
Asymptotic minimality of one-dimensional

transition profiles in Aviles-Giga type models: an

approach via 1-currents

Radu Ignat∗ and Roger Moser†

August 20, 2025

Abstract

For vector fields on a two-dimensional domain, we study the asymp-
totic behaviour of Modica-Mortola (or Allen-Cahn) type functionals under
the assumption that the divergence converges to 0 at a certain rate, which
effectively produces a model of Aviles-Giga type. This problem will typ-
ically give rise to transition layers, which degenerate into discontinuities
in the limit. We analyse the energy concentration at these discontinuities
and the corresponding transition profiles.

We derive an estimate for the energy concentration in terms of a novel
geometric variational problem involving the notion of R2-valued 1-currents
from geometric measure theory. This in turn leads to criteria, under
which the energetically favourable transition profiles are essentially one-
dimensional.

1 Introduction

1.1 The problem

Let Ω ⊆ R2 be an open domain. Suppose that W : R2 → [0,∞) is a locally
Hölder continuous function. For u : Ω → R2 and for ϵ > 0, consider a Modica-
Mortola (or Allen-Cahn) type functional of the form

Eϵ(u; Ω) =
1

2

ˆ
Ω

(
ϵ|Du|2 + 1

ϵ
W (u)

)
dx.

We are interested in the asymptotic behaviour of a family of vector fields uϵ
such that

lim sup
ϵ↘0

(
Eϵ(uϵ; Ω) + ϵ−2τ∥div uϵ∥2Ls(Ω)

)
<∞ (1)

for some τ > 0 and some s > 2. This is relevant in the context of models that
combine a Modica-Mortola type energy functional with a divergence penalisa-
tion of the above form, or even with the constraint div u = 0.
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As in the classical theory of Modica and Mortola [37, 38, 36, 45], the above
conditions typically imply convergence of a subsequence to a limit u0 : Ω →
R2 that takes values in W−1({0}) almost everywhere. (Also see the work of
DeSimone, Kohn, Müller, and Otto [15].) In addition, the limit will satisfy
div u0 = 0. Transitions between different zeroes of W are possible, but will
require a certain amount of energy.

Depending on the exact structure of the potential function W , the vector
field u0 may belong to BV(Ω;R2), or may belong to a larger space, but even then
we typically have a countably 1-rectifiable jump set J ⊆ Ω, where the values of
u0 jump from one value to another [13]. More precisely, this set is characterised
by the behaviour of a blow-up around a point x0 ∈ J : choose a sequence rk ↘ 0
such that the functions x 7→ u0(x0 + rkx) converge, say in L1

loc(R2;R2), to the
limit v : R2 → R2. Let ν ∈ S1 be one of the approximate normal vectors to J at
x0 (which exist almost everywhere with respect to the 1-dimensional Hausdorff
measure by the countable rectifiability). Then there exist a−, a+ ∈ W−1({0})
such that v(x) = a+ when ν · x > 0 and v(x) = a− when ν · x < 0.

A blow-up is useful, too, when we want to understand how much energy will
be concentrated at a point x0 ∈ J in the limit as ϵ↘ 0; or in other words, how
much energy is required to generate a transition between a− and a+. Suppose
that we rescale the vector fields uϵ similarly. Then we can expect that the limit
u0 : R2 → R2 is already of the form

u0(x) =

{
a+ if ν · x > 0,

a− if ν · x < 0.
(2)

Since u0 must be divergence free under the conditions we are interested in, we
expect that ν ⊥ (a+ − a−).

The density of the energy concentrated at a corresponding jump point is
measured by the quantity

lim inf
ϵ↘0

Eϵ(uϵ;B1(0)),

where Br(x) denotes the open disc of radius r > 0 centred at x ∈ R2. For
a− ̸= a+, we therefore consider the set U(a−, a+), comprising all families (uϵ)ϵ>0

of vector fields uϵ ∈ W 1,2(B1(0);R2) such that uϵ → u0 in L1(B1(0);R
2) and

such that there exist τ > 0 and s > 2 with the property that

lim
ϵ↘0

ϵ−τ∥ div uϵ∥Ls(B1(0)) = 0, (3)

where u0 is defined as in (2) with ν = (a−−a+)⊥/|a−−a+|. (We disregard the
possibility that ν may point in the opposite direction, because that situation
may be reduced to this one by applying reflections in the domain and codomain
and adjusting W accordingly.) Then we define

E(a−, a+) = 1

2
inf

{
lim inf
ϵ↘0

Eϵ(uϵ;B1(0)) : (uϵ)ϵ>0 ∈ U(a−, a+)
}
.

One important question is whether the same infimum is obtained when we
consider only one-dimensional, divergence-free transition profiles, i.e., vector
fields of the form uϵ = a− + wϵ(x · ν)(a+ − a−) for some functions wϵ : R → R.
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Under the typical assumptions on W , the resulting number is easy to compute
with the methods from the Modica-Mortola theory and is

ˆ
[a−,a+]

√
W dH1,

where [a−, a+] denotes the line segment connecting a− with a+ and H1 stands
for the 1-dimensional Hausdorff measure.

This question is the main focus of this paper, and it can be formulated as
follows.

Question 1. Under what conditions is

E(a−, a+) =
ˆ
[a−,a+]

√
W dH1?

1.2 Main results

We now fix the points a− and a+. It is convenient to assume that ν = ( 10 ), and
thus a−1 = a+1 , as this will simplify the presentation of our results. The general
situation can always be reduced to this case by a change of coordinates, so there
is no loss of generality.

We also assume thatW has a specific polynomial rate of growth as |y| → ∞.
More precisely, we assume that there exist certain constants c1, c2 > 0 and p̄ > 0
such that

c1|y|2p̄ − 1 ≤W (y) ≤ c2(|y|2p̄ + 1) (4)

for all y ∈ R2.
To formulate our first result, we need to introduce some tools, including the

notion of R2-valued 1-currents. This is a variant of a standard concept from
geometric measure theory. Its definition is normally given in terms of differential
forms in R2, but for our purpose, the following, equivalent definition is just as
convenient.

Definition 2. An R2-valued 1-current on R2 is an element of the dual space
of C∞

0 (R2;R2×2). If T is an R2-valued 1-current in R2, then its boundary ∂T is
the R2-valued distribution such that ∂T (ξ) = T (Dξ) for every ξ ∈ C∞

0 (R2;R2).
We say that T is normal if there exists C ≥ 0 such that

T (ζ) + ∂T (ξ) ≤ C sup
x∈R2

(
|ζ(x)|+ |ξ(x)|

)
for all ζ ∈ C∞

0 (R2;R2×2) and all ξ ∈ C∞
0 (R2;R2).

We are particularly interested in normal R2-valued 1-currents T a with spe-
cific boundary, given by the condition that

∂T (ξ) =

(
ξ1(a

+)− ξ1(a
−)

0

)
for all ξ ∈ C∞

0 (R2;R2). We write C0
2×2 for the set of all normal currents with

this boundary.
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Given any normal R2-valued 1-current T , there always exist a Radon measure
∥T∥ on R2 and a ∥T∥-measurable, matrix-valued function T⃗ : R2 → R2×2 with

|T⃗ | = 1 almost everywhere, such that

T (ζ) =

ˆ
R2

ζ : T⃗ d∥T∥

for any ζ ∈ C∞
0 (R2;R2×2). Here we use the notation M : N for the Frobenius

inner product between two matrices M,N ∈ R2×2. We further write |M | for
the corresponding norm of M .

The following is an example of a current with some relevance for our results.
Define T 0 ∈ C0

2×2 by the condition that

T 0(ζ) =

ˆ
[a−,a+]

ζ :

(
0 1
0 0

)
dH1

for ζ ∈ C∞
0 (R2;R2×2). Then ∥T 0∥ = H1 [a−, a+] and T⃗ 0 = ( 0 1

0 0 ) almost
everywhere. (We can think of the first component of T 0 as a representation of
the oriented line segment between a− and a+, whereas the second component
vanishes.)

We now consider the function F ∗ : R2 × R2×2 → R ∪ {∞} such that

F ∗(y,N) =

{
1
4W (y)max{|N |2 − 2 detN, (n12 − n21)

2} if trN = 0,

∞ else,

where we write N = ( n11 n12
n21 n22

). For any T ∈ C0
2×2, we define

MF (T ) =

ˆ
R2

√
F ∗(y, T⃗ (y)) d∥T∥(y).

(This is a variant of the mass that is normally associated to a current. The
connections will become more apparent in Section 3 below.)

We have the following results.

Theorem 3. The inequality

E(a−, a+) ≥ 2 inf
T∈C0

2×2

MF (T )

holds true.

Corollary 4. If MF (T
0) ≤ MF (T ) for every T ∈ C0

2×2, then

E(a−, a+) =
ˆ
[a−,a+]

√
W dH1.

Thus we may be able to give an affirmative answer to the above question
by solving a different variational problem involving currents. Since currents can
be interpreted geometrically, that variational problem is geometric in nature.
It is also rather unusual because of the structure of the above function F ∗. It
may be difficult to solve in general, but we can give some estimates that allow
further conclusions.

For j ∈ N0, let C
j
p̄(R2) denote the space of all ϕ ∈ Cj(R2) such that there

exists a constant C ≥ 0 satisfying |Dkϕ(y)| ≤ C(|y|p̄−k + 1) for all y ∈ R2 and
k = 0, . . . , j. We now have the following result.
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Corollary 5. Suppose that W = w2, and suppose that there exist Borel func-
tions ι, κ, λ : R2 → [−1, 1] with

ι2 ≤ min{1− λ2, (1 + κ)(1− λ), (1− κ)(1 + λ)},

such that ιw, κw, λw ∈ C2(R2) ∩ C1
p̄(R2) and

∂2

∂y21
(κw) =

∂2

∂y22
(λw) + 2

∂2

∂y1∂y2
(ιw). (5)

Then

E(a−, a+) ≥
ˆ a+2

a−2

(κw)(a−1 , t) dt

for any T ∈ C0
2×2(R2).

If in addition, we know that κ(a−1 , y2) = 1 for all y ∈ [a−2 , a
+
2 ], then it follows,

of course, that

E(a−, a+) =
ˆ
[a−,a+]

√
W dH1.

Corollary 5 is a consequence of another, more general estimate, which may
be more useful in certain situations. Since the statement is also more technical,
however, we postpone the formulation to Section 5 (see Theorem 31).

1.3 Background

Problems like the above are relevant for a number of physical systems, including
micromagnetics [19], smectic-A liquid crystals [33, 7], thin film blisters [39], or
crystal surfaces [46]. Such models typically arise when a Ginzburg-Landau type
energy functional is combined with a divergence penalisation, or is applied to a
gradient vector field. Indeed, if we consider a quantity such as

1

2

ˆ
Ω

(
ϵ|D2ϕ|2 + 1

ϵ
W (Dϕ)

)
dx, (6)

then the identification u = ∇⊥ϕ will give rise to Eϵ(u; Ω), and in this case, we
even have the condition div u = 0. The integral in (6) gives a variant of the
Aviles-Giga functional [7].

Despite its importance, remarkably little is known about Question 1, let
alone about how to determine E(a−, a+) in general, with the exception of some
special cases. It can happen, of course, that the constructions from the vector-
valued Modica-Mortola problem [45, 8] happen to be divergence free, in which
case they also provide a solution to the above problem. Otherwise, only the case
of the classical Aviles-Giga functional, which corresponds toW (y) = (1−|y|2)2,
has a reasonably comprehensive theory. One of the key contributions is of Jin
and Kohn [28], who (among other things) determined the value of E(a−, a+) in
this situation. Without attempting to give a complete list, we mention some
other noteworthy contributions to this theory [2, 15, 26, 25].

More general potential functions have been studied by Ignat and Monteil
[23]. In particular, they give some results similar to Corollary 5 (although
weaker), which they prove with methods different from what we use here.
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Theorem 3 and its corollaries (including Theorem 31 in Section 5 below) add
a completely new tool to the study of these problems. The theorem provides
an estimate for E(a−, a+) in terms of another variational problem, which is
geometric in nature, and whose connection to the functionals Eϵ is far from
obvious. That variational problem is difficult to solve in general, but this novel
connection is clearly of theoretical value, and we show in Section 6 that it can be
used to answer Question 1 for some examples where the problem was previously
open.

There is then the obvious question of how to determine E(a−, a+) when the
equality from Question 1 is not satisfied. Almost nothing is known for this
question in general, although for some specific problems of a similar nature, it
can be answered [40, 41, 1, 24]. We provide no general results about this question
here, but we give some examples in Section 6 which suggest that Theorem 3 may
be useful in this context, too.

There are some aspects of the theory that we implicitly take for granted in
the formulation of Question 1. If we were to fully analyse the problem with
respect to Γ-convergence, we would have to prove that

• the limiting energy is really concentrated on a countably 1-rectifiable jump
set, where we can perform an appropriate blow-up, and

• after the blow-up, we have convergence of a subsequence in L1(B1(0);Rn)
to a limit u0 as above.

That is, we would need some information about the structure of limit points
and compactness of families (uϵ)ϵ>0 satisfying (1). Such information is rela-
tively easy to obtain when W has only isolated zeroes, and results of this type
are available for the potential functionW (y) = (1−|y|2)2 (the Aviles-Giga func-
tional) [13, 15] and some generalisations thereof [11, 35]. Obviously, if we have
such results for a potential function W̃ such that W̃ ≤ CW for some constant
C > 0, then the same follows for W . Nevertheless, these questions are open in
general and are not studied here.

1.4 Strategy for the proofs and organisation of the paper

Theorem 3 may appear mysterious at first, as the connection between the energy
Eϵ and the F -mass MF becomes apparent only when the ingredients for the
proof are known. For this reason, we give an informal overview of the arguments
here. At the same time, we explain how the paper is organised.

The first key idea in the proof is that of a ‘calibration’ (also called ‘entropy’
by some authors, because of some analogy with entropies for conservation laws).
This idea goes back to the paper of Jin and Kohn [28], but has been refined by
DeSimone, Kohn, Müller, and Otto [15] and subsequently studied by a number
of authors [13, 22, 23]. The formulation that we use here is as follows. Let
L(R2;R2×2) denote the space of linear maps R2 → R2×2. Suppose that there
exist Φ ∈ C1(R2;R2), α ∈ C0(R2), and a ∈ C1(R2;L(R2;R2×2)) such that

div Φ(u) + α(u) div u ≤ ϵ

2
|Du|2 + 1

2ϵ
W (u) + ϵ div(a(u)Du) (7)

for all sufficiently regular vector fields u : B1(0) → R2. Then it is not difficult
to see, when we integrate over B1(0) and integrate by parts, that we obtain an
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estimate of the form

E(a−, a+) ≥ Φ1(a
+)− Φ1(a

−)

under reasonable assumptions. Clearly, such an inequality is potentially useful
for answering Question 1.

But it is not clear at all how to find Φ, α, and a in general, at least not such
that they give rise to a useful estimate. (The choice Φ = 0, α = 0, and a = 0
will always work, but the resulting estimate is trivial.) Good calibrations have
been constructed in special cases, most notably for the Aviles-Giga functional
[28], but no general construction is known.

In Section 2 we derive a condition that is equivalent, for a given Φ, to the
existence of α and a such that (7) holds true. If we define the function

f(M) =
1

2

(
|M |2 − 1

2
(trM)2 + |m12 −m21|

√
|M |2 − 2 detM

)
for M = (m11 m12

m21 m22
) ∈ R2×2, this condition takes the form of the inequality

f(DΦ) ≤W.

We use arguments inspired by the work of Ignat and Merlet [21] in this step,
but we extend these ideas considerably.

This gives a convenient way to check whether a given function Φ gives rise
to a calibration, but still does not tell us how to construct one. But suppose
that we want to find the best possible calibration, which for our purposes means
that Φ1(a

+)−Φ1(a
−) should be as large as possible. Then the above inequality

suggests that we determine

η0 = sup
{
Φ1(a

+)− Φ1(a
−) : f(DΦ) ≤W

}
.

If we can solve this variational problem, then we have the best estimate that
can be achieved with this approach.

It is convenient here to recast the problem in a different form. Define the
function

F (y,M) =
f(M)

W (y)

(assuming for the moment that W (y) > 0 for all y ∈ R2 and ignoring the fact
that Question 1 is more interesting for a potential function with zeroes). Then
we may instead try to determine

e2∞ = inf
{
∥F (y,DΦ)∥L∞(R2) : Φ1(a

+)− Φ1(a
−) = 1

}
.

It is easy to see that η0 = 1/e∞. We thus obtain a variational problem involving
the L∞-norm.

Very little is known about problems of this sort. For similar problems in-
volving a scalar function (in place of the vector-valued Φ), there is a body of
literature going back to the work of Aronsson [3, 4, 5, 6] and including papers
by many other authors. Once more we give an incomplete list [10, 27, 42, 16].
For vector-valued functions, this theory does not apply. There is some work
by Katzourakis [29, 30, 31], but these results do not tell us much about the
solutions to the above problem. Fortunately, we do not need to know anything
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about the structure of the solutions, we merely need to determine the number
e∞. For this purpose, the ideas of a recent paper by Katzourakis and Moser [32]
are useful. This paper treats only the case of the function F (y,M) = 1

2 |M |2,
but the methods can be generalised, and this is what we do in Section 3. We
can think of the results as a characterisation of the essential behaviour of the
minimisers through a dual problem, in our case that of minimising MF for R2-
valued 1-currents. The analysis has to be carried out for a regularised version
of F , but then we can prove that there exists a minimiser T of MF in C0

2×2 such
that Φ1(a

+)− Φ1(a
−) = 2MF (T ). This is where the inequality from Theorem

3 ultimately comes from.
Remarkably, even though calibrations are central to our approach, this result

means that we do not need to construct any calibrations in the end. We only
need to know Φ1(a

+)− Φ1(a
−), and this information is encoded in T .

As already mentioned, these arguments require a regularisation of F , and we
need to make sure that we can recover the relevant information when we relax
the conditions on F again. This is the purpose of Section 4. At this point, the
proof of Theorem 3 is complete. But to make use of it, we have to study the
problem of minimising MF in C0

2×2.
This is the problem that we study in Section 5. Superficially, it may look

deceptively simple. After all, we may think of 1-currents as generalised curves
in R2, and MF resembles an anisotropic version of the length functional. That
is, we have a variant of the problem of finding geodesics. (Incidentally, geodesics
for a degenerate Riemannian metric appear in the solutions of the vector-valued
Modica-Mortola problem as well [8].) There are, however, several complications.
First, we have R2-valued 1-currents, so we should really think of a pair of curves
linked through MF . Second, the function F is degenerate in some sense in both
variables. Third, although T should be thought of as a one-dimensional object,
it does not follow that it is supported on a one-dimensional set (and in general
it is not; see Example 35 below). Because of all of this, the standard methods
from geometric analysis do not apply here.

We do not have any general methods to solve the problem, but we can nev-
ertheless give some estimates, which show that T 0 is a minimiser under certain
conditions. One of the key tools we use for this purpose, is a result and Bonicatto
and Gusev [12] (see also the work of Smirnov [44] and of Baratchart, Hardin,
and Villalobos-Guillén [9]), which gives a decomposition of a normal 1-current
into actual curves. This result applies to conventional 1-currents, not R2-valued
ones, but at least we can apply it to the first component of T ∈ C0

2×2. We can
then give some estimates relying on convexity and the structure of F to also take
the second component into account. This first gives rise to a functional for Lip-
schitz curves, which is now really similar to an anisotropic version of the length
functional and, in principle, can be analysed with standard methods involving
ordinary differential equations. Unfortunately, it also involves some unknown
functions, and therefore, the task is not so simple after all. Notwithstanding,
with some further estimates, we finally prove Corollary 5 as a result.

We conclude the paper with some examples in Section 6. First, we discuss
some potential functions W such that Corollary 5 applies, and the optimal
transition layers therefore have one-dimensional profiles. This includes the well-
known Aviles-Giga functionals, but also includes some new examples. Finally,
we consider the question what Theorem 3 can tell us in situations where the
equality from Question 1 does not hold true. We have no general results here,
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but we can compare the number MF (T ) for some specific currents with the
energy density for certain known constructions for uϵ. If T minimises MF ,
then the former gives a bound for E(a+, a−) from below by Theorem 3, while
the latter gives a bound from above by definition. If the two bounds match,
then we know that the construction is optimal. We can achieve this for two
different examples, assuming that the potential function W is such that the
corresponding T is indeed a minimiser of MF (T ). This raises the question
whether the estimate from Theorem 3 might be sharp in general. We have no
evidence for this, however, beyond these two examples.

1.5 Notation

The following notation is used throughout the paper, with the exception of
Section 3, where some adjustments are required due to a more general setting.

As mentioned previously, for M,N ∈ R2×2, we use the notation M : N and
|M | for the Frobenius inner product and norm, respectively. (In Section 3, we
will also use the corresponding notation for (m × n)-matrices.) We write MT

for the transpose of M and I for the identity (2× 2)-matrix.
Given two vector spaces X and Y , the space of linear maps X → Y is

denoted by L(X,Y ).
Although our problem is concerned with vector fields u : Ω → R2, much of

our analysis will take place entirely in the codomain R2. We generally use the
notation x for a generic point in the domain Ω, and y for a generic point in the
codomain R2. (Section 3 is an exception here, too, as it is about an auxiliary
problem independent of u.)

We will frequently work with convolutions with a standard mollifier. There-
fore, we fix ρ ∈ C∞

0 (B1(0)) with ρ ≥ 0 and
´
B1(0)

ρ(y) dy = 1. For δ > 0, we set

ρδ(y) = δ−2ρ(y/δ).

2 Characterising calibrations through differen-
tial inequalities

In this section, we derive some conditions in the form of certain differential
inequalities related to the inequality

div Φ(u) + α(u) div u ≤ ϵ

2
|Du|2 + 1

2ϵ
W (u) + ϵdiv(a(u)Duϵ) (8)

that characterises calibrations. These conditions will make it easier to study
suitable calibrations later on. Some of the following arguments go back to the
work of Ignat and Merlet [22], but we extend the theory significantly.

2.1 Pointwise conditions

For a given map Φ: R2 → R2 and a function α : R2 → R, we want to understand
the above inequality (8). First we show that it suffices to consider tensor fields
a of a specific form.

Proposition 6. Suppose that Φ ∈ C1(R2;R2) and α ∈ C0(R2). Let ϵ > 0.
If a : R2 → L(R2×2;R2) is continuously differentiable and satisfies (8) for all

9



u ∈ C2(B1(0);R2), then there exists a vector field ω ∈ C1(R2;R2) such that

a(y)M = −(MTω(y))⊥

for any y ∈ R2 and

div(a(u)Du) = (curlω)(u) detDu

for any u ∈ C2(B1(0);R2).

Proof. Let aijk ∈ C1(R2), for i, j, k = 1, 2, denote the coefficients of a, so that

a(y)M =

2∑
j,k=1

mjk

(
a1jk(y)

a2jk(y)

)

for all M = (m11 m12
m21 m22

) ∈ R2×2 and all y ∈ R2.
Given an arbitrary point y ∈ R2 and two symmetric matrices

Λ1 =

(
λ111 λ112
λ121 λ122

)
and Λ2 =

(
λ211 λ212
λ221 λ222

)
,

we can find u ∈ C2(B1(0);R2) such that u(0) = y and Du(0) = 0, while at the
same time, D2uk(0) = Λk for k = 1, 2. Then

div(a(u)Du)(0) =

2∑
i,j,k=1

akij(y)λ
i
jk.

Inequality (8), evaluated at 0, thus gives

0 ≤ 1

2ϵ
W (y) + ϵ

2∑
i,j,k=1

akij(y)λ
i
jk.

Since this also holds true for all real multiples of Λ1 and Λ2, it follows in fact
that

2∑
i,j,k=1

akij(y)λ
i
jk = 0

for any pair of symmetric matrices. Therefore, the coefficients a111, a
2
12, a

1
21, and

a222 must vanish, and

a112 + a211 = 0 and a122 + a221 = 0.

Set

ω =

(
a112
a122

)
,

then the desired formulas follow by a direct calculation.

We have the following characterisation of (8).

Proposition 7. Suppose that Φ ∈ C1(R2;R2) and α ∈ C0(R2). Set Ξ =
DΦ + αI. Let ω ∈ C1(R2;R2) and σ = curlω. Suppose that ϵ > 0. Then the
following statements are equivalent.
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(A) The inequality

div Φ(u) + α(u) div u ≤ ϵ

2
|Du|2 + 1

2ϵ
W (u)− ϵdiv

(
(Du)Tω(u)

)⊥
(9)

is satisfied for all u ∈ C2(B1(0);R2).

(B) The inequalities |Du|2 + 2σ(u) detDu ≥ 0 and

div Φ(u) + α(u) div u ≤
(
W (u)

(
|Du|2 + 2σ(u) detDu

))1/2
are satisfied for all u ∈ C2(B1(0);R2).

(C) For all y ∈ R2 and all M ∈ R2×2,

(M : Ξ(y))2 ≤W (y)
(
|M |2 + 2σ(y) detM

)
and |σ(y)| ≤ 1.

Proof. If we assume that (B) holds true, then (A) follows from the observation
that

− div
(
(Du)Tω(u)

)⊥
= σ(u) detDu

and Young’s inequality.
Now suppose that (A) holds true. We want to show that (C) follows. We

note that

Ξ(u) : (Du)T = divΦ(u) + α(u) div u ≤ ϵ

2
|Du|2 + 1

2ϵ
W (u) + ϵσ(u) detDu

for any u ∈ C2(B1(0);R2). Consider an arbitrary point y ∈ R2. If W (y) = 0,
then we choose an arbitrary matrix M ∈ R2×2 and consider u ∈ C2(B1(0);R2)
such that u(0) = y and Du(0) =MT . Then we conclude that

Ξ(y) :M ≤ ϵ

2
|M |2 + ϵσ(y) detM (10)

for any M ∈ R2×2. Since the left-hand side is linear in M and the right-hand
side is quadratic, this can only hold true when Ξ(y) = 0. In this case, the first
inequality in (C) is clear, and the second one follows from the fact that the
right-hand side of (10) must be positive semi-definite in M .

Now suppose that W (y) ̸= 0. Choose a matrix M ∈ R2×2 such that

|M |2 =
W (y)

ϵ2
.

We can again choose u such that u(0) = y and Du(0) =MT . Thus

Ξ(y) :M ≤ ϵ

2
|M |2 + 1

2ϵ
W (y) + ϵσ(y) detM =

√
W (y)

(
|M |+ σ(y) detM

|M |

)
.

Since the left-hand side and the right-hand side are both positive homogeneous
in M of degree 1, it follows that in fact,

Ξ(y) :M ≤
√
W (y)

(
|M |+ σ(y) detM

|M |

)

11



for all M ∈ R2×2 \ {0}. If σ(y) = 0, then the desired inequalities hold at y.
If σ(y) ̸= 0, then we fix a number c ∈ [0, 1) such that c|σ(y)| < 1 and

consider M ∈ R2×2 such that

|M |2 + 2cσ(y) detM =
W (y)

ϵ2
.

In this case, we obtain the inequality

Ξ(y) :M ≤ ϵ

2
|M |2 + 1

2ϵ
W (y) + ϵσ(y) detM

=
ϵ

2

(
|M |2 + 2cσ(y) detM

)
+

1

2ϵ
W (y) + ϵ(1− c)σ(y) detM

=
√
W (y)

(√
|M |2 + 2cσ(y) detM +

(1− c)σ(y) detM√
|M |2 + 2cσ(y) detM

)
.

Again we conclude that

Ξ(y) :M ≤
√
W (y)

(√
|M |2 + 2cσ(y) detM +

(1− c)σ(y) detM√
|M |2 + 2cσ(y) detM

)
(11)

for allM ∈ R2×2 \{0}. If we replaceM by −M , then the left-hand side changes
its sign while the right-hand side stays the same. Therefore, the inequality√

|M |2 + 2cσ(y) detM +
(1− c)σ(y) detM√
|M |2 + 2cσ(y) detM

≥ 0

must be satisfied for all M ∈ R2×2, which implies that

|M |2 + (1 + c)σ(y) detM ≥ 0.

We conclude that
(1 + c)|σ(y)| ≤ 2.

Since we have proved this inequality for any c such that

0 ≤ c < min

{
1,

1

|σ(y)|

}
,

it follows that |σ(y)| ≤ 1.
It now follows that (11) is satisfied for any c ∈ [0, 1). Letting c ↗ 1, we

derive the other inequality in (C) as well.
Now suppose that (C) is satisfied. Since

div Φ(u) + α(u) = (Du)T : Ξ(u),

statement (B) follows immediately.

Next we examine inequalities as in statement (C) above. For this purpose,
we require the function g : R2×2 → R defined by

g(M) =
1

2

(
|M |2 +

√
|M |4 − 4(detM)2

)
.

12



We note that g is convex, which is most easily seen in different coordinates: let

q1 =
1√
2
(m11 +m22), q2 =

1√
2
(m11 −m22),

q3 =
1√
2
(m12 +m21), q4 =

1√
2
(m12 −m21).

Then

g(M) =
1

2

(√
q21 + q24 +

√
q22 + q23

)2

,

which is clearly convex. Since g is also homogeneous of degree 2, it follows that
for all M,N ∈ R2×2 and for s, t ∈ (1,∞) with 1

s +
1
t = 1,

g(M +N) = g

(
sM

s
+
tN

t

)
≤ g(sM)

s
+
g(tN)

t
= sg(M) + tg(N). (12)

Lemma 8. Suppose that Λ ∈ R2×2 \ {0}. Let

s0 =
detΛ

g(Λ)
.

(i) The inequality g(Λ) ≤ 1 holds true if, and only if, there exists s ∈ [−1, 1]
such that

(Λ :M)2 ≤ |M |2 + 2sdetM (13)

for all M ∈ R2×2.

(ii) If there is any s ∈ [−1, 1] such that (13) is satisfied for all M ∈ R2×2,
then the same holds true for s = s0.

Proof. We first consider a matrix Λ such that 2 detΛ = |Λ|2. Then Λ = ( a b
−b a )

for some a, b ∈ R. We then calculate g(Λ) = 1
2 |Λ|

2 and s0 = 1. If (13)
is satisfied for some s ∈ [−1, 1], then inserting M = Λ yields |Λ|2 ≤ 2, i.e.,
g(Λ) ≤ 1. Conversely, if g(Λ) ≤ 1, then a2 + b2 ≤ 1. Hence

(Λ :M)2 =
(
a(m11 +m22) + b(m12 −m21)

)2
≤ (m11 +m22)

2 + (m12 −m21)
2

= |M |2 + 2detM

by the Cauchy-Schwarz inequality. Both statements of the lemma follow imme-
diately.

If 2 detΛ = −|Λ|2, then we can use practically the same arguments, except
that a few signs will change in the above calculations.

We now assume that 2|detΛ| < |Λ|2. In this case, we first note that (13)
cannot be satisfied for s = ±1. Indeed, if it did hold true for s = 1, then we
could test it with the matrices ( 1 0

0 −1 ) and ( 0 1
1 0 ) to find that Λ = ( a b

−b a ) for
some a, b ∈ R. That is, we would find that we are in fact in the first case. For
s = −1, the arguments are similar.

We therefore consider s ∈ (−1, 1) now. Define the bilinear form

⟨M,N⟩s =M : N + s(m11n22 −m12n21 −m21n12 +m22n11).

13



It is easy to see that this constitutes an inner product on R2×2. We also note
that

|M |2s := ⟨M,M⟩s = |M |2 + 2sdetM.

By the Riesz representation theorem, there exists Θs ∈ R2×2 such that

Λ :M = ⟨Θs,M⟩s

for allM ∈ R2×2. By the Cauchy-Schwarz inequality, inequality (13) is satisfied
if, and only if,

|Θs|2s ≤ 1.

We can easily determine Θs = ( θ11 θ12θ21 θ22
) by solving a linear system of equa-

tions. We obtain

θ11 =
λ11 − sλ22
1− s2

, θ12 =
λ12 + sλ21
1− s2

,

θ21 =
λ21 + sλ12
1− s2

, θ22 =
λ22 − sλ11
1− s2

.

Therefore,

|Θs|2s = Λ : Θs =
|Λ|2 − 2sdetΛ

1− s2
.

Thus we see that for −1 < s < 1, inequality (13) is satisfied if, and only if,

|Λ|2 − 2sdetΛ

1− s2
≤ 1.

We now define

ϕ(s) =
|Λ|2 − 2sdetΛ

1− s2
, −1 < s < 1,

and minimise this function over (−1, 1). Differentiating, we compute

ϕ′(s) = −2s2 detΛ− 2s|Λ|2 + 2detΛ

(1− s2)2
.

The derivative has a unique zero in (−1, 1), which is at

|Λ|2 −
√
|Λ|4 − 4(detΛ)2

2 detΛ
= s0 (14)

(unless detΛ = 0, in which case the left-hand side is meaningless but the unique
zero is still at s0). Moreover, we know that ϕ(s) → ∞ as s ↗ 1 or s ↘ −1.
It follows that ϕ has a unique minimum, which is attained at s0. We further
compute

ϕ(s0) = g(Λ).

(This is easier to calculate with the expression for s0 on the left-hand side of
(14) rather than in the definition of s0.)

Hence if there is any s ∈ [−1, 1] such that (13) holds true, then ϕ(s) ≤ 1,
and it follows that g(Λ) = ϕ(s0) ≤ 1. The number s0 then also satisfies (13).
Conversely, if g(Λ) ≤ 1, then we still conclude that (13) holds true for s = s0.
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2.2 A regularity gap

The combination of Proposition 7 and Lemma 8 suggests that the functions Φ
and α give rise to an inequality of the form (8) if g(Ξ) ≤ W . Assuming that
Φ is the quantity we are interested in primarily, we may also wish to minimise
g(DΦ + αI) over α, which will give α = − 1

2 div Φ. (Then Ξ is the trace free
part of DΦ.) Lemma 8 then also gives a good idea of how to choose σ = curlω.

In the following sections, we will indeed construct Φ such that g(Ξ) ≤W for
this definition of Ξ. Unfortunately, this function will not satisfy the regularity
requirements of the preceding subsection. For this reason, we have to use a
regularisation scheme, which eventually necessitates the construction of a family
of vector fields ωδ rather than a single ω as in Proposition 7.

Another technical difficulty arises from the fact that once we have σ, we
need to invert the curl operator. It does not quite suffice to use standard results
here, because we do not necessarily have decay at infinity for σ, but we still
want to control the growth of ω. We use the following result here.

Lemma 9. There exists a constant C such that the following holds true. Sup-
pose that σ ∈ C0,1/2(R2) is bounded. Then there exists ω ∈ C1(R2;R2) such
that curlω = σ and

sup
y∈R2

|ω(y)|
1 + |y| log |y|

≤ C sup
y∈R2

|σ(y)|.

Proof. We use a (one-sided) dyadic decomposition of σ in terms of a partition
of unity

1 =

∞∑
k=0

ηk,

where ηk ∈ C∞
0 (R2) are functions such that 0 ≤ ηk ≤ 1 for all k ∈ N0 and

supp η0 ⊆ B2(0), while supp ηk ⊆ B2k+1(0) \B2k−1(0) for k ≥ 1.
Let G denote the fundamental solution of the Laplace equation in R2. For

k ∈ N0, define ϕ̃k = G ∗ (ηkσ). Then ∆ϕ̃k = ηkσ. Standard Schauder esti-
mates imply that ϕ̃k ∈ C2,1/2(R2). Furthermore, we know that ϕ̃k is smooth in
B2k−1(0) for k ≥ 1.

Set S = ∥σ∥L∞(R2). For any y ∈ R2, we have the estimate

|Dϕ̃k(y)| =
1

2π

∣∣∣∣ˆ
R2

y − z

|y − z|2
ηk(z)σk(z) dz

∣∣∣∣
≤ S

2π

ˆ
B

2k+1 (0)

dz

|y − z|

≤ S

2π

ˆ
B

2k+1 (0)

dz

|z|
= 2k+1S

for all k ∈ N0. If k ≥ 1, then we also estimate

|D2ϕ̃k(0)| ≤
S

2π

ˆ
B

2k+1 (0)\B2k−1 (0)

dz

|z|2
= S log 4.

Let R ≥ 1. If k ∈ N is such that 2k−2 ≥ R, then with the same arguments, we
find a universal constant C1 ≥ 0 such that

|D3ϕ̃k(y)| ≤ 2−kC1S
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for all y ∈ BR(0).
Now define ϕ0 = ϕ̃0 and

ϕk(y) = ϕ̃k(y)− ϕ̃k(0)−Dϕ̃k(0)y −
1

2
D2ϕ̃k(0)(y, y), k ≥ 1.

Then ϕk(0) = 0, Dϕk(0) = 0, and D2ϕk(0) = 0 for k ≥ 1. We still compute
∆ϕk = ηkσ in R2. (For k ≥ 1, this is because ∆ϕ̃k(0) = 0.) Moreover, if
2k−2 ≥ R, then

|D3ϕk(y)| ≤ 2−kC1S,

which implies that there exists a universal constant C2 such that

R−3|ϕk|+R−2|Dϕk|+R−1|D2ϕk| ≤ 2−kC2S

uniformly in BR(0) when 2k−2 ≥ R. Therefore, the series

ϕ =

∞∑
k=0

ϕk

converges in C2(BR(0)) for any R ≥ 1. In particular, the function ϕ is twice
continuously differentiable.

Furthermore, for all k ∈ N0, we find that

|Dϕk| ≤ C3(2
k +R)S

in BR(0) for another universal constant C3. If we choose k0 such that 2k0−3 ≤
R < 2k0−2, then

|Dϕ(y)| ≤ C3S

k0−1∑
k=0

(2k +R) + C2SR
2

∞∑
k=k0

2−k

≤ C3S(2
k0 + k0R) + 21−k0C2SR

2

for all y ∈ BR(0). Thus we find a universal constant C4 such that

|Dϕ(y)| ≤ C4S(1 + |y| log |y|).

Now we set

ω =

(
− ∂ϕ
∂y2
∂ϕ
∂y1

)
,

and then we have all the desired properties.

We can now prove the following.

Proposition 10. There exists a constant C ≥ 0 with the following property.
Let Φ ∈

⋂
p<∞W 1,p

loc (R2;R2) and set α = − 1
2 div Φ. Define Φδ = ρδ ∗ Φ, αδ =

ρδ ∗ α+ δ, and

Wδ =
ρδ ∗W
1− δ

+ δ.

If g(DΦ+αI) ≤W , then for every δ > 0 there exists ωδ ∈ C1(R2;R2) such that

div Φδ(u) + αδ(u) div u ≤ ϵ

2
|Du|2 + 1

2ϵ
Wδ(u)− ϵdiv

(
(Du)Tωδ(u)

)⊥
(15)
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for every u ∈ C2(B1(0);R2) and every ϵ > 0. Furthermore,

|ωδ(y)| ≤ C(1 + |y| log |y|) (16)

for every y ∈ R2.

Proof. In addition to the above quantities, define α̃δ = ρδ ∗α and W̃δ = ρδ ∗W .
Furthermore, set Ξ = DΦ + αI and Ξ̃δ = DΦδ + α̃δI. Then by Jensen’s
inequality, the convexity of g implies that

g(Ξ̃δ(y)) = g

(ˆ
Bδ(y)

ρδ(y − z)Ξ(z) dz

)

≤
ˆ
Bδ(y)

ρδ(y − z)g(Ξ(z)) dz

≤
ˆ
Bδ(y)

ρδ(y − z)W (z) dz = W̃δ(y).

Now recall that αδ = α̃δ + δ. Set Ξδ = DΦδ + αδI = Ξ̃δ + δI. Then (12) gives

g(Ξδ) ≤
g(Ξ̃δ)

1− δ
+
g(δI)

δ
≤Wδ.

Lemma 8 implies that

(Ξδ(y) :M)2 ≤Wδ(y)
(
|M |2 + 2σδ detM

)
for all M ∈ R2×2, where

σδ =
detΞδ
g(Ξδ)

.

Note that g(Ξδ) ≥ 1
2 |Ξδ|

2 ≥ 1
4 (tr Ξδ)

2 = δ2. As Ξδ is smooth, it follows that

σδ ∈ C0,1/2(R2). It is clear that |σδ| ≤ 1.
Lemma 9 provides vector fields ωδ ∈ C1(R2;R2) such that curlωδ = σδ and

such that (16) is satisfied for a universal constant C. Inequality (15) then follows
from Proposition 7.

We conclude this section with a brief discussion of how we proceed in the
proofs of our main results.

Consider the function f : R2×2 → R given by

f(M) = g

(
M − trM

2
I

)
=

1

2

(
|M |2 − 1

2
(trM)2 + |m12 −m21|

√
|M |2 − 2 detM

)
.

Owing to Proposition 10, one of the central questions of this paper is now
whether we can satisfy the inequality

f(DΦ) ≤W

while simultaneously keeping Φ1(a
+)− Φ1(a

−) large enough to obtain a useful
estimate. (The best possible value here is of course

Φ1(a
+)− Φ1(a

−) =

ˆ
[a−,a+]

√
WdH1.)
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Thus we want to find the number

η0 = sup
{
Φ1(a

+)− Φ1(a
−) : Φ ∈ C0,1(R2;R2) with f(DΦ) ≤W

}
.

Alternatively, assuming that W > 0, we can define

F (y,M) =
f(M)

W (y)

and try to determine

e2∞ = inf
{
∥F (y,DΦ)∥L∞(R2) : Φ1(a

+)− Φ1(a
−) = 1

}
.

Then we note that η0 = 1/e∞. (In general, we are interested in potential
functions W that do have zeroes, but they can be approximated by positive
functions.)

We therefore study problems of this nature in the next section. Since these
results are potentially of independent interest, we formulate them more generally
here.

3 An L∞-minimisation problem

In this section, we assume that n,m ∈ N and study functions ϕ : Rn → Rm. Let
A ⊆ Rn be a finite set and Ω = Rn \ A. Given m0 ∈ {1, . . . ,m}, we fix a non-
constant function ϕ0 : A → Rm0 . We further assume that F : Rn × Rm×n →
[0,∞) is a continuously differentiable function such that for every x ∈ Rn,
the function F (x, ·) is homogeneous of degree 2, C2-regular away from 0, and
uniformly strictly convex in the sense that there exists a constant c > 0 such
that

D2
MF (x,M)(N,N) ≥ 2c|N |2 (17)

for all x ∈ Rn and allM,N ∈ Rm×n, where D2
MF denotes the second derivative

with respect to the second argument. (The function F (x, ·) is not twice Fréchet
differentiable at 0 in general, but we can always interpret the left-hand side of
(17) in the Gâteaux sense even at 0.) We further write ∇F for the gradient of F
with respect to the second argument only. We assume that there exists another
constant C > 0 such that

|∇F (x,M)| ≤ 2C|M | (18)

for all x ∈ Rn and M ∈ Rm×n.
We also consider the Legendre transform

F ∗(x,N) = sup
M∈Rm×n

(M : N − F (x,M))

of F with respect to the second argument.
Motivated by the previous section, we study functions that minimise the

functional
E∞(ϕ) = ess sup

x∈Rn

√
F (x,Dϕ(x))

subject to the condition ϕi = ϕ0i on A for i = 1, . . . ,m0.

Notation. In this section, we write Br(x) for an open ball in Rn with radius
r > 0 and centre x ∈ Rn. The symbol ρ now denotes a function ρ ∈ C∞

0 (B1(0))
with ρ ≥ 0 and

´
B1(0)

ρ dx = 1. For δ > 0, we then set ρδ(x) = δ−nρ(x/δ).
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3.1 Summary of the results

Following the ideas from a paper of Katzourakis and Moser [32], we derive some
properties of the minimisers of E∞. They will be described in terms of an
Rm-valued 1-current on Rn and a mass functional depending on F . Although
currents will normally be defined in terms of differential forms and the exterior
derivative, if we only consider 1-currents, then we can work with matrix-valued
functions and the Fréchet derivative instead.

The following is a more general version of Definition 2.

Definition 11. An Rm-valued 1-current on Rn is an element of the dual space
of C∞

0 (Rn;Rm×n). If T is an Rm-valued 1-current, then its boundary ∂T is the
Rm-valued distribution such that ∂T (ξ) = T (Dξ) for every ξ ∈ C∞

0 (Rn;Rm).
The F -mass of T is

MF (T ) =
1

2
sup

{
T (ζ) : ζ ∈ C∞

0 (Rn;Rm×n) with ∥F (x, ζ)∥C0(Rn) ≤ 1
}
.

We say that T is normal if there exists C ≥ 0 such that

|T (ζ)|+ |∂T (ξ)| ≤ C

(
sup
x∈Rn

|ζ(x)|+ sup
n∈Rn

|ξ(x)|
)

for all ζ ∈ C∞
0 (Rn;Rm×n) and all ξ ∈ C∞

0 (Rn;Rm). We write Cm×n(Rn) for
the space of all normal Rm-valued 1-currents on Rn.

Given i ∈ {1, . . . ,m}, we write Ti for the R-valued 1-current such that
Ti(ξ) = T (ei ⊗ ξ) for ξ ∈ C∞

0 (Rn;Rn), where ei denotes the i-th standard basis
vector of Rm. We can think of these as the components of T .

Many of the standard properties of currents, as described, e.g., in a book
by Simon [43], also apply to this variant. In particular, if T has finite F -mass,
then, by the properties of F , it automatically has finite mass in the standard
sense. (In the above terminology, that means that MF̃ (T ) <∞ for the function

F̃ (x,M) = 1
4 |M |2.) It then follows that there exist a Radon measure ∥T∥ and

a ∥T∥-measurable, matrix-valued function T⃗ : Rn → Rm×n with |T⃗ | = 1 almost
everywhere, such that

T (ζ) =

ˆ
Rn

T⃗ : ζ d∥T∥

for any ζ ∈ C∞
0 (Rn;Rm×n). In this situation, we can also make sense of the

expression T (ζ) for ζ ∈ C0
0 (Rn;Rm×n). If T is normal, then we can make sense

of ∂T (ξ) for any ξ ∈ C0
0 (Rn;Rm).

We write W 1,∞
∗ (Rn;Rm) for the space of all ϕ ∈ W 1,∞

loc (Rn;Rm) such that
ϕi = ϕ0i on A for i = 1, . . . ,m0. We set

e∞ = inf
{
E∞(ϕ) : ϕ ∈W 1,∞

∗ (Rn;Rm)
}
.

We will prove the following two statements.

Proposition 12. There exists ϕ∞ ∈W 1,∞
∗ (Rn;Rm) such that E∞(ϕ∞) = e∞.

Theorem 13. There exists T ∈ Cm×n(Rn) \ {0} with the following properties.

(i) supp ∂T ⊆ A, and ∂Ti = 0 for i = m0 + 1, . . . ,m.
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(ii) If S ∈ Cm×n(Rn) satisfies ∂S = ∂T , then MF (T ) ≤ MF (S).

(iii) Let ϕ ∈ W 1,∞
∗ (Rn;Rm) be a minimiser of E∞ in W 1,∞

∗ (Rn;Rm) and let
e∞ = E∞(ϕ). Then ∂T (ϕ) = 2e∞MF (T ) and

lim
δ↘0

ˆ
Rn

∣∣∣∣∣ρδ ∗Dϕ− e∞
∇F ∗(x, T⃗ )√
F ∗(x, T⃗ )

∣∣∣∣∣
2

d∥T∥ = 0.

Note that the last statement gives a lot of information about the behaviour
of ϕ on suppT . Indeed, we interpret it as a generalised version of the equation

Dϕ = e∞
∇F ∗(x, T⃗ )√
F ∗(x, T⃗ )

,

but since suppT will be a Lebesgue null set in general, such an equation does
not make sense pointwise.

The existence of a minimiser of E∞ can be proved with the direct method,
although, as one needs to work with weak* convergence in an L∞-space, some
of the details are not so obvious. We will use a different method for the proof
of Proposition 12, because we will obtain the minimiser as a side product of the
arguments for the proof of Theorem 13.

3.2 Properties of F and F ∗

We first derive some properties of the function F and its Legendre transform
F ∗ that follow from the above assumptions, in particular the strict uniform
convexity (17).

The homogeneity of F implies that

∇F (x,M) :M = 2F (x,M). (19)

Hence (18) gives rise to the inequality

F (x,M) ≤ C|M |2.

According to Taylor’s theorem, for any x ∈ Rn and any M,N ∈ Rm×n, there
exists θ ∈ (0, 1) such that

F (x,N) = F (x,M) +∇F (x,M) : (N −M)

+
1

2
D2
MF (x, θM + (1− θ)N)(N −M,N −M).

Therefore,

c|N −M |2 ≤ F (x,N)− F (x,M)−∇F (x,M) : (N −M). (20)

Using (19) again, we can write the above inequality in the form

c|N −M |2 ≤ F (x,N) + F (x,M)−∇F (x,M) : N. (21)

Inserting N = 0, we also see that

F (x,M) ≥ c|M |2.
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The Legendre transform of F is automatically homogeneous of degree 2 and
strictly convex again. It is a well-known property of the Legendre transform
that ∇F ∗(x, ·) is the inverse of ∇F (x, ·) regarded as a map Rm×n → Rm×n.
That is, if N = ∇F (x,M), then M = ∇F ∗(x,N), and vice versa. We then also
find that

2F ∗(x,N) = ∇F ∗(x,N) : N =M : ∇F (x,M) = 2F (x,M).

That is,

F (x,M) = F ∗(x,∇F (x,M)) and F ∗(x,N) = F (x,∇F ∗(x,N)).

In addition to the standard definition of the Legendre transform, we have
the following characterisation.

Lemma 14. For any x ∈ Rn and N ∈ Rm×n,

F ∗(x,N) =
1

4
sup

{
(M : N)2 : M ∈ Rm×n with F (x,M) ≤ 1

}
.

Proof. Fix x ∈ Rn. For every M ∈ Rm×n \ {0} there exists t > 0 such that
F (x, tM) = 1. Hence

F ∗(x,N) = sup
F (x,M)=1

sup
t∈R

(tM : N − F (x, tM))

= sup
F (x,M)=1

sup
t∈R

(tM : N − t2).

The function t 7→ tM : N − t2 attains its maximum at t = 1
2M : N . Therefore,

F ∗(x,N) = sup
F (x,M)=1

(M : N)2

4
.

Clearly this supremum is identical with the one in the lemma.

As a consequence, we have an alternative representation of the F -mass MF .

Proposition 15. Let T be an Rm-valued 1-current in Rn with finite F -mass.
Then

MF (T ) =

ˆ
Rn

√
F ∗(x, T⃗ ) d∥T∥.

Proof. If ζ ∈ C∞
0 (Rn;Rm×n) with ∥F (x, ζ)∥C0(Rn) ≤ 1, then

T (ζ) =

ˆ
Rn

ζ : T⃗ d∥T∥ ≤ 2

ˆ
Rn

√
F ∗(x, T⃗ ) d∥T∥

by Lemma 14. It follows that

MF (T ) ≤
ˆ
Rn

√
F ∗(x, T⃗ ) d∥T∥.

To prove the reverse inequality, we first note that there exists a sequence
of uniformly bounded functions T⃗k ∈ C∞

0 (Rn;Rm×n) such that T⃗k → T⃗ almost
everywhere with respect to ∥T∥. Define

ζk(x) =
k∇F ∗(x, T⃗k(x))√
k2F ∗(x, T⃗k(x)) + 1

, k ∈ N.
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Then

T⃗k(x) : ζk(x) =
2kF ∗(x, T⃗k(x))√
k2F ∗(x, T⃗k(x)) + 1

for every x ∈ Rn. Hence

T⃗k(x) : ζk(x) → 2

√
F ∗(x, T⃗ (x))

almost everywhere. We also compute

F (x, ζk(x)) =
k2F (x,∇F ∗(x, T⃗k(x)))

k2F ∗(x, T⃗k(x)) + 1
=

k2F ∗(x, T⃗k(x))

k2F ∗(x, T⃗k(x)) + 1
≤ 1.

Therefore,

ˆ
Rn

√
F ∗(x, T⃗ ) d∥T∥ =

1

2
lim
k→∞

ˆ
R2

T⃗k : ζk d∥T∥ ≤ MF (T ).

This completes the proof.

Lemma 16. Let K ⊆ Rn be compact. Let Q ∈ L∞(Rn;Rm×n), and let U ⊆ Rn
be an open set with K ⊆ U . Then

lim sup
δ↘0

sup
x∈K

F (x, ρδ ∗Q(x)) ≤ ess sup
x∈U

F (x,Q(x)).

Proof. Since F is continuous, it is uniformly continuous on the compact set

L =
{
(x,M) ∈ Rn × Rm×n : dist(x,K) ≤ 1 and |M | ≤ ∥Q∥L∞(Rn)

}
.

Let ϵ > 0, and fix δ0 ∈ (0, 1] such that |F (x,M)−F (y,M)| ≤ ϵ for all (x,M) ∈ L
and (y,M) ∈ L with |x−y| ≤ δ0. Let x ∈ K. By the convexity of F and Jensen’s
inequality, we can estimate

F (x, ρδ ∗Q) ≤
ˆ
Rn

ρδ(x− y)F (x,Q(y)) dy

≤
ˆ
Rn

ρδ(x− y)F (y,Q(y)) dy + ϵ

≤ ess sup
y∈U

F (y,Q(y)) + ϵ

when δ < δ0 and δ < dist(K,Rn \ U). The claim follows.

3.3 Approximation in Lp

In order to take advantage of the usual tools from the calculus of variations,
we construct a minimiser of E∞ as the limit of solutions to more conventional
problems. To this end, we replace the L∞-norm by Lp-norms.

Let V : Rn → (0,∞) be a smooth function such that

ˆ
Rn

V (x) dx = 1.
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For n < p <∞, define the functionals

Ep(ϕ) =

(ˆ
Rn

(
F (x,Dϕ)

)p/2
V (x) dx

)1/p

on the Sobolev space W 1,p
loc (Rn;Rm). Let W 1,p

∗ (Rn;Rm) denote the space of all

ϕ ∈ W 1,p
loc (Rn;Rm) such that ϕi = ϕ0i on A for i = 1, . . . ,m0. We consider the

problem of minimising Ep in W 1,p
∗ (Rn;Rm).

Since we now have a strictly convex functional given in terms of an integral,
we can use standard methods from the calculus of variations to make a few
statements immediately: there exists a unique minimiser ϕp ∈ W 1,p

∗ (Rn;Rm),
which satisfies the Euler-Lagrange equation

div
(
V (x)

(
F (x,Dϕp)

)p/2−1∇F (x,Dϕp)
)
= 0

weakly in Ω. (Here the divergence is applied row-wise, so that we actually have
a system of m equations.) We use the notation ∇iF for the i-th row of ∇F .
Then we can write

div
(
V (x)

(
F (x,Dϕp)

)p/2−1∇iF (x,Dϕp)
)
= 0, i = 1, . . . ,m. (22)

We note that this is satisfied weakly in Ω for i = 1, . . .m0, and even weakly in
Rn for i = m0 + 1, . . .m.

We obtain another necessary condition when we study inner variations of ϕp
of the form ϕtp(x) = ϕp(x+ tχ(x)) for a vector field χ ∈ C∞

0 (Ω;R2). A standard
computation then gives

0 =
d

dt

∣∣∣∣ (Ep(ϕtp))p
=
p

2

ˆ
Rn

V (x)
(
F (x,Dϕp)

) p−2
2

(
∇F (x,Dϕp) : (DϕpDχ)−

∂F

∂x
(x,Dϕp)χ

)
dx

−
ˆ
Rn

(
F (x,Dϕp)

)p/2
(DV χ+ V divχ) dx,

(23)

where ∂F
∂x denotes the derivative of F with respect to the first argument.

Proof of Proposition 12. Let ψ ∈ W 1,∞
∗ (Rn;Rm). By Hölder’s inequality, for

n < q < p, we have the inequalities

Eq(ϕp) ≤ Ep(ϕp) ≤ Ep(ψ) ≤ E∞(ψ). (24)

Thus, the family (ϕp)q<p<∞ is bounded in W 1,q(BR(0);Rm) for any q <∞ and
any R > 0. We may therefore choose a sequence pk → ∞ such that we have the
weak convergence ϕpk ⇀ ϕ∞ as k → ∞ simultaneously in all of these spaces for

some ϕ∞ ∈
⋂
q<∞W 1,q

∗ (Rn;Rm). We further see that

E∞(ϕ∞) = lim
q→∞

Eq(ϕ∞) ≤ lim inf
q→∞

lim inf
k→∞

Eq(ϕpk) ≤ lim inf
k→∞

Epk(ϕpk) ≤ E∞(ψ)

(25)
by the lower semicontinuity of Eq with respect to weak convergence, Hölder’s in-

equality again, and (24). In particular, we see that ϕ∞ belongs toW 1,∞
∗ (Rn;Rm)

and is a minimiser of E∞ in this space.
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We continue to use the functions ϕp and ϕ∞ for the rest of this section. Let

ep = Ep(ϕp), n < p ≤ ∞.

Because we have assumed that ϕ0 is not constant, it is clear that ep ̸= 0. The
inequalities in (24) and (25) imply that e∞ = limp→∞ ep. It is now convenient
to introduce the measures

µp = e2−pp V (x)
(
F (x,Dϕp)

)p/2−1Ln,

where Ln denotes the Lebesgue measure in Rn. This is normalised so that

µp(Rn) = e2−pp

ˆ
Rn

V (x)
(
F (x,Dϕp)

)p/2−1
dx ≤ e2−pp

(
Ep(ϕp)

)p−2
= 1

by Hölder’s inequality. The Euler-Lagrange equation (22) implies thatˆ
Rn

∇F (x,Dϕp) : Dψ dµp = 0 (26)

for all ψ ∈ C∞
0 (Ω). Note, however, that the identity also holds true if we merely

know that ψ ∈ W 1,p
loc (Rn;Rm) and Ep(ψ) < ∞ and ψ1 = · · · = ψm0 = 0 on A,

because these conditions imply that the derivative d
dt |t=0Ep(ϕ+ tψ) is given by

the usual expression.
Equation (23) has the following representation in terms of µp:

0 =
p

2

ˆ
Rn

(
∇F (x,Dϕp) : (DϕpDχ)−

∂F

∂x
(x,Dϕp)χ

)
dµp

−
ˆ
Rn

F (x, ϕp) (D(log V )χ+ divχ) dµp.

(27)

The measure µp should be considered together with the function Dϕp. These
two objects form a measure-function pair (µp, Dϕp) with values in Rm×n in the
sense of Hutchinson [20]. Since

ˆ
Rn

|Dϕp|2 dµp ≤
1

cep−2
p

ˆ
Rn

(
F (x,Dϕp)

)p/2
V (x) dx ≤

e2p
c

for every p ∈ (n,∞), we may assume that for the above sequence pk → ∞, we
simultaneously have the weak convergence of (µpk , Dϕpk) to a measure-function
pair (µ∞, Z∞) in the sense of Hutchinson. (This follows from [20, Theorem
4.4.2], but we may have to pass to a suitable subsequence.) Here µ∞ is a Radon
measure on Rn and Z∞ ∈ L2(µ∞;Rm×n). Of course, we have a uniform bound
for ˆ

Rn

|∇F (x,Dϕp)|2 dµp

as well, and we may therefore assume at the same time that (µpk ,∇F (x,Dϕpk))
converges weakly to (µ∞, Y∞) for some function Y∞ ∈ L2(µ∞;Rm×n). Because
of (26), we have the identityˆ

Rn

Y∞ : Dψ dµ∞ = 0 (28)

for all ψ ∈ C1
0 (Rn;Rm) with ψ1 = · · · = ψm0

= 0 on A.
We now want to prove the following additional properties.
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Proposition 17. (i) Let K ⊆ Ω be a compact set. Then the convergence
(µpk , Dϕpk) → (µ∞, Z∞) is strong in K the sense of Hutchinson [20].
Equivalently,

ˆ
K

|Z∞|2 dµ∞ = lim
k→∞

ˆ
K

|Dϕpk |2 dµpk .

(ii) The identity F (x, Z∞) = e2∞ holds at µ∞-almost every point x ∈ Ω.

(iii) For any minimiser ψ ∈W 1,∞
∗ (Rn;Rm) of E∞,

lim
δ↘0

ˆ
Ω

|ρδ ∗Dψ − Z∞|2 dµ∞ = 0.

The proof follows the strategy of the aforementioned paper [32], which in
turn makes use of some ideas of Evans and Yu [17] at this point. First, we
require the following lemma.

Lemma 18. Let ξ ∈ C0(Rn) be a bounded function with ξ ≥ 0. Then for any
p ∈ (n,∞) and any β ∈ (0, 1),

ˆ
Rn

ξF (x,Dϕp) dµp ≥ β2e2p

ˆ
Rn

ξ dµp − βpe2p sup
Rn

ξ.

Proof. Consider the sets

Sp =
{
x ∈ Rn : F (x,Dϕp(x)) ≤ β2e2p

}
.

Then

µp(Sp) = e2−pp

ˆ
Sp

V (x)
(
F (x,Dϕp)

)p/2−1
dx ≤ βp−2.

Therefore,

ˆ
Rn

ξF (x,Dϕp) dµp ≥
ˆ
Rn\Sp

ξF (x,Dϕp) dµp

≥ β2e2p

ˆ
Rn\Sp

ξ dµp

= β2e2p

(ˆ
Rn

ξ dµp −
ˆ
Sp

ξ dµp

)

≥ β2e2p

ˆ
Rn

ξ dµp − βpe2p sup
Rn

ξ,

as claimed.

Proof of Proposition 17. Fix an arbitrary minimiser ψ ∈W 1,∞
∗ (Rn;Rm) of E∞.

Define ψδ = ρδ ∗ψ. Let ξ ∈ C∞
0 (Ω) with 0 ≤ ξ ≤ 1, and let β ∈ (0, 1). Then by
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(20), (26), and Lemma 18, we find that

c

ˆ
Ω

ξ|Dψδ −Dϕp|2 dµp

≤
ˆ
Ω

ξ
(
F (x,Dψδ)− F (x,Dϕp)−∇F (x,Dϕp) : (Dψδ −Dϕp)

)
dµp

=

ˆ
Ω

ξ
(
F (x,Dψδ)− F (x,Dϕp)

)
dµp +

ˆ
Ω

∇F (x,Dϕp) : (ψδ − ϕp)⊗Dξ dµp

≤
ˆ
Ω

ξF (x,Dψδ) dµp − β2e2p

ˆ
Ω

ξ dµp + βpe2p

+

ˆ
Ω

∇F (x,Dϕp) : (ψδ − ϕp)⊗Dξ dµp.

Applying this inequality to pk and letting k → 0, we obtain

c lim sup
k→∞

ˆ
Ω

ξ|Dψδ −Dϕpk |2 dµpk

≤
ˆ
Ω

ξF (x,Dψδ) dµ∞ − β2e2∞

ˆ
Ω

ξ dµ∞ +

ˆ
Ω

Y∞ : (ψδ − ϕ∞)⊗Dξ dµ∞.

For r > 0, define Br(A) =
⋃
x∈ABr(x). Suppose that r is so small that

Br(a) ∩ Br(b) = ∅ when a, b ∈ A with a ̸= b. Choose χ ∈ C∞
0 (Br(0)) with 0 ≤

χ ≤ 1 and such that χ ≡ 1 in Br/2(0) and |Dχ| ≤ 4/r in Br(0). Furthermore,
for R ≥ 1 such that Br(A) ⊆ BR(0), choose η ∈ C∞

0 (B2R(0)) with 0 ≤ η ≤ 1
such that η ≡ 1 in BR(0) and |Dη| ≤ 2/R. Set

ξ(x) = η(x)−
∑
a∈A

χ(x− a).

Note that ψi(a) = ϕ∞i(a) for i = 1, . . . ,m0 and a ∈ A. Hence

ˆ
Ω

Y∞ : (ψδ − ϕ∞)⊗Dξ dµ∞

=

ˆ
B2R(0)\BR(0)

Y∞ : (ψδ − ϕ∞)⊗Dη dµ∞

−
∑
a∈A

ˆ
Br(a)

Y∞(x) : (ψδ(x)− ϕ∞(x))⊗Dχ(x− a) dµ∞(x)

=

ˆ
B2R(0)\BR(0)

Y∞ : (ψδ − ϕ∞)⊗Dη dµ∞

−
∑
a∈A

ˆ
Br(a)

Y∞(x) :
(
ψδ(x)− ψ(a)− ϕ∞(x) + ϕ∞(a)

)
⊗Dχ(x− a) dµ∞(x)
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by (28). Therefore,

c lim sup
k→∞

ˆ
Ω

ξ|Dψδ −Dϕpk |2 dµpk

≤
ˆ
Ω

ξF (x,Dψδ) dµ∞ − β2e2∞

ˆ
Ω

ξ dµ∞

+

ˆ
B2R(0)\BR(0)

Y∞ : (ψδ − ϕ∞)⊗Dξ dµ∞

+
∑
a∈A

ˆ
Br(a)

Y∞ :
(
ψδ − ψ(a)− ϕ∞ + ϕ∞(a)

)
⊗Dξ dµ∞.

Since ϕ∞ is a minimiser of E∞, it satisfies F (x,Dϕ∞) ≤ e2∞ almost every-
where. Hence

|Dϕ∞| ≤
(
1

c
F (x,Dϕ∞)

)1/2

≤ e∞√
c
.

Similarly, we find that |Dψ| ≤ e∞/
√
c, as ψ is also a minimiser of E∞. Hence

|ψ − ψ(a)− ϕ∞ + ϕ∞(a)| ≤ 2re∞√
c

in Br(a). Similarly, if R ≥ |ψ(0)− ϕ∞(0)|, then

|ψ − ϕ∞| ≤
(
4e∞√
c

+ 1

)
R

in B2R(0). If δ ≤ r, the we also have the inequality

|ψ − ψδ| ≤
re∞√
c
.

Therefore,
ˆ
B2R(0)\BR(0)

Y∞ : (ψδ − ϕ∞)⊗Dξ dµ∞

+
∑
a∈A

ˆ
Br(a)

Y∞ :
(
ψδ − ψ(a)− ϕ∞ + ϕ∞(a)

)
⊗Dξ dµ∞

≤
(
10e∞√

c
+ 2

)ˆ
B2R(0)\BR(0)

|Y∞| dµ∞ +
12e∞√

c

ˆ
Br(A)\Br/2(A)

|Y∞| dµ∞

≤
(
12e∞√

c
+ 2

)(
µ∞(GR,r)

ˆ
Rn

|Y∞|2 dµ∞

)1/2

,

where GR,r = (B2R(0)\BR(0))∪(Br(A)\Br/2(A)). Given ϵ > 0, we can choose
r so small and R so large that(

12e∞√
c

+ 2

)(
µ∞(GR,r)

ˆ
Rn

|Y∞|2 dµ∞

)1/2

≤ ϵ.

Let K ⊆ Ω be a compact set. Then we can further assume that K ⊆ BR(0)
and K ∩Br(A) = ∅. With the help of Lemma 16, we conclude that

c lim sup
k→∞

ˆ
K

|Dψδ −Dϕpk |2 dµpk ≤
ˆ
Ω

ξ
(
F (x,Dψδ)− β2e2∞

)
dµ∞ + ϵ

≤ (1− β2)e2∞ + 2ϵ

(29)
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whenever δ is sufficiently small. By [20, Theorem 4.4.2], it follows that

c

ˆ
K

|Dψδ − Z∞|2 dµ∞ ≤ (1− β2)e2∞ + 2ϵ.

This holds true for any β ∈ (0, 1) and any ϵ > 0, provided that δ is small enough
(depending on ϵ). Hence

lim
δ↘0

ˆ
K

|Dψδ − Z∞|2 dµ∞ = 0. (30)

This L2-convergence implies that there exists a sequence δℓ ↘ 0 such that
Dψδℓ → Z∞ almost everywhere in K (with respect to the measure µ∞) as
ℓ→ ∞. Hence F (x,Dψδℓ) → F (x, Z∞) almost everywhere in K. Recalling that
F (x,Dψ) ≤ e2∞ almost everywhere (with respect to the Lebesgue measure) and
using Lemma 16 again, we conclude that F (x, Z∞) ≤ e2∞ almost everywhere in
K (with respect to µ∞).

Choosing another compact set K ′ ⊆ Ω such that supp ξ ⊆ K ′, we similarly
obtain the convergence Dψδ → Z∞ in L2(µ∞ K ′;Rm×n). Hence

ˆ
Ω

ξF (x, Z∞) dµ∞ = lim
δ↘0

ˆ
Ω

ξF (x,Dψδ) dµ∞.

Inequality (29), on the other hand, implies that

lim
δ↘0

ˆ
Ω

ξF (x,Dψδ) dµ∞ ≥ β2e2∞

ˆ
Ω

ξ dµ∞ − ϵ.

Again this holds true for any β ∈ (0, 1) (and provided that r is sufficiently small
and R is sufficiently large, depending on ϵ but not on β). Hence

ˆ
Ω

ξF (x, Z∞) dµ∞ ≥ e2∞

ˆ
Ω

ξ dµ∞ − ϵ.

When we let r ↘ 0 and R→ ∞ again, then the integrand on the left-hand side
converges to F (x, Z∞) pointwise in Ω. Since we know that it is bounded by e2∞,
we can apply Lebesgue’s dominated convergence theorem and obtain

ˆ
Ω

F (x, Z∞) dµ∞ ≥ e2∞µ∞(Ω).

As we already know that F (x, Z∞) ≤ e2∞ almost everywhere, this implies state-
ment (ii).

Furthermore, since the functions Dψδ are uniformly bounded and we now
know that Z∞ ∈ L∞(µ∞;Rm×n), the local strong convergence (30) implies
statement (iii).

For the proof of statement (i), we go back to (29) once more. For a given
number γ > 0, we see that

lim sup
k→∞

ˆ
K

|Dψδ −Dϕpk |2 dµpk ≤ γ
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for any sufficiently small δ > 0. But for a fixed δ, we also compute

lim sup
k→∞

ˆ
K

|Dψδ −Dϕpk |2 dµpk

= lim sup
k→∞

ˆ
K

(
|Dψδ|2 − 2Dψδ : Dϕpk + |Dϕpk |2

)
dµpk

=

ˆ
K

(
|Dψδ|2 − 2Dψδ : Z∞

)
dµ∞ + lim sup

k→∞

ˆ
K

|Dϕpk |2 dµpk

=

ˆ
K

|Dψδ − Z∞|2 dµ∞ −
ˆ
K

|Z∞|2 dµ∞ + lim sup
k→∞

ˆ
K

|Dϕpk |2 dµpk .

It follows that

lim sup
k→∞

ˆ
K

|Dϕpk |2 dµpk ≤
ˆ
K

|Z∞|2 dµ∞,

and by [20, Theorem 4.4.2], we have strong L2-convergence in K.

We can improve the first statement in Proposition 17 if we test with functions
that vanish on A.

Corollary 19. Let G : Rn ×Rm×n → R be a continuous function, and suppose
that there exists h ∈ C0

0 (Rn; [0,∞)) such that h(a) = 0 for all a ∈ A and
|G(x,M)| ≤ h|M |2 for all x ∈ Rn and all M ∈ Rm×n. Then

ˆ
Rn

G(x, Z∞) dµ∞ = lim
k→∞

ˆ
Rn

G(x,Dϕpk) dµpk .

Proof. Let ϵ > 0. There exists r > 0 such that |h| ≤ cϵ in Br(A), which implies
that

|G(x,M)| ≤ ϵF (x,M)

for every x ∈ Br(A) and M ∈ Rm×n. Therefore,

ˆ
Br(A)

|G(x,Dϕpk)| dµpk ≤ ϵ

ˆ
Rn

F (x,Dϕpk) dµpk ≤ e2pkϵ

and ˆ
Br(A)

|G(x, Z∞)| dµ∞ ≤ ϵ

ˆ
Rn

F (x, Z∞) dµ∞ ≤ e2∞ϵ.

Choose ξ ∈ C0
0 (Rn \ A) with ξ ≡ 1 in (supph) \ Br(A). By Proposition 17.(i),

we have the convergence

ˆ
Rn

ξG(x, Z∞) dµ∞ = lim
k→∞

ˆ
Rn

ξG(x,Dϕpk) dµpk .

It now suffices to combine these facts.

The following is also important, because it rules out that Proposition 17 is
vacuous.

Proposition 20. The measure µ∞ does not vanish.
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Proof. Let r > 0 such that Br(a1) ∩ Br(a2) = ∅ for a1, a2 ∈ A with a1 ̸= a2.
Choose ψ ∈ C1

0 (Rn;Rm) such that ψi = ϕ0i on A for i = 1, . . . ,m0 and Dψ = 0
in Br(a) for every a ∈ A. Note that

e2p =

ˆ
Rn

F (x,Dϕp) dµp

=
1

2

ˆ
Rn

∇F (x,Dϕp) : Dϕp dµp

=
1

2

ˆ
Rn

∇F (x,Dϕp) : Dψ dµp

for every p ∈ (n,∞) by the definition of µp and equations (19) and (26). It then
follows from the local strong convergence in Proposition 17 that

e2∞ = lim
k→∞

e2pk =
1

2

ˆ
Rn

∇F (x, Z∞) : Dψ dµ∞.

But as the boundary data do not admit a constant function, we have e∞ ̸= 0.
Hence µ∞ cannot vanish.

We can finally improve the convergence from Proposition 17 even more.

Proposition 21. If a ∈ A, then Z∞(a) = 0 or µ∞({a}) = 0. Furthermore, for
any compact set K ⊆ Rn, the convergence (µpk , Dϕpk) → (µ∞, Z∞) is strong in
K.

Proof. We use (27) with χ(x) = η(|x−a|)(x−a) for a function η ∈ C∞
0 ((0, R)),

where R > 0 is so small that χ will vanish in a neighbourhood of A. We obtain

0 =

ˆ
Rn

η(|x− a|)
(
∇F (x,Dϕp) : Dϕp −

∂F

∂x
(x,Dϕp)(x− a)

)
dµp

+

ˆ
Rn

η′(|x− a|)
|x− a|

∇F (x,Dϕp) :
(
Dϕp((x− a)⊗ (x− a))

)
dµp

− 2

p

ˆ
Rn

η(|x− a|)F (x,Dϕp) (D(log V )(x− a) + n) dµp

− 2

p

ˆ
Rn

|x− a|η′(|x− a|)F (x,Dϕp) dµp.

(31)

Now consider η ∈ C∞
0 ((−R,R)) such that η′ vanishes in a neighbourhood

of 0, and define χ(x) = η(|x − a|)(x − a) again. We can find a sequence of
functions ηℓ ∈ C∞

0 ((0, R)) such that ηℓ(t) = η(t) for t ≥ 1/ℓ and |η′ℓ| ≤ C1ℓ for
some constant C1 independent of ℓ. Then the functions χℓ(x) = ηℓ(|x− a|)(x−
a) converge uniformly to χ, and their derivatives Dχℓ are uniformly bounded
and converge to Dχ at every point in Rn \ {a}. Using Lebesgue’s dominated
convergence theorem, we therefore conclude that (31) holds in this situation as
well.
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Therefore,

ˆ
Rn

η(|x− a|)F (x,Dϕp) dµp

=
1

2

ˆ
Rn

η(|x− a|)∇F (x,Dϕp) : Dϕp dµp

=
1

2

ˆ
Rn

η(|x− a|)∂F
∂x

(x,Dϕp)(x− a) dµp

− 1

2

ˆ
Rn

η′(|x− a|)
|x− a|

∇F (x,Dϕp) :
(
Dϕp((x− a)⊗ (x− a))

)
dµp

+
1

p

ˆ
Rn

η(|x− a|)F (x,Dϕp) (D(log V )(x− a) + n) dµp

+
1

p

ˆ
Rn

|x− a|η′(|x− a|)F (x,Dϕp) dµp.

We now restrict the identity to pk and let k → ∞. Clearly, we have a
constant C2 such that

1

p

ˆ
Rn

|η(|x− a|)|F (x,Dϕp) |D(log V )(x− a) + n| dµp ≤ C2

e2p
p

and
1

p

ˆ
Rn

|x− a||η′(|x− a|)|F (x,Dϕp) dµp ≤ C2

e2p
p
,

and the right-hand sides converge to 0 as p→ ∞. For the remaining terms, we
can use Corollary 19. We finally find the identity

lim
k→∞

ˆ
Rn

η(|x− a|)F (x,Dϕpk) dµpk

=
1

2

ˆ
Rn

η(|x− a|)∂F
∂x

(x, Z∞)(x− a) dµ∞

− 1

2

ˆ
Rn

η′(|x− a|)
|x− a|

∇F (x, Z∞) :
(
Z∞((x− a)⊗ (x− a))

)
dµ∞.

Let r ∈ (0, R/2]. If we choose η such that η ≡ 1 in [0, r] and η ≡ 0 in [2r,∞),
and such that it satisfies |η′| ≤ 2/r everywhere, then this inequality gives rise
to a constant C3, independent of r, such that

lim sup
k→∞

ˆ
Br(a)

F (x,Dϕpk) dµpk ≤ C3r + C3µ∞(B2r(a) \Br(0)).

Because
∞∑
ℓ=1

µ∞(B21−ℓ(a) \B2−ℓ(a)) <∞,

it is clear that
lim inf
r↘0

µ∞(B2r(a) \Br(0)) = 0.

It therefore follows that

lim
r↘0

lim sup
k→∞

ˆ
Br(a)

F (x,Dϕpk) dµpk = 0. (32)
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By [20, Theorem 4.4.2] and Proposition 17,

lim sup
k→∞

ˆ
Br(a)

F (x,Dϕpk) dµpk ≥
ˆ
Br(a)

F (x, Z∞) dµ∞

= e2∞µ∞(Br(a) \ {a}) + F (a, Z∞(a))µ∞({a}).

Thus (32) implies that Z∞(a) = 0 or µ∞({a}) = 0.
Moreover, combining this information with (32) and the statement of Propo-

sition 17.(i) in a way similar to the proof of Corollary 19, we obtain
ˆ
K

|Z∞|2 dµ∞ = lim
k→∞

ˆ
K

|Dϕpk |2 dµpk ,

which is equivalent to strong convergence in K by the results of Hutchinson
[20].

3.4 Currents

The measure-function pair (µ∞, Z∞) constructed in the preceding subsection
gives rise to the 1-current from Theorem 13. Indeed, we define the Rm-valued
1-current T∞ such that

T∞(ζ) =

ˆ
Rn

∇F (x, Z∞) : ζ dµ∞

for ζ ∈ C∞
0 (Rn;Rm×n). It then follows from (26) and Proposition 21 that

∂T∞(ξ) = 0

for all ξ ∈ C∞
0 (Rn;Rm) such that ξ1 = · · · = ξm0

= 0 on A. That is, we know
that supp ∂T∞ ⊆ A and ∂T∞i = 0 for i = m0 + 1, . . . ,m.

To prove the remaining statements of Theorem 13, we require another propo-
sition. This result also reveals a deeper connection between Rm-valued 1-
currents and the above variational problem.

Proposition 22. Suppose that T ∈ Cm×n(Rn) satisfies supp ∂T ⊆ A and
∂Tm0+1 = · · · = ∂Tm = 0. Then for any ϕ ∈ W 1,∞

∗ (Rn;Rm) with E∞(ϕ) < ∞,
the inequality

∂T (ϕ) ≤ 2E∞(ϕ)MF (T )

is satisfied. Equality holds if, and only if,

lim
δ↘0

ˆ
Rn

∣∣∣∣ρδ ∗Dϕ− E∞(ϕ)
∇F ∗(x, T⃗ )√
F ∗(x, T⃗ )

∣∣∣∣2 d∥T∥ = 0. (33)

Proof. We write e0 = E∞(ϕ). Define ψδ = ρδ ∗ ϕ. Using (21), we estimate

c

ˆ
Rn

∣∣∣∣Dψδ − e0
∇F ∗(x, T⃗ )√
F ∗(x, T⃗ )

∣∣∣∣2√F ∗(x, T⃗ ) d∥T∥

≤
ˆ
Rn

(
F (x,Dψδ) + e20

)√
F ∗(x, T⃗ ) d∥T∥ − e0

ˆ
Rn

Dψδ : T⃗ d∥T∥

=

ˆ
Rn

(
F (x,Dψδ) + e20

)√
F ∗(x, T⃗ ) d∥T∥ − e0∂T (ψδ).
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Because ϕ ∈ W 1,∞(Rn;Rm), there exists a constant C1 > 0 such that
F (x,Dψδ) ≤ C1 for all x ∈ Rn and all δ > 0. Lemma 16 implies that

lim sup
δ↘0

F (x,Dψδ(x)) ≤ e20

for any x ∈ Rn. Applying Fatou’s lemma to C1 − F (x,Dψδ), we find that

lim sup
δ↘0

ˆ
Rn

F (x,Dψδ)

√
F ∗(x, T⃗ ) d∥T∥ ≤ e20

ˆ
Rn

√
F ∗(x, T⃗ ) d∥T∥ = e20MF (T ).

Since ϕ is continuous, it is also clear that ψδ → ϕ locally uniformly in Rn.
As ∂T is represented by a measure, this implies that ∂T (ψδ) → ∂T (ϕ). Hence

c lim sup
δ↘0

ˆ
Rn

∣∣∣∣Dψδ − e0
∇F ∗(x, T⃗ )√
F ∗(x, T⃗ )

∣∣∣∣2√F ∗(x, T⃗ ) d∥T∥ ≤ 2e20MF (T )− e0∂T (ϕ).

It follows that ∂T (ϕ) ≤ 2e0MF (T ), and if we have equality, then (33) follows
as well.

Now suppose that (33) holds true. Then

∂T (ϕ) = lim
δ↘0

∂T (ψδ)

= lim
δ↘0

ˆ
Rn

T⃗ : Dψδ d∥T∥

= e0

ˆ
Rn

T⃗ : ∇F ∗(x, T⃗ )√
F ∗(x, T⃗ )

d∥T∥

= 2e0

ˆ
Rn

√
F ∗(x, T⃗ ) d∥T∥

= 2e0MF (T ).

This completes the proof.

Proof of Theorem 13. As mentioned earlier, we consider the current T∞ defined
by the condition that

T∞(ζ) =

ˆ
Rn

∇F (x, Z∞) : ζ dµ∞

for ζ ∈ C∞
0 (Rn;Rm×n). We will show that T∞ has the properties stated in

Theorem 13.
It is clear that MF (T∞) <∞. We have already seen at the beginning of this

subsection that supp ∂T∞ ⊆ A and ∂T∞i = 0 for i = m0+1, . . . ,m. This makes
∂T∞ a distribution supported on a finite set, which means that it is a finite
linear combination of Dirac masses on A and their derivatives [18, Theorem
1.5.3]. But because ∥T∥(A) = 0 by Proposition 21, it is easy to see that we have
in fact just a sum of Dirac masses. It follows that T∞ ∈ Cm×n(Rn).

By the definition of T∞, we have

T⃗∞ =
∇F (x, Z∞)

|∇F (x, Z∞)|
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at µ∞-almost every point. It follows that

F ∗(x, T⃗∞) =
F ∗(x,∇F (x, Z∞))

|∇F (x, Z∞)|2
=

F (x, Z∞)

|∇F (x, Z∞)|2
=

e2∞
|∇F (x, Z∞)|2

,

and thus
|∇F (x, Z∞)| = e∞√

F ∗(x, T⃗∞)

almost everywhere. Hence

Z∞ = e∞
∇F ∗(x, T⃗ )√
F ∗(x, T⃗ )

almost everywhere. In view of Proposition 21, the measure ∥T∥ is absolutely
continuous with respect to µ∞ Ω. Moreover, if ϕ ∈ W 1,∞

∗ (Rn;Rm) is a min-
imiser of E∞, then Proposition 17 gives the convergence ρδ ∗ Dϕ → Z∞ in
L2(∥T∥;Rm×n), and that implies (33) for T∞. Proposition 22 implies that
∂T∞(ϕ) = 2e∞MF (T∞), and thus we have proved the last statement of Theo-
rem 13.

To prove the second statement, consider another Rm-valued 1-current S ∈
Cm×n(Rn) with ∂S = ∂T∞. Then Proposition 22 gives

2e∞MF (T∞) = ∂T∞(ϕ) = ∂S(ϕ) ≤ 2e∞MF (S).

Since our assumptions on ϕ0 imply that e∞ > 0, it follows that MF (T∞) ≤
MF (S). All the statements of the theorem are now verified.

4 Regularisation

We return to the problem of constructing calibrations as in Section 2. Therefore,
we consider the domain R2 again and we study functions Φ: R2 → R2. Recall
the function

f(M) =
1

2

(
|M |2 − 1

2
(trM)2 + |m12 −m21|

√
|M |2 − 2 detM

)
from Section 2. We would like to apply the results from Section 3 to

F (x,M) =
f(M)

W (x)
.

Unfortunately, this function does not have the required properties: it is convex,
but not strictly convex in M and is Lipschitz regular at most. Unless W is
bounded, uniformly positive, and of class C1, it fails to satisfy other assump-
tions, too. But the potentials W we are most interested in, will have zeroes,
certainly at a± and possibly elsewhere.

For this reason, we need to replace the above function F by regularised
approximations, and we need to show that the relevant properties persist in the
limit. We do this in two steps: first, we focus on the regularisation of f . We
can improve some of the properties of W at the same time, but we still assume

34



that it is uniformly positive. In the second step, we deal with the zeroes of
W . Before we embark on this journey, however, we extend the definition of the
F -mass from Definition 11 as follows. Suppose that F : R2 × R2×2 → [0,∞]
is a given function that is convex in the second argument. Assuming that the
Legendre transform F ∗ with respect to the second argument is Borel measurable
on R2 × R2×2, we define

MF (T ) =

ˆ
R2

√
F ∗(x, T⃗ ) d∥T∥

for any R2-valued 1-current T on R2 with locally finite mass. This is consistent
with the previous definition by Proposition 15.

4.1 A Korn type inequality

Our theory will naturally give rise to inequalities such as f(DΦ) ≤ W in R2

for certain functions Φ ∈ W 1,p
loc (R2;R2) and for certain exponents p ∈ (1,∞).

But because the function f controls only the trace free part of DΦ, not the full
Jacobian matrix, we need to have a closer look if we want to derive estimates in
W 1,p

loc (R2;R2). Such estimates are available, and follow in fact quite easily from a
local version of Korn’s inequality (as stated and proved, e.g., by Kondrat′ev and
Olĕınik [34, §2, Theorem 8]). In this subsection, we formulate the appropriate
inequality in the balls BR(0) and study how the corresponding constant depends
on R.

First, however, we write down an observation that explains why Korn’s
inequality is useful here. Given Φ ∈ W 1,p

loc (R2;R2), consider Φ⊥ = (−Φ2

Φ1
) and

its symmetrised derivative

(DΦ⊥)sym =

 −∂Φ2

∂y1
1
2

(
∂Φ1

∂y1
− ∂Φ2

∂y2

)
1
2

(
∂Φ1

∂y1
− ∂Φ2

∂y2

)
∂Φ1

∂y2

 .

Then we note that

|(DΦ⊥)sym|2 = |DΦ|2 − 1

2
(div Φ)2 ≤ 2f(DΦ).

We can now prove the following lemma.

Lemma 23. For every p ∈ (n,∞) there exists a constant C ≥ 0 such that the
following holds true. Let h : [1,∞) → [0,∞) be a non-decreasing function, and
suppose that Φ ∈W 1,p

loc (R2;R2) satisfies( 
BR(0)

(
f(DΦ)

)p/2
dy

)1/p

≤ h(R)

for every R ≥ 1. Then there exists b ∈ R such that( 
BR(0)

|DΦ(y)− bI|p dy

)1/p

≤ CR2/ph(R)

and
sup

y∈BR(0)

|Φ(y)− Φ(0)− by| ≤ CR1+2/ph(R)

for every R ≥ 1.
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Proof. Given R > 0, we define ΨR(x) = R−1Φ(Rx). Then( 
B1(0)

(
f(DΨR)

)p/2
dy

)1/p

≤ h(R).

It follows immediately from the local version of Korn’s inequality [34, §2, The-
orem 8] that there exists bR ∈ R such that( 

B1(0)

|DΨR(y)− bRI|p dy

)1/p

≤ C1h(R)

for some constant C1 that depends only on p. Morrey’s inequality then gives a
constant C2 = C2(p) such that

sup
y∈B1(0)

|ΨR(y)−ΨR(0)− bRy| ≤ C2h(R).

In terms of Φ, this means that( 
BR(0)

|DΦ(y)− bRI|p dy

)1/p

≤ C1h(R)

and
sup

y∈BR(0)

|Φ(y)− Φ(0)− bRy| ≤ C2Rh(R).

The first inequality implies in particular that( 
B1(0)

|DΦ(y)− bRI|p dy

)1/p

≤ C1R
2/ph(R).

But at the same time, we have the inequality( 
B1(0)

|DΦ(y)− b1I|p dy

)1/p

≤ C1h(1).

Hence there exists a constant C3 such that |bR − b1| ≤ C3R
2/ph(R). Choosing

b = b1, we therefore obtain the desired inequalities.

4.2 Relaxing the strict convexity

Suppose now that W : R2 → (0,∞) is a continuous function such that W (y) →
∞ as |y| → ∞. Then we can clearly find a sequence of functions Wk ∈ C∞(R2),
for k ∈ N, such that

• every Wk is bounded,

• there exists c > 0 such that Wk ≥ c in R2 for every k ∈ N,

• Wk ≤Wℓ when k ≤ ℓ, and

• W (y) = limk→∞Wk(y) for every y ∈ R2.
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Recall that

f(M) =
1

2

(
|M |2 − 1

2
(trM)2 + |m12 −m21|

√
|M |2 − 2 detM

)2

.

In the coordinates

q1 =
1√
2
(m11 +m22), q2 =

1√
2
(m11 −m22),

q3 =
1√
2
(m12 +m21), q4 =

1√
2
(m12 −m21),

we can write

f(q) =
1

2

(
|q4|+

√
q22 + q23

)2

.

We now consider the regularisation

fk(q) =
1

2

(√
q24 +

|q|2
2k

+

√
q22 + q23 +

|q|2
2k

)2

.

In the original coordinates, this is

fk(M) =
1

2

((
1 +

1

k

)
|M |2 − 1

2
(trM)2

+

(
(m12 −m21)

2 +
1

k
|M |2

)1/2((
1 +

1

k

)
|M |2 − 2 detM

)1/2
)
.

This function is now strictly convex and smooth in R2×2 \ {0}. Of course, it
is still homogeneous of degree 2. We further note that fk ≥ f and f(M) =
limk→∞ fk(M) for every M ∈ R2×2, and this convergence is monotone. Define

Fk(y,M) =
fk(y)

Wk(y)

These functions then satisfy the assumptions from Section 3.
We also need to consider the Legendre transforms.

Lemma 24. The Legendre transform of F with respect to the second argument
is

F ∗(y,N) =

{
1
4W (y)max{|N |2 − 2 detN, (n12 − n21)

2} if trN = 0,

∞ else.

Proof. We can work in the coordinates q given above, as the transformation
amounts to an isometry between R2×2 and R4. Moreover, it suffices to consider

f(q) =
1

2

(
|q4|+

√
q22 + q23

)2

and its Legendre transform

f∗(p) = sup
q∈R4

(
p · q − f(q)

)
.
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It is clear that f∗(p) = ∞ if p1 ̸= 0, as f does not depend on q1. Now assume
that p1 = 0. Then the supremum is attained at a point q = (0, q2, q3, q4) ∈ R4

such that either

• q4 = 0, or

• q2 = q3 = 0, or

• f is differentiable at q and

p2 =
∂f

∂q2
(q) =

(
|q4|+

√
q22 + q23

)
q2√
q22 + q23

,

p3 =
∂f

∂q3
(q) =

(
|q4|+

√
q22 + q23

)
q3√
q22 + q23

,

p4 =
∂f

∂q4
(q) =

(
|q4|+

√
q22 + q23

)
q4
|q4|

.

In the first case, we find that

f∗(p) = sup
q2,q3∈R

(
p2q2 + p3q3 −

q22 + q23
2

)
=
p22 + p23

2
.

Similarly, in the second case,

f∗(p) = sup
q4∈R

(
p4q4 −

q24
2

)
=
p24
2
.

In any case, f∗(p) will be at least as large as either of these expressions, so

f∗(p) ≥ 1

2
max{p22 + p23, p

2
4} (34)

for every p ∈ R4. Finally, in the third of the above cases, we conclude that
p22 + p23 = p24. Hence this case occurs only for points on this double cone.

To summarise, f∗ is a convex function that satisfies (34) and such that
f∗(p) = (p22 + p23)/2 or f∗(p) = p24/2 whenever p22 + p23 ̸= p24. There exists only
one function with these properties, which is

f∗(p) =
1

2
max{p22 + p23, p

2
4}.

In terms of the original coordinates, we then have the expression

f∗(N) =
1

4
max{|N |2 − 2 detN, (n12 − n21)

2},

and the claim follows.

We do not need to compute the Legendre transforms of Fk explicitly, but we
note that they are convex and homogeneous of degree 2 in the second argument.
Furthermore,

F ∗(y,N) = sup
M∈R2×2

(
M : N − inf

k∈N
Fk(y,M)

)
= sup

k∈N
sup

M∈R2×2

(
M : N − Fk(y,N)

)
= sup

k∈N
F ∗
k (y,N)
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for any y ∈ R2 and N ∈ R2×2.
We now want to prove the following.

Proposition 25. Suppose that W ∈ C0(R2; (0,∞)) satisfies lim|y|→∞W (y) =

∞. Then there exist Φ ∈
⋂
p<∞W 1,p

loc (R2;R2) and T ∈ C0
2×2 such that

(i) f(DΦ) ≤W almost everywhere,

(ii) MF (T ) ≤ MF (S) for any S ∈ C0
2×2, and

(iii) ∂T (Φ) ≥ 2MF (T ).

Proof. We define the functions Fk as explained above. For any fixed k ∈ N, we
consider the functional

Ek∞(Φ) = ess sup
y∈R2

√
Fk(y,DΦ(y)).

By Proposition 12, there exists a minimiser Φ̃k ∈ W 1,∞
loc (R2;R2) of Ek∞ subject

to the conditions Φ1(a
−) = 0 and Φ1(a

+) = 1. Set

Φk =
Φ̃k

Ek∞(Φ̃k)
.

Then Fk(y,DΦk) ≤ 1, i.e., fk(DΦk) ≤Wk, almost everywhere by construction.
Theorem 13 gives rise to a non-trivial current Tk ∈ C2×2(R2) for every k ∈ N

with supp ∂Tk1 ⊆ {a±} and ∂Tk2 = 0, which minimises MFk
for its boundary

data and satisfies ∂Tk(Φk) = 2MFk
(Tk). Because all of these properties are

invariant under multiplication with a positive constant, we can renormalise this
current such that Tk ∈ C0

2×2.
Next we study the limit as k → ∞. For any R > 0, the functions Wk ≤ W

are uniformly bounded in BR(0) by the continuity of W . Hence

sup
k∈N

sup
y∈BR(0)

f(DΦk) <∞.

Lemma 23 implies that there exist bk ∈ R such that the functions

Φ̂k(y) = Φk(y)− bky

are uniformly bounded in W 1,p(BR(0);R2) for all p <∞ and all R > 0. There-
fore, we may assume that we have weak convergence of Φ̂k in W 1,p

loc (R2;R2) for
any p <∞ to some limit Φ: R2 → R2. Since the set{

Ψ ∈W 1,p(BR(0);R2) : F (x,DΨ) ≤ 1 almost everywhere
}

is convex and closed in W 1,p(BR(0);R2), and every Φ̂k belongs to this set, it
follows that F (y,DΦ) ≤ 1 almost everywhere.

Because ∂Tk1 is supported on {a±}, the functions Φ̂k still satisfy the condi-
tion ∂Tk(Φ̂k) = 2MFk

(Tk).
We can estimate fk(M) ≤ 4|M |2 for all M ∈ R2×2 and all k ∈ N. Hence

F ∗
k (y,N) ≥ 1

16W (y)|N |2 for all y ∈ R2 and N ∈ R2×2. Since W is bounded
below under the above assumptions, it follows that

∥Tk∥(R2) ≤ C

ˆ
R2

√
F ∗
k (y, T⃗k) d∥Tk∥ = CMFk

(Tk) =
C

2
∂Tk(Φ̂k)
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for some constant C > 0 that is independent of k, and the right-hand side is
obviously bounded. Hence we may assume that Tk converges weakly* in the
dual space of C0

0 (R2;R2×2) to some limit T , which will automatically belong
to C0

2×2. From the definition of the F -mass in Definition 11, it follows easily
that MFℓ

is lower semicontinuous with respect to such convergence for any fixed
ℓ ∈ N. Thus

MFℓ
(T ) ≤ lim inf

k→∞
MFℓ

(Tk) ≤ lim inf
k→∞

MFk
(Tk).

Moreover, Beppo Levi’s monotone convergence theorem gives

MF (T ) =

ˆ
R2

√
F ∗(y, T⃗ ) d∥T∥ = lim

ℓ→∞

ˆ
R2

√
F ∗
ℓ (y, T⃗ ) d∥T∥ = lim

ℓ→∞
MFℓ

(T ).

Therefore,
MF (T ) ≤ lim inf

k→∞
MFk

(Tk).

Recall that the currents Tk all have the same boundary by construction.
Since Φ̂k → Φ locally uniformly, it follows that

∂T (Φ) = lim
k→∞

∂Tk(Φ̂k) = 2 lim
k→∞

MFk
(Tk) ≥ 2MF (T ).

It remains to prove that T minimises the F -mass in C0
2×2. Let S ∈ C0

2×2.
Then ∂S = ∂Tk for every k ∈ N, and we know that MFk

(Tk) ≤ MFk
(S). As

above, we see that

MF (T ) ≤ lim inf
k→∞

MFk
(Tk) ≤ lim inf

k→∞
MFk

(S) = MF (S).

This finally concludes the proof.

4.3 Potentials with zeroes

We now want to remove the assumption that W is positive. While we do not
obtain a specific current with the properties of Proposition 25 in this case, we
can still prove the following.

Theorem 26. Let W : R2 → [0,∞) be a continuous function. Then there exists
Φ ∈

⋂
p<∞W 1,p

loc (R2;R2) such that f(DΦ) ≤W almost everywhere and

Φ1(a
+)− Φ1(a

−) ≥ 2 inf
T∈C0

2×2

MF (T ).

Proof. For k ∈ N, define Wk(y) =W (y) + 1
k (1 + |y|2), and then let Fk(y,M) =

f(M)/Wk(y). Then MFk
≥ MF .

For each k ∈ N, Proposition 25 provides a function Φk : R2 → R2 such that
f(DΦk) ≤Wk almost everywhere, and it also provides a current Tk ∈ C0

2×2 that
minimises MFk

. Furthermore, Proposition 25 tells us that

Φk1(a
+)− Φk1(a

−) = ∂Tk(Φk) ≥ 2MFk
(Tk) ≥ 2MF (Tk) ≥ 2 inf

T∈C0
2×2

MF (T ).

When we let k → ∞, we see with the same arguments as in the proof of
Proposition 25 that we can modify each Φk such that it still has the above
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properties, but such that we have weak convergence of some subsequence of
(Φk)k∈N, in the space

⋂
p<∞W 1,p

loc (R2;R2), to a limit Φ that satisfies f(DΦ) ≤
W almost everywhere. Since this also implies locally uniform convergence, it
further follows that

Φ1(a
+)− Φ1(a

−) ≥ 2 inf
T∈C0

2×2

MF (T ).

This concludes the proof.

4.4 How calibrations give a lower bound

We expect that calibrations give rise to lower bounds for the energy, and this is
indeed the reason why we consider them. Formal calculations give a good idea of
the underlying estimates, but in order to obtain a rigorous proof, we need some
control of the corresponding integrals when u is potentially unbounded. The
purpose of this subsection is to justify the following statement, which depends
on Proposition 10.

Once this is proved, we can proceed to prove Theorem 3 and Corollary 4,
which we do at the end of the section.

Lemma 27. Suppose that W : R2 → [0,∞) is Hölder continuous and satis-
fies the growth condition (4). Suppose that Φ ∈

⋂
p<∞W 1,p

loc (R2;R2) satisfies
f(DΦ) ≤W almost everywhere. Then

E(a−, a+) ≥ Φ1(a
−)− Φ1(a

+).

Proof. For any two constants b, c ∈ R, the function Ψ(y) = Φ(y)+by+c satisfies
f(DΨ) = f(DΦ) and

Ψ1(a
−)−Ψ1(a

+) = Φ1(a
−)− Φ1(a

+).

Hence we may assume without loss of generality that Φ2(a
+) = Φ2(a

−) and
Φ(0) = 0. Let α = − 1

2 div Φ. Then the inequality f(DΦ) ≤ W is equivalent to
g(DΦ+ αI) ≤W for the function g from Section 2.

We regularise the calibration Φ and the potential function W the same way
as in Proposition 10. That is, we define Φδ = ρδ ∗ Φ and αδ = ρδ ∗ α + δ, and
furthermore,

Wδ =
ρδ ∗W
1− δ

+ δ.

According to Proposition 10, there exist vector fields ωδ ∈ C1(R2;R2) such that

div Φδ(u) + αδ(u) div u ≤ ϵ

2
|Du|2 + 1

2ϵ
Wδ(u)− ϵdiv

(
(Du)Tωδ(u)

)⊥
(35)

for all u ∈ C2(B1(0);R2) and all ϵ > 0, and such that

|ωδ(y)| ≤ C1(1 + |y| log |y|)

for every y ∈ R2, where C1 is a constant independent of δ or y.
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Inequality (35), in its weak form, says that

ˆ
B1(0)

(
ηαδ(u) div u−∇η · Φδ(u)

)
dx ≤

ˆ
B1(0)

η

(
ϵ

2
|Du|2 + 1

2ϵ
Wδ(u)

)
dx

− ϵ

ˆ
B1(0)

ωδ(u) · (Du∇⊥η) dx (36)

for all u ∈ C2(B1(0);R2) and all η ∈ C∞
0 (B1(0)) with η ≥ 0.

Fix q > 2. Using Lemma 23, we find a constant C2 (depending on q) such
that ( 

BR(0)

|DΦ|q dy

)1/q

≤ C2R
p̄+2/q (37)

for every R ≥ 1 and
|Φ(y)| ≤ C2

(
|y|p̄+1+2/q + 1

)
(38)

for every y ∈ R2. With the help of Hölder’s inequality, we then also estimate

|αδ(y)| =

∣∣∣∣∣δ +
ˆ
Bδ(y)

ρδ(y − z)α(z) dz

∣∣∣∣∣
≤ δ +

1

2
∥ρδ∥Lq/(q−1)(R2)

(ˆ
B|y|+1(0)

|div Φ|q dz

)1/q

≤ C3δ
−2/q

(
|y|p̄+4/q + 1

)
,

(39)

for some constant C3, whenever δ ∈ (0, 1].
Combining (37) with Morrey’s inequality, we find a constant C4 such that

|Φ(y)− Φ(z)| ≤ C4R
p̄+4/q|y − z|1−2/q

for all y, z ∈ BR(0). Hence there exists a constant C5 such that

|Φδ(y)− Φ(y)| =

∣∣∣∣∣
ˆ
Bδ(y)

ρδ(y − z)(Φ(z)− Φ(y)) dz

∣∣∣∣∣ ≤ C5R
p̄+4/qδ1−2/q (40)

when y ∈ BR(0) with R ≥ 1 and δ ≤ 1.
Since the functions Φδ and αδ have at most polynomial growth by these

estimates, and we know that the same applies to Wδ and ωδ, a standard ap-
proximation argument now shows that (36) holds for all u ∈W 1,2(B1(0);R2).

Recall that in the definition of E(a−, a+), we consider u0 : R2 → R2, defined
by

u0(x) =

{
a+ if x1 > 0,

a− if x1 < 0.

The set U(a−, a+) then comprises all families (uϵ)ϵ>0 in W 1,2(B1(0);R2) such
that uϵ → u0 in L1(B1(0);R

2) and such that there exist τ > 0 and s > 2 with
ϵ−τ div uϵ → 0 in Ls(B1(0)) as ϵ↘ 0. Then

E(a−, a+) = 1

2
inf

{
lim inf
ϵ↘0

Eϵ(uϵ;B1(0)) : (uϵ)ϵ>0 ∈ U(a−, a+)
}
.
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We now fix (uϵ)ϵ>0 from U(a−, a+). Choose a sequence ϵk ↘ 0 such that

lim
k→∞

Eϵk(uϵk ;B1(0)) = lim inf
ϵ↘0

Eϵ(uϵ;B1(0)).

We may assume that this limit is finite.
By the growth condition (4), there exist constants c, θ > 0 such thatW (y) ≥

c|y|2p̄ when |y| ≥ θ. For u ∈ W 1,2(B1(0);R2), we consider v = max{|u|p̄+1, θ}.
Then we note thatˆ

B1(0)

|Dv| dx ≤ (p̄+ 1)

ˆ
{|u|>θ}

|u|p̄|Du| dx

≤ (p̄+ 1)

ˆ
{|u|>θ}

(
ϵ

2
|Du|2 + 1

2ϵ
|u|2p̄

)
dx

by Young’s inequality. Hence the functions max{|uϵk |p̄+1, θ} are uniformly
bounded in W 1,1(B1(0)). By the Sobolev inequality, they are also bounded in
L2(B1(0)). Thus (uϵk)k∈N is bounded in L2p̄+2(B1(0);R2). Since it converges to
u0 in L1(B1(0);R2), we conclude that this convergence holds in Lr(B1(0);R2)
as well for any r < 2p̄+ 2.

We now fix a number ℓ > 1 and define δk = ϵℓk. Using (38) and (40), we see
that ˆ

B1(0)

∇η · Φδk(uϵk) dx→
ˆ
B1(0)

∇η · Φ(u0) dx

if q is chosen sufficiently large. Recall that there exist τ > 0 and s > 2 with
ϵ−τ div uϵ → 0 in Ls(B1(0)) as ϵ↘ 0. Choose

q >
4s

p̄(s− 2) + 2s− 2
.

Then (39) implies that

∥αδk(uϵk)∥Ls/(s−1)(B1(0)) ≤ C4ϵ
−2ℓ/q
k

for a constant C4 that is independent of k. It follows that

ˆ
B1(0)

ηαδk(uϵk) div uϵk dx→ 0

if we also choose q > 2ℓ/τ . It is not difficult to see that

ϵk

ˆ
B1(0)

ωδk(uϵk) ·Duϵk∇⊥η dx→ 0.

Because we assume that W is locally Hölder continuous, and because we
have the growth condition (4), we have a number γ > 0 and a constant C4 such
that Wδ(y) ≤ W (y) + C4δ

γ(1 + |y|2p̄) for any y ∈ R2. If we choose ℓ > 1/γ,
then it follows that

lim sup
k→∞

ˆ
B1(0)

η

(
ϵk
2
|Duϵk |2 +

1

2ϵk
Wδk(uϵk)

)
dx ≤ lim

k→∞
Eϵk(uϵk ;B1(0)).
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Combining all the inequalities, we find that

E(a−, a+) ≥ −1

2

ˆ
B1(0)

∇η · Φ(u0) dx = −1

2

ˆ
B1(0)

∂η

∂x1
Φ1(u0) dx.

The integral on the right-hand side is easy to calculate because of the specific
form of u0: we conclude that

E(a−, a+) ≥ 1

2

(
Φ1(a

+)− Φ1(a
−)
) ˆ 1

−1

η(0, x2) dx2.

If we approximate the characteristic function of B1(0) with η, we therefore
obtain the desired inequality.

We now have all the ingredients for the proof of our main result.

Proof of Theorem 3. The functional MF defined in the introduction is identical
to the F -mass defined in Section 4. Under the assumptions of Theorem 3, we
can use Theorem 26 to obtain a suitable calibration. Lemma 27 then yields the
desired inequality.

Proof of Corollary 4. We compute

MF (T
0) =

1

2

ˆ
[a−,a+]

√
W dH1.

If T 0 minimises MF in C0
2×2, then Theorem 3 therefore implies that

E(a−, a+) ≥
ˆ
[a−,a+]

√
W dH1.

The reverse inequality follows from a standard construction, which can be found,
e.g., in a paper by Ignat and Monteil [23, Proposition 4.1].

5 The geometric problem

Theorem 26 suggests that we study the minimisers of

MF (T ) =

ˆ
R2

√
F ∗(x, T⃗ ) d∥T∥

for T ∈ C0
2×2. This now constitutes a geometric problem, which is similar in

spirit to the problem of finding geodesics. But it is also a novel problem, because
we have to consider vector-valued currents, the components of which interact in
non-trivial ways with each other. This is the problem that we analyse in this
section.

First recall that F ∗(x,N) =W (x)f∗(N), where

f∗(N) =

{
1
4 max{|N |2 − 2 detN, (n12 − n21)

2} if trN = 0,

∞ else.

As in the introduction, we consider the current T 0, defined by

T 0(ζ) =

ˆ
[a−,a+]

ζ :

(
0 1
0 0

)
dH1

for ζ ∈ C∞
0 (R2;R2×2). Above all, we are interested in conditions that guarantee

that T 0 minimises the functional.
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5.1 An estimate for F ∗

We will estimate MF (T ) in terms of the first component T1 of T . Assuming

that MF (T ) <∞, we first observe that T⃗ must be of the form

T⃗ =

(
r s
t −r

)
for some r, s, t ∈ R almost everywhere. The numbers r and s will effectively be
determined by T1, but this does not apply to t. It turns out, however, that we
can estimate F ∗(x, ( r s

t −r )) in terms of the following functions: for λ ∈ [−1, 1],
we define

Θλ(z) =


(1 + λ)

z21
|z2| + |z2| if z2 > 0 and (1 + λ)z21 < (1− λ)z22 ,

(1− λ)
z21
|z2| + |z2| if z2 < 0 and (1− λ)z21 < (1 + λ)z22 ,

2|z1|
√
1− λ2 + λz2 else.

We note that Θλ is positive homogeneous of degree 1 in z and that Θλ(z) ≥ |z2|
for all λ ∈ [−1, 1] and all z ∈ R2. Furthermore, we have the following inequality.

Lemma 28. For any λ ∈ [−1, 1] and any r, s, t ∈ R,√
f∗
(
r s
t −r

)
≥ 1

2

(
Θλ(r, s) + λt

)
.

Proof. We fix r and s and regard the left-hand side of the desired inequality as
a function of t. Thus we define

θ(t) =

√
f∗
(
r s
t −r

)
=

1

2
max{

√
4r2 + (s+ t)2, |s− t|}.

We also consider θ1(t) = 1
2

√
4r2 + (s+ t)2 and θ2(t) = 1

2 |s − t|. These are
convex functions, and hence θ = max{θ1, θ2} is convex, too. Moreover, we see
that θ is differentiable at every point with the exception of t = −r2/s (which is
the unique point where θ1(t) = θ2(t)) if s ̸= 0.

If s > 0 and t > −r2/s or if s < 0 and t < −r2/s, then θ1(t) > θ2(t), and
we compute

θ′(t) = θ′1(t) =
s+ t

2
√

4r2 + (s+ t)2
.

If s > 0 and t < −r2/s or if s < 0 and t > −r2/s, then θ1(t) < θ2(t), and

θ′(t) = θ′2(t) =
t− s

2|t− s|
.

(If s = 0, then θ = θ1.)
Now fix λ ∈ [−1, 1]. If −1 < λ < 1, then there exists a unique point tλ ∈ R

such that λ/2 is a subderivative of θ at tλ. That point is tλ = −r2/s if

s > 0 and (1 + λ)r2 ≤ (1− λ)s2

or if
s < 0 and (1− λ)r2 ≤ (1 + λ)s2.
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Otherwise, it is the unique point where θ′1(t) = λ/2, namely

tλ = −s+ 2λ|r|√
1− λ2

.

We now have the inequality

θ(t) ≥ θ(tλ) +
λ

2
(t− tλ) = θ1(tλ) +

λ

2
(t− tλ).

If we compute the right-hand side, we obtain exactly 1
2 (Θλ(r, s) + λt).

For λ = −1 and λ = 1, the inequality now follows by continuity.

For our subsequent estimates, it will be useful to know more about the
structure of Θλ. This turns out to be a convex function; in fact, the following
is true.

Lemma 29. For −1 ≤ λ ≤ 1, let

Hλ(z) =


(1 + λ)

z21
z2

+ z2 if z2 > 0,

−(1− λ)
z21
z2

− z2 if z2 < 0,

∞ if z1 ̸= 0 and z2 = 0,

0 if z = 0.

Then Θλ is the convex envelope of Hλ.

Proof. Suppose first that −1 < λ < 1. Consider the sets

C+ =
{
z ∈ R2 : z2 > 0 and (1 + λ)z21 < (1− λ)z22

}
,

C− =
{
z ∈ R2 : z2 < 0 and (1− λ)z21 < (1 + λ)z22

}
,

and D = R2 \ (C+ ∪ C−).
If z2 > 0, then we observe that

0 ≤ (1 + λ)z2

(
|z1|
z2

−
√

1− λ

1 + λ

)2

= (1 + λ)
z21
z2

− 2|z1|
√

1− λ2 + (1− λ)z2.

From this, we conclude that Hλ(z) ≥ 2|z1|
√
1− λ2 + λz2 when z2 > 0, with

equality on ∂C+. Similarly, we show that Hλ(z) ≥ 2|z1|
√
1− λ2 + λz2 when

z2 < 0, with equality on ∂C−.
Let

L =
{
ℓ : R2 → R : ℓ is linear with ℓ ≤ Hλ in R2

}
,

and let Ȟλ(z) = supℓ∈L ℓ(z) denote the convex envelope of Hλ. (Note that it
suffices to consider linear rather than affine functions, because Hλ is positive
homogeneous of degree 1.) Then the above observations imply that ϕ+(z) =
2z1

√
1− λ2 + λz2 and ϕ−(z) = −2z1

√
1− λ2 + λz2 belong to L. It follows that

Ȟλ(z) ≥ 2|z1|
√
1− λ2+λz2 for all z ∈ R2. Since Hλ(z) = ϕ+(z) when z ∈ ∂C±

and z1 ≥ 0, it also follows that Ȟλ ≤ ϕ+ in {z ∈ D : z1 ≥ 0} (the convex hull of
(∂C− ∪ ∂C+) ∩ {z1 ≥ 0}). Similarly, Ȟλ ≤ ϕ− in {z ∈ D : z1 ≤ 0}. Combining
these inequalities, we see that Ȟλ = Θλ in D.
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The restriction of Hλ to C+ is smooth. It suffices to examine the Hessian to
see that it is also convex. Thus for any z0 ∈ C+, there exists a linear function
ℓ0 : R2 → R such that ℓ0(z0) = Hλ(z0) and ℓ0(z) ≤ Hλ(z) for all z ∈ C+.
Indeed, differentiating Hλ, we see that

ℓ0(z) = 2(1 + λ)
z01
z02

z1 +

(
1− (1 + λ)

z201
z202

)
z2

for z ∈ R2, where z0 = (z01, z02). We claim that ℓ0 ∈ L. To see why, we note
that

1− (1 + λ)
z201
z202

≥ λ

because z0 ∈ C+. For z̃ ∈ ∂C+, we already know that

ℓ0(z̃) ≤ Hλ(z̃) = 2|z̃1|
√

1− λ2 + λz̃2.

For z ∈ D ∪ C−, choose z̃ ∈ ∂C+ with z̃1 = z1. Then z2 ≤ z̃2, and therefore,

ℓ0(z) ≤ ℓ0(z̃) + λ(z2 − z̃2) ≤ 2|z1|
√

1− λ2 + λz2 ≤ Hλ(z).

Hence ℓ0 ∈ L.
We conclude that Ȟλ(z0) = Hλ(z0) = Θλ(z0). Similar arguments apply to

C− as well. Hence Ȟλ = Θλ everywhere.
It remains to study the cases λ = 1 and λ = −1. In both cases, we have the

identity Θλ(z) = |z2|. Furthermore, in both cases, we compute Hλ(0, z2) = |z2|
and Hλ(z) ≥ |z2| for all z ∈ R2. As lim infs→∞Hλ(z1, s) = 0 for any z1 ∈ R, it
is clear that Θλ is the convex envelope.

The above information allows us to prove the following.

Lemma 30. Suppose that κ, ι, λ ∈ [−1, 1] are three numbers such that

ι2 ≤ min{1− λ2, (1 + κ)(1− λ), (1− κ)(1 + λ)}.

Then
Θλ(z) ≥ 2ιz1 + κz2

for all z ∈ R2.

Proof. Suppose first that −1 < λ < 1. Since Θλ is positive 1-homogeneous,
the convexity implied by Lemma 29 means that for any z0 ∈ R2, if Θλ is
differentiable at z0, then

Θλ(z) ≥ DΘλ(z0)z

for every z ∈ R2. If r, s ∈ R such that s > 0 and (1 + λ)r2 < (1− λ)s2, then we
can differentiate Θλ at z0 = (r, s). We conclude that

Θλ(z) ≥ 2(1 + λ)
r

s
z1 +

(
1− (1 + λ)

r2

s2

)
z2.

By continuity, the inequality still holds true when (1 + λ)r2 ≤ (1− λ)s2.
Given a number ι ∈ [−1, 1] such that λ2 + ι2 ≤ 1, we can set s = 1 + λ and

r = ι. Then ∣∣∣r
s

∣∣∣ = |ι|
1 + λ

≤
√

1− λ

1 + λ
,
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and the inequality applies. Thus

Θλ(z) ≥ 2ιz1 +

(
1− ι2

1 + λ

)
z2. (41)

Similarly, if s < 0 and (1− λ)r2 ≤ (1 + λ)s2, then

Θλ(z) ≥ −2(1− λ)
r

s
z1 +

(
(1− λ)

r2

s2
− 1

)
z2.

If λ2+ι2 ≤ 1, we consider s = −(1−λ) and r = ι. Thus we derive the inequality

Θλ(z) ≥ 2ιz1 +

(
ι2

1− λ
− 1

)
z2. (42)

Finally, as we always have Θλ(z) ≥ 2|z1|
√
1− λ2+λz2, we find in particular

that
Θλ(z) ≥ 2ιz1 + λz2. (43)

The right-hand sides of (41)–(43) therefore represent subdifferentials of Θλ
at 0. Since the space of subdifferentials is necessarily convex, the same applies
to any convex combination. That is, whenever λ2 + ι2 ≤ 1 and

ι2

1− λ
− 1 ≤ κ ≤ 1− ι2

1 + λ
,

then
Θλ(z) ≥ 2ιz1 + κz2

for all z ∈ R2. The above inequalities for κ, ι, and λ are clearly equivalent to
the inequality from the statement of the lemma.

We also note that for λ = ±1, the condition of the lemma requires that
ι = 0. As Θλ(z) ≥ |z2| in any case, we still have the desired estimate.

5.2 Decomposition into curves

According to a theory by Bonicatto and Gusev [12], any normal (R-valued)
1-current on R2 has a decomposition into Lipschitz curves. We will apply this
result to the first component of an R2-valued 1-current. To this end, we consider
the space Γ, comprising all Lipschitz functions γ : [0, 1] → R2, equipped with the
uniform norm. Given γ ∈ Γ, let [γ] denote the 1-current induced by γ through
the formula

[γ](ζ) =

ˆ 1

0

ζ(γ(t))γ̇(t) dt

for ζ ∈ C∞
0 (R2;R1×2). We also write Γ0 for the set of all γ ∈ Γ with γ(0) = γ(1),

and Γ1 for the set of all γ ∈ Γ with γ(0) = a− and γ(1) = a+. Let γ0 ∈ Γ1

denote the curve with γ0(t) = ta+ + (1 − t)a− for t ∈ [0, 1] (parametrising the
line segment between a− and a+).

Given a Borel measurable function λ : R2 → [−1, 1] and a function h ∈
C2(R2), define the functional

Zλ,h(γ) =

ˆ 1

0

(√
W (γ(t))Θλ(γ(t))(γ̇(t)) +

∂2h

∂y22
(γ(t))γ̇2(t)

)
dt

− ∂h

∂y2
(γ(1)) +

∂h

∂y2
(γ(0))
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for γ ∈ Γ. Recall that Cjp̄(R2) denotes the space of all ϕ ∈ C2(R2) such that

there exists a constant C ≥ 0 satisfying |Dkϕ(y)| ≤ C(|y|p̄−k +1) for all y ∈ R2

and for k = 0, . . . , j.

Theorem 31. Suppose that W : R2 → [0,∞) is continuous and satisfies the
growth condition (4). Let λ : R2 → [−1, 1] be a Borel measurable function,

and suppose that h ∈ C2
2+p̄(R2) satisfies ∂2h

∂y21
= −λ

√
W in R2. Then for any

T ∈ C0
2×2(R2),

MF (T ) ≥
1

2
inf
γ∈Γ1

Zλ,h(γ).

Proof. Let

m0 =
1

2
inf
γ∈Γ1

Zλ,h(γ).

If m0 < 0, then there is nothing to prove, as MF (T ) ≥ 0 for all T ∈ C0
2×2. We

therefore assume that m0 ≥ 0.
Let T ∈ C0

2×2(R2) with MF (T ) <∞. We write

T⃗ =

(
T11 T12
T21 T22

)
,

and we write T1, T2 for the components of T , i.e., for the R-valued 1-currents
such that

Ti(ζ) =

ˆ
R2

ζ

(
Ti1
Ti2

)
d∥T∥

for ζ ∈ C∞
0 (R2;R1×2). We consider the Radon-Nikodym decomposition of the

measure ∥T∥ with respect to ∥T1∥. Thus we obtain two measures ν1 and ν2 with

∥T∥ = ν1 + ν2, such that ν1 ≪ ∥T1∥ and ν2 ⊥ ∥T1∥. Since F ∗(y, T⃗ (y)) < ∞ at

∥T∥-almost every y ∈ R2, it follows that T⃗ = ±( 0 0
1 0 ) at ν2-almost every point.

At ν1-almost every point, on the other hand, we conclude that T⃗ = ( T11 T12

T21 −T11
).

According to Lemma 28, we now have the inequality

MF (T ) =

ˆ
R2

√
W (y)f∗(T⃗ ) d∥T∥

≥ 1

2

ˆ
R2

√
W (y)

(
Θλ(T11, T12) + λT21

)
dν1 +

1

2

ˆ
R2

√
W (y) dν2

≥ 1

2

ˆ
R2

√
W (y)Θλ(T11, T12) dν1 +

1

2

ˆ
R2

√
W (y)λT21 d∥T∥

=
1

2

ˆ
R2

√
W (y)Θλ(T11, T12) dν1 −

1

2

ˆ
R2

∂2h

∂y21
T21 d∥T∥.

(44)

We now want to test the condition ∂T2 = 0 with the function ∂h
∂y1

, but
since it does not have compact support in general, we require an approximation
procedure here. For R > 0, let χR ∈ C∞

0 (B3R) with χR ≡ 1 in BR(0) and
0 ≤ χR ≤ 1 everywhere, and such that |DχR| ≤ 1/R. Then

0 = ∂T2

(
χR

∂h

∂y1

)
=

ˆ
R2

χR

(
∂2h

∂y21
T21 +

∂2h

∂y1∂y2
T22

)
d∥T∥

+

ˆ
R2

∂h

∂y1

(
∂χR
∂y1

T21 +
∂χR
∂y2

T22

)
d∥T∥.
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Because of the assumptions on h, there is a constant C1 > 0 such that |D2h| ≤
C1(

√
W + 1) and |Dh||DχR| ≤ C1(

√
W + 1) in R2 for all R > 0. Since ∥T∥ is

a Radon measure and MF (T ) < ∞, we know that
√
W + 1 is integrable with

respect to ∥T∥. Hence we can use Lebesgue’s dominated convergence theorem
when we take the limit R→ ∞. It follows that

0 =

ˆ
R2

(
∂2h

∂y21
T21 +

∂2h

∂y1∂y2
T22

)
d∥T∥.

Similarly, since ∂T1 = ∂T 0
1 , we can show that

ˆ
R2

(
∂2h

∂y1∂y2
T11 +

∂2h

∂y22
T12

)
d∥T∥ =

∂h

∂y2
(a+)− ∂h

∂y2
(a−).

Using also the fact that T11 + T22 = 0 almost everywhere, and combining these
formulas with (44), we obtain

MF (T ) ≥
1

2

ˆ
R2

(√
W (y)Θλ(T11, T12) +

∂2h

∂y22
T12

)
d∥T∥− ∂h

∂y2
(a+)+

∂h

∂y2
(a−).

(45)
The results of Bonicatto and Gusev [12] give rise to a Borel measure µ on Γ

such that

T1 =

ˆ
Γ

[γ] dµ(γ), (46)

in the sense that

T1(ζ) =

ˆ
Γ

[γ](ζ) dµ(γ)

for any ζ ∈ C∞
0 (R2;R1×2). Moreover, this measure also satisfies

∥T1∥ =

ˆ
Γ

∥[γ]∥ dµ(γ) (47)

and

∥∂T1∥ =

ˆ
Γ

∥∂[γ]∥ dµ(γ) (48)

(which is to be interpreted similarly).
For any γ ∈ Γ, we clearly have ∂[γ] = 0 if γ ∈ Γ0 and ∥∂[γ]∥(R2) = 2

otherwise. Thus (48) implies that µ(Γ1) = 1 and µ(Γ \ (Γ0 ∪ Γ1)) = 0, while
(45)–(47) imply that

MF (T ) ≥
1

2

ˆ
Γ

Zλ,h(γ) dµ(γ).

Since Zλ,h(γ) ≥ 2m0 for all γ ∈ Γ1, we automatically have the inequality
Zλ,h(γ) ≥ 0 for all γ ∈ Γ0. (If we had γ̂ ∈ Γ0 with Zλ,h(γ̂) < 0, then we could
construct a sequence of curves γk ∈ Γ1 with limk→∞ Zλ,h(γk) = −∞ as follows:
choose γ̃1, γ̃2 ∈ Γ with γ̃1(0) = a−, γ̃2(1) = a+, and γ̃1(1) = γ̃2(0) = γ̂(0).
Concatenate γ̃1 with k copies of γ̂ and then γ̃2, and reparametrise appropriately.
Note that Zλ,h is invariant under reparametrisation.)

It therefore follows that

MF (T ) ≥
1

2

ˆ
Γ1

Zλ,h(γ) dµ(γ) ≥ m0.

This concludes the proof.
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5.3 Proof of Corollary 5

Given suitable functions λ and h, the minimisers of the functional Zλ,h can
in principle be determined with the conventional tools from the calculus of
variations. There are some difficulties coming from the fact that Θλ has linear
growth, but nevertheless, an analysis of certain ordinary differential equations
can then potentially reveal some information about the central question of this
paper. In practice, however, it is difficult to make any specific statements this
way. The proof of Corollary 5, however, also relies on Theorem 31.

Proof of Corollary 5. We first observe that we may assume without loss of gen-
erality that w ≥ 0 in R2. If this condition does not hold true, then we can
replace w by |w| and replace ι, κ, and λ by wι/|w|, wκ/|w|, and wλ/|w|, respec-
tively. This will change neither the inequalities in the statement nor equation
(5).

Let b ∈ R. Define

h(y) = −
ˆ y1

a−1

(y1 − s)(λw)(s, y2) ds

+ (y1 − a−1 )

ˆ y2

b

(
2(ιw)(a−1 , t)− (y2 − t)

∂

∂y1
(κw)(a−1 , t)

)
dt.

Then
∂2h

∂y21
= −λw

and

∂2h

∂y1∂y2
(y) = −

ˆ y1

a−1

∂

∂y2
(λw)(s, y2) ds+ 2(ιw)(a−1 , y2)

−
ˆ y2

b

∂

∂y1
(κw)(a−1 , t) dt.

Moreover,

∂2h

∂y22
(y) = −

ˆ y1

a−1

(y1 − s)
∂2

∂y22
(λw)(s, y2) ds

+ (y1 − a−1 )

(
2
∂

∂y2
(ιw)(a−1 , y2)−

∂

∂y1
(κw)(a−1 , y2)

)
=

ˆ y1

a−1

(y1 − s)

(
2

∂2

∂y1∂y2
(ιw)(s, y2)−

∂2

∂y21
(κw)(s, y2)

)
ds

+ (y1 − a−1 )

(
2
∂

∂y2
(ιw)(a−1 , y2)−

∂

∂y1
(κw)(a−1 , y2)

)
=

ˆ y1

a−1

(
2
∂

∂y2
(ιw)(s, y2)−

∂

∂y1
(κw)(s, y2)

)
ds

= 2

ˆ y1

a−1

∂

∂y2
(ιw)(s, y2) ds− (κw)(y) + (κw)(a−1 , y2)

by (5) and an integration by parts. From this, we see that h ∈ C2
2+p̄(R2).
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Also consider the function

ϕ(y) =
∂h

∂y2
(y) +

ˆ y2

b

(κw)(y1, t) dt− 2y1(ιw)(a
−
1 , b)

+

ˆ y1

a−1

(
(y1 − s)

∂

∂y2
(λw)(s, b) + 2(ιw)(s, b)

)
ds.

Then

∂ϕ

∂y1
(y) =

∂2h

∂y1∂y2
(y) +

ˆ y2

b

∂

∂y1
(κw)(y1, t) dt− 2(ιw)(a−1 , b)

+

ˆ y1

a−1

∂

∂y2
(λw)(s, b) ds+ 2(ιw)(y1, b)

= −
ˆ y1

a−1

∂

∂y2
(λw)(s, y2) ds−

ˆ y2

b

∂

∂y1
(κw)(a−1 , t) dt

+

ˆ y2

b

∂

∂y1
(κw)(y1, t) dt+

ˆ y1

a−1

∂

∂y2
(λw)(s, b) ds

+ 2(ιw)(a−1 , y2) + 2(ιw)(y1, b)− 2(ιw)(a−1 , b).

(49)

Because of equation (5), we compute

0 =

ˆ y1

a−1

ˆ y2

b

(
∂2

∂y21
(κw)(s, t)− ∂2

∂y22
(λw)(s, t)− 2

∂2

∂y1∂y2
(ιw)(s, t)

)
dt ds

=

ˆ y2

b

(
∂

∂y1
(κw)(y1, t)−

∂

∂y1
(κw)(a−1 , t)

)
dt

−
ˆ y1

a−1

(
∂

∂y2
(λw)(s, y2)−

∂

∂y2
(λw)(s, b)

)
ds

− 2

ˆ y1

a−1

(
∂

∂y1
(ιw)(s, y2)−

∂

∂y1
(ιw)(s, b)

)
ds

=

ˆ y2

b

∂

∂y1
(κw)(y1, t) dt−

ˆ y2

b

∂

∂y1
(κw)(a−1 , t) dt

−
ˆ y1

a−1

∂

∂y2
(λw)(s, y2) ds+

ˆ y1

a−1

∂

∂y2
(λw)(s, b) ds

− 2(ιw)(y) + 2(ιw)(a−1 , y2) + 2(ιw)(y1, b)− 2(ιw)(a−1 , b).

Comparing with (49), we conclude that

∂ϕ

∂y1
= 2ιw.

Furthermore, we compute
∂ϕ

∂y2
= κw +

∂2h

∂y22
.
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Let γ ∈ Γ1. By Lemma 30, we can now estimate

Zλ,h(γ) =

ˆ 1

0

(
w(γ)Θλ(γ)(γ̇) +

∂2h

∂y22
(γ)γ̇2

)
dt− ∂h

∂y2
(a+) +

∂h

∂y2
(a−)

≥
ˆ 1

0

Dϕ(γ)γ̇ dt− ∂h

∂y2
(a+) +

∂h

∂y2
(a−)

= ϕ(a+)− ϕ(a−)− ∂h

∂y2
(a+) +

∂h

∂y2
(a−)

=

ˆ a+2

a−2

(κw)(a−1 , t) dt.

The claim then follows from Theorem 31.

6 Examples

6.1 Variants of the Aviles-Giga functional

A singular perturbation problem involving the quantity

1

2

ˆ
Ω

(
ϵ|D2ϕ|2 + 1

ϵ
(1− |Dϕ|2)2

)
dx,

was studied by Aviles and Giga [7], and subsequently by many other authors,
including, e.g., Ambrosio, De Lellis, and Mantegazza [2] and DeSimone, Kohn,
Müller, and Otto [15]. A key contribution by Jin and Kohn [28] determined
the energy required for a jump of Dϕ, with tools similar to what we use in this
paper.

If we define u = ∇⊥ϕ, then we have the functional Eϵ(u; Ω) from the intro-
duction with the constraint div u = 0. Our theory therefore applies in principle
(but will of course not give anything new, as the problem is well understood, at
least in relation to the question that we study here).

Indeed, the function w(y) = 1 − |y|2 (corresponding to W (y) = (w(y))2 =
(1− |y|2)2) is a solution of the wave equation

∂2w

∂y21
− ∂2w

∂y22
= 0

(a fact that was also observed by Ignat and Monteil [23]), thus it satisfies the
hypothesis of Corollary 5 with κ = λ = 1 and ι = 0. For a−, a+ ∈ S1 ={
y ∈ R2 : |y| = 1

}
, we therefore obtain

E(a−, a+) =
ˆ
[a−,a+]

w dH1 =
1

6
|a+ − a−|3.

We now consider potentials that are different, but similar in structure, in-
cluding

w(y) = |y|2n(1− |y|2) and w(y) = 1− |y|2n

for some n ∈ N, and
w(y) = (1− |y|2)β (50)
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for a number β ∈ (0, 1). We first note that for the last of these, when β > 1,
the optimal transitions between two points a−, a+ ∈ S1 are not expected to be
one-dimensional by the results of Ambrosio, De Lellis, and Mantegazza [2] (see
also the discussion by Ignat and Merlet [22]).

We restrict our attention to transitions between the points a− = (0,−1)
and a+ = (0, 1) here, because we make use of the resulting symmetry. It is an
open problem whether the corresponding statements hold true in general, but
for (50), the work of Ignat and Merlet [22] at least gives some results supporting
the conjecture that the optimal transition profile will be one-dimensional when
β ∈ (0, 1) and |a+ − a−| is small.

We wish to make use of Corollary 5, but it suffices to consider the case ι = 0.
Thus we study the question whether there exist two functions κ, λ : R2 → [−1, 1]
such that

∂2

∂y21
(κw) =

∂2

∂y22
(λw)

in R2 and κ = 1 on [a−, a+]. Note that these conditions are satisfied if there
exists ϕ ∈ C4(R2) such that∣∣∣∣∂2ϕ∂y21

∣∣∣∣ ≤ w and

∣∣∣∣∂2ϕ∂y22

∣∣∣∣ ≤ w (51)

and
∂2ϕ

∂y22
= w on [a−, a+]. (52)

Indeed, in this case, we can set

κ = w−1 ∂
2ϕ

∂y22
and λ = w−1 ∂

2ϕ

∂y21
.

We therefore consider the set

W(a−, a+) =
{
w ∈ C0(R2) : there exists ϕ ∈ C4(R2) satisfying (51) and (52)

}
.

It is easy to see that W(a−, a+) has the following properties.

(i) If w ∈ W(a−, a+) and t ≥ 0, them tw ∈ W(a−, a+).

(ii) If w1, w2 ∈ W(a−, a+), then w1 + w2 ∈ W(a−, a+).

Thus W(a−, a+) is a convex cone.

Proposition 32. For any n ∈ N0, there exists a polynomial P : R2 → R such
that ∣∣∣∣∂2P∂y21 (y)

∣∣∣∣ ≤ |y|2n
∣∣1− |y|2

∣∣ and

∣∣∣∣∂2P∂y22 (y)

∣∣∣∣ ≤ |y|2n
∣∣1− |y|2

∣∣ (53)

for every y ∈ R2 and and

∂2P

∂y22
(0, y2) = y2n2 (1− y22) (54)

for every y2 ∈ R.
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Proof. For n = 0, a suitable polynomial is

P (y) =
|y|2

2
− |y|4

12
− y21y

2
2

3
.

We now assume that n ≥ 1. We look for a polynomial such that

∂2P

∂y22
(y) = (1− |y|2)

(
y2n2 +

n−1∑
k=0

cky
2n−2k
1 y2k2

)

for certain coefficients c0, . . . , cn−1. Setting cn = 1, we can write

∂2P

∂y22
(y) = (1− |y|2)

n∑
k=0

cky
2n−2k
1 y2k2

= (1− y21)

n∑
k=0

cky
2n−2k
1 y2k2 −

n∑
k=0

cky
2n−2k
1 y2k+2

2 .

A possible solution is

P (y) = (1− y21)

n∑
k=0

ck
(2k + 2)(2k + 1)

y2n−2k
1 y2k+2

2

−
n∑
k=0

ck
(2k + 4)(2k + 3)

y2n−2k
1 y2k+4

2

+
y2n+2
1

(2n+ 2)(2n+ 1)
− y2n+4

1

(2n+ 4)(2n+ 3)

=

n−1∑
k=0

ck
(2k + 2)(2k + 1)

y2n−2k
1 y2k+2

2 +
y2n+2
1 + y2n+2

2

(2n+ 2)(2n+ 1)

−
n−1∑
k=1

ck + ck−1

(2k + 2)(2k + 1)
y2n−2k+2
1 y2k+2

2 − c0
2
y2n+2
1 y22

− 1 + cn−1

(2n+ 2)(2n+ 1)
y21y

2n+2
2 − y2n+4

1 + y2n+4
2

(2n+ 4)(2n+ 3)
.

We want to impose the symmetry condition P (y1, y2) = P (y2, y1) (so that

the above condition on ∂2P
∂y22

automatically gives a similar condition for ∂2P
∂y21

).

This requires that
c0
2

=
1 + cn−1

(2n+ 2)(2n+ 1)
(55)

and

ck
(2k + 2)(2k + 1)

=
cn−k−1

(2n− 2k)(2n− 2k − 1)
, k = 0, . . . , n− 1, (56)

and

ck + ck−1

(2k + 2)(2k + 1)
=

cn−k + cn−k−1

(2n− 2k + 2)(2n− 2k + 1)
, k = 1, . . . , n− 1. (57)
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(It may appear at first that there are too many equations for the n variables
c0, . . . , cn−1, but there is some repetition here. Once the redundant equations
are discarded, it is easy to see that there is a unique solution.)

The combination of (56) and (57) gives

ck + ck−1 =
(2k + 2)(2k + 1)

(2n− 2k + 2)(2n− 2k + 1)
(cn−k + cn−k−1)

=
(2n− 2k)(2n− 2k − 1)

(2n− 2k + 2)(2n− 2k + 1)
ck +

(2k + 2)(2k + 1)

2k(2k − 1)
ck−1

for k = 1, . . . , n− 1. Thus(
1− (2n− 2k)(2n− 2k − 1)

(2n− 2k + 2)(2n− 2k + 1)

)
ck =

(
(2k + 2)(2k + 1)

2k(2k − 1)
− 1

)
ck−1.

We compute

1− (2n− 2k)(2n− 2k − 1)

(2n− 2k + 2)(2n− 2k + 1)
=

8(n− k) + 2

(2n− 2k + 2)(2n− 2k + 1)

and
(2k + 2)(2k + 1)

2k(2k − 1)
− 1 =

8k + 2

2k(2k − 1)
.

Therefore, we obtain the equation

ck
ck−1

=
(2n− 2k + 2)(2n− 2k + 1)(4k + 1)

2k(2k − 1)(4(n− k) + 1)

for k = 1, . . . , n− 1.
Define

bk =
ck

(2k + 1)
(
n
k

) , k = 0, . . . , n− 1.

Then

bk
bk−1

=
k(2k − 1)

(n− k + 1)(2k + 1)

ck
ck−1

=
(2n− 2k + 1)(4k + 1)

(2k + 1)(4(n− k) + 1)

=
8nk − 8k2 + 2n+ 2k + 1

8nk − 8k2 + 4n− 2k + 1
.

We note that bk/bk−1 ≥ 1 if, and only if, k ≥ n/2; and bk/bk−1 ≤ 1 if, and only
if, k ≤ n/2. Hence bk, as a function of k, is first decreasing, may possibly be
constant for one step, and is then increasing. (If n = 1, then this is a vacuous
statement, as we have only b0 in this case.)

From (55) and (56) for k = 0, we also conclude that

1 + cn−1

(2n+ 2)(2n+ 1)
=

cn−1

2n(2n− 1)
.

Solving this equation, we obtain

cn−1 =
2n2 − n

4n+ 1
.
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It then also follows from (56) that

c0 =
cn−1

2n2 − n
=

1

4n+ 1
.

This means that

b0 = c0 =
1

4n+ 1
and bn−1 =

cn−1

2n2 − n
=

1

4n+ 1
.

We conclude that bk ≤ 1
4n+1 for all k = 0, . . . , n− 1, i.e.,

ck ≤ 2k + 1

4n+ 1

(
n

k

)
.

Because ck/ck−1 > 0 for every k = 1, . . . , n− 1, it is clear that ck > 0 for every
k = 1, . . . , n. Therefore,

0 ≤
n∑
k=0

cky
2n−2k
1 y2k2 ≤

n∑
k=0

(
n

k

)
y2n−2k
1 y2k2 = |y|2n.

The inequalities in (53) follow. We also have identity (54) by construction.

Recall that we consider the points a− = (0,−1) and a+ = (0, 1) here. It
follows from Proposition 32 that |y|2n

∣∣1 − |y|2
∣∣ ∈ W(a−, a+) for every n ∈ N.

Since
|y|2n

∣∣1− |y|2m
∣∣ = (|y|2n + · · ·+ |y|2n+2m−2)

∣∣1− |y|2
∣∣,

these potentials belong to W(a−, a+), too. Now for β ∈ (0, 1), we consider

w(y) =
∣∣1− |y|2

∣∣β .
We define the function

ψ(t) = (1− t)β−1, −1 < t < 1.

We compute
ψ(n)(t) = (1− β) · · · (n− β)(1− t)β−n−1.

The function is analytic in (−1, 1) and we have the Taylor expansion

ψ(t) =

∞∑
n=0

ant
n,

where an = ψ(n)(0)
n! > 0 for every n ∈ N0. We therefore have the formula

∣∣1− |y|2
∣∣β = (1− |y|2)ψ(|y|2) = (1− |y|2)

∞∑
n=0

an|y|2n

in B1(0).
It is not clear if the space W(a−, a+) is closed in a suitable topology, but

examining the coefficients of the polynomials from Proposition 32, it is not
difficult to see that w satisfies a condition like (51) and (52) in the unit ball.
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But it is still not clear how to extend this observation to R2. Therefore, rather
than using the series, we use an approximation by

wn(y) =
∣∣1− |y|2

∣∣ n∑
k=0

ak|y|2k.

The limit, as n→ ∞, is

w∞(y) =

{
(1− |y|2)β if |y| ≤ 1,

∞ if |y| > 1.

This function does of course not fit into the above theory, as it is not continuous.
Nevertheless, we can prove the following.

Corollary 33. Let a− = (0,−1) and a+ = (0, 1).

(i) If W (y) = |y|4n(1− |y|2m)2 for some n,m ∈ N, then

E(a−, a+) = 4m

(2n+ 1)(2n+ 2m+ 1)
.

(ii) Suppose that W (y) = (1 − |y|2)2β for some β ∈ (0, 1). If (uϵ)ϵ>0 is a
family of vector fields from U(a−, a+) such that |uϵ| ≤ 1 for every ϵ > 0,
then

lim inf
ϵ↘0

Eϵ(uϵ;B1(0)) ≥ 2

ˆ 1

0

(1− t2)β dt.

Proof. The first statement follows immediately from Proposition 32 and Corol-
lary 5 by the above observations.

To prove the second statement, we consider the potentials

wn(y) =
∣∣1− |y|2

∣∣ n∑
k=0

ak|y|2k,

as explained above. We know that wn ∈ W(a−, a+). Hence by Corollary 5,

1

4
lim inf
ϵ↘0

ˆ
B1(0)

(
ϵ|Duϵ|2 +

1

ϵ
(wn(uϵ))

2

)
dx ≥

ˆ
[a−,a+]

wn dH1.

Since |uϵ| ≤ 1 for every ϵ > 0, it follows that

1

4
lim inf
ϵ↘0

ˆ
B1(0)

(
ϵ|Duϵ|2 +

1

ϵ

(
1− |uϵ|2

)2β)
dx ≥

ˆ
[a−,a+]

wn dH1

as well. Letting n→ ∞, we conclude that

1

4
lim inf
ϵ↘0

ˆ
B1(0)

(
ϵ|Duϵ|2 +

1

ϵ

(
1− |uϵ|2

)2β)
dx ≥

ˆ
[a−,a+]

w dH1.

This is the inequality from the statement in a different form.
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6.2 Other candidates for minimisers

We cannot expect that T 0 will always be a minimiser of MF . In this section,
we therefore have a look at some other elements of C0

2×2 that may be minimisers
for certain potential functions W . We do not have any specific results here, but
we do have some examples indicating that there may be a deeper relationship
between the elements of C0

2×2 and possible transition profiles.
In Section 5, we decomposed the first component of an R2-valued current

into curves from a− to a+ (and possibly some closed curves). Conversely, given
such a curve, we may wish to consider the corresponding R-valued 1-current and
complement it with a second component to obtain an element of T 0

2×2. Since

we require that MF (T ) <∞, however, we will need to make sure that tr T⃗ = 0
away fromW−1({0}). This condition, on the other hand, gives rise to significant
restrictions on what is possible. For most curves from a− to a+, there is no
second component with the required properties. But we can instead consider a
pair of curves that are symmetric with respect to reflection on [a−, a+].

We still assume that a = (0,−1) and a+ = (0, 1). Suppose now that
γ : [0, 1] → R2 is Lipschitz continuous with γ(0) = a− and γ(1) = a+, such
that γ̇2(t) ̸= 0 at almost every t ∈ [0, 1] and such that the function ψ = γ̇1/γ̇2
is of bounded variation in [0, 1]. Its derivative, denoted by ψ̇, is therefore given
by a measure on [0, 1]. We write |ψ̇| for its total variation measure.

Define T ∈ C2×2 by

T (ζ) =
1

2

ˆ 1

0

1

γ̇2(t)

(
γ̇1(t)γ̇2(t) (γ̇2(t))

2

−(γ̇1(t))
2 −γ̇1(t)γ̇2(t)

)
: ζ(γ(t)) dt

+
1

2

ˆ 1

0

1

γ̇2(t)

(
−γ̇1(t)γ̇2(t) (γ̇2(t))

2

−(γ̇1(t))
2 γ̇1(t)γ̇2(t)

)
: ζ(−γ1(t), γ2(t)) dt

− 1

2

ˆ 1

0

ˆ γ1(t)

−γ1(t)
ζ21(s, γ2(t)) ds dψ̇(t).

We note that T1 = 1
2 ([γ] + [γ†]), where γ†(t) = (−γ1(t), γ2(t)). For any ξ ∈

C∞
0 (R2;R2), we compute

T (Dξ) =
1

2

ˆ 1

0

(
Dξ1(γ(t))γ̇(t)− ψ(t)Dξ2(γ(t))γ̇(t)

)
dt

+
1

2

ˆ 1

0

(
Dξ1(γ(t))γ̇

†(t) + ψ(t)Dξ2(γ(t))γ̇
†(t)
)
dt

− 1

2

ˆ 1

0

ˆ γ1(t)

−γ1(t)

∂ξ2
∂y1

(s, γ2(t)) ds dψ̇(t)

= ξ1(a
+)− ξ1(a

−)− 1

2

ˆ 1

0

ψ(t)
d

dt

(
ξ2(γ(t))− ξ2(γ

†(t))
)
dt

− 1

2

ˆ 1

0

(
ξ2(γ(t))− ξ2(γ

†(t))
)
dψ̇(t)

= ξ1(a
+)− ξ1(a

−).
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Hence T ∈ C0
2×2. We further compute

MF (T ) =
1

4

ˆ 1

0

(√
W (γ(t)) +

√
W (γ†(t))

)
|γ̇(t)|2

|γ̇2(t)|
dt

+
1

4

ˆ 1

0

ˆ γ1(t)

−γ1(t)

√
W (s, γ2(t)) ds d|ψ̇|(t).

We now look at two specific examples of this type.

Example 34. Let b1 > 0, and consider the points b+ = (b1, 0) and b− =
(−b1, 0). Suppose that

γ(t) =

{
(2tb1, 2t− 1) if 0 ≤ t ≤ 1

2 ,

((2− 2t)b1, 2t− 1) if 1
2 < t ≤ 1

(a curve consisting of a line segment from a− to b+ and a line segment from b+

to a+). Then

ψ(t) =

{
b1 if 0 ≤ t ≤ 1

2 ,

−b1 if 1
2 < t ≤ 1,

and we compute

MF (T ) =
1

4

√
b21 + 1

ˆ
♢

√
W dH1 +

b1
2

ˆ
[b−,b+]

√
W dH1,

where we use the abbreviation ♢ = [a−, b+] ∪ [b+, a+] ∪ [a−, b−] ∪ [b−, a+].
Compare this with the construction by Jin and Kohn [28, Section 4] of a

non-one-dimensional transition profile between a− and a+. This is a two-scale
construction, where the coarser scale is given by

ũ0(x) =


(0,−1) if x1 ≤ −b1|x2|,
(0, 1) if x1 ≥ b1|x2|,
(−b1, 0) if |x1| < b1x2,

(b1, 0) if |x1| < −b1x2,

for −1 < x2 ≤ 1. This is extended periodically in x2, with period 2, to the
whole of R2. Thus ũ0 is piecewise constant, with a jump set as illustrated in
Figure 1.

Next, we construct ũϵ : R2 → R2 as follows: we replace the jumps in ũ0 by
the standard one-dimensional transitions with a width of order ϵ (as explained,
e.g., in a paper by Ignat and Monteil [23, Proposition 4.1]). This requires some
smoothing near the corners, which can be done with an insignificant gain of
energy and a small change of the divergence. (The details are tedious and are
omitted here.) We then compute

lim
ϵ↘0

Eϵ(ũϵ;R× [s− 1, s+ 1]) =
1

2

√
b21 + 1

ˆ
♢

√
W dH1 + b1

ˆ
[b−,b+]

√
W dH1

for any s ∈ R \ Z.
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Figure 1: A construction of Jin and Kohn [28]

But we want convergence to u0, not ũ0, as ϵ↘ 0. Therefore, we now rescale
by a parameter ηϵ > 0, which converges to 0 when ϵ does, but at a slower rate;
i.e., we assume that ηϵ → 0 and ϵ/ηϵ → 0. We set uϵ(x) = ũϵ/ηϵ(x/ηϵ). Then

lim
ϵ↘0

Eϵ(uϵ;B1(0)) =
1

2

√
b21 + 1

ˆ
♢

√
W dH1 + b1

ˆ
[b−,b+]

√
W dH1.

Therefore,

E(a−, a+) ≤ 1

2

√
b21 + 1

ˆ
♢

√
W dH1 + b1

ˆ
[b−,b+]

√
W dH1.

If the current T happens to minimise MT in C0
2×2, then we have equality by

Theorem 3. Therefore, in this case, the above construction gives the optimal
energy asymptotically.

Example 35. Now suppose that W (y) = 0 for all y ∈ S1. Choose b1, b2 ∈ [0, 1]
with b21+ b

2
2 = 1, and define b(1) = (b1,−b2), b(2) = (b1, b2), b

(3) = (−b1, b2), and
b(4) = (−b1,−b2). Let θ = arcsin b1 and consider the curve

γ(t) =

{
(sin(πt),− cos(πt)) if 0 ≤ t ≤ θ

π or 1− θ
π ≤ t ≤ 1,

(b1,
(2t−1)π
π−2θ b2) if θ

π < t < 1− θ
π

(consisting of a circular arc from a− to b(1), a line segment from b(1) to b(2), and
another circular arc from b(2) to a+). Then

ψ(t) =

{
cot(πt) if 0 ≤ t ≤ θ

π or 1− θ
π ≤ t ≤ 1,

0 if θ
π < t < 1− θ

π .

This function is not of bounded variation (not even bounded), and so, strictly
speaking, the above calculations do not apply. We ignore this problem for the
sake of simplicity. We will obtain an R2-valued current on R2 \{a−, a+} instead
of R2, which can, however, be approximated with elements of C0

2×2.
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Figure 2: The cross-tie wall profile

Define V = [b(1), b(2)] ∪ [b(4), b(3)] and H = [b(4), b(1)] ∪ [b(3), b(2)], and also
define D = B1(0) \ (R× [−b2, b2]). Then we compute

MF (T ) =
1

4

ˆ
V

√
W dH1 +

b2
4b1

ˆ
H

√
W dH1

+
π

4

ˆ
[0,θ]∪[1−θ,1]

1

sin2(πt)

ˆ sin(πt)

− sin(πt)

√
W (s,− cos(πt)) ds dt

=
1

4

ˆ
V

√
W dH1 +

b2
4b1

ˆ
H

√
W dH1 +

1

4

ˆ
D

√
W (y)

(1− y22)
3/2

dy.

(This may be infinite, unless we impose additional conditions on W at a±.)
Compare this with the following transition profile, which is called a cross-tie

wall in the theory of micromagnetics [14, 1]. This is a two-scale construction
again, and the coarser scale is given by

ũ0(x) =



b(1) if x1 < 0, x2 < 0, and −b1x1 + b2x2 < 0,

b(2) if x1 > 0, x2 < 0, and b1x1 + b2x2 < 0,

b(3) if x1 > 0, x2 > 0, and −b1x1 + b2x2 > 0,

b(4) if x1 < 0, x2 > 0, and b1x1 + b2x2 > 0,
x⊥

|x| else,

when −b1 < x2 ≤ b1. This is extended periodically in x2, with period 2b1, so
that ũ0 is defined on all of R2. The result is illustrated in Figure 2.

The vector field ũ0 has discontinuities along the lines {0} × R and R ×
{(1 + 2k)b1} for every k ∈ Z. On the finer scale, these have to be replaced by
smooth transitions again. For ϵ > 0, we choose the standard one-dimensional
transitions, with a width of order ϵ, along the line segments {0}×[−b1, 0] (where
we have a transition between b(1) and b(2)) and {0} × [0, b1] (with a transition
between b(3) and b(4)), as well as [−b2, 0]× {b1} (with a transition between b(4)

and b(1)) and [0, b2]× {b1} (with a transition between b(3) and b(2)). This part
of the construction is similar to Example 34.
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Along (−∞,−b2]×{b1} and [b2,∞)×{b1}, we still use a similar construction,
but since the jump in ũ0 depends on the position, the result will not truly be
one-dimensional here. At the point (x1, b1) with |x1| ≥ b2, we have a jump
between the points

(−b1, x1)√
b21 + x21

and
(b1, x1)√
b21 + x21

.

We replace this with a smooth transition, again with width of order ϵ, along
the horizontal line segment between these two points in R2. Once more this
requires some smoothing at the corners, and in the end everything is extended
periodically to R2.

We will have some divergence at the corners, and also near (−∞,−b2]×{b1}
and [b2,∞) × {b1}, with this construction. We can, however, achieve that a
condition similar to (3) holds in any compact subset of R2. Once more, the
details are omitted.

Finally, we rescale at a rate ηϵ > 0 as ϵ ↘ 0, where ηϵ → 0, but sufficiently
slowly that (3) remains true.

Calculating the energy of the cross-tie wall per unit wall length, we find that

E(a+, a−) ≤ 1

2

ˆ
V

√
W dH1 +

b2
2b1

ˆ
H

√
W dH1 +

1

2

ˆ
D

√
W (y)

(1− y22)
3/2

dy.

If suitable approximations of T give rise to a minimising sequence of MF in
C0
2×2, then Theorem 3 implies that we have equality, and the cross-tie wall is

energetically optimal.
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