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The minimal totally invariant compact set
of cardinality > 3 is called the Julia set
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PO AN
The ambient space is
Fl Gl
My = Raty/PSL(2,C) c o &
./\/lz ~ C2

Milnor's parametrization :

[f] — (A1, A2, A3) — (01,02,03)

My — multipliers of the fixed points — symmetric functions

they satisfy the relation 03 = 01 — 2 : coordinates (01, 02).
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The slices Peri(\) = {[f] € M2 | f has a fixed point of multiplier A}

P
@

Peri(A\) ~ C of slope A + 1/X in the above coordinates.

The slice Per;(0) corresponds to the quadratic polynomials :

(]

Z°+C

by the action of PSL(2,C) the fixed point with multiplier 0 can be
send to oco.

® For || < 1 any rational map is quasi-conformally conjugate to a
quadratic polynomial by the theory of polynomial-like mappings.

Let My = {[f] € Peri(\) | J(f) is connected} for A € DU {1}
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Theorem [Goldberg-Keen, Uhre, Bassanelli-Berteloot]

There exists a map ® : D x Per;(0) — My such that :
A — (A, ) is holomorphic on D

f— ®(\, f) is injective

® sends Per1(0) to Peri(\) and Mg to My,

® the maps f € Per;(0) and ®(\, f) € Peri(\) are conjugate on a
neighborhood of their Julia sets.

®

&

o
@
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What happens at the boundary of D?
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Theorem [Petersen]

If A\ — e?™P/9 with p/q # 1 some specific component L
tends to oo in M .

“pjq Of Mg\ ©
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Theorem [Petersen]

If A\ — e2™P/9 with p/q # 1 some specific component L_p/q of Mg\ ©
tends to oo in M .

Conjecture [Milnor]

For A =1 the set M; is homeomorphic to the Mandelbrot set. Moreover
M tends to M; when X tends to 1 for the Hausdorff topology.

In particular can the possible queer components appear or disappear for
A=17

21 february 2011



i L et
R S
b























































® There exists a homeomorphism between M and M; that induces a
(topological) conjugacy between the maps on their Julia sets, except
possibly on the main cardioid.

® The maps in Per;(1) which are finitely renormalizable and without
attracting points are rigid. (Topological conjugacy implies conformal
conjugacy.)
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Description of the dynamics in Per;(1)

For B € C the map gg(z) =z+1/z+ B has :
® a double fixed point at oo of multiplier 1;
® a fixed point at ag = —1/B of multiplier 1 — B?;
® two critical points at +1.

A=1-B>cC — |[gg] € Pery(1) is a biholomorphism.
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For B € C the map gg(z) =z+1/z+ B has :
® a double fixed point at oo of multiplier 1;
® a fixed point at ag = —1/B of multiplier 1 — B?;
® two critical points at +1.

A=1-B>cC — |[gg] € Pery(1) is a biholomorphism.

since g_g(—2z) = —gg(2)
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B ={z| &"(2) — o0}
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Bw ={z| g"(z) — oo} contains a net by pull-back.




Bw ={z| g"(z) — oo} contains a net by pull-back.
We construct accesses through this net to points of the Julia set.
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Model

2,1 B
For [g] € M1 g is conjugate on By, to B(z) = Ty on D or C\D

B 1—1—%22
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On the circle S, the maps B and z? are conjugate by some
homeomorphism h
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On the circle S, the maps B and z? are conjugate by some
homeomorphism h

(o]
If6. = Z ;_Z' the point Z; = h(eziﬂe) has itinerary €1 ---€p, -+ with
1

respect to the partition S\ {—1,1}
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with ¢; € {0,1},

B is the minimal arc in the tree joining the points z,...., and zj.
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Parameter plane
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The parameter A = 1 — B? is the multiplier of the fixed point ag = —1/B
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C\ M,

Milnor

The set My is connected. There is a dynamical holomorphic bijection
¢:C\M; — C\ (DU{3}).

It is given by the position of the "second critical value” in the basin of the
model B.
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The map ¢! is defined until a neighorhood of the second critical value v.

o([g]) = N((¢¢) " (v))
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Ye) by ®.

(

back of T

c as the pull-

Define rays R




In the complement of U;R,i() the ray RQB admits a holomorphic motion.

»

|
Consequence : \1

My =DU UP/‘?lLflz/q

o /1

® L p/q NS is one point r/q

® Lp/q \ {r, p/q} are the connected components of M; \ D ;

® in L! /a the fixed point has rotation number p/q.

We use Milnor's argument to prove that there is nothing more "attached
to D.
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The bijection
¢ M-M;

@1 : [Qc] — [gB]
d;1:ceQ—AeD

such that Q.(z) = z2 + ¢ and gg (with A =1 — B?) have a fixed point
with the same multiplier.

Sy Ly -2 L},/qto be define now.
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Recall that

M=0uUuU,,L
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® Lp/q NS is one point Fo/q

® Lp/q \ {rp/q} are the connected components of My \B;

® in L,/ the fixed point has rotation number p/q.

21 february 2011



Recall that

M=0uUuU,,L

p/a-p/q

® L,/qNS is one point ry,/q; B
® Ly/q\ {rp/q} are the connected components of My \ D ;

® in L,/ the fixed point has rotation number p/q.

Therefore in L, every map presents a figure like this :

21 february 2011



Recall that

M=0uUuU,,L

p/a-p/q

® L,/qNS is one point ry,/q; B
® Ly/q\ {rp/q} are the connected components of My \ D ;

® in L,/ the fixed point has rotation number p/q.

Therefore in L, every map presents a figure like this :

21 february 2011



Recall that

M=0uUuU,,L

p/a-p/q

® L,/qNS is one point ry,/q; B
® Ly/q\ {rp/q} are the connected components of My \ D ;

® in L,/ the fixed point has rotation number p/q.

Therefore in L, every map presents a figure like this :

21 february 2011



Recall that

M=0uUuU,,L

p/a-p/q

® L,/qNS is one point ry,/q; B
® Ly/q\ {rp/q} are the connected components of My \ D ;

® in L,/ the fixed point has rotation number p/q.

Therefore in L, every map presents a figure like this :

21 february 2011



It determines an equivalence relation on X, = Q~"(€?"®) where © is the
cycle of rotation number p/q and Q(z) = z2.
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If 0 belongs to a class, the region reduces to one point.
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The set of all the "laminations” on X, induces a partition of M in pieces.
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For [g] € M1 one can define an equivalence relation Ng on Xp.

/ \
i i
\ / /
AN | J
S S
T
N o

It is determined by the rotation number of the fixed point in C.

Since there is a conjugacy on S between B and z? we get the same
possible equivalence relations by pull back on X,.
They define pieces in Mj.
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Pieces in Pery(1)
Let Go = Uk7gk(c) be the cycle of parabolic rays landing at p/q cycle in S.
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Pieces in Pery(1)

Let Go = Uk7ok() be the cycle of parabolic rays landing at p/q cycle in S.
Let G, = B~"(Go), transport G, using the parametrization ® to PG,.

The parameter pieces are the connected components of the complement of
PGn.
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c € M — (~,)nen sequence of equivalence relations.
They define in M and in M nested pieces (P(~,)) and (P1(~,)).

q)]_ . mnP(Nn) - mnpl(Nn)
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® if (~p) is non-renormalizable then N,P(~,) is one point

® else there exists a homeomorphism x._ : N,P(~,) = M
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® if (~,) is non-renormalizable then N,P(~,) is one point
® else there exists a homeomorphism x~__ : N,P(~,) — M
Petersen-R

® if (~,) is non-renormalizable then N,P(~,) is one point

» else there exists a homeomorphism X}vm :NaPY(~p) = M
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c € M — (~,)nen sequence of equivalence relations.
They define in M and in M; nested pieces (P(~,)) and (P(~,)).

q)]_ . mnP(Nn) - mnpl(Nn)

Yoccoz
® if (~,) is non-renormalizable then N,P(~,) is one point
® else there exists a homeomorphism x~__ : N,P(~,) — M
Petersen-R
® if (~,) is non-renormalizable then N,P(~,) is one point
» else there exists a homeomorphism x1_ : N,PY(~,) - M
The bijection c € M — (~)
® if (~,) is non-renormalizable, ®1(c) = ®1(N,P(~n)) = NP (~n)
® else P1(c) = X1 © (Xo) H(C)
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In the dynamical plane

The sequence of equivalence relations ~,, ~ define pieces in the
dynamical plane for g and for Q..
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In the dynamical plane

The sequence of equivalence relations ~,, ~ define pieces in the
dynamical plane for g and for Q..

If ~g=n there is a bijection between the set of pieces of level n for g and
for Q.
® The bijection sends the critical piece of level n to the critical piece of
level n,

® it commutes with the dynamics induced on the pieces.
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The dynamical pieces do not shrink to points. One should add
equipotentials.

There are no equipotentials for parabolics.
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We add some "shortcut” between the parabolic rays.




We add some "shortcut” between the parabolic rays.

01010 0

1010 1100

They are preserved by the dynamics (excepted for the nest around the
parabolic point at co and its preimage).
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The bijection preserves the non degenerate annuli.
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The bijection preserves the non degenerate annuli.

Same combinatorics, same degree, same non-degenerate annuli, the proof
of Yoccoz passes to the parabolic case.
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Construction of the conjugacy between the two Julia sets:
® In the non renomalizable case, they are both locally connected.

® In the renormalizable case, the conjugacy between the small Julia sets
extends to the whole Julia sets by pull back.

Transfer to the parameter plane :
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Construction of the conjugacy between the two Julia sets:
® In the non renomalizable case, they are both locally connected.

® In the renormalizable case, the conjugacy between the small Julia sets
extends to the whole Julia sets by pull back.

Transfer to the parameter plane :

We use Shishikura's argument on holomorphic motions to compare the
modulus of the annuli in parameter and dynamical planes.

Therefore N,P(~,) is either a point or a copy of the Mandelbrot set.
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Continuity

#® At non renomalizable maps, parameter pieces of level n define
neighborhoods. The continuity follows from N,PY(~,) = {*}.
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Continuity

® At non renomalizable maps, parameter pieces of level n define
neighborhoods. The continuity follows from N,PY(~,) = {*}.

® At renormalizable maps, we use that the map x is continuous and the
following result

C. PETERSEN & R. If one takes away any small copie of M in M or in
M, the diameter of the remaining connected components tends to 0.

<
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the pictures of this talk were done by :

A. Chéritat
C. L. Petersen

myself with the program of D. Sgrensen and H. Inou

Thank you for your attention.
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