate.

It is still open for deg 2 polynomials with only repelling periodic points.

If the Julia sets are locally connected then 1 =⇒ 2
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3 6=⇒ 4

The Fatou set supports quasi-conformal deformations for maps in
hyperbolic components.

The flexible Lattès maps are examples of rational maps for which the Julia
set supports quasi-conformal deformations.

C
Π ↓
C/Λ

nz−→

nz−→

C
Π ↓
C/Λ

where Λ ⊂ C is a lattice

℘ ↓

Ĉ
L−→

℘ ↓

Ĉ

changing Λ gives
quasi-conformally conjugate
Lattès maps.
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Ĉ
L−→

℘ ↓

Ĉ
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With hypothesis rigidity holds

There are several cases where rigidity holds under conditions.

To give some for rational maps :

decay of geometry (Rivera Letelier, ...)

Cantor case (Yin & Zhai, Tan & Peng, Koslovski & van Strien )

rational map with a fixed attracting multi connected basin such that
any non trivial Julia component is a quasi-circle bounding an
eventually superattracting Fatou component containing at most one
postcritical point ( Peng & al.)

in the family of rational maps with a period 2 critical point, the
finitely renormalizable cases with only repelling periodic points
(Aspenberg & Yampolski)

cubic Newton maps in the finitely renormalizable case (R)

· · ·
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Another rational case

Per1(1) = {f ∈ Rat2 | with a fixed point of multiplier 1}/PSL(2,C)
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The parabolic Mandelbrot set

C. Petersen & R.
The maps in Per1(1) which are finitely renormalizable and without
attracting points are rigid.

Proof

In the non connected case the Julia set is a Cantor set, it follows from
the previous results.

Assume now J is connected. The two maps belong to the same
”limb” of the parabolic Mandebrot set.

We construct puzzle pieces using ”parabolic rays” starting with the
same pattern.

We define the regions Pn in parameter plane sharing the same puzzle
at depth n : ”puzzle pieces in the parameter plane”.
The two maps have to belong to the same piece.
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We prove that

1 either ∩Pn(g) = g in the ”non-renormalizable, non indifferent case”;

2 or ∩Pn(g) = M0 is a copy of M in the ”renormalizable case”.

In case 1) rigidity holds.

In case 2) if g and g ′ are combinatorially/ topologically equivalent their
renormalizations are so and the points in M should be the same.

The non-renormalizable parameters of given period and given indifferent
multiplier is a finite set ; these points are separated by the parameter
puzzle pieces. Rigidity holds.
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More precisely
The maps in Per1(1) can be represented by gB(z) = z + 1/z + B with
B ∈ C

.
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Parabolic rays

Fatou
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Model

In the connected case, g is conjugated in C \ K to

B2(z) =
z2 + 1

3

1 + 1
3z2

on D
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Model

h

The conjugacy allows to put the tree T outside of the Julia set.
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For any itinerary ε = ε0 · · · εn · · · with εi ∈ {0, 1} define the parabolic ray
γε to be the minimal arc in the tree joining the points zε0···εn and z∅.

B2(γε) = γσ(ε) ∪ [0,
1

3
]
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Rε = h−1(γε)

”periodic rays” converge.
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Milnor parametrization Φ : D \ {1/3} → C \M1 allows to put this tree T
in the parameter plane

and to define parameter rays Γε

with the property that [B] ∈ Γε ⇐⇒ h(v[B]) ∈ γε.
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M1 = D ∪ ∪p/qL
1
p/q

where the fixed point − 1
B has rotation number p/q in L1

p/q
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The puzzle of level n determines a lamination on Xn = Q−n(e2iπΘ) where
Θ is the starting cycle of angles and Q(z) = z2.
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It defines puzzle pieces in the parameter plane : different laminations
define different puzzle pieces, except the one containing 0 in a class.

Roesch P. (IMT) Rigidity Warwick 2010 19 / 33



Roesch P. (IMT) Rigidity Warwick 2010 20 / 33



Roesch P. (IMT) Rigidity Warwick 2010 20 / 33



Roesch P. (IMT) Rigidity Warwick 2010 20 / 33



Roesch P. (IMT) Rigidity Warwick 2010 20 / 33



Roesch P. (IMT) Rigidity Warwick 2010 20 / 33



Roesch P. (IMT) Rigidity Warwick 2010 20 / 33



Roesch P. (IMT) Rigidity Warwick 2010 20 / 33



.

Roesch P. (IMT) Rigidity Warwick 2010 21 / 33



.

Roesch P. (IMT) Rigidity Warwick 2010 21 / 33



.

Roesch P. (IMT) Rigidity Warwick 2010 21 / 33



.

Roesch P. (IMT) Rigidity Warwick 2010 21 / 33



.

Roesch P. (IMT) Rigidity Warwick 2010 21 / 33



Parapuzzle pieces in Per1(1)

We first define the abstract graph of level n as Gn = B−n
2 (G0) where

G0 = ∪Rσi (ε) with ε of rotation number p/q. We transport this graph Gn

using the parametrization Φ to PGn.

We define the puzzle piece in parameter plane as the connected
components of the complement of PGn.
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There is a conjugacy on S1 between B2 and z2. For g ∈ M1 one can
define a lamination ∼g on Xn defined by the rotation number.
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We have similar puzzle pieces and same dynamics on the puzzle pieces, for
Qc = z2 + c and g , when they define the same lamination.

There is no equipotentials in the parabolic case.
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If ∼g=∼c there is a bijection between the set of puzzle pieces of level n
defined for g and for Qc that preserves the dynamics, the annuli between
consecutive levels (non degeneracy) and the critical pieces.

Hence we have the same number of annuli that covers some fixed annuli
with the same degree.

So the proof of Yoccoz translate here to give that the there exist annuli
Ani surrounding the critical value such that gni−n0Ani → An0 is a non
ramified covering and

∑
mod Ani = ∞ or the map is renormalizable.
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Final step : holomorphic motion

In the case where the map is no renormalizable, standard techniques of
holomorphic motions developed by Shishikura allows to transport the
control on the moduli in parameter plane.

there is a holomorphic motion of the annulus An0 defined in P00 .

lift the holomorphic motion to get a holomorphic motion of Ani

defined on a smaller domain Pni but with same dilatation K .

Then the map ψ−1
[B](v[B]) is a K -quasi conformal map from

Pni \ Pni+1 to Ani (v[B]).

hence
∑

mod Pni \ Pni+1 = ∞ so ∩Pn = {g}.
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Application
With some more work ...
C. Petersen & R.
There is a homeomorphism between M and M1 that has the property to
conjugate (topologically) the dynamics on the respective Julia set, except
possibly on the cardioid.

Roesch P. (IMT) Rigidity Warwick 2010 32 / 33



Application
With some more work ...
C. Petersen & R.
There is a homeomorphism between M and M1 that has the property to
conjugate (topologically) the dynamics on the respective Julia set, except
possibly on the cardioid.

Roesch P. (IMT) Rigidity Warwick 2010 32 / 33



Thank you for your attention

some of the pictures were done by :

A. Chéritat

C. L. Petersen

me with the program of Dan Sørensen
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