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transition profiles in Aviles-Giga type models: an
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Abstract

For vector fields on a two-dimensional domain, we study the asymp-
totic behaviour of Modica-Mortola (or Allen-Cahn) type functionals under
the assumption that the divergence converges to 0 at a certain rate, which
effectively produces a model of Aviles-Giga type. This problem will typ-
ically give rise to transition layers, which degenerate into discontinuities
in the limit. We analyse the energy concentration at these discontinuities
and the corresponding transition profiles.

We derive an estimate for the energy concentration in terms of a novel
geometric variational problem involving the notion of R%-valued 1-currents
from geometric measure theory. This in turn leads to criteria, under
which the energetically favourable transition profiles are essentially one-
dimensional.

1 Introduction

1.1 The problem

Let © C R? be an open domain. Suppose that W: R? — [0,00) is a locally
Holder continuous function. For u: 8 — R? and for € > 0, consider a Modica-
Mortola (or Allen-Cahn) type functional of the form

B (1) = %/ﬂ (6|Du|2 + 1W(u)) da.

We are interested in the asymptotic behaviour of a family of vector fields wu.
such that
lim sup (Ee(ue; Q) + € 27| div u|
N0
for some 7 > 0 and some s > 2. This is relevant in the context of models that
combine a Modica-Mortola type energy functional with a divergence penalisa-
tion of the above form, or even with the constraint divu = 0.

2Ls(9)> <00 (1)
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As in the classical theory of Modica and Mortola [37, 38, 36, 45], the above
conditions typically imply convergence of a subsequence to a limit ug: Q —
R? that takes values in W~1({0}) almost everywhere. (Also see the work of
DeSimone, Kohn, Miiller, and Otto [15].) In addition, the limit will satisfy
divug = 0. Transitions between different zeroes of W are possible, but will
require a certain amount of energy.

Depending on the exact structure of the potential function W, the vector
field ug may belong to BV (€; R?), or may belong to a larger space, but even then
we typically have a countably 1-rectifiable jump set J C €2, where the values of
up jump from one value to another [13]. More precisely, this set is characterised
by the behaviour of a blow-up around a point xg € J: choose a sequence r; \, 0
such that the functions @ — ug(zo + riz) converge, say in Li (R*R?), to the
limit v: R? — R2. Let v € S! be one of the approximate normal vectors to J at
2o (which exist almost everywhere with respect to the 1-dimensional Hausdorff
measure by the countable rectifiability). Then there exist a=,at € W=1({0})
such that v(x) = a™ when v-z > 0 and v(z) = a~ when v -z < 0.

A blow-up is useful, too, when we want to understand how much energy will
be concentrated at a point xy € J in the limit as € \, 0; or in other words, how
much energy is required to generate a transition between a~ and at. Suppose
that we rescale the vector fields wu, similarly. Then we can expect that the limit
ug: R?2 = R? is already of the form

ot ifr-z>0
— ’ 9
uo(®) {a_ ifv-xz<O. 2)

Since ug must be divergence free under the conditions we are interested in, we
expect that v 1 (a™ —a™).

The density of the energy concentrated at a corresponding jump point is
measured by the quantity

lim inf E. (u.: B1(0)),

m i (ue; B1(0))
where B,.(x) denotes the open disc of radius r > 0 centred at z € R?. For
a~ # a™, we therefore consider the set U (a~, a™), comprising all families ()0
of vector fields u, € W2(B;(0); R?) such that u, — ug in L'(B;1(0); R?) and
such that there exist 7 > 0 and s > 2 with the property that

lim e 7 || div u.|
N0

Ls(B,(0)) = 0, (3)

where ug is defined as in (2) with v = (a~ —a™)*/|a~ —a™|. (We disregard the
possibility that v may point in the opposite direction, because that situation
may be reduced to this one by applying reflections in the domain and codomain
and adjusting W accordingly.) Then we define

1
E(a,a™) = 3 inf {liren\inge(ue;Bl(O)): (Ue)es0 € L{(a_,a+)} .

One important question is whether the same infimum is obtained when we
consider only one-dimensional, divergence-free transition profiles, i.e., vector
fields of the form u. = a~ + we(z - v)(a™ — a™) for some functions w.: R — R.



Under the typical assumptions on W, the resulting number is easy to compute
with the methods from the Modica-Mortola theory and is

VW dH',

[a=sat]

where [a~,a™] denotes the line segment connecting a~ with a™ and H' stands
for the 1-dimensional Hausdorff measure.

This question is the main focus of this paper, and it can be formulated as
follows.

Question 1. Under what conditions is

E(a™,a™) :/ VW dH?
[a=.at]

1.2 Main results

We now fix the points ¢~ and a™. It is convenient to assume that v = (), and
thus a] = aj, as this will simplify the presentation of our results. The general
situation can always be reduced to this case by a change of coordinates, so there
is no loss of generality.

We also assume that W has a specific polynomial rate of growth as |y| — oo.
More precisely, we assume that there exist certain constants cy,co > 0and p > 0
such that

ey —1 < W(y) < syl +1) (4)

for all y € R2.

To formulate our first result, we need to introduce some tools, including the
notion of R2-valued 1-currents. This is a variant of a standard concept from
geometric measure theory. Its definition is normally given in terms of differential
forms in R?2, but for our purpose, the following, equivalent definition is just as
convenient.

Definition 2. An R2-valued 1-current on R? is an element of the dual space
of C§°(R?;R?*2). If T is an R2-valued 1-current in R?, then its boundary 0T is
the R?-valued distribution such that 0T (§) = T(D¢) for every £ € C5°(R?; R?).
We say that T is normal if there exists C' > 0 such that

T(¢) +9T(€) < C sup (|¢(2)] + [£(2)])

zER?
for all ¢ € C§°(R?;R?*?) and all £ € C§°(R?;R?).

We are particularly interested in normal R2-valued 1-currents T a with spe-
cific boundary, given by the condition that

aT(€) = <§1(a+) 651@))

for all £ € C§°(R?;R?). We write CJ,, for the set of all normal currents with
this boundary.



Given any normal R2-valued 1-current 7', there always exist a Radon measure
|IT|| on R? and a ||T||-measurable, matrix-valued function 7': R? — R2*2 with

|T| = 1 almost everywhere, such that
7(¢) = [ ¢: 7]
R2

for any ¢ € C§°(R?;R?*?). Here we use the notation M : N for the Frobenius
inner product between two matrices M, N € R**2. We further write |M| for
the corresponding norm of M.

The following is an example of a current with some relevance for our results.
Define TV € C3,,, by the condition that

0 1

for ¢ € C§°(R%;R2%2). Then ||T° = H'L[a",at] and T° = (3}) almost
everywhere. (We can think of the first component of T° as a representation of
the oriented line segment between a~ and a™, whereas the second component
vanishes.)

We now consider the function F*: R? x R**? — R U {co} such that

1 2 _ 9 ) _
F*(y’N>_{4W(y)max{lN| 2det N, (n12 — n21)?} if tr N =0,

00 else,

where we write N = (11 12). For any T € C3, ,, we define

Me(T) = [ P T dIT )

(This is a variant of the mass that is normally associated to a current. The
connections will become more apparent in Section 3 below.)
We have the following results.

Theorem 3. The inequality

E(a™,at)>2 inf Mpg(T)

Tecy, ,

holds true.
Corollary 4. If Mp(T%) < Mpg(T) for every T € C3,.5, then

E(a™,a™) = VW dH .
l[a=,a*]

Thus we may be able to give an affirmative answer to the above question
by solving a different variational problem involving currents. Since currents can
be interpreted geometrically, that variational problem is geometric in nature.
It is also rather unusual because of the structure of the above function F*. It
may be difficult to solve in general, but we can give some estimates that allow
further conclusions.

For j € Ny, let C%(R?) denote the space of all ¢ € C7(R?) such that there
exists a constant C' > 0 satisfying |[D*¢(y)| < C(|y[P~* + 1) for all y € R? and
k=0,...,7. We now have the following result.



Corollary 5. Suppose that W = w?, and suppose that there exist Borel func-
tions , k, \: R? — [—1, 1] with

2 <min{l — A2, (1 + k)1 —N),(1—r)(1+N)},

such that vw, kw, \w € C*(R?*) N CL(R?) and

82 2 2

Then

for any T € CY, 5 (R?).

If in addition, we know that x(aj ,y2) = 1 for all y € [a; , aj], then it follows,
of course, that
Ela™,a™) = VW dH .
[a=,a*]
Corollary 5 is a consequence of another, more general estimate, which may
be more useful in certain situations. Since the statement is also more technical,
however, we postpone the formulation to Section 5 (see Theorem 31).

1.3 Background

Problems like the above are relevant for a number of physical systems, including
micromagnetics [19], smectic-A liquid crystals [33, 7], thin film blisters [39], or
crystal surfaces [46]. Such models typically arise when a Ginzburg-Landau type
energy functional is combined with a divergence penalisation, or is applied to a
gradient vector field. Indeed, if we consider a quantity such as

1

5/9 (6|D2¢|2+ 1W(D¢)) dz, (6)

then the identification u = V¢ will give rise to E(u; ), and in this case, we
even have the condition divu = 0. The integral in (6) gives a variant of the
Aviles-Giga functional [7].

Despite its importance, remarkably little is known about Question 1, let
alone about how to determine £(a™,a™) in general, with the exception of some
special cases. It can happen, of course, that the constructions from the vector-
valued Modica-Mortola problem [45, 8] happen to be divergence free, in which
case they also provide a solution to the above problem. Otherwise, only the case
of the classical Aviles-Giga functional, which corresponds to W (y) = (1 —|y|?)?,
has a reasonably comprehensive theory. One of the key contributions is of Jin
and Kohn [28], who (among other things) determined the value of £(a™,a™) in
this situation. Without attempting to give a complete list, we mention some
other noteworthy contributions to this theory [2, 15, 26, 25].

More general potential functions have been studied by Ignat and Monteil
[23]. In particular, they give some results similar to Corollary 5 (although
weaker), which they prove with methods different from what we use here.



Theorem 3 and its corollaries (including Theorem 31 in Section 5 below) add
a completely new tool to the study of these problems. The theorem provides
an estimate for £(a,a’) in terms of another variational problem, which is
geometric in nature, and whose connection to the functionals E. is far from
obvious. That variational problem is difficult to solve in general, but this novel
connection is clearly of theoretical value, and we show in Section 6 that it can be
used to answer Question 1 for some examples where the problem was previously
open.

There is then the obvious question of how to determine £(a™,a™) when the
equality from Question 1 is mot satisfied. Almost nothing is known for this
question in general, although for some specific problems of a similar nature, it
can be answered [40, 41, 1, 24]. We provide no general results about this question
here, but we give some examples in Section 6 which suggest that Theorem 3 may
be useful in this context, too.

There are some aspects of the theory that we implicitly take for granted in
the formulation of Question 1. If we were to fully analyse the problem with
respect to I'-convergence, we would have to prove that

e the limiting energy is really concentrated on a countably 1-rectifiable jump
set, where we can perform an appropriate blow-up, and

e after the blow-up, we have convergence of a subsequence in L'(B1(0); R™)
to a limit ug as above.

That is, we would need some information about the structure of limit points
and compactness of families (u¢)eso satisfying (1). Such information is rela-
tively easy to obtain when W has only isolated zeroes, and results of this type
are available for the potential function W (y) = (1—|y|?)? (the Aviles-Giga func-
tional) [13, 15] and some generalisations thereof [11, 35]. Obviously, if we have
such results for a potential function W such that W < CW for some constant
C > 0, then the same follows for W. Nevertheless, these questions are open in
general and are not studied here.

1.4 Strategy for the proofs and organisation of the paper

Theorem 3 may appear mysterious at first, as the connection between the energy
FE. and the F-mass Mg becomes apparent only when the ingredients for the
proof are known. For this reason, we give an informal overview of the arguments
here. At the same time, we explain how the paper is organised.

The first key idea in the proof is that of a ‘calibration’ (also called ‘entropy’
by some authors, because of some analogy with entropies for conservation laws).
This idea goes back to the paper of Jin and Kohn [28], but has been refined by
DeSimone, Kohn, Miiller, and Otto [15] and subsequently studied by a number
of authors [13, 22, 23]. The formulation that we use here is as follows. Let
L(R%;R?*2) denote the space of linear maps R? — R?*2. Suppose that there
exist ® € C1(R?%;R?), a € C°(R?), and a € C*(R?; £(R?; R**?)) such that

div ®(u) + a(u) divu < %|Du|2 + %W(u) + ediv(a(u)Du) (7)

for all sufficiently regular vector fields u: B1(0) — R2. Then it is not difficult
to see, when we integrate over By (0) and integrate by parts, that we obtain an



estimate of the form
E(a™,a™) > ®y(at) — P1(a”)

under reasonable assumptions. Clearly, such an inequality is potentially useful
for answering Question 1.

But it is not clear at all how to find @, «, and a in general, at least not such
that they give rise to a useful estimate. (The choice ® =0, « =0, and a = 0
will always work, but the resulting estimate is trivial.) Good calibrations have
been constructed in special cases, most notably for the Aviles-Giga functional
[28], but no general construction is known.

In Section 2 we derive a condition that is equivalent, for a given ®, to the
existence of & and a such that (7) holds true. If we define the function

1 1
1) = § (1M = 300 MY+ b — IV — 201

for M = (it mi2) € R2X2 this condition takes the form of the inequality
F(D®) < W.

We use arguments inspired by the work of Ignat and Merlet [21] in this step,
but we extend these ideas considerably.

This gives a convenient way to check whether a given function ® gives rise
to a calibration, but still does not tell us how to construct one. But suppose
that we want to find the best possible calibration, which for our purposes means
that ®1(a™) — ®1(a™) should be as large as possible. Then the above inequality
suggests that we determine

no = sup {®1(at) — ®1(a”): f(DP) < W}.

If we can solve this variational problem, then we have the best estimate that
can be achieved with this approach.
It is convenient here to recast the problem in a different form. Define the

function ()
Fly,M) = =——
W(y)
(assuming for the moment that W (y) > 0 for all y € R? and ignoring the fact
that Question 1 is more interesting for a potential function with zeroes). Then
we may instead try to determine

&% = inf {|[F(y, D) a2y @1(a™) — By(a™) = 1}

It is easy to see that 79 = 1/e~. We thus obtain a variational problem involving
the L°°-norm.

Very little is known about problems of this sort. For similar problems in-
volving a scalar function (in place of the vector-valued ®), there is a body of
literature going back to the work of Aronsson [3, 4, 5, 6] and including papers
by many other authors. Once more we give an incomplete list [10, 27, 42, 16].
For vector-valued functions, this theory does not apply. There is some work
by Katzourakis [29, 30, 31], but these results do not tell us much about the
solutions to the above problem. Fortunately, we do not need to know anything



about the structure of the solutions, we merely need to determine the number
€so- For this purpose, the ideas of a recent paper by Katzourakis and Moser [32]
are useful. This paper treats only the case of the function F(y, M) = £|M|?,
but the methods can be generalised, and this is what we do in Section 3. We
can think of the results as a characterisation of the essential behaviour of the
minimisers through a dual problem, in our case that of minimising My for R2-
valued 1-currents. The analysis has to be carried out for a regularised version
of F, but then we can prove that there exists a minimiser 7' of Mz in CS, 5 such
that ®1(a™) — ®1(a~) = 2Mp(T'). This is where the inequality from Theorem
3 ultimately comes from.

Remarkably, even though calibrations are central to our approach, this result
means that we do not need to construct any calibrations in the end. We only
need to know ®1(a™) — ®;(a"), and this information is encoded in 7T

As already mentioned, these arguments require a regularisation of F', and we
need to make sure that we can recover the relevant information when we relax
the conditions on F' again. This is the purpose of Section 4. At this point, the
proof of Theorem 3 is complete. But to make use of it, we have to study the
problem of minimising My in C3,,.

This is the problem that we study in Section 5. Superficially, it may look
deceptively simple. After all, we may think of 1-currents as generalised curves
in R?, and Mp resembles an anisotropic version of the length functional. That
is, we have a variant of the problem of finding geodesics. (Incidentally, geodesics
for a degenerate Riemannian metric appear in the solutions of the vector-valued
Modica-Mortola problem as well [8].) There are, however, several complications.
First, we have R2-valued 1-currents, so we should really think of a pair of curves
linked through Mg. Second, the function F' is degenerate in some sense in both
variables. Third, although T should be thought of as a one-dimensional object,
it does not follow that it is supported on a one-dimensional set (and in general
it is not; see Example 35 below). Because of all of this, the standard methods
from geometric analysis do not apply here.

We do not have any general methods to solve the problem, but we can nev-
ertheless give some estimates, which show that 70 is a minimiser under certain
conditions. One of the key tools we use for this purpose, is a result and Bonicatto
and Gusev [12] (see also the work of Smirnov [44] and of Baratchart, Hardin,
and Villalobos-Guillén [9]), which gives a decomposition of a normal 1-current
into actual curves. This result applies to conventional 1-currents, not R2-valued
ones, but at least we can apply it to the first component of T' € C,,. We can
then give some estimates relying on convexity and the structure of F' to also take
the second component into account. This first gives rise to a functional for Lip-
schitz curves, which is now really similar to an anisotropic version of the length
functional and, in principle, can be analysed with standard methods involving
ordinary differential equations. Unfortunately, it also involves some unknown
functions, and therefore, the task is not so simple after all. Notwithstanding,
with some further estimates, we finally prove Corollary 5 as a result.

We conclude the paper with some examples in Section 6. First, we discuss
some potential functions W such that Corollary 5 applies, and the optimal
transition layers therefore have one-dimensional profiles. This includes the well-
known Aviles-Giga functionals, but also includes some new examples. Finally,
we consider the question what Theorem 3 can tell us in situations where the
equality from Question 1 does not hold true. We have no general results here,



but we can compare the number Mp(T') for some specific currents with the
energy density for certain known constructions for u.. If 7' minimises Mg,
then the former gives a bound for £(a™,a™) from below by Theorem 3, while
the latter gives a bound from above by definition. If the two bounds match,
then we know that the construction is optimal. We can achieve this for two
different examples, assuming that the potential function W is such that the
corresponding T is indeed a minimiser of Mg (7). This raises the question
whether the estimate from Theorem 3 might be sharp in general. We have no
evidence for this, however, beyond these two examples.

1.5 Notation

The following notation is used throughout the paper, with the exception of
Section 3, where some adjustments are required due to a more general setting.

As mentioned previously, for M, N € R2%2, we use the notation M : N and
|M| for the Frobenius inner product and norm, respectively. (In Section 3, we
will also use the corresponding notation for (m x n)-matrices.) We write MT
for the transpose of M and I for the identity (2 x 2)-matrix.

Given two vector spaces X and Y, the space of linear maps X — Y is
denoted by L(X,Y).

Although our problem is concerned with vector fields u:  — R2, much of
our analysis will take place entirely in the codomain R2. We generally use the
notation z for a generic point in the domain €2, and y for a generic point in the
codomain R2. (Section 3 is an exception here, too, as it is about an auxiliary
problem independent of w.)

We will frequently work with convolutions with a standard mollifier. There-
fore, we fix p € C§°(B1(0)) with p > 0 and fBl(O) ply)dy = 1. For § > 0, we set

ps(y) = 07>p(y/9).

2 Characterising calibrations through differen-
tial inequalities

In this section, we derive some conditions in the form of certain differential
inequalities related to the inequality

div @ (u) + a(u) divu < §|Du|2 + %W(u) + ediv(a(uw)Du) (8)

that characterises calibrations. These conditions will make it easier to study
suitable calibrations later on. Some of the following arguments go back to the
work of Ignat and Merlet [22], but we extend the theory significantly.

2.1 Pointwise conditions

For a given map ®: R? — R? and a function a: R? — R, we want to understand
the above inequality (8). First we show that it suffices to consider tensor fields
a of a specific form.

Proposition 6. Suppose that ® € C'(R%*R?) and o € C°(R?). Let € > 0.
If a: R? — L(R?*2;R?) is continuously differentiable and satisfies (8) for all



u € C%(B1(0);R?), then there exists a vector field w € C*(R?%;R?) such that
a(y)M = —(MTw(y))*
for any y € R? and
div(a(u)Du) = (curlw)(u) det Du
for any u € C%(B1(0); R?).
Proof. Let aék € CY(R?), for i,7,k = 1,2, denote the coefficients of a, so that
2 ol
o= 32 (G45)

for all M = (it hi2) € R?*2 and all y € R?.
Given an arbitrary point y € R? and two symmetric matrices

ALA DYDY
Al — ( 11 12) and A2 — ( 11 12) ,
A Ax MG AL,

we can find u € C?(B1(0); R?) such that u(0) = y and Du(0) = 0, while at the
same time, D?uy(0) = A¥ for k = 1,2. Then

2
div(a(u)Du)(0) = Y af;(y) Ny
i, k=1
Inequality (8), evaluated at 0, thus gives
1 2
0< oWy +e D aiw).
i, k=1

Since this also holds true for all real multiples of A' and A2, it follows in fact
that

2
Z a?j(y))‘;k =0

i,j,k=1

for any pair of symmetric matrices. Therefore, the coefficients al;, a2,, a3, and
a3, must vanish, and

1 2 1 2
ajs+aj; =0 and ayzy +ay; =0.

1
aja

w B ( 1 ) ’
a2

then the desired formulas follow by a direct calculation. O

Set

We have the following characterisation of (8).

Proposition 7. Suppose that ® € C'(R%*R?) and a € C°(R?). Set = =
D® + al. Let w € CY(R%R?) and o = curlw. Suppose that € > 0. Then the
following statements are equivalent.

10



(A) The inequality
div ®(u) 4+ a(u) divu < §|Du|2 + %W(u) - (:‘diV((Du)Tw(u))l (9)
€

is satisfied for all u € C?(B1(0);R?).
(B) The inequalities |Du|? + 20 (u) det Du > 0 and

1/2
div ®(u) 4+ a(u) divu < (W(u)(|Du\2 + 20(u) det Du))

are satisfied for all u € C*(B1(0); R?).
(C) For ally € R? and all M € R?*2,
(M E(y)* < W(y) (IM[* + 20 (y) det M)
and |o(y)| < 1.

Proof. If we assume that (B) holds true, then (A) follows from the observation
that N
- div((Du)Tw(u)) = o(u)det Du

and Young’s inequality.
Now suppose that (A) holds true. We want to show that (C) follows. We
note that

E(u) : (Du)T = div®(u) + a(u) divu < %|Du\2 + %W(u) + eo(u) det Du
€

for any u € C?(B;(0); R?). Consider an arbitrary point y € R2. If W(y) = 0,
then we choose an arbitrary matrix M € R?*? and consider u € C?(B1(0); R?)
such that u(0) = y and Du(0) = M”. Then we conclude that

S(y): M < %|M|2 +eo(y) det M (10)

for any M € R2%2. Since the left-hand side is linear in M and the right-hand
side is quadratic, this can only hold true when Z(y) = 0. In this case, the first
inequality in (C) is clear, and the second one follows from the fact that the
right-hand side of (10) must be positive semi-definite in M.

Now suppose that W (y) # 0. Choose a matrix M € R?*?2 such that

W (y)
2 __
M= ==,

We can again choose u such that u(0) = y and Du(0) = MT. Thus

o(y) det M

E(y): M < %|M|2+%W(y)+eo(y)detM: \/W(|M+|]\/[|)

Since the left-hand side and the right-hand side are both positive homogeneous
in M of degree 1, it follows that in fact,

=G+ M < VTG (Jar + )

11



for all M € R?*2\ {0}. If o(y) = 0, then the desired inequalities hold at y.
If o(y) # 0, then we fix a number ¢ € [0,1) such that ¢Jo(y)| < 1 and
consider M € R?*2 such that

W(y).

€2

|M|? 4 2co(y) det M =

In this case, we obtain the inequality
E(y): M < %\M|2 + %W(y) + eo(y) det M
= %(\M|2 + 2co(y) det M) + %W(y) +¢e(1—c)o(y)det M

(1 —-c)o(y)det M
VIM|2 +2ca(y)det M )

= VW(y) <\/|M|2 + 2co(y) det M +

Again we conclude that

(1 - c)o(y) det M )(11)

E(y) : M < W (y) <\/|J\4|2 + 2co(y) det M + VIMP? + 2¢o(y) det M

for all M € R?*2\ {0}. If we replace M by —M, then the left-hand side changes
its sign while the right-hand side stays the same. Therefore, the inequality

(1 —-c)o(y)det M -0
VM2 + 2co(y)det M —

VM2 + 2co(y) det M +

must be satisfied for all M € R?*2, which implies that
|M|?* + (1 +c)o(y) det M > 0.

We conclude that
(I+o)lo(y)| <2
Since we have proved this inequality for any ¢ such that

1
0§c<min{1,}7
lo(y)l

it follows that |o(y)| < 1.

It now follows that (11) is satisfied for any ¢ € [0,1). Letting ¢ A 1, we
derive the other inequality in (C) as well.

Now suppose that (C) is satisfied. Since

div®(u) + a(u) = (Du)” : Z(u),
statement (B) follows immediately. O

Next we examine inequalities as in statement (C) above. For this purpose,
we require the function ¢g: R2*2 — R defined by

g() = 5 (IMP + /NI a(det 312
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We note that g is convex, which is most easily seen in different coordinates: let

qQ = (m11 + ma2), Q2 = (m11 — ma2),

q3 = (m12 + ma1), qs = (m12 —ma1).

Sl Sl

Then

1 2
9(M) = 5 <\/Qf+QZ+\/Q§+Q§> ,

which is clearly convex. Since g is also homogeneous of degree 2, it follows that
for all M, N € R?*? and for s,t € (1,00) with L + + =1,

g(M+N)=g (Si” + tf) < 9(334) + g(ttN) = sg(M) +tg(N).  (12)

Lemma 8. Suppose that A € R?*2\ {0}. Let

o — det A
SO
(i) The inequality g(A) < 1 holds true if, and only if, there exists s € [—1,1]
such that
(A: M)? < |M*+ 2sdet M (13)

for all M € R%x2,

(ii) If there is any s € [—1,1] such that (13) is satisfied for all M € R?*2
then the same holds true for s = sg.

Proof. We first consider a matrix A such that 2det A = |[A|%2. Then A = ( % %)
for some a,b € R. We then calculate g(A) = %[A|? and so = 1. If (13)
is satisfied for some s € [—1,1], then inserting M = A yields |A|> < 2, i.e.,

g(A) < 1. Conversely, if g(A) < 1, then a? + b?> < 1. Hence

(A:M)? = (a(mu +maz) + b(miz — mzl))2

< (ma1 +ma2)? + (mi2 — ma)?

= |M|*+2det M

by the Cauchy-Schwarz inequality. Both statements of the lemma follow imme-
diately.

If 2det A = —|AJ?, then we can use practically the same arguments, except
that a few signs will change in the above calculations.

We now assume that 2| det A| < |A|%. In this case, we first note that (13)
cannot be satisfied for s = £1. Indeed, if it did hold true for s = 1, then we
could test it with the matrices (§ %) and (93) to find that A = ( 4 2) for
some a,b € R. That is, we would find that we are in fact in the first case. For
s = —1, the arguments are similar.

We therefore consider s € (—1,1) now. Define the bilinear form

(M,N), =M : N + s(mi1no2 — miang1 — Mainiz + maani1).

13



It is easy to see that this constitutes an inner product on R?*2. We also note
that
|M|2 = (M, M), = |M|? + 2sdet M.

By the Riesz representation theorem, there exists ©, € R2*? such that
A:M=(0,,M),

for all M € R?*2, By the Cauchy-Schwarz inequality, inequality (13) is satisfied
if, and only if,
CHHESE

We can easily determine O, = (g; g;z) by solving a linear system of equa-

tions. We obtain

6y, = A1 — 5>\22’ 0,y = A2 + 8>\21’
1—s2 1— 52
Oy — A21 + 8A12 Oy — A2z — 8>\11'
1—52 1— 52
Therefore,
O.2=A:0, = |A|2 — 23detA-
s 1-— 52

Thus we see that for —1 < s < 1, inequality (13) is satisfied if, and only if,
|A|? — 2sdet A
—_— <1
1—s2 -
We now define

A2 —2sdet A

— 2 , —l<s<l,

¢(s)

and minimise this function over (—1,1). Differentiating, we compute

&(s) = 252 det A — 2s|A|? +2det A
o= (1 — s2)2 '

The derivative has a unique zero in (—1, 1), which is at

2_\/ﬁ
AP - VIAF = (@A _ )

2det A -

(unless det A = 0, in which case the left-hand side is meaningless but the unique
zero is still at sg). Moreover, we know that ¢(s) — oo as s N1 or s N\ —1.
It follows that ¢ has a unique minimum, which is attained at sg. We further
compute

¢(s0) = g(A).

(This is easier to calculate with the expression for so on the left-hand side of
(14) rather than in the definition of sg.)

Hence if there is any s € [—1, 1] such that (13) holds true, then ¢(s) < 1,
and it follows that g(A) = ¢(sg) < 1. The number sg then also satisfies (13).
Conversely, if g(A) < 1, then we still conclude that (13) holds true for s = s9. O

14



2.2 A regularity gap

The combination of Proposition 7 and Lemma 8 suggests that the functions ®
and « give rise to an inequality of the form (8) if ¢g(2) < W. Assuming that
® is the quantity we are interested in primarily, we may also wish to minimise
g(D® + al) over a, which will give « = —3div®. (Then Z is the trace free
part of D®.) Lemma 8 then also gives a good idea of how to choose ¢ = curlw.

In the following sections, we will indeed construct ® such that g(E) < W for
this definition of =. Unfortunately, this function will not satisfy the regularity
requirements of the preceding subsection. For this reason, we have to use a
regularisation scheme, which eventually necessitates the construction of a family
of vector fields ws rather than a single w as in Proposition 7.

Another technical difficulty arises from the fact that once we have o, we
need to invert the curl operator. It does not quite suffice to use standard results
here, because we do not necessarily have decay at infinity for o, but we still
want to control the growth of w. We use the following result here.

Lemma 9. There exists a constant C' such that the following holds true. Sup-
pose that o € C%/2(R?) is bounded. Then there exists w € C'(R?;R?) such
that curlw = o and

sup () < C sup [o(y)]-

yer2 1+ [y|log |y| yER?

Proof. We use a (one-sided) dyadic decomposition of ¢ in terms of a partition

of unity
oo
1=> ",
k=0

where 1, € C§°(R?) are functions such that 0 < n, < 1 for all k € Ny and
supp 1o € Bz(0), while supp nx C Bar+1(0) \ Bar-1(0) for k& > 1.

Let G denote the fundamental solution of the Laplace equation in R2. For
k € No, define ¢, = G * (o). Then A¢p = nro. Standard Schauder esti-
mates imply that ¢;, € C*'/2(R?). Furthermore, we know that ¢j, is smooth in
ng—l(o) for k > 1.

Set S = ||o]| Lo (r2). For any y € R?, we have the estimate

~ 1 Y—z
D = | Z1==
D)l = 3-| [, ATl
S / dz
S R -
27 Byi41(0) ly — 2|
<5 4= _ ohrig

27 Byi41(0) |2|

for all £ € Ny. If £ > 1, then we also estimate

~ S dz
D%0)| < 5 [ & Slogu,
27 B ir (0\Byi—1 (0) |21

Let R > 1. If k € N is such that 2¥=2 > R, then with the same arguments, we
find a universal constant C; > 0 such that

|D*¢r(y)| < 27FC1 S

15



for all y € Br(0).
Now define ¢y = ¢y and
Ou(6) = buly) = 5u(0) ~ Do(O)y — 3 DOy y). K21

Then ¢, (0) = 0, Dgr(0) = 0, and D?¢,(0) = 0 for k > 1. We still compute
A¢r = nro in R2. (For k > 1, this is because A¢y(0) = 0.) Moreover, if
k=2 > R, then

1D%6u(y)| < 27°C1 S,

which implies that there exists a universal constant Cy such that
R73|px| + R72|D¢r| + R7YD?*¢p| < 2778

uniformly in Br(0) when 25=2 > R. Therefore, the series
b= ¢k
k=0

converges in C?(Bg(0)) for any R > 1. In particular, the function ¢ is twice
continuously differentiable.
Furthermore, for all k£ € Ny, we find that

|Déi| < C3(2 + R)S

in Br(0) for another universal constant Cs. If we choose ko such that 2ko—3 <
R < 2k0=2 then

ko—l 00
IDo(y)| < C3S Y (2" + R) + CoSR* > 27F
k=0 k=ko

< C38(2% 4+ kgR) + 21" *0C, SR?
for all y € Br(0). Thus we find a universal constant C4 such that

[Do(y)| < CaS(1 + [y[log [yl)-

_ 99
o= 2)
Oy1

and then we have all the desired properties. O

Now we set

We can now prove the following.

Proposition 10. There exists a constant C' > 0 with the following property.
Let & € N WLP(R2;R?) and set a = —1div®. Define ®5 = ps * ®, a5 =

p<oo ' loc
ps*a+0, and

ps * W
W =

*T 1=

If g(D®+al) < W, then for every § > 0 there exists ws € C1(R?;R?) such that

+ 0.

€L

div @5(u) + as(u) divu < §|Du|2 + Q%Wg(u) — ediv((Du)"ws(u)) (15)
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for every u € C?(B1(0); R?) and every e > 0. Furthermore,
ws(y)| < C(1 + [y|log |y[) (16)
for every y € R2.

Proof. In addition to the above quantities, define &5 = ps * o and Wy = psxW.
Furthermore, set = = D® + ol and Z5 = D®s + asI. Then by Jensen’s
inequality, the convexity of g implies that

9(Es(y) =g (/B ( )pa(y—Z)E(z) dz)

<[ ooty - 2)g(E ) dz
Bs(y)
<[ aty- W) dz = Wily)
Bs(y)
Now recall that ag = @5 + 0. Set 5 = DPs + asl = =5 + 61. Then (12) gives
9(Es) | g(8I)

— < .
175+ 5 < Ws

9(Es) <
Lemma 8 implies that
(Es(y) - M)* < Ws(y)(IM|? + 205 det M)
for all M € R?*2, where
o det E[;
5= —(=— -
9(Es)
Note that g(Z5) > 1|52 > 1(trZ5)% = §2. As Z; is smooth, it follows that
o5 € CO1/2(R?). Tt is clear that |os| < 1.
Lemma 9 provides vector fields ws € C*(R?; R?) such that curlws = o5 and

such that (16) is satisfied for a universal constant C. Inequality (15) then follows
from Proposition 7. O

We conclude this section with a brief discussion of how we proceed in the
proofs of our main results.
Consider the function f: R?*2 — R given by

f<M>=g(M—“MI)

2
1 2 1 2 / 2

Owing to Proposition 10, one of the central questions of this paper is now
whether we can satisfy the inequality

f(D®) <W

while simultaneously keeping ®1(a™) — ®1(a™) large enough to obtain a useful
estimate. (The best possible value here is of course

®y(at) — By (a”) :/[ . VWAH.)
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Thus we want to find the number
no = sup {®1(a*) — ®1(a7): ® € CO'(R*R?) with f(D®) < W}.
Alternatively, assuming that W > 0, we can define

Py, b = 100

W(y)

and try to determine
e, = inf {||F(y, D®)| = (gzy: ®1(a™) — By(a”) =1}.

Then we note that nyp = 1/es. (In general, we are interested in potential
functions W that do have zeroes, but they can be approximated by positive
functions.)

We therefore study problems of this nature in the next section. Since these
results are potentially of independent interest, we formulate them more generally
here.

3 An L>*-minimisation problem

In this section, we assume that n, m € N and study functions ¢: R” — R™. Let
A C R™ be a finite set and @ = R™ \ A. Given mg € {1,...,m}, we fix a non-
constant function ¢°: A — R™0. We further assume that F: R" x R™*" —
[0,00) is a continuously differentiable function such that for every z € R™,
the function F(z, -) is homogeneous of degree 2, C?-regular away from 0, and
uniformly strictly convex in the sense that there exists a constant ¢ > 0 such
that

D2, F(x, M)(N,N) > 2¢|N|? (17)

for all z € R™ and all M, N € R™*" where D3, F denotes the second derivative
with respect to the second argument. (The function F(z, -) is not twice Fréchet
differentiable at 0 in general, but we can always interpret the left-hand side of
(17) in the Gateaux sense even at 0.) We further write VF for the gradient of F
with respect to the second argument only. We assume that there exists another
constant C' > 0 such that

|[VE(x, M)| < 2C|M| (18)

for all z € R™ and M € R™*",
We also consider the Legendre transform
F*(x,N)= sup (M:N—F(z,M))
MgRmxn
of F with respect to the second argument.
Motivated by the previous section, we study functions that minimise the
functional
Eoo(¢) = esssup / F(z, Do(x))
reRn”
subject to the condition ¢; = ¢{ on A for i =1,...,my.
Notation. In this section, we write B,(x) for an open ball in R™ with radius
r > 0 and centre x € R™. The symbol p now denotes a function p € C§°(B1(0))
with p > 0 and fBl(o) pdx =1. For 6 > 0, we then set ps(z) = 6 "p(x/J).

18



3.1 Summary of the results

Following the ideas from a paper of Katzourakis and Moser [32], we derive some
properties of the minimisers of F,,. They will be described in terms of an
R™-valued 1-current on R™ and a mass functional depending on F. Although
currents will normally be defined in terms of differential forms and the exterior
derivative, if we only consider 1-currents, then we can work with matrix-valued
functions and the Fréchet derivative instead.

The following is a more general version of Definition 2.

Definition 11. An R™-valued 1-current on R™ is an element of the dual space
of C§°(R™; R™*™). If T is an R™-valued 1-current, then its boundary 9T is the
R™-valued distribution such that 0T'(§) = T(DE) for every & € C°(R™;R™).
The F-mass of T is

Mp(T) = %Sup {T(0): ¢ € CF(R™;R™™) with | F(x,¢)||con <1}

We say that T is normal if there exists C' > 0 such that

7)1 +107(@) < € (sup ¢l + sup [e(o))
zERn ner»
for all ¢ € C§°(R™;R™*™) and all £ € C(R™;R™). We write Cpyxn(R™) for
the space of all normal R™-valued 1-currents on R”.

Given i € {1,...,m}, we write T; for the R-valued 1-current such that
T;(&) =T(e; ®&) for £ € CC(R™;R™), where e; denotes the i-th standard basis
vector of R™. We can think of these as the components of T

Many of the standard properties of currents, as described, e.g., in a book
by Simon [43], also apply to this variant. In particular, if T has finite F-mass,
then, by the properties of F, it automatically has finite mass in the standard
sense. (In the above terminology, that means that M 4(T") < oo for the function
F(z,M) = 1|M|?.) Tt then follows that there exist a Radon measure ||T|| and
a ||T|-measurable, matrix-valued function T': R™ — R™*" with |T'| = 1 almost
everywhere, such that

7(¢)= [ Ticdir]

for any ¢ € C§°(R™;R™*™). In this situation, we can also make sense of the
expression T'(¢) for ¢ € CJ(R™; R™*"). If T is normal, then we can make sense
of dT(€) for any £ € CJ(R™; R™).

We write W, (R™; R™) for the space of all ¢ € W,=>°(R™; R™) such that
¢i = ¢ on Afori=1,...,mg. We set

oo = inf {Ex(¢): ¢ € WH(R™;R™)}.
We will prove the following two statements.
Proposition 12. There ezists ¢oo € W™ (R™;R™) such that Eso(fec) = €oo-
Theorem 13. There ezists T € Cryxn(R™) \ {0} with the following properties.

(i) suppdT C A, and 9T; =0 fori=mo+1,...,m.
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(i) If S € Cruxn(R™) satisfies 0S = 0T, then Mp(T) < Mp(S).
(iii) Let ¢ € W™ (R™;R™) be a minimiser of Es in W™ (R™;R™) and let
oo = Eoo(@). Then 0T (¢) = 2eccMp(T) and
L2
VF*(z,T)
F*(z,T)

ps % Do — eoo d|T| = 0.

lim
ANO Jgn

Note that the last statement gives a lot of information about the behaviour
of ¢ on suppT. Indeed, we interpret it as a generalised version of the equation

D¢:emVF (x7z:),
F*(x,T)

but since supp T will be a Lebesgue null set in general, such an equation does
not make sense pointwise.

The existence of a minimiser of F,, can be proved with the direct method,
although, as one needs to work with weak* convergence in an L°°-space, some
of the details are not so obvious. We will use a different method for the proof
of Proposition 12, because we will obtain the minimiser as a side product of the
arguments for the proof of Theorem 13.

3.2 Properties of F' and F*

We first derive some properties of the function F' and its Legendre transform
F* that follow from the above assumptions, in particular the strict uniform
convexity (17).

The homogeneity of F' implies that

VE(x,M): M =2F(z,M). (19)
Hence (18) gives rise to the inequality
F(x,M) < C|MJ2.

According to Taylor’s theorem, for any x € R™ and any M, N € R™*"  there
exists 6 € (0,1) such that

F(z,N)=F(x,M)+VF(x,M): (N —-M)
+ %D%F(az, OM + (1 —0)N)(N — M,N — M).
Therefore,
][N —M|? <F(z,N)— F(z,M) — VF(x,M) : (N — M). (20)
Using (19) again, we can write the above inequality in the form
¢|[N - M]* < F(x,N)+ F(x,M) — VF(x,M) : N. (21)
Inserting N = 0, we also see that

F(x, M) > ¢|M|*.
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The Legendre transform of F' is automatically homogeneous of degree 2 and
strictly convex again. It is a well-known property of the Legendre transform
that VF*(z, -) is the inverse of VF(z, -) regarded as a map R™*"™ — R™*",
That is, if N = VF(x, M), then M = VF*(x, N), and vice versa. We then also
find that

2F* (2, N) = VF*(2,N) : N = M : VF(z, M) = 2F (2, M).
That is,
F(z,M)=F*(x,VF(x,M)) and F*(z,N)= F(x,VF*(z,N)).

In addition to the standard definition of the Legendre transform, we have
the following characterisation.

Lemma 14. For any x € R™ and N € R™*",
1
F*(z,N) = Zsup{(M :N)2: M € R™™ with F(z, M) < 1}.
Proof. Fix © € R™. For every M € R™*™\ {0} there exists ¢ > 0 such that
F(z,tM) = 1. Hence

F*(z,N)= sup sup (tM:N — F(z,tM))
F(z,M)=1 teR
= sup sup (tM: N —t%).
F(z,M)=1 t€R

The function t — tM : N — t? attains its maximum at t = %M : N. Therefore,

M : N)?
F*(x,N)= sup (M : N)” .
Fa,M)=1 4
Clearly this supremum is identical with the one in the lemma. O

As a consequence, we have an alternative representation of the F-mass Mp.

Proposition 15. Let T be an R™-valued 1-current in R™ with finite F-mass.

Then
Me(T) = [ P DT,

Proof. If ¢ € Cg°(R™; R™*") with [|F(x,()|lcomn) < 1, then

70~ [ T2 [ Jrehar

by Lemma 14. It follows that

Mp(T) < /R VE* (@, T)d|T|.

To prove the reverse inequality, we first note that there exists a sequence
of uniformly bounded functions T}, € C5°(R™; R™*™) such that Ty, — T almost
everywhere with respect to ||T’||. Define

EVF*(x, T (x))

Ce(x) = =
VR F (0, Ti(2) +1

. keN.
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Then .
2kF*(x, T (x))

B V2 F (@, Ty () +1

Ti(z) : Gul@)

for every z € R™. Hence

Ti(x) : G(z) = 2/ F* (2, T(x))

almost everywhere. We also compute

—

K2F(z, VF* (2, T, k2F*(x, T
F(«%Ck(f)) _ (CE,V _'('Tv k?(x))) _ (m:, k(m)) <1.

K2F*(x, Ty (z)) + 1 K2F*(x, Ty (z)) + 1

Therefore,
- 1. .

/ A/ F*(z, T)d||T| = 3 lim / Tk : G d||T] < Mp(T).
Rn k—o00 R2
This completes the proof. O

Lemma 16. Let K C R™ be compact. Let Q € L= (R™; R™*™), and let U C R"™
be an open set with K CU. Then

limsup sup F(z, ps * Q(x)) < esssup F(z, Q(z)).
N0 zeK zecU

Proof. Since F is continuous, it is uniformly continuous on the compact set
L={(z,M)eR" x R™": dist(z,K) <1 and [M| < |Q|lpe®n)} -

Let € > 0, and fix g € (0, 1] such that |F(z, M)—F(y, M)| < efor all (x, M) € L
and (y, M) € L with |z—y| < dp. Let z € K. By the convexity of F' and Jensen’s
inequality, we can estimate

Fla,ps % Q) < / ps( — y)F(, Q(y)) dy

n

< /n ps(z —y)F(y,Qy)) dy + ¢

<esssup F(y,Q(y)) + €
yeU

when 0 < dg and § < dist(K,R™\ U). The claim follows. O

3.3 Approximation in L?

In order to take advantage of the usual tools from the calculus of variations,
we construct a minimiser of F., as the limit of solutions to more conventional
problems. To this end, we replace the L°°-norm by LP-norms.

Let V: R™ — (0,00) be a smooth function such that

/HV(x)dsz
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For n < p < o0, define the functionals

E,(¢) = </W(F(93,D¢))p/2‘/(x) dx)l/p

on the Sobolev space WLP(R”; R™). Let W.*(R”; R™) denote the space of all
¢ € WLP(R™;R™) such that ¢; = ¢? on A for i = 1,...,mg. We consider the
problem of minimising E,, in W* P (R™; Rm).

Since we now have a strictly convex functional given in terms of an integral,
we can use standard methods from the calculus of variations to make a few
statements immediately: there exists a unique minimiser ¢, € WP (R™; R™),
which satisfies the Euler-Lagrange equation

div (V(:z:)(F(x, D)) * IV F(a, Dqsp)) =0

weakly in Q. (Here the divergence is applied row-wise, so that we actually have
a system of m equations.) We use the notation V;F for the i-th row of VF.
Then we can write

div (V(m)(F(x,D¢p))p/2_1ViF(x,D¢p)> 0, i=1,....m.  (22)

We note that this is satisfied weakly in  for i = 1,...mg, and even weakly in
R™ fori=mg+1,...m

We obtain another necessary condition when we study inner variations of ¢,
of the form ¢! (x) = ¢,(z+1tx(x)) for a vector field x € C§°(Q;R?). A standard
computation then gives

| 50
2 [ V) (Pw.D6) T (VF (Do) s (00,0 - S0, do

I\D\'ﬁ &

— / (F(x, D¢p))”/2 (DVx + Vdivy) dr,
(23)
where %—5 denotes the derivative of F' with respect to the first argument.

Proof of Proposition 12. Let ¢ € W,}’OO(R";RW). By Holder’s inequality, for
n < q < p, we have the inequalities

Eq(¢p) < Ep(p) < Ep(¢h) < Eco(¥)). (24)

Thus, the family (¢,)<p<oo is bounded in W14(Bg(0); R™) for any ¢ < oo and
any R > 0. We may therefore choose a sequence pr, — oo such that we have the
weak convergence ¢,, — ¢ as k — oo simultaneously in all of these spaces for
some Poo € (ycon 29(R™;R™). We further see that

Eoo(¢oc) = lim Ey(¢o) < liminflim inf Ey(¢p, ) < liminf By, (¢p,) < Eoo(4))

(25)
by the lower semicontinuity of £, with respect to weak convergence, Holder’s in-
equality again, and (24). In particular, we see that ¢, belongs to W (R™; R™)
and is a minimiser of F, in this space. O
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We continue to use the functions ¢, and ¢, for the rest of this section. Let
ep = Ep(¢p), n<p<oo.

Because we have assumed that ¢° is not constant, it is clear that e, # 0. The
inequalities in (24) and (25) imply that es, = lim,_,o €. It is now convenient
to introduce the measures

1y = 277V (@) (F(x, Doy))" ' L,

where L™ denotes the Lebesgue measure in R™. This is normalised so that

R =" | V(@) (F.Do,)"" e < 7 (By(o,))" " =1
R

by Hélder’s inequality. The Euler-Lagrange equation (22) implies that

VF(z,Dé¢p) : D dp, =0 (26)

R’!‘L
for all ¢ € C§°(€2). Note, however, that the identity also holds true if we merely
know that ¢ € WLP(R™;R™) and E, (1)) < oo and ¢y = --- = ., = 0 on A,

because these conditions imply that the derivative % lt=0Ep(¢ + t1)) is given by
the usual expression.
Equation (23) has the following representation in terms of p,:

0=2 [ (VF@.D6): (06,00 - G, 6,)x) o

~ [ Fla.0,) (Dog V) + div) du.
The measure p,, should be considered together with the function D¢,. These

two objects form a measure-function pair (u,, D¢,) with values in R™*™ in the
sense of Hutchinson [20]. Since

o ‘%mw

1
/ D)2 dpty < sz/ (F(z, D))" *V (x) do <
R Cep n

for every p € (n,00), we may assume that for the above sequence pr, — oo, we
simultaneously have the weak convergence of (1, , Dép, ) to a measure-function
pair (oo, Zoo) in the sense of Hutchinson. (This follows from [20, Theorem
4.4.2], but we may have to pass to a suitable subsequence.) Here p is a Radon
measure on R™ and Zo, € L?(ji00; R™*™). Of course, we have a uniform bound
for

/ VE(z, Do) du,

as well, and we may therefore assume at the same time that (u,, , VF(x, Dy, ))
converges weakly to (fioo, Yoo ) for some function Yo, € L?(peo; R™*™). Because
of (26), we have the identity

Yoo : Dy djie =0 (28)
R’n

for all ¢ € C3(R™; R™) with 91 = - -+ = tb,,, = 0 on A.
We now want to prove the following additional properties.
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Proposition 17. (i) Let K C Q be a compact set. Then the convergence
(e, Dbp,.) = (Hoos Zoo) is strong in K the sense of Hutchinson [20].
Equivalently,

/‘ZOO‘Qd/'I’OO:khm/|D¢pk|2le’pk'
K —00 K

(ii) The identity F(z, Zs) = €2, holds at pi-almost every point x € Q.

(iii) For any minimiser ¢ € W (R™;R™) of Fa,
li Dip — Zoo | dpios = 0.
JI{%/QI/J(; * D — Zoo|” dpioe = 0

The proof follows the strategy of the aforementioned paper [32], which in
turn makes use of some ideas of Evans and Yu [17] at this point. First, we
require the following lemma.

Lemma 18. Let £ € CO(R™) be a bounded function with € > 0. Then for any
p € (n,00) and any B € (0,1),

€ (2,00, dy = ¢ | €du, — 57 supe.
i: R" R™
Proof. Consider the sets

Sy ={xz € R": F(z,D¢,(z)) < ﬂQei} .

Then
_ 2—1 _
ip(Sy) = €27 /S V(@) (F(x, Dgy))"> " do < 72,
Therefore,
EF(x, Déy) dp, > / EF(x, Do) dpy
Rn R™\S,
g [ cdn,
R7\S,
_ g2 (/ fdup—/ fdup>
R" S,
> e / € dup — BPe2 sup€,
R’VL Rn
as claimed. O

Proof of Proposition 17. Fix an arbitrary minimiser ¢ € W*I’OO(R”; R™) of Fw.
Define 15 = ps * 1. Let £ € C§°(Q) with 0 < & <1, and let 8 € (0,1). Then by
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(20), (26), and Lemma 18, we find that
¢ /Q €D — Doy dpsy
< /Q ¢(F(z, D) — F(z, Dé,) — VF(x, Ddy) - (Dibs — Do) dpsy
- /Q ¢(F(z, Dibs) — F(x, Doy)) duy + /Q VF (2, Déy) : (5 — dy) © DE dpsy
< /S;SF(I,D@/}(;) dpy — ,62612) /Qfd,up + ,@peg
+ / VF(z,Dop) : (¥s — ¢p) @ DE dpty.
Q

Applying this inequality to pix and letting k& — 0, we obtain

clim sup/ﬂﬂDd)g — Doy, 2 dpep,

k—o0

< /Q EF (2, Ds) dpine — F2¢2, /Q Edpoe + /Q Yao : (5 — boe) © DE dpine.

For r > 0, define B,.(A) = J,c4 Br(z). Suppose that r is so small that
B..(a) N B,(b) = 0 when a,b € A with a # b. Choose x € C§°(B,(0)) with 0 <
x <1 and such that x = 1 in B, /5(0) and |Dx| < 4/r in B,.(0). Furthermore,
for R > 1 such that B,.(A4) C Br(0), choose n € C5°(Bar(0)) with 0 <n <1
such that n =1 in Br(0) and |Dn| < 2/R. Set

E(z) =n(z) = Y x(z—a).
a€A
Note that t;(a) = ¢ooi(a) for i =1,...,mg and a € A. Hence

QYOO : (wts _¢00)®D§d/f"oo

-/ (W5 — 6m0) @ Do
B3yr(0) \BR(O
—Z/ Us(2) — b () © Dx(x — @) dpioe(2)
acA

B2r(0)\Br(0)

=Y [ Valo) s (5(0) = 000~ el) + () © Dl — ) i)

a€A (a)
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by (28). Therefore,

clim sup/ﬂﬁIDl/Jé — Doy, |2 dpu,

k—o0

< F(x, Dbs) doo — B2€2, dpios

_/Qf (2, D) dpio — /Qw

+/ Yoo:(wé_(boo)@DfdMoo
B2r(0)\Br(0)

#3005 00— e (@) © DE i,

a€A r(a)

Since ¢oo is a minimiser of Fo,, it satisfies F(x, Do) < €
where. Hence

2
2, almost every-

1 1z e

Dooo| < [ =F(z, Do <=,

Dol < (2P Dox)) <
Similarly, we find that |D| < e /+/¢, as 1 is also a minimiser of F.,. Hence

2reqo
- - <

6= 9(@) — 0+ b (0)] < 22

in By(a). Similarly, if R > |1(0) — ¢oo(0)|, then

|w—¢oos(4e°°+1)}z

Ve
in Bygr(0). If § <, the we also have the inequality
Teso
_ < =
Therefore,

/ Yao : (15 — boc) ® DE dpine
B2r(0)\Br(0)

+ Z/ ( )Yoo : (s — (a) — oo + doc(a)) ® DE dpise

acA? Br(a

10e 12e
< = +2> / |Yoc‘dﬂoo + = |Y00|d.“oo
< Ve Bar(0)\Br(0) Ve B (ANB, s (4)

12¢ ) /2
< oo
< (B w2) (imlGnn) [ WP )

where Gr, = (B2r(0)\ Br(0))U(B(A)\ B;/2(A)). Given € > 0, we can choose
r so small and R so large that

12¢ ) 12
0o < e
(222 (sclCn) [ Pinn) <

Let K C Q be a compact set. Then we can further assume that K C Br(0)
and K N B,.(A) = 0. With the help of Lemma 16, we conclude that

k—o0

climsup/K |Dtps — Dy, | dpty, < /Qg(F(x,Dwé) — B%e%.) dpso + € (29)

<(1- 52)620 + 2¢
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whenever § is sufficiently small. By [20, Theorem 4.4.2], it follows that
c/ |Dtbs — Zoo|? dptoo < (1 — B2)eZ + 2e.
K

This holds true for any 8 € (0,1) and any € > 0, provided that J is small enough
(depending on €). Hence

. . 2 _
tiy [ DY~ 2o dpo = 0. (30)

This L?-convergence implies that there exists a sequence §, \, 0 such that
Dis, = Zo almost everywhere in K (with respect to the measure po.) as
¢ — oo. Hence F(x, Dis,) — F(x, Zs) almost everywhere in K. Recalling that
F(x, D) < €2, almost everywhere (with respect to the Lebesgue measure) and
using Lemma 16 again, we conclude that F(x, Z,,) < €2, almost everywhere in
K (with respect to fiso).

Choosing another compact set K’ C § such that supp& € K’, we similarly
obtain the convergence D5 — Zoo in L?(poo L K'; R™*™). Hence

/Q §F (2, Z2c) dyice = lim /Q EF (2, Difs) djise.

Inequality (29), on the other hand, implies that

i [ €F (o, Dis) o = 6%, [ € .
N0 Q Q

Again this holds true for any § € (0,1) (and provided that r is sufficiently small
and R is sufficiently large, depending on € but not on 3). Hence

[ 6P 2y dn 2 & | €l e
Q Q

When we let 7\, 0 and R — oo again, then the integrand on the left-hand side
converges to F(z, Zs,) pointwise in €. Since we know that it is bounded by e,
we can apply Lebesgue’s dominated convergence theorem and obtain

/ F(z,Zw) dpos > ego,uoo(Q)-
Q

As we already know that F(x, Z..) < €2, almost everywhere, this implies state-
ment (ii).

Furthermore, since the functions D)5 are uniformly bounded and we now
know that Zo € L*®(ueo; R™*™), the local strong convergence (30) implies
statement (iii).

For the proof of statement (i), we go back to (29) once more. For a given
number v > 0, we see that

Jimn sup / Dips — Dby, |2 dpiy, < 7
K

k—o0
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for any sufficiently small § > 0. But for a fixed §, we also compute

lim sup/ |Dips — Do, | dpay,
K

k—o0

= limsup/ (|D¢6‘2 —2Ds : Doy, + |D¢pk|2) ditp),
K

k—o0

= / (|1DYs|* — 2D¥s : Zoo) dpros + limsup/ | Dby | i,
K k—oco K

:/ |D¢5—Zoo|2duoo—/ |ZOO|2d,uOO—|—1imsup/ |Dp, |2 i, -
K K K

k—o0

It follows that
limsup/ | Dy, [* dpsy, S/ | Z ool dpioo,
K K

k—oco

and by [20, Theorem 4.4.2], we have strong L2-convergence in K. O

We can improve the first statement in Proposition 17 if we test with functions
that vanish on A.

Corollary 19. Let G: R™ x R™*™ — R be a continuous function, and suppose
that there exists h € CJ(R";[0,00)) such that h(a) = 0 for all a € A and
|G(z, M)| < h|M|? for all x € R™ and all M € R™ ™. Then

/ G(x,Zm)dum:kILn;O . G(z, Dop,) dpp,, -

Proof. Let € > 0. There exists r > 0 such that |h| < ce in B,.(A), which implies
that
Gz, M)| < eF(z, M)

for every x € B,(A) and M € R™*". Therefore,

|16 Dol i, < ¢ [ Fla Do) diy, < e
BT‘(A) R™

and
/ |G (2, Zoo)| dppoo < 6/ F(2,Zo) dios < €% e.
Br(A) "

Choose £ € CJ(R™\ A) with £ = 1 in (supph) \ B,(A4). By Proposition 17.(i),
we have the convergence

G (2, Zoo) dpico = klim EG(z, Doy, dpip,, -
R™ —00 Rn
It now suffices to combine these facts. O

The following is also important, because it rules out that Proposition 17 is
vacuous.

Proposition 20. The measure p does not vanish.
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Proof. Let r > 0 such that B,.(a;) N By(az) = 0 for aj,as € A with a1 # as.
Choose ¥ € C3(R™;R™) such that ¢; = ¢? on A fori=1,...,mg and Dy =0
in B,(a) for every a € A. Note that

ef,:/ F(z,D¢,) du,

1
_ i/n VF(z, Dép) : Dby dpsy
:% VF(x,Dép) : Dipdp,

R™

for every p € (n, 00) by the definition of x, and equations (19) and (26). It then
follows from the local strong convergence in Proposition 17 that

. 1
R’Vl

But as the boundary data do not admit a constant function, we have e, # 0.
Hence 1o cannot vanish. O

We can finally improve the convergence from Proposition 17 even more.

Proposition 21. Ifa € A, then Zy(a) =0 or peo({a}) = 0. Furthermore, for
any compact set K CR™, the convergence (fip,, Dop, ) = (Hoos Zoo) 1S strong in
K.

Proof. We use (27) with x(z) = n(Jx — a|)(z — a) for a function n € C5°((0, R)),
where R > 0 is so small that x will vanish in a neighbourhood of A. We obtain

0= [ nlle — ) (VF(@ Do) D6, ~ 5 . Doy)a — ) ) dy

+ / T =) G (2, Dgy) : (Dey((a — @) © (x — ) disy

n |z —al
2

_ }—j /” n(|lz — a|)F(x, Dép) (D(log V)(xz — a) +n) du,

2
= [ 1o =ali'(la = a) (2. Dy ) di

(31)

Now consider n € C§°((—R, R)) such that 7’ vanishes in a neighbourhood
of 0, and define x(z) = n(Jz — al)(z — a) again. We can find a sequence of
functions 1, € C§°((0, R)) such that ny(t) = n(t) for t > 1/¢ and |n)| < C1¢ for
some constant Cy independent of £. Then the functions x¢(z) = n¢(|z — al)(z —
a) converge uniformly to , and their derivatives Dy, are uniformly bounded
and converge to Dy at every point in R™ \ {a}. Using Lebesgue’s dominated
convergence theorem, we therefore conclude that (31) holds in this situation as
well.
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Therefore,

/ 0|z — al) F(z, Déy) disy
]R’n

/ (lx — a|)VE(z,D¢p) : Dép dpy,

Il
l\D\

N

/ (f2 — a) o (2, D&, (x — a) diy
1

1 /n Mvp(% D¢y) : (Dgp((z —a) @ (x — a))) duyp

2 |z — al

+ % /Rn n(|z — a|)F(z, Dép) (D(log V) (z — a) +n) dpu,

1
+ /R @ — al/(jz — a)F(z, Déy) dy.

We now restrict the identity to px and let & — oo. Clearly, we have a
constant Cy such that

1 2
= [ nle = ablF (. Do) Doz V)@ — a) + nl dy < Co

and

1 e2
1 / @ — alln’(j — al)|F(x, Doy) dyp < Co 2,
D Jrn P

and the right-hand sides converge to 0 as p — oo. For the remaining terms, we
can use Corollary 19. We finally find the identity

lim [ (e = al)F(z, Déy,) duy,
—00 JRn
1

=5 [ e =) G (e 2o - )

_ l/n U= G 2.y (Zola = a) ® (@ a)) djice.

2 | — al

Let r € (0, R/2]. If we choose n such that 7 = 1 in [0, ] and n = 0 in [2r, 00),
and such that it satisfies |n’| < 2/r everywhere, then this inequality gives rise
to a constant C'3, independent of r, such that

k—o0

Jimn sup / P (2D dhy, < O+ Ot B@)\ B(0))
B, (a

Because

Zum By-1(a) \ Bys(@) < o0,

it is clear that
lim\"iglf too(Bar(a) \ B(0)) = 0.

It therefore follows that

lim lim sup/ F(z, Doy, duy, = 0. (32)
Br(a)

™0 koo
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By [20, Theorem 4.4.2] and Proposition 17,

lim sup/ F(z,Déy,) dpsp, > / F(z, Zo) dpico
k—oo JB,(a) B,(a)

= €3otico(Br(a) \ {a}) + F(a, Zo(a)) o ({a}).

Thus (32) implies that Zo(a) =0 or peo({a}) = 0.
Moreover, combining this information with (32) and the statement of Propo-
sition 17.(i) in a way similar to the proof of Corollary 19, we obtain

/K|ZOO|2 dpioo :klgrolo'/K|D¢pk‘2dﬂpka

which is equivalent to strong convergence in K by the results of Hutchinson
[20]. O

3.4 Currents

The measure-function pair (g, Zoo) constructed in the preceding subsection
gives rise to the 1-current from Theorem 13. Indeed, we define the R™-valued
l-current T, such that

TOO(C) = - VF(x>Zoo) Cdpioo

for ¢ € C°(R™; R™*™). It then follows from (26) and Proposition 21 that
0T (&) =0

for all £ € C§°(R™;R™) such that & = -+ = &, = 0 on A. That is, we know
that supp 0Ts € A and 0T e; =0 for i = mg+1,...,m.

To prove the remaining statements of Theorem 13, we require another propo-
sition. This result also reveals a deeper connection between R™-valued 1-
currents and the above variational problem.

Proposition 22. Suppose that T € Cpxn(R") satisfies suppdT C A and
OTmgs1 = - = 0Ty, = 0. Then for any ¢ € W (R R™) with Es(¢) < 00,
the inequality

T (¢) < 2B (9)Mp(T)

is satisfied. Equality holds if, and only if,

2

VE@D I i) =o. (33)

F*(z,T)

lm [ |ps « Do = Bwc(9)

0 R

Proof. We write eg = Eo(¢). Define 15 = ps * ¢. Using (21), we estimate
2 —
[ VP Tyair

< [ (F@.Dvo) + @) F @D dIT] ~eo [ Dus: Taz|
Rn Rn

VF*(z,T)
F*(z,T)

Drps — e

— [ (F@.Dv0) + @) F @ D dIT] - e0dT(05).

32



Because ¢ € WH(R";R™), there exists a constant C; > 0 such that
F(z,Dts) < Cy for all x € R™ and all § > 0. Lemma 16 implies that

limsup F(z, Dys(x)) < ef
5\O

for any « € R™. Applying Fatou’s lemma to C; — F(z, D), we find that
limsup [ F(x, Dis)\/ F*(x, T)d|T| < eg/ \ F*(x, T)d|T|| = e2Mp(T).
N0 JRe Re

Since ¢ is continuous, it is also clear that 15 — ¢ locally uniformly in R™.
As OT is represented by a measure, this implies that 0T (vs) — 0T(¢). Hence

2
climsu/ F* x,de < 2e2Mp(T) — egdT ().
wsn [ VF @ T) |7 < 26M(T) - e00T(6)

It follows that 9T(¢) < 2eoMp(T), and if we have equality, then (33) follows
as well.
Now suppose that (33) holds true. Then

O7(9) = lim 9T (1)

VF*(z,T)
F*(z,T)

Dps — eg

=lm | T Dysd|T|

— —.

= [ TFEED gy
"y Fr(x,T)
20 [ /P D)
:Qeol\fp(T).
This completes the proof. O

Proof of Theorem 13. As mentioned earlier, we consider the current T, defined
by the condition that

TOO(C) = an VF(x7Zw) tCdpioo
for ¢ € Cg°(R™;R™*™). We will show that T has the properties stated in
Theorem 13.

Tt is clear that M p(Ts) < co. We have already seen at the beginning of this
subsection that supp 0T C A and 0Tw; = 0 for i = mg+1, ..., m. This makes
0T a distribution supported on a finite set, which means that it is a finite
linear combination of Dirac masses on A and their derivatives [18, Theorem
1.5.3]. But because ||T'||(A) = 0 by Proposition 21, it is easy to see that we have
in fact just a sum of Dirac masses. It follows that Th, € Cppxn (R™).

By the definition of T, we have

> VF(z,Z)
Tho = D2 Z00).
NE(z, Zo)]
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at fiso-almost every point. It follows that

P 7 - F(x,VF(z,2))  Fl2,Zs) €2
TR VF(, Z)P V(x5 Z0o)]? [V (2, Z0o) P
and thus B
\VE(z, Zx)| = +
Fr(z,Too)

almost everywhere. Hence

almost everywhere. In view of Proposition 21, the measure ||T|| is absolutely
continuous with respect to pso L 2. Moreover, if ¢ € Wf’w(R";Rm) is a min-
imiser of F.,, then Proposition 17 gives the convergence ps * D¢ — Z,, in
L2(||T||;R™*™), and that implies (33) for Tw,. Proposition 22 implies that
0T (¢) = 266 MFp(Tw), and thus we have proved the last statement of Theo-
rem 13.

To prove the second statement, consider another R™-valued 1-current S €
Crnxn(R™) with S = 0T,. Then Proposition 22 gives

2e0o Mp(Tso) = 0Too(¢p) = 0S(¢) < 2600 Mp(S).
Since our assumptions on ¢° imply that e, > 0, it follows that Mp(Ts,) <
Mp(S). All the statements of the theorem are now verified. O
4 Regularisation

We return to the problem of constructing calibrations as in Section 2. Therefore,
we consider the domain R? again and we study functions ®: R? — R2. Recall
the function

1 1
f(M> = 3 (|]\4|2 - g(th)2 + |m12 —m21| |]\4‘2 —2detM)

from Section 2. We would like to apply the results from Section 3 to

fM)
Wi(x)’

F(z,M) =

Unfortunately, this function does not have the required properties: it is convex,
but not strictly convex in M and is Lipschitz regular at most. Unless W is
bounded, uniformly positive, and of class C, it fails to satisfy other assump-
tions, too. But the potentials W we are most interested in, will have zeroes,
certainly at a* and possibly elsewhere.

For this reason, we need to replace the above function F' by regularised
approximations, and we need to show that the relevant properties persist in the
limit. We do this in two steps: first, we focus on the regularisation of f. We
can improve some of the properties of W at the same time, but we still assume
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that it is uniformly positive. In the second step, we deal with the zeroes of
W. Before we embark on this journey, however, we extend the definition of the
F-mass from Definition 11 as follows. Suppose that F': R? x R?*2 — [0, o0]
is a given function that is convex in the second argument. Assuming that the
Legendre transform F* with respect to the second argument is Borel measurable
on R? x R?*2, we define

Mp(T) = [ P, Tya|T)
L.

for any R2-valued 1-current 7' on R? with locally finite mass. This is consistent
with the previous definition by Proposition 15.

4.1 A Korn type inequality

Our theory will naturally give rise to inequalities such as f(D®) < W in R?
for certain functions ® € W,2P(R?;R?) and for certain exponents p € (1,00).
But because the function f controls only the trace free part of D®, not the full
Jacobian matrix, we need to have a closer look if we want to derive estimates in
WI})’C’)(Rz; R?). Such estimates are available, and follow in fact quite easily from a
local version of Korn’s inequality (as stated and proved, e.g., by Kondrat’ev and
Oleinik [34, §2, Theorem 8]). In this subsection, we formulate the appropriate
inequality in the balls Br(0) and study how the corresponding constant depends
on R.

First, however, we write down an observation that explains why Korn’s
inequality is useful here. Given ® € WL?(R?;R?), consider &+ = (7;2) and
its symmetrised derivative

0%, 1 (84)1 . a<1>2>
s o dy1 2 \ On 0y2
(D2 )sym = 108, 9% 8P,
2 \ oy Oy2 Oy2

Then we note that
1
|(D®1)gym|? = |DP|? — 5(div )% < 2f(DD).

We can now prove the following lemma.

Lemma 23. For every p € (n,00) there exists a constant C' > 0 such that the
following holds true. Let h: [1,00) — [0,00) be a non-decreasing function, and
suppose that ® € VVlz’p(RQ;RQ) satisfies

C

1/p
(f (f(D‘P))p/Qdy> < I(R)
Br(0)

for every R > 1. Then there exists b € R such that

1/p
f Do) -bf dy) < CRH(R)
BRr(0)

and
sup | (y) — ®(0) — by| < CR'*/Ph(R)
y€BR(0)

for every R > 1.
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Proof. Given R > 0, we define Ug(z) = R~'®(Rx). Then

1/p
(7[ (f(D‘I’R))W2 dy) < h(R).
B1(0)

It follows immediately from the local version of Korn’s inequality [34, §2, The-
orem 8| that there exists bg € R such that

1/p
(f Dwy)—bRI”dy) < C1h(R)
B1(0)

for some constant C; that depends only on p. Morrey’s inequality then gives a
constant Co = Cy(p) such that

sup [Vgr(y) — ¥r(0) — bry| < C2h(R).
y€B1(0)

In terms of @, this means that

1/p
][ D&(y) — bpI” dy| < Cih(R)
Br(0)

and

sup |®(y) — ®(0) — bry| < C2RA(R).
yE€BR(0)

The first inequality implies in particular that

1/p
<][ ID®(y) — bl dy) < C1R¥7h(R).
B1(0)

But at the same time, we have the inequality

1/p
<][ |D®(y) — by P dy) < C1h(1).
B1(0)

Hence there exists a constant C3 such that [bg — by| < C3R*Ph(R). Choosing
b = by, we therefore obtain the desired inequalities. O

4.2 Relaxing the strict convexity

Suppose now that W: R? — (0, 00) is a continuous function such that W (y) —
oo as |y| — oo. Then we can clearly find a sequence of functions Wy, € C>°(R?),
for k € N, such that

e every Wy is bounded,
e there exists ¢ > 0 such that W > ¢ in R? for every k € N,
o W, < W, when k </, and

o W(y) = limg_y0o Wi(y) for every y € R2.
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Recall that

2

DN | =

1) = 5 (1M = (620 + s oo | /IO~ 201

In the coordinates

1 1

q1 = ﬁ(mn + mag), g2 = ﬁ(mll — M),
1 1

q3 = ﬁ(mm +ma1), qs = E(mlz —may),

we can write )

1@ = (laa + a3+ 3

We now consider the regularisation

2
1 lq]? \/ lq|?
I 2 2 2
fzc(q)—2 (\/q4+2k tyetat o)

In the original coordinates, this is

N—

fMM)=;<<I+;>Aﬂ2—;&HWV

1 1/2 1 1/2
+<(m12—m21)2+k|M|2) ((1+k> |M|2—2detM) >

This function is now strictly convex and smooth in R?*2\ {0}. Of course, it
is still homogeneous of degree 2. We further note that f > f and f(M) =
limg s o0 fx(M) for every M € R?*2 and this convergence is monotone. Define

_ fe(y)
Wi(y)

These functions then satisfy the assumptions from Section 3.
We also need to consider the Legendre transforms.

Fk(yaM)

Lemma 24. The Legendre transform of F' with respect to the second argument
18

F*(y)N) — {iW(y) IHaX{|N|2 - 2det N, (TL12 - n21)2} thrN _ O,

00 else.

Proof. We can work in the coordinates ¢ given above, as the transformation
amounts to an isometry between R2*2 and R*. Moreover, it suffices to consider

2
1@ =5 (1l + 3+ 43)

and its Legendre transform

f*(p) = sup (p-q— flq)).

gER*
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It is clear that f*(p) = oo if p; # 0, as f does not depend on ¢;. Now assume
that p; = 0. Then the supremum is attained at a point ¢ = (0, g2, g3, q4) € R*
such that either

e qu=0,o0r
® g2 =¢q3 =0, 0r

e f is differentiable at ¢ and

of < a0
p2r=+—(q) = q4|+\/q2+q2> —_—,

92 2R VE+ @

of ( qs
p3==—(q) = | lqal + q2+q?>,
3 aqg() || +1/ @5 + 43 2

9
pa= aTi(q) = <q4| +/ +q§> %-

In the first case, we find that

q§+q}f) _p+n

[ (p) = sup <p2q2+p3q3— 5 5

q2,93€R
Similarly, in the second case,

2 2
\ q p
f*(p) = sup <p4q4 - 4) =2

q1€R 2 2

In any case, f*(p) will be at least as large as either of these expressions, so

. 1
£ (p) = 5 max{p; + p3, i} (34)

for every p € R*. Finally, in the third of the above cases, we conclude that
p3 + p3 = p3. Hence this case occurs only for points on this double cone.
To summarise, f* is a convex function that satisfies (34) and such that

f*(p) = (p3 + p3)/2 or f*(p) = p?/2 whenever p3 + p3 # p3. There exists only
one function with these properties, which is
f(p) = %maX{pg +13,pi}-
In terms of the original coordinates, we then have the expression
F(N) = max{INP? — 2det N, (miz — nn)?),
and the claim follows. O

We do not need to compute the Legendre transforms of Fj, explicitly, but we
note that they are convex and homogeneous of degree 2 in the second argument.
Furthermore,

F*(y,N)= sup (M : N — inf Fk(y,M)>
MER2X2 keN

=sup sup (M : N — Fk(y,N))
keN MeR2x2

= sup Fy (y, N)
kEN
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for any y € R? and N € R?*2,
We now want to prove the following.

Proposition 25. Suppose that W € C°(R?;(0,00)) satisfies limy| 00 W(y) =
co. Then there exist ® € [, .., VV;’?(R%RQ) and T € CY,,5 such that

(i) f(D®) < W almost everywhere,
(ii) Mp(T) < Mp(S) for any S € CS. .5, and
(i1i) OT(®) > 2Mp(T).

Proof. We define the functions F}, as explained above. For any fixed k € N, we
consider the functional

EL (@) = esssup \/Fy.(y, DO(y)).
yeR?

By Proposition 12, there exists a minimiser &), € W,2>°(R?;R?) of E% subject
to the conditions ®1(a~) = 0 and ®1(a™) = 1. Set
o), = kq)i’i.

EX (D)
Then Fi(y, D®k) < 1, i.e., fr(DPy) < W, almost everywhere by construction.

Theorem 13 gives rise to a non-trivial current T}, € C2><2(R2) for every k € N
with supp 0Ty; C {a™} and 9T} = 0, which minimises M, for its boundary
data and satisfies 0Ty (®r) = 2Mp, (T)). Because all of these properties are
invariant under multiplication with a positive constant, we can renormalise this
current such that Ty € C3,,.

Next we study the limit as kK — co. For any R > 0, the functions Wi, < W
are uniformly bounded in Bg(0) by the continuity of W. Hence

sup sup f(D®Pg) < co.
keN ye B (0)

Lemma 23 implies that there exist by € R such that the functions

Di(y) = Prly) — buy

are uniformly bounded in W'?(Bg(0);R?) for all p < co and all R > 0. There-
fore, we may assume that we have weak convergence of @ in WIL’CP(RQ; R?) for
any p < oo to some limit ®: R? — R2. Since the set

{¥ € W"P(BR(0); R?): F(x, D¥) < 1 almost everywhere}

is convex and closed in W'?(Bg(0); R?), and every ®; belongs to this set, it
follows that F(y, D®) < 1 almost everywhere.

Because 0T} is supported on {a*}, the functions dy, still satisfy the condi-
tion ATy (®y) = 2Mp, (T}).

We can estimate fi(M) < 4|M|? for all M € R?*? and all k € N. Hence
Fi(y,N) > =W(y)|N|? for all y € R?* and N € R?*%. Since W is bounded
below under the above assumptions, it follows that

- C .
1T [|(R?) < C/W V E; (v, Ty) d|| Ty || = CMp, (Ti) = gaTk(q’k)
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for some constant C' > 0 that is independent of k, and the right-hand side is
obviously bounded. Hence we may assume that T} converges weakly® in the
dual space of CJ(R?;R?*2) to some limit 7', which will automatically belong
to C9, 5. From the definition of the F-mass in Definition 11, it follows easily
that Mp, is lower semicontinuous with respect to such convergence for any fixed
¢ € N. Thus

Mp,(T) < liminf Mp, (Ty) < liminf Mp, (T).
k—o0 ) k—o0 )

Moreover, Beppo Levi’s monotone convergence theorem gives

Me(T) = [ P Dzl = Jim [ R D= fim M @)

Therefore,
Mp(T) < likm inf Mp, (T}).
— 00

Recall that the currents T} all have the same boundary by construction.
Since @ — @ locally uniformly, it follows that
OT(®) = lim ATy (Pr) =2 lim Mg, (Tx) > 2Mp(T).
k—o0 k—o0
It remains to prove that 7' minimises the F-mass in C9,,. Let S € C3,,.

Then 90S = 97T}, for every k € N, and we know that Mg, (7)) < Mp, (S). As
above, we see that

k—o0 k—o0
This finally concludes the proof. O

4.3 Potentials with zeroes

We now want to remove the assumption that W is positive. While we do not
obtain a specific current with the properties of Proposition 25 in this case, we
can still prove the following.

Theorem 26. Let W: R? — [0,00) be a continuous function. Then there exists
CECH A F WP (R R2) such that f(D®) < W almost everywhere and

loc

®1(aT) —®1(a”)>2 inf Mp(T).

TeC,,

Proof. For k € N, define W (y) = W(y) + 1 (1 + |y[*), and then let Fy(y, M) =
f(M)/Wk(y) Then Mpk Z MF.

For each k € N, Proposition 25 provides a function ®;: R?2 — R? such that
f(D®;) < Wy, almost everywhere, and it also provides a current T}, € CJ, ., that
minimises Mp, . Furthermore, Proposition 25 tells us that

(I)kl(aJr) - q)k1(&7) = 6Tk(¢)k> Z 2MFk (Tk) Z QMF(Tk) Z 2 inf MF(T)

Tecy, ,

When we let k& — oo, we see with the same arguments as in the proof of
Proposition 25 that we can modify each ®; such that it still has the above
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properties, but such that we have weak convergence of some subsequence of
(®x)ken, in the space (., W P(R% R?), to a limit ® that satisfies f(D®) <
W almost everywhere. Since this also implies locally uniform convergence, it

further follows that

®,(at) = P(a”)>2 inf Mx(T).
1(a”) = @1(a”) > .y r(T)

This concludes the proof. O

4.4 How calibrations give a lower bound

We expect that calibrations give rise to lower bounds for the energy, and this is
indeed the reason why we consider them. Formal calculations give a good idea of
the underlying estimates, but in order to obtain a rigorous proof, we need some
control of the corresponding integrals when u is potentially unbounded. The
purpose of this subsection is to justify the following statement, which depends
on Proposition 10.

Once this is proved, we can proceed to prove Theorem 3 and Corollary 4,
which we do at the end of the section.

Lemma 27. Suppose that W: R? — [0,00) is Hélder continuous and satis-
fies the growth condition (4). Suppose that ® € (N, Wﬁ)’f(RQ;Rz) satisfies
f(D®) < W almost everywhere. Then

E(a™,a") > ®1(a”) — Py(a™).

Proof. For any two constants b, ¢ € R, the function ¥(y) = ®(y)+by+ c satisfies
f(DY) = f(D®) and

Ui(a”) = Ti(a") = @1(a”) — @1(a”).

Hence we may assume without loss of generality that ®5(a™) = ®3(a™) and
®(0) = 0. Let o = —3 div ®. Then the inequality f(D®) < W is equivalent to
g(D® + ol) < W for the function g from Section 2.

We regularise the calibration ® and the potential function W the same way
as in Proposition 10. That is, we define &5 = ps * & and a5 = ps *x a + J, and

furthermore,

ps * W
W:
T

According to Proposition 10, there exist vector fields ws € C*(R?;R?) such that

+ 0.

div @5(u) + as(u) divu < §|Du|2 + %W(;(u) - ediv((Du)Tw(;(u))L
€

(35)
for all u € C%(B1(0); R?) and all € > 0, and such that

|lws (y)] < C1(1 + |y|log |y])

for every y € R?, where C; is a constant independent of § or y.
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Inequality (35), in its weak form, says that

/Bl(o) (nas(u) divu — V- @5(u)) da < /

B1(0)

- e/ ws(u) - (DuVLn)dez  (36)
B1(0)

1
n E|Du|2+*W5(U) dx
2 2¢

for all u € C%(B;(0); R?) and all n € C§°(B1(0)) with n > 0.
Fix ¢ > 2. Using Lemma 23, we find a constant Co (depending on ¢) such

that
1/q
][ |D®|9dy | < CoRPT/4 (37)
Br(0)

|@(y)| < Ca(|ylP*1+2/7 4 1) (38)
for every y € R2. With the help of Hélder’s inequality, we then also estimate

for every R > 1 and

()] = 6+/B ooty =)a)ds

1
1 . e (39)
< 5+§||p5||Lq/(q—1)(R2) / |d1V(P‘qu
Bly\+1(0)

< 035—2/q(‘y|15+4/q + 1)’

for some constant C3, whenever 6 € (0, 1].
Combining (37) with Morrey’s inequality, we find a constant Cy4 such that

[@(y) — @(2)] < CuRPT )y — 2|12/

for all y, z € Br(0). Hence there exists a constant C5 such that

[®5(y) — 2(y)| = < CsRPH/15172/4 (40)

/B sl =) (@)~ 0(0) &=

when y € Br(0) with R > 1 and 6 < 1.

Since the functions ®s5 and a5 have at most polynomial growth by these
estimates, and we know that the same applies to W; and ws, a standard ap-
proximation argument now shows that (36) holds for all u € W12(B;(0); R?).

Recall that in the definition of £(a™,a+), we consider ug: R? — R?, defined
by

UO(IL’)

at ifxy >0,
a” ifzy <O.
The set U(a~,a™) then comprises all families (uc)eso in WH2(B1(0); R?) such

that ue — ug in L'(B1(0); R?) and such that there exist 7 > 0 and s > 2 with
e "divue — 0 in L*(B1(0)) as € \, 0. Then

1
Ela™,a™) = 3 inf {liin\iglee(ue;Bl(O)): (te)eso € L{(a,a+)} .

42



We now fix (ue)eso from U(a™,at). Choose a sequence € \, 0 such that

lim E, (ue,; B1(0)) = liminf E(u; B1(0)).
k—o00 eN0

We may assume that this limit is finite.

By the growth condition (4), there exist constants ¢, § > 0 such that W (y) >
c|y|?? when |y| > 6. For u € WH2(B;1(0); R?), we consider v = max{|u|P*!,0}.
Then we note that

/ |Dv|dx < (p+ 1)/ |u|P| Du| dx
B1(0) {lul>0}

€ 1 _
<o+ [ (|Du|2+ |u|2p) da
{Jul>0} \2 2e

by Young’s inequality. Hence the functions max{|ue,|P™*,60} are uniformly
bounded in W11(B;(0)). By the Sobolev inequality, they are also bounded in
L?(B1(0)). Thus (ue, )ken is bounded in L?P72(B;(0); R?). Since it converges to
ug in L'(B1(0);R?), we conclude that this convergence holds in L"(B1(0); R?)
as well for any r < 2p + 2.

We now fix a number ¢ > 1 and define d;, = €;. Using (38) and (40), we see
that

/ V- @5, (ue, ) de — V- ®(ug) de
B1(0) B1(0)

if ¢ is chosen sufficiently large. Recall that there exist 7 > 0 and s > 2 with
e "divu. — 0 in L*(B1(0)) as € \, 0. Choose

4s
pls—2)+2s—2

q>
Then (39) implies that

—2¢
[| vy, (uek)HLs/(kl)(Bl(o)) < Cyey, /a

for a constant C that is independent of k. It follows that
/ nas, (te, ) divue, de — 0
B1(0)
if we also choose ¢ > 2¢/7. Tt is not difficult to see that
ek/ ws,, (e,,) - Due, V*rnde — 0.
B1(0)

Because we assume that W is locally Holder continuous, and because we
have the growth condition (4), we have a number v > 0 and a constant Cy such
that Ws(y) < W(y) + C487(1 + |y|??) for any y € R%. If we choose £ > 1/,
then it follows that

1
limsup/ n <€2k|Du€k|2 + 2W(;,c(ue,c)> dx < lim E, (ue,; B1(0)).
B1(0) €L k—o0

k—o0
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Combining all the inequalities, we find that

1 1 on
Ela™,a™ >—f/ Vn - o(u dx:—f/ — P (ug) dz.
( )25 oy " (uo) 2 /5.0 921 1(uo)

The integral on the right-hand side is easy to calculate because of the specific
form of ug: we conclude that
1

£la,at) > %(qnw) _ <I>1(a_))/ (0, 22) das.

-1
If we approximate the characteristic function of B;(0) with 7, we therefore
obtain the desired inequality. O

We now have all the ingredients for the proof of our main result.

Proof of Theorem 3. The functional M defined in the introduction is identical
to the F-mass defined in Section 4. Under the assumptions of Theorem 3, we
can use Theorem 26 to obtain a suitable calibration. Lemma 27 then yields the
desired inequality. O

Proof of Corollary 4. We compute

1
Mp(T°%) = = VI dH.
2 l[a=,a™]
If 7° minimises M in C3, 5, then Theorem 3 therefore implies that
E(a,at) > VW dH .
[a=,at]
The reverse inequality follows from a standard construction, which can be found,
e.g., in a paper by Ignat and Monteil [23, Proposition 4.1]. O

5 The geometric problem

Theorem 26 suggests that we study the minimisers of

Me(t) = [ VE @D

for T € CY,,. This now constitutes a geometric problem, which is similar in
spirit to the problem of finding geodesics. But it is also a novel problem, because
we have to consider vector-valued currents, the components of which interact in
non-trivial ways with each other. This is the problem that we analyse in this
section.

First recall that F*(z, N) = W(z)f*(N), where

f5(N) = {imax{|N|2 —2det N, (n12 — no1)?} if tr N =0,
> else.

As in the introduction, we consider the current 70, defined by

0 1
70(0) :/[a,aﬂC: (0 0) dH

for ¢ € C§°(R?*;R?*2). Above all, we are interested in conditions that guarantee
that 70 minimises the functional.
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5.1 An estimate for F*

We will estimate M (T) in terms of the first component 77 of T. Assuming
that Mp(T) < oo, we first observe that T must be of the form

for some 7, s,t € R almost everywhere. The numbers r and s will effectively be
determined by 77, but this does not apply to t. It turns out, however, that we

can estimate F*(x, (7 °.)) in terms of the following functions: for A € [—1,1],

we define

(1+>\)%+|22| if 2o >0 and (1+ \)27 < (1 —\)23,
2
Ox(z) =9 (1 =N + |z if zp <0 and (1 —\)2? < (1+ \)z3,

22|

2|z1|[V1 — A2+ Azo  else.

We note that ©) is positive homogeneous of degree 1 in z and that ©,(2) > |22]
for all A € [-1,1] and all z € R?. Furthermore, we have the following inequality.

Lemma 28. For any A € [-1,1] and any r, s,t € R,

f <t —r) 2

Proof. We fix r and s and regard the left-hand side of the desired inequality as
a function of ¢. Thus we define

00 =[5 (§2,) = §maxVITE G 07 s - ol

(Ox(r,s) + At).

N | =

-

We also consider 61(t) = $+/4r% + (s +¢)? and 62(t) = %[s — t|. These are
convex functions, and hence § = max{f;,62} is convex, too. Moreover, we see
that 6 is differentiable at every point with the exception of t = —r?/s (which is
the unique point where 6, (t) = 05(t)) if s # 0.

If s>0and t > —r?/sorif s <0andt< —r?/s, then 6;(t) > 02(t), and

we compute
s+t

RN T PR

If s>0and t < —r%/sorif s <0andt > —r?/s, then 6;(t) < 65(t), and

o' (t) = 6,

_t—s
2t —s|

0'(t) = 05(t)

(If s =0, then 6 = 0,.)
Now fix A € [-1,1]. If =1 < A < 1, then there exists a unique point ¢, € R
such that A\/2 is a subderivative of § at 5. That point is ty = —r?/s if

s>0 and (1+A)r?<(1-))s?
or if

s<0 and (1—M\)r? < (14 \)s?
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Otherwise, it is the unique point where 61 (t) = A/2, namely

2|7
V1=22

th=—5+
We now have the inequality

0(t) > 0(ty) + %(t —t)) = 01 (t) + %(t —ty).

If we compute the right-hand side, we obtain exactly %(@A(r, s) + At).
For A = —1 and A = 1, the inequality now follows by continuity. O

For our subsequent estimates, it will be useful to know more about the
structure of ©,. This turns out to be a convex function; in fact, the following
is true.

Lemma 29. For —1 < A <1, let

(1—|—)\)§;|—22 if z9 > 0,
~(1-NZL -2 if2<0,
00 if 2140 and 2z = 0,
if z=0.

o

Then ©), is the convex envelope of H).

Proof. Suppose first that —1 < A < 1. Consider the sets

Ci={2€R*: zp>0and (1+A)z] < (1— )z},
C_={zeR?: 2z <0and (1 —N\)z{ < (1+ )23},

and D =R?\ (CLUC_).
If z5 > 0, then we observe that

2
|21] I—-X) 22 5
- T f(lJr/\)Z2 2|z1[V1I =22+ (1 — A)zea.

0< (14 Nz (
From this, we conclude that Hy(z) > 2|z1|vV1 — A2 + Azg when 25 > 0, with
equality on 9C,. Similarly, we show that Hyx(z) > 2|z1|v1 — A2 + Azp when
25 < 0, with equality on 0C_.
Let
L= {¢: R* = R: { is linear with ¢ < Hj in R*},

and let H(z) = sup,c;, £(z) denote the convex envelope of Hy. (Note that it
suffices to consider linear rather than affine functions, because H) is positive
homogeneous of degree 1.) Then the above observations imply that ¢ (z) =
221V 1 — A2+ Azp and ¢_(2) = —221vV1 — A2 + Az5 belong to L. It follows that
Hy(2) > 2|21|vV/1 = X2 4 Xz, for all z € R2. Since Hy(z) = ¢4 (z) when z € 0C+
and z; > 0, it also follows that Hy < ¢ in {z € D: z; > 0} (the convex hull of
(0C_UaCy)N{z > 0}). Similarly, Hy < ¢_ in {z € D: z; < 0}. Combining
these inequalities, we see that H, =0, in D.
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The restriction of Hy to C4 is smooth. It suffices to examine the Hessian to
see that it is also convex. Thus for any 2y € C, there exists a linear function
lo: R? — R such that fo(z0) = Hx(z0) and £o(z) < Hx(2) for all z € C,.
Indeed, differentiating H)y, we see that

2
fo(z) = 2(1 + )\)@21 + (1 — (1 + )\)221> 29
202 202

for z € R?, where 29 = (201, 202). We claim that £y € L. To see why, we note
that

381
I—(1+XN)5 >A
202

because zg € C. For Z € 9C, we already know that

0o(2) < HA(2) = 2|51|V1 — A2 + A%,

For z € DU C_, choose Z € 0C with Z; = z1. Then 29 < Z3, and therefore,

go(Z) S 80(2) + )\(2’2 — 22) S 2|Zl| V 1— )2 + /\ZQ S HA(Z)

Hence ¢y € L.

We conclude that Hy(zp) = Hx(20) = ©Ox(20). Similar arguments apply to
C_ as well. Hence Hy = O, everywhere.

It remains to study the cases A =1 and A = —1. In both cases, we have the
identity ©5(z) = |z2|. Furthermore, in both cases, we compute H)(0, z2) = |22|
and Hy(z) > |zo| for all z € R2. As liminf,_,o, Hy(z1,s) = 0 for any 2; € R, it
is clear that ©) is the convex envelope. O

The above information allows us to prove the following.

Lemma 30. Suppose that k,t, A € [—1,1] are three numbers such that
2 <min{l — A%, (14 &)(1 = N), (1 —r)(1+ )}
Then
Ox(2) > 2tz + K22

for all z € R?.
Proof. Suppose first that —1 < A < 1. Since ©) is positive 1-homogeneous,
the convexity implied by Lemma 29 means that for any 2o € R?, if O, is

differentiable at zp, then
O,(z) > DO (20)2

for every z € R% If ;s € R such that s > 0 and (1+ \)r? < (1 — \)s?, then we
can differentiate ©y at zg = (r, s). We conclude that

Ox(2) > 2(1 + A)gzl + <1 —(1+ A)Zz) 2.

By continuity, the inequality still holds true when (14 A\)r? < (1 — \)s%.
Given a number ¢ € [—1,1] such that A\? + (2 < 1, we can set s = 1 + A and
r =t. Then

= <4/ —=




and the inequality applies. Thus

TS
Similarly, if s < 0 and (1 — A\)r? < (1 + \)s?, then

GAAZZMY%O - >@. (41)

O\(2) > —2(1 - )\)gzl + ((1 - )\)Z—Z - 1) 29.

If A24.2 < 1, we consider s = —(1—\) and 7 = ¢. Thus we derive the inequality

2
Ox(z) > 2tz + <1L)\—1> Z9. (42)
Finally, as we always have ©,(z) > 2|z1|v1 — A2+ Azq, we find in particular

that
Ox(2) > 221 + A2zo. (43)

The right-hand sides of (41)—(43) therefore represent subdifferentials of ©y
at 0. Since the space of subdifferentials is necessarily convex, the same applies
to any convex combination. That is, whenever A2 4+2<1and

2 2

Cl<r<l- -
1—x =T 1ox

then
Ox(2) > 2tz + K22

for all z € R%2. The above inequalities for &, ¢, and A are clearly equivalent to
the inequality from the statement of the lemma.

We also note that for A = £1, the condition of the lemma requires that
t=0. As ©5(z) > |22] in any case, we still have the desired estimate. O

5.2 Decomposition into curves

According to a theory by Bonicatto and Gusev [12], any normal (R-valued)
1-current on R? has a decomposition into Lipschitz curves. We will apply this
result to the first component of an R2-valued 1-current. To this end, we consider
the space I', comprising all Lipschitz functions «: [0, 1] — R?, equipped with the
uniform norm. Given € I, let [y] denote the 1-current induced by ~ through
the formula

1
Q) = / Clv)i (e dt

for ¢ € C§°(R?;RY*?). We also write g for the set of all v € T with y(0) = (1),
and I'; for the set of all ¥ € I with v(0) = a~ and v(1) = a*. Let 7Y € I'y
denote the curve with 7°(¢) = ta™ + (1 — t)a™ for t € [0,1] (parametrising the
line segment between a~ and a™).

Given a Borel measurable function A\: R* — [—1,1] and a function h €
C?(R?), define the functional

2

1
Zua) = | <¢Ww<t»ew>m<t>> n gygwm) dt
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for v € I'. Recall that C%(Rz) denotes the space of all ¢ € C?(R?) such that
there exists a constant C' > 0 satisfying |D*¢(y)| < C(|y[P~* +1) for all y € R?

and for k=0,...,].

Theorem 31. Suppose that W: R? — [0,00) is continuous and satisfies the
1] be a Borel measurable function,
h

growth condition (4). Let A\: R? — [—1,
and suppose that h € Cgﬂj(Rz) satisfies ‘32? = MW in R2. Then for any
1
Te CSXQ(R2)7
1
Mpgp(T) > = inf Z .
p(T) 2 5 inf Zn(7)

Proof. Let

1
=— inf Z .
mo = 5 inf Zyn(7)
If mo < 0, then there is nothing to prove, as Mg (T) > 0 for all T € C9,.,. We
therefore assume that mg > 0.

Let T € C9,5(R?) with Mp(T) < oo. We write

= T Tro
7= ,
(T21 Too

and we write 17,75 for the components of T, i.e., for the R-valued 1-currents

such that -
10 = [ ¢(5) am

for ¢ € C5°(R?;R™™2). We consider the Radon-Nikodym decomposition of the
measure ||T'|| with respect to ||771]||. Thus we obtain two measures v4 and vs with
|T|| = v1 + va, such that 1y < ||Ty|| and v L ||T3]|. Since F*(y, T(y)) < oo at
| T[l-almost every y € R2, it follows that T' = 4(99) at vy-almost every point.
At vq-almost every point, on the other hand, we conclude that T = (%1 _T%fl ).

According to Lemma 28, we now have the inequality

Me(T) = [ W@

1 1
= 5 VW () (Ox(T11, Ti2) + ATo1) diy + 5/ VW (y) dvs
R2 R2
(44)
1 1
25 [ VW(H)OA(T1, Taz) dvr + 5/ W (y)A\To d|| T
R2 R2
1 1 [ 8h
=< | VW(Ox(Ti,Twe)dv — 5 | ——=Tud|T].
2 Jre 2 Jp2 Oy?

We now want to test the condition 975 = 0 with the function %7 but
since it does not have compact support in general, we require an approximation
procedure here. For R > 0, let xg € C§°(Bsg) with xg = 1 in Br(0) and
0 < xr <1 everywhere, and such that |[Dxg| < 1/R. Then

0=01T, (XRah>
oy

0%h 0%h
= — T — T d||T
/R2 XR (8@/% 21 + 901005 22) 17|

Ooh (Oxr OXr >
+ — | =15 + —T: d||T|.
/]R? oy <8y1 AT gy, I
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Because of the assumptions on h, there is a constant C; > 0 such that |D?h| <
C1 (VW + 1) and |Dh||Dxgr| < C1 (VW +1) in R? for all R > 0. Since ||T is
a Radon measure and Mp(T) < oo, we know that /I + 1 is integrable with
respect to ||T']|. Hence we can use Lebesgue’s dominated convergence theorem
when we take the limit R — oco. It follows that

9%h 0%h
= —= T —T: d||T].
/IR2 (8y% e 0110y 22) H ”

Similarly, since 9Ty = 917, we can show that
0%*h 0%*h oh oh
—— T+ =T, d|T|| = =—(a™) — =—(a™).
/JR? (8ylay2 H 8y§ 12) 171 Y2 (@) 0y (@)

Using also the fact that 777 + T2 = 0 almost everywhere, and combining these
formulas with (44), we obtain

1 9%h oh _
Mp(T) > 5/{@? <\/W6)\(T11,T12) + %Tu) d|T| - —2(a+) +5—(a”).

(45)
The results of Bonicatto and Gusev [12] give rise to a Borel measure p on T
such that

T = / ] dut), (46)

in the sense that

Ti(¢) = / M1(C) dia()

for any ¢ € C§°(R?;R1*2). Moreover, this measure also satisfies

IT = / 1 da() (47)

and

|07 = / 100l du() (48)

(which is to be interpreted similarly).

For any v € T, we clearly have d[y] = 0 if v € Ty and |0[y]||(R?) = 2
otherwise. Thus (48) implies that u(T'y) = 1 and p(T'\ (T'p UT;)) = 0, while
(45)—(47) imply that

Mp(T) > / Zan(7) dpu().

Since Zy p(7y) > 2my for all v € 'y, we automatically have the inequality
Zxn(y) >0 for all v € T'y. (If we had 4 € 'y with Z) (¥) < 0, then we could
construct a sequence of curves 7y, € I'y with limy_, o Zx p (%) = —o0 as follows:
choose 71,72 € I' with 41(0) = a7, 32(1) = a™, and F1(1) = 32(0) = 4(0).
Concatenate 7, with k copies of 4 and then 7», and reparametrise appropriately.
Note that Z j, is invariant under reparametrisation.)

It therefore follows that

M (T) > | /F o) () 2 o

This concludes the proof. O
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5.3 Proof of Corollary 5

Given suitable functions A and h, the minimisers of the functional Z,j can
in principle be determined with the conventional tools from the calculus of
variations. There are some difficulties coming from the fact that ©, has linear
growth, but nevertheless, an analysis of certain ordinary differential equations
can then potentially reveal some information about the central question of this
paper. In practice, however, it is difficult to make any specific statements this
way. The proof of Corollary 5, however, also relies on Theorem 31.

Proof of Corollary 5. We first observe that we may assume without loss of gen-
erality that w > 0 in R2. If this condition does not hold true, then we can
replace w by |w| and replace ¢, k, and A by we/|w|, wk/|w|, and wA/|w|, respec-
tively. This will change neither the inequalities in the statement nor equation
(5).
Let b € R. Define

Y1

h(y) = — / (11— 5) () (s, 2) ds

1

+(y1—ay) /:2 (Q(Lw)<a17t> —(y2 — t)aayl(fiw)(al,t)) dt.

Then 92
@:—Aw
and
0%h 19 _
s = 5y O ss) s+ 207 )
Y2 0 i
- — =.1) dt.
| g tar.o
Moreover,

82h Y1 82
S = —/al (1 = 5) g O0) (53] s

(- ap) <2gfy2<w><a;,y2> - (.fylmw)(a;,w))

1

Y1 82 82
— " 1= 9) (25055 0 61) = Gl (s,3m)) s

(- ap) (26‘;<Lw><a1,y2> - fyl(nwm,yz))

— [7 (2 w)ssm) = ot ) s

1

- / %@w)(s,m) ds — (kw)(y) + (m)(ag , 92)

by (5) and an integration by parts. From this, we see that h € C3, ;(R?).
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Also consider the function

oh

o(y) = 9

o)+ [ " (k) (. ) dt — 29 () (a5, )
+ /y ((y1 - s)ain()\w)(s,b) + 2(Lw)(s,b)) ds.

1

Then

d¢ 0%h Y29 _
=7, 8y2<y>+ / o k) a1 dt = 2(uw) a7 )

(s,b)ds + 2(1w)(y1,b)

+/1 50
/y ai wl(s,pmds = [ gk Geu(a a4
A
+ 2

o9
—(Aw)(s,b) ds
- Oys

w)(ay s y2) + 2(cw)(y1, b) = 2(uw)(ay , b).

t)dt
6 y17 ) +

+2(
Because of equation (5), we compute

O_/al / (ayl k) (s, 1) — 83 (ww)(s, ) — 28;?;y2(Lw)(s,t)) dt ds
~ [" (k) w1.0) — o ))
-/ (o o) = (s ) s

2 f ()om) ~ - ()(s,1)) ds

Y2 8 J Y2 a _ p
=, Tyl(ﬁw)(yht) t— \ Tm(mw)(al ) dt
Y1 a Y1 8
- —(A\w)(s,y2) ds + —(Aw)(s,b) ds
8 Y2 a Y2

- 2(Lw)( )+ 2(ww)(ay, y2) + 2(Lw)(y1, b) = 2(tw)(ay , b).

Comparing with (49), we conclude that

99
— = 2uw.
oy
Furthermore, we compute
0 n 9%h
— =KW+ —5.
0ya 811%
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Let v € I';. By Lemma 30, we can now estimate

oh

2 = [ (wtese «H@imm)ﬁ—@gwwf%

@(a_)

/)D¢ i dt < a2

0y

8h oh
—@(a™ +
@) = 9(a) - Sat) + 5 (a)
af
= / (kw)(ay ,t) dt.
ay
The claim then follows from Theorem 31. O

6 Examples

6.1 Variants of the Aviles-Giga functional

A singular perturbation problem involving the quantity

3 | (D62 + L0~ 10627 d,

was studied by Aviles and Giga [7], and subsequently by many other authors,
including, e.g., Ambrosio, De Lellis, and Mantegazza [2] and DeSimone, Kohn,
Miiller, and Otto [15]. A key contribution by Jin and Kohn [28] determined
the energy required for a jump of D¢, with tools similar to what we use in this
paper.

If we define u = V¢, then we have the functional E,(u;Q) from the intro-
duction with the constraint divu = 0. Our theory therefore applies in principle
(but will of course not give anything new, as the problem is well understood, at
least in relation to the question that we study here).

Indeed, the function w(y) = 1 — |y|? (corresponding to W(y) = (w(y))? =
(1 — |y|?)?) is a solution of the wave equation

0w 0w
57" 5o =0
oyy y;

(a fact that was also observed by Ignat and Monteil [23]), thus it satisfies the
hypothesis of Corollary 5 with K = A = 1 and « = 0. For a—,a™ € S! =
{y € R?: |y| = 1}, we therefore obtain

1
S(a*,cﬁ):/ wdH' = ~|at —a" °.
[a=at] 6

We now consider potentials that are different, but similar in structure, in-
cluding
w(y) =y (1~ |y*) and w(y) =1 |y
for some n € N, and

w(y) = (1—y[*)’ (50)
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for a number 8 € (0,1). We first note that for the last of these, when > 1,
the optimal transitions between two points a=,at € S! are not expected to be
one-dimensional by the results of Ambrosio, De Lellis, and Mantegazza [2] (see
also the discussion by Ignat and Merlet [22]).

We restrict our attention to transitions between the points a~ = (0, —1)
and a™ = (0, 1) here, because we make use of the resulting symmetry. It is an
open problem whether the corresponding statements hold true in general, but
for (50), the work of Ignat and Merlet [22] at least gives some results supporting
the conjecture that the optimal transition profile will be one-dimensional when
B € (0,1) and |at — a~| is small.

We wish to make use of Corollary 5, but it suffices to consider the case ¢ = 0.
Thus we study the question whether there exist two functions x, A: R? — [—1,1]
such that 52 o2

a—y%(ﬁw) = @(Aw)
in R? and x = 1 on [a~,a’]. Note that these conditions are satisfied if there
exists ¢ € C*(R?) such that

82(15 2
and o2
Bng =w onfa,a"]. (52)
Indeed, in this case, we can set
0%¢ 0%¢
k=w'— and A=wl=s.
dy3 9yt

We therefore consider the set
W(a™,a") = {w € C°(R?): there exists ¢ € C*(R?) satisfying (51) and (52)}.
It is easy to see that W(a™,a™) has the following properties.
(i) If w e W(a",a") and t > 0, them tw € W(a™,a™).
(i) If wy,we € W(a",a"), then wy +wy € W(a™,a™).
Thus W(a™,a™) is a convex cone.

Proposition 32. For any n € Ny, there exists a polynomial P: R? — R such
that

o%pP ‘ 9 9 ’62P ‘
— )| < |yl*"|1 - and | ()| < [y[*"|1 - |y|? 53
S| < 1= 1P S 0| <= P 6
for every y € R? and and
o%pP n

for every yo € R.
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Proof. For n = 0, a suitable polynomial is

poy = Wt i
W= "1y

We now assume that n > 1. We look for a polynomial such that

82P
=) =1 -1y ( +ch2n 2’%/5’“)

0y
for certain coefficients cy, ..., c,—1. Setting ¢, = 1, we can write
>’P 2n—2k, 2k
c n—
a3z — 1y Z T

1_y1 ZC y2n 2k 2k Zc y2n 2k 2k+2

A possible solution is

n
2n—2k, 2k+2

kZ:O 2k+2 2k+1)y1 Y2

P(y)

n

. Z Ck y2n—2ky 2kd
(2k +4)(2k + 3)7* 2

k=0
Low
(2n+2)(2n+1) (2n+4)(2n+3)
n—1 n n
N G negk2ke2 vy
= (2k+2)(2k +1) ! 2 (2n+2)(2n+ 1)
n—1
Gkt -1 2n-2k+2, 2k 42 0y2n+2y2
— (2k +2)(2k +1)7* 2 2 71
) 14 en s Y2 |2t
(2n 4 2)(2n 4 1)772 2n+4)(2n+3)°

We want to impose the symmetry condition P(y1,y2) = P(y2,y1) (so that

the above condition on %zf automatically gives a similar condition for % 1; ).
Y2
This requires that
Co 1+cpq
— = 55
2 (2n+2)(2n+1) (53)
and
Ck Cn—k—1
= k=0 -1 56
2k +2)(2k+1)  (2n—2k)(2n—2k— 1)’ -om =1 (56)
and

Cr + Cr—1 . Cn—k + Cn—k—1
(2k +2)(2k+1)  (2n—2k+2)(2n — 2k + 1)’
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(It may appear at first that there are too many equations for the n variables
€o,---,Cn_1, but there is some repetition here. Once the redundant equations
are discarded, it is easy to see that there is a unique solution.)

The combination of (56) and (57) gives

(2k +2)(2k + 1)
(2n —2k+2)(2n — 2k +1
(2n — 2k)(2n — 2k — 1) (2k + 2)(2k + 1)

T n 2%kt 2)@n 2kt DT T 2Rk D)

for k=1,...,n—1. Thus

(2n — 2k)(2n — 2k — 1) 2k +2)(2k + 1)
(1_(2n—2k+2)(2n—2k+1)>c’“_( 2k(2k — 1) _1> ket

Ck +Cr—1 = )(Cn—k +Cnk-1)

Ck—1

We compute

(2n —2k)(2n — 2k — 1) 8(n — k) +2
S (2n—2k+2)(2n—2k+1)  (2n—2k+2)(2n — 2k + 1)
and %k +2)(2k+1) | 8k+2
2k(2k —1) 2k(2k—1)°

Therefore, we obtain the equation

Ck (2n — 2k +2)(2n — 2k + 1)(4dk + 1)

Cho1 2k(2k — 1)(4(n — k) + 1)
fork=1,...,n—1.
Define cr
b = —, k=0,...,n—1
(2k+1)(})
Then

bk _ k(2k—1) Cl
bk,1 - (n —k + 1)(2k+ 1) Cr—1
 (2n—2k+1)(4k+1)
2k +1)(4(n—k)+1)
8nk — 8k? +2n +2k + 1
T Snk—8k2 +4n—2k+1°

We note that by /by—1 > 1 if, and only if, k¥ > n/2; and b /by—1 < 1 if, and only
if, k < n/2. Hence by, as a function of k, is first decreasing, may possibly be
constant for one step, and is then increasing. (If n = 1, then this is a vacuous
statement, as we have only by in this case.)

From (55) and (56) for k = 0, we also conclude that

1+en Cn—1

2n+2)(2n+1) 2n(2n-1)

Solving this equation, we obtain

2n? —n

N I
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It then also follows from (56) that

Cn—1 1
co = = .
0T o2 dn+1
This means that
Cn—1 1
b = = d bni = == .
T T 1 ™ YT oo T It
We conclude that by < - +1 for all £k =0,. -1, ie.,
2k+1(n
< — .
*= a1 <k>
Because ¢ /cx—1 > 0 for every k =1,...,n — 1, it is clear that ¢; > 0 for every
k=1,...,n. Therefore,
i 2n 2k 2k i (k> y%n 2k 2k ‘y|2n.
k=0 k=0

The inequalities in (53) follow. We also have identity (54) by construction. O

Recall that we consider the points a= = (0,—1) and a™ = (0,1) here. It
follows from Proposition 32 that |y|>"|1 — |y[*| € W(a™,aT) for every n € N.

Since

1=yl = (P 4 4 P22 = [yl

these potentials belong to W(a™,a™), too. Now for 3 € (0,1), we consider
B
w(y) = [1— |y
We define the function
Pty =(1—-t)"t, —1<t<l

We compute
P (t)=(1—B)--(n—B)(1—t)f L

The function is analytic in (—1,1) and we have the Taylor expansion
oo
()= ant",
n=0

(n)
where a,, = wni!(o) > 0 for every n € Ny. We therefore have the formula

111927 = (1= ) (ly?) = (1~ |y1?) Y anlyl>
n=0

in B1(0).

It is not clear if the space W(a™,a™) is closed in a suitable topology, but
examining the coefficients of the polynomials from Proposition 32, it is not
difficult to see that w satisfies a condition like (51) and (52) in the unit ball.
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But it is still not clear how to extend this observation to R2. Therefore, rather
than using the series, we use an approximation by

wa(y) = |1 = [y Y arlyl**.
k=0

The limit, as n — oo, is

Oo 00 if |y] > 1.

This function does of course not fit into the above theory, as it is not continuous.
Nevertheless, we can prove the following.

Corollary 33. Let a= = (0,—1) and a™ = (0,1).
(i) If W(y) = |y|**(1 — |y|*™)? for some n,m € N, then

4m
2n+1)2n+2m+1)

Ela,a) =

(ii) Suppose that W(y) = (1 — |y|?)?? for some B € (0,1). If (uc)eso 45 @
family of vector fields from U(a™,a™) such that lu.| <1 for every e > 0,
then

1
liminf B, (uc; B1(0)) > 2/ (1 — 3P dt.
E\(O 0

Proof. The first statement follows immediately from Proposition 32 and Corol-
lary 5 by the above observations.
To prove the second statement, we consider the potentials

n
wa(y) = 1=yl Y axly*,
k=0

as explained above. We know that w, € W(a™,a™). Hence by Corollary 5,

1 1
fliminf/ <6Du€|2 + (wn(ue))2> dz > / wy, dH .
40 B ¢ [~ )

Since |u| < 1 for every € > 0, it follows that

1 1
- liminf/ (6|Du62 +-(1- |u6|2)26) dx > / wy, dH!
40 s ¢ [~ )

s

as well. Letting n — oo, we conclude that

1 1
7liminf/ <6|Du52 +-(1- |u€|2)26> dx > / wdH'.
40 ) ¢ fa= ]

This is the inequality from the statement in a different form. O

58



6.2 Other candidates for minimisers

We cannot expect that 70 will always be a minimiser of M. In this section,
we therefore have a look at some other elements of C3, , that may be minimisers
for certain potential functions W. We do not have any specific results here, but
we do have some examples indicating that there may be a deeper relationship
between the elements of C9, , and possible transition profiles.

In Section 5, we decomposed the first component of an R2-valued current
into curves from a~ to a™ (and possibly some closed curves). Conversely, given
such a curve, we may wish to consider the corresponding R-valued 1-current and
complement it with a second component to obtain an element of 7%, ,. Since

we require that Mg (T) < oo, however, we will need to make sure that trT =0
away from W~1({0}). This condition, on the other hand, gives rise to significant
restrictions on what is possible. For most curves from a~ to a®, there is no
second component with the required properties. But we can instead consider a
pair of curves that are symmetric with respect to reflection on [a~, a™].

We still assume that a = (0,—1) and a™ = (0,1). Suppose now that
v:[0,1] — R? is Lipschitz continuous with (0) = a~ and (1) = a*, such
that 42(t) # 0 at almost every ¢t € [0,1] and such that the function ¥ = 41 /42
is of bounded variation in [0, 1]. Its derivative, denoted by 1, is therefore given
by a measure on [0,1]. We write |¢| for its total variation measure.

Define T € Cox2 by

JL[ L () G Y
10 =3 [ = (P0E SEON) o
i

o (1) =1 (t)32(?)
1

>
L[ D) (0 Y |
T2 /0’72 ( —((1)? %(tm(t))ﬂ 71(t),72(t)) dt

- */ /%(f) o1 (s, 72(t ))d5d¢(t)~

Y1 (t)

We note that Ty = £([7] + [v]), where 47(t) = (=71(t),72(t)). For any £ €
Cg°(R?%;R?), we compute

1

! / (D& (4(1))(t) — w(t) DE(v(£))3 (1)) dt

T(Dg) =5 |

+3 [ 0601 0 + 00Dt 0) d

L Gy 57200 d i)

71(t)

= 6@ &) - [ 008 @60 - a6l )

-3 | (@60) - o6 ©) d)
=&i(a®) = &(am).
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Hence T € C3,.,. We further compute

M) = [ (VG@r+ weio) 2O a

[Y2(t)]

1 ryi(t) .
+i£ W (5,72(2) ds d|g|(2).

—71(¢)

We now look at two specific examples of this type.
Example 34. Let b > 0, and consider the points bT = (b1,0) and b~ =
(—b1,0). Suppose that

(t) = (2tby,2t — 1) ifo<t<i,
T @ —2tp,2t—1) ifl<t<

(a curve consisting of a line segment from a~ to b* and a line segment from b™
to a™). Then
by  ifo<t<i,
P(t) = 1 2
b ifl<t<1

and we compute

1 b
MF(T):T/@H/\/WUZHW?I [
o

where we use the abbreviation ¢ = [a~,bT|U[bT,aT|U[a™, 07| U[b™,a™].

Compare this with the construction by Jin and Kohn [28, Section 4] of a
non-one-dimensional transition profile between a~ and a*. This is a two-scale
construction, where the coarser scale is given by

VW dHE,
]

b—,b+

(0,—-1) if zq < —by|xsl,
(0,1) if 21 > byl|asl,
(=01,0) if |z1] < byza,
(b1,0) if |.’L‘1| < —bixa,

for —1 < z9 < 1. This is extended periodically in x5, with period 2, to the
whole of R2. Thus @ is piecewise constant, with a jump set as illustrated in
Figure 1.

Next, we construct @.: R? — R? as follows: we replace the jumps in g by
the standard one-dimensional transitions with a width of order € (as explained,
e.g., in a paper by Ignat and Monteil [23, Proposition 4.1]). This requires some
smoothing near the corners, which can be done with an insignificant gain of
energy and a small change of the divergence. (The details are tedious and are
omitted here.) We then compute

‘ i _ _1 /e 1 !
lim (1 R x [s 1,5+1])2\/b1?/0\/Wd7-[ +o ]\/WdH

b= b+

for any s € R\ Z.
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(61, 1)

|

Figure 1: A construction of Jin and Kohn [28]

But we want convergence to ug, not g, as € \, 0. Therefore, we now rescale
by a parameter 7. > 0, which converges to 0 when € does, but at a slower rate;
i.e., we assume that n. — 0 and ¢/n. — 0. We set u(x) = i/, (x/n). Then

3 . _ 1 2 1 1
lim B (ue; B1(0)) = 5/03 +1/<>\/Wd7-t + by VW dH'.

(b= b]

Therefore,

E(a,a™) <

1 2 1 1
2\/b1+1/<>\/Wd’H + by VIV dH!.

(b= .b%]

If the current T' happens to minimise My in C3,,, then we have equality by
Theorem 3. Therefore, in this case, the above construction gives the optimal
energy asymptotically.

Example 35. Now suppose that W (y) = 0 for all y € S*. Choose b1, by € [0, 1]
with b2 +b3 = 1, and define bM) = (by, —by), b = (b1, by), b®) = (=by, by), and
b4 = (=b1, —ba). Let 8 = arcsinb; and consider the curve

(1) = {(sm(m),—cos(m)) ifo<t<fori-f<t<i,

(br, =D b)) if <t<1-2

(consisting of a circular arc from a~ to b1 a line segment from b(Y) to b, and
another circular arc from b to at). Then
bt = cot(rt) f0<t<forl-£<t<i,
o iff<t<1-9
This function is not of bounded variation (not even bounded), and so, strictly
speaking, the above calculations do not apply. We ignore this problem for the

sake of simplicity. We will obtain an R2-valued current on R?\ {a~,a*} instead
of R?, which can, however, be approximated with elements of CJ,,.
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Figure 2: The cross-tie wall profile

Define V = [, 5@ U [p®, @3] and H = [b®,6M] U [6®),bP], and also
define D = B1(0) \ (R x [—bg, bz]). Then we compute

1 b
MF(T):Z/V\/WdeT;/H\/Wd%l

T 1 sin(7t)
+ f/ — VW (s, —cos(nt)) ds dt
4 Jio,000[1-6,1) sin

2 (7Tt> — sin(7t)

== | VWdH'+ — [ VW dH' 7/ = dy.

i), ), Tafy -

(This may be infinite, unless we impose additional conditions on W at a*.)
Compare this with the following transition profile, which is called a cross-tie

wall in the theory of micromagnetics [14, 1]. This is a two-scale construction

again, and the coarser scale is given by

b(l) if 1 < 0, o <0, and —byx1 + boxs < 0,

b2 if 2y >0, 22 < 0, and bz 4 oz < 0,
ﬁo(x) = b(s) if 1 > 0, 2 > 0, and —bjx1 + boxg > 0,

b if x1 <0, o >0, and byxq 4 boxg > 0,

zL

- else
] ’

when —b; < x2 < by. This is extended periodically in o, with period 2b1, so
that @ is defined on all of R2. The result is illustrated in Figure 2.

The vector field @y has discontinuities along the lines {0} x R and R x
{(1 4+ 2k)b1} for every k € Z. On the finer scale, these have to be replaced by
smooth transitions again. For ¢ > 0, we choose the standard one-dimensional
transitions, with a width of order ¢, along the line segments {0} x [—bq, 0] (where
we have a transition between b)) and b)) and {0} x [0,b;] (with a transition
between b(®) and b(*), as well as [~by,0] x {b1} (with a transition between b*
and b(M)) and [0,by] x {b;} (with a transition between b®) and b(®). This part
of the construction is similar to Example 34.
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Along (—o0, —by] x {b1 } and [by, 00) x {b1 }, we still use a similar construction,
but since the jump in %y depends on the position, the result will not truly be
one-dimensional here. At the point (z1,b;) with |x1| > by, we have a jump

between the points
(_b17$1) d (blaxl)

We replace this with a smooth transition, again with width of order €, along
the horizontal line segment between these two points in R?. Once more this
requires some smoothing at the corners, and in the end everything is extended
periodically to R2.

We will have some divergence at the corners, and also near (—oo, —bs] x {b1}
and [be,00) x {b1}, with this construction. We can, however, achieve that a
condition similar to (3) holds in any compact subset of R?. Once more, the
details are omitted.

Finally, we rescale at a rate n. > 0 as € N\, 0, where n. — 0, but sufficiently
slowly that (3) remains true.

Calculating the energy of the cross-tie wall per unit wall length, we find that

R b 1 W(y)
+ < Z 1, 2 Ty o 1 _ .2\3/2
st <5 [ Wt [ VWt [ s a

If suitable approximations of T' give rise to a minimising sequence of Mg in
CY..5, then Theorem 3 implies that we have equality, and the cross-tie wall is
energetically optimal.
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