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Abstract

Three reduced models are considered for Néel walls which are dominant transition layers in

thin-film micromagnetics. Each model comes as a nonlocal and nonconvex variational principle

for one-dimensional magnetizations and it depends on a small parameter ε > 0. Our aim is to

study the Γ−convergence of these models as ε ↓ 0. We prove that the limiting magnetization

patterns are piecewise constant functions that correspond to a finite number of walls of the

same angle. The Γ−limit energy is proportional to the number of walls of these configurations

and the energetic cost of each wall is quartic for small wall angles.
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1 Introduction

The Néel wall is a dominant transition layer in thin ferromagnetic films. It is characterized by a

one-dimensional in-plane rotation connecting two (opposite) directions of the magnetization. It

has two length scales: a small core with fast varying rotation and two logarithmically decaying

tails. In order for the Néel wall to exist, the tails are to be contained. There are three confining

mechanisms for the Néel wall tails: the anisotropy of the material, the steric interaction with the

sample edges and the steric interaction with the tails of neighboring Néel walls. In the following,

we describe these models that correspond to three nonconvex and nonlocal variational problems

depending on a small parameter:

Model 1. Confinement of Néel wall tails by anisotropy. The admissible configurations are

functions satisfying the following conditions:

m = (m1,m2) : R → S1 and m(±∞) =

(
α

±
√

1 − α2

)
, (1)

where α ∈ [0, 1). Denoting θ = arccosα, then 2θ is called the wall angle (see Figure 1). The energy

is defined as follows:

m 7→ δ‖m‖2
Ḣ1 + ‖m1‖2

Ḣ1/2 + ‖m1 − α‖2
L2 (2)

with δ > 0 a small parameter.
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Figure 1: Néel wall of angle 2θ.

It is a model for one-dimensional magnetization in infinite ferromagnetic layers of small thick-

ness (see Melcher [11]). The first term in (2) is called the exchange energy and is due to short-range

spin interactions; it favors parallel alignment of neighboring spins. The second term stands for the

stray field energy and is due to long-range spin interactions modelled by the static Maxwell equa-

tion (see Proposition 4). The last term in (2) comes from the crystalline anisotropy and favors the

direction (α,±
√

1 − α2) of the magnetization. The energy (2) is invariant under translation. Since

configurations m of finite energy are continuous, the limit conditions in (1) enforce a transition

(wall domain) for the magnetization. One can fix the center of the wall at the origin by setting

m(0) = (1, 0). Under these restrictions, a Néel wall corresponds to a minimizer of the energy (2).

The variational problem is nonconvex because of the saturation constraint |m| = 1 and nonlocal

due to the stray-field interaction. It is a nondegenerate problem since the anisotropy term prevents

a Néel wall to spread over the complete domain R; therefore, the Néel wall tails are forced to be

limited and the energy cannot reach arbitrary small levels (see Proposition 1). The main feature of

the variational problem is that energy (2) only gives uniform bound of m1 in Ḣ1/2(R) that barely

fails to control the L∞(R)-norm ‖m1‖L∞(R) = 1. This suggests a logarithmic decay of the energy.

The prediction of the logarithmic scaling for minimal energies (2) was formally proved by Riedel

and Seeger [13]; a detailed mathematical discussion of their results was carried out by Garcia-

Cervera [4] by means of a perturbation argument. The exact leading order term of the minimal

energy was finally deduced by DeSimone, Kohn, Müller and Otto [7, 9] by matching upper and

lower bounds in the case of a 180◦ Néel wall (when α = 0):

min
(1)

α=0

δ‖m‖2
Ḣ1 + ‖m1‖2

Ḣ1/2 + ‖m1‖2
L2 =

π + o(1)

| log δ| as δ ↓ 0. (3)

The analysis of the structure of a minimizer of (3) is rather subtle due to the different scaling

behavior of the energy terms in (2). Remark that omitting the Ḣ1/2−norm, the formulation of (3)

in terms of v := m2 corresponds to a variational problem associated to the Cahn-Hilliard model

(see Cahn and Hilliard [3]):

min
v:R→[−1,1]

v(0)=0,v(±∞)=±1

∫

R

(
δ

1 − v2

∣∣dv
dt

∣∣2 + 1 − v2

)
dt. (4)

The minimizer v of (4) satisfies the Cauchy problem associated to the first order ODE:

dv

dt
=

1√
δ
(1 − v2), v(0) = 0.
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Therefore, it is a transition layer with a single length scale
√
δ, i.e., v(t) = tanh(x/

√
δ) and satisfies

v(±∞) = ±1. The first component of the magnetizationm1 would correspond in (4) to sech(x/
√
δ)

and the minimal energy is equal to 4
√
δ.

Coming back to our variational problem (3), the presence of the nonlocal term as an homo-

geneous Ḣ1/2(R)−seminorm in competition with the energy (4) creates a second length scale of

the transition layer. The Néel wall is divided in two regions: a core (|t| . wcore) and two tails

(wcore . |t| . wtail). This particular structure enables the magnetization to decrease the energy

by a logarithmic factor (3). Melcher [11, 12] rigorously established the optimal profile of the Néel

wall, i.e., a minimizer m of (3) with m1(0) = 1 exhibits two uniformly logarithmic tails beyond a

core region of order δ close to the origin (see Figures 2 and 3):

m1(t) ∼
| log |t| |
| log δ| for δ < |t| < 1/e.

O( )
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Figure 2: First component of a 180◦ Néel wall.
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Figure 3: Second component of a 180◦ Néel wall.

We are interested in the asymptotics of the energy (2) as δ ↓ 0. Due to the logarithmic decay

(3), we consider a new length scale ε > 0 such that δ = ε/| log ε| and we renormalize the energy

(2) by a factor | log ε| in order that the minimal energy become of order O(1):

Eε(m) = ε‖m‖2
Ḣ1 + | log ε|

(
‖m1‖2

Ḣ1/2 + ‖m1 − α‖2
L2

)
. (5)

Our goal is to study the Γ−convergence of energies {Eε} as ε ↓ 0 and to characterize the limiting

configurations of the magnetization. We will prove that the limiting configurations are piecewise

constant functions of bounded total variation that can take two values {(α,±
√

1 − α2)}. The

Γ−limit energy is proportional to the number of jumps of these configurations and the energetic

cost of each jump is π(1 − |α|)2.
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Model 2. Confinement of Néel wall tails by the finite size of the sample. The constraints

are given by:

m = (m1,m2) : R → S1 and m(±t) =

(
cos θ

± sin θ

)
for ± t ≥ 1, (6)

with θ ∈ [0, 2π) (see Figure 4), whereas the energy functional is:

m 7→ δ‖m‖2
Ḣ1 + ‖m1‖2

Ḣ1/2 (7)

with δ > 0 a small parameter.

m
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1

Figure 4: Néel wall of angle 2θ confined in [−1, 1].

It models a one-dimensional magnetization in a thin-ferromagnetic film of finite width where

the effect of cristalline anisotropy and external magnetic fields is neglected. The corresponding

variational problem was considered by DeSimone, Kohn, Müller and Otto [8], DeSimone, Knüpfer

and Otto [6] and Ignat and Otto [10]. The main difference with respect to Model 1 consists in the

confinement of Néel wall tails by the interaction with the sample edges played by −1 and 1 in our

framework. However, the properties of the transition layer in Model 1 naturally transfer to the

structure of a minimizer of (7) that satisfies m(0) = (1, 0). It is a two length scale object with a

small core of order δ and two logarithmically decaying tails contained in [−1, 1] and it attains the

same level of minimal energy π+o(1)
| log δ| as δ ↓ 0. As before, by rescaling and renormalization of (7),

the corresponding energy writes:

Fε(m) = ε‖m‖2
Ḣ1 + | log ε|‖m1‖2

Ḣ1/2

for a small parameter ε > 0. We will analyse the asymptotics of Fε by the Γ−convergence method

as ε ↓ 0. We expect to have a similar behavior for the limiting configurations and the Γ−limit

energy as in Model 1. The difference will consist in having all the walls confined in the interval

[−1, 1].

Model 3. Confinement of Néel wall tails by the neighboring Néel walls. The magneti-

zations are periodic functions such that:

m = eiϕ, ϕ : R → R with ϕ(t+ 2) = ϕ(t) and ϕ(t+ 1) = ϕ(t) + π (8)

(see Figure 5). The energy is given by:

m 7→ δ‖m‖2
Ḣ1

per
+ ‖m1‖2

Ḣ
1/2
per
, (9)

for a small parameter δ > 0.
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Figure 5: Periodic array of winding walls.

This model was investigated by DeSimone, Kohn, Müller and Otto [9] in order to quantify the

repulsive interaction of Néel walls. It consists in considering a periodic array of winding walls

at a renormalized distance w = 2 in the absence of anisotropy and external magnetic fields. A

transition of 180◦ is enforced in the middle of each period by the constraint (8). Therefore, the

tails of a Néel wall are limited by the tails of the neighboring walls at a distance 1 and we expect

that this model generates only 180◦ Néel walls. As before, we will analyse the following rescaled

and renormalized energy associated to (9):

Gε(m) = ε‖m‖2
Ḣ1

per
+ | log ε|‖m1‖2

Ḣ
1/2
per

in the asymptotic ε ↓ 0.

2 Main results

First we show a compactness result for magnetizations with uniformly bounded energies and we

deduce the pattern of the limiting configurations for all three models. Then we present our main

result: we compute the Γ−limit of the three families of energies {Eε}ε↓0, {Fε}ε↓0 and {Gε}ε↓0 and

we prove the corresponding Γ−convergence result for each of these models.

Model 1. We start with the compactness result in Model 1. It is related with a result for 1−d

magnetizations proved by Ignat and Otto [10] (see Theorem 2 in [10]) where Model 2 is treated for

fixed boundary data. In our context, the anisotropy replaces the role of interaction of Néel wall

tails with the edges of a finite sample and no fixed boundary conditions are imposed.

Theorem 1 Consider a sequence {εk}k∈N ⊂ (0,∞) with εk ↓ 0 as k ↑ ∞. For k ∈ N, let

αk ∈ [−1, 1], Eεk
be the energy functional (5) associated to εk and αk and let mk = (m1,k,m2,k) :

R → S1. Suppose that

lim sup
k↑∞

Eεk
(mk) < +∞. (10)

Then {mk}k↑∞ is relatively compact in L1
loc(R, S

1). Moreover, any accumulation point m : R → S1

is of bounded total variation, takes values in the set {(cos θ,± sin θ)} for some θ ∈ [0, 2π) and can

be written as:

m =

N+1∑

n=1

(
cos θ

(−1)n sin θ

)
1(tn−1,tn), (11)

where N ≥ 0 and −∞ = t0 < t1 < · · · < tN < tN+1 = +∞.
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Figure 6: A limit configuration with 3 walls.

Remark 1 i) The walls of a limiting configuration have the same angle 2θ, i.e., m1 is a constant

function in R equal to cos θ and m2 has a finite number of jumps of size 2| sin θ|. The angle

θ represents an accumulation point of the set {Arccosαk}k∈N in [0, 2π).

ii) The number of walls may vanish in the limit, i.e., N = 0. Indeed, one can imagine a transition

layer mk of angle 2θ centered in k so that the center of the wall tends to infinity and mk

converges to the constant function (cos θ,− sin θ) as k ↑ ∞. Moreover, one can easily check

that a limiting configuration (11) is constant if and only if N = 0 or sin θ = 0 (i.e., |αk| → 1).

Also notice that N can be both an odd or an even integer. In fact, condition (1) is not

imposed for configurations {mk} in Theorem 1, so that mk may exhibit an even number of

wall transitions and m2,k may have the same limit at ±∞.

iii) A configuration mk of finite energy Eεk
is continuous and the first component m1,k has the

limit αk at ±∞. Indeed, if Eεk
(mk) < ∞, then m1,k − αk ∈ H1(R) which entails the latter

statement (see e.g., Brezis [2]). We highlight the fact that we do not impose a fixed boundary

condition for the sequence {mk}k∈N at infinity in Theorem 1, i.e., {αk}k∈N may vary with k.

For an accumulation point m as in (11), we have that αk → cos θ as k ↑ ∞.

iv) The compactness result is also valid in the Lp
loc(R, S

1)−topology for every p ∈ [1,∞) since

the values of limiting configurations are of length 1. Due to the constraint |m| = 1 which

implies m /∈ Lp(R,R2), we always work in the framework of Lp
loc(R,R

2)-spaces.

Let us denote by A the set of all limiting configurations given by (11). For such a configuration

m ∈ A, we define the following energy:

E0(m) = π(1 − |m1|)2 ·
(

number of jumps of m

)
, (12)

where the numberN of jumps ofm corresponds to the number of walls of the limiting magnetization

m. Our main result shows that E0 represents the Γ−limit of energies Ek:

Theorem 2 Consider a sequence {εk}k∈N ⊂ (0,∞) with εk ↓ 0 as k ↑ ∞. For k ∈ N, let

αk ∈ [−1, 1] and Eεk
be the energy functional (5) associated to εk and αk. Then

Eεk

Γ→ E0 under the L1
loc(R, S

1)−topology as k ↑ ∞, i.e.,
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(i) If the sequence {mk : R → S1}k∈N satisfies (10) and mk
k↑∞→ m in L1

loc(R, S
1), then m ∈ A

and

lim inf
k↑∞

Eεk
(mk) ≥ E0(m); (13)

(ii) For every m ∈ A, there exists a sequence of smooth functions {mk : R → S1}k∈N such that

mk −m has compact support in R for all k ∈ N, mk −m
k↑∞→ 0 in L1(R,R2) and

lim
k↑∞

Eεk
(mk) = E0(m).

Remark 2 If {Eε}ε↓0 is the family of energies (5) associated to a fixed α := cos θ, then Theorem 2

yields that the energy of a Néel wall of angle 2θ is quartic in θ for small angles θ:

min
(1)

Eε
ε↓0
= π(1 − | cos θ|)2≈π

4
θ4 as θ ↓ 0.

Observe the importance of the anisotropy in Model 1: it is the confining mechanism that

prevents the tails to spread over R. In the absence of the anisotropy, the variational problem (3)

becomes degenerate. It is stated in the following proposition:

Proposition 1 Let α ∈ [0, 1). We have that

min
(1)

m(0)=(1,0)

δ‖m‖2
Ḣ1 + ‖m1‖2

Ḣ1/2 = 0,

for every δ > 0.

Model 2. Now we present the corresponding results for Model 2 when the anisotropy effect

is replaced by a confinement of Néel wall tails in a finite interval. The compactness result of

configurations of uniformly bounded energy Fε is given in the following:

Theorem 3 Consider a sequence {εk}k∈N ⊂ (0,∞) with εk ↓ 0 as k ↑ ∞. For k ∈ N, let

θk ∈ [0, 2π) and mk = (m1,k,m2,k) : R → S1 be such that (6) holds. Suppose that

lim sup
k↑∞

Fεk
(mk) < +∞. (14)

Then {mk}k↑∞ is relatively compact in L1
loc(R, S

1). Any accumulation point m : R → S1 is of

bounded total variation and can be written as

m =

N+1∑

n=1

(
cos θ

(−1)n sin θ

)
1(tn−1,tn), (15)

where θ ∈ [0, 2π), N ≥ 0 and −∞ = t0 < −1 ≤ t1 < · · · < tN ≤ 1 < tN+1 = +∞. Moreover, if

sin θ 6= 0, then N is an odd integer and m satisfies (6).

Remark 3 i) The limiting configurations in Model 2 have the same feature as in Model 1:

they exhibit a finite number of walls of identical angle 2θ. The difference consists in having

all these walls confined in [−1, 1] because of the boundary condition (6).
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ii) The compactness result fails in general under the strict convergence in BVloc even if the

limiting configurations are of bounded variation in R. In fact, it is constructed in [10] a

sequence of magnetizations {mk} with (6) and of uniformly bounded energies Fεk
(mk) ≤ C

such that the sequence of total variations {
∫ ∣∣dm1,k

dt

∣∣} blows-up (see Theorem 3 in [10]).

The fading Ḣ1−control of the magnetization is essential for the compactness result: in the

absence of it, we can construct a sequence of magnetizations that does not converge in L1
loc. These

magnetizations will asymptotically have an infinite number of transition walls and the sequence of

their homogeneous Ḣ1/2−seminorm converges to zero. Obviously, the condition (14) fails for these

configurations.

Proposition 2 There exists a sequence of smooth magnetizations {mk : R → S1}k∈N with (6)

such that

‖m1,k‖2
Ḣ1/2 ≤ C

| log 1
k |

and {mk} is not relatively compact in L1
loc(R,R

2).

Let us denote by B the set of all limiting configurations given by (15). We have a similar

Γ−convergence result of energies {Fε}ε↓0 to the same Γ−limit E0 as in Model 1:

Theorem 4 Consider a sequence {εk}k∈N ⊂ (0,∞) with εk ↓ 0 as k ↑ ∞. Then

Fεk

Γ→ E0 under the L1
loc(R, S

1)−topology as k ↑ ∞, i.e.,

(i) If for any k ∈ N, θk ∈ [0, 2π) and mk : R → S1 are such that (6) holds, then the condition

(14) together with mk
k↑∞→ m in L1

loc(R, S
1) imply that m ∈ B and

lim inf
k↑∞

Fεk
(mk) ≥ E0(m);

(ii) For every m ∈ B, there exists a sequence of smooth functions {mk : R → S1}k∈N such that

mk = m in R \ [−1, 1], mk −m
k↑∞→ 0 in L1(R,R2) and

lim
k↑∞

Fεk
(mk) = E0(m).

Observe that for the upper bound in the Γ−convergence result, we construct a sequence of

magnetizations that coincide with the limit configuration outside the sample [−1, 1] and they

asymptotically have the same energy.

Model 3. Finally, we discuss the third model when the Néel wall tails are confined by interaction

with neighboring walls. The setting consists in periodic configurations where rotations of 180◦ are

enforced. Therefore, we expect that the limit magnetization points in opposite directions across

each wall.

Theorem 5 Consider a sequence {εk}k∈N ⊂ (0,∞) with εk ↓ 0 as k ↑ ∞. For k ∈ N, let

mk = (m1,k,m2,k) : R → S1 be such that (8) holds. Suppose that

lim sup
k↑∞

Gεk
(mk) < +∞. (16)
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Then {mk}k↑∞ is relatively compact in L1
loc(R, S

1). Any accumulation point m : R → S1 is a

2−periodic function of bounded total variation on [−1, 1) that takes exactly two values

(
0

±1

)

and satisfies m(t) = −m(t+ 1) for every t ∈ R.

m

t

0

1-1

2t1

t1+1

t1+2

Figure 7: A periodic limit configuration having 2 walls per period.

Remark 4 The constraint (8) imposes for the limiting configuration an even number 2N of walls

of 180◦ in [−1, 1) with N ≥ 1. Suppose that these N pairs of walls are placed in tn ∈ [−1, 0) and

tn +1 ∈ [0, 1) respectively, for n = 1, . . . , N where the orientation of the magnetization is reversed.

Then the limit magnetization m can be written on the interval [−1, 1) as

m = ±
N+1∑

n=1

(
0

(−1)n

)(
1(tn−1,tn) − 1(tn−1+1,tn+1)

)
in [−1, 1), (17)

where N ≥ 1 and −1 = t0 ≤ t1 < · · · < tN < tN+1 = 0.

Let us denote by C the set of all limiting configurations in Model 3 given by Theorem 5. For

every m ∈ C, we denote

G0(m) = π ·
(

number of jumps of m in [−1, 1)

)
.

We have the same Γ−convergence result of energies {Gε} as in Models 1 and 2:

Theorem 6 Consider a sequence {εk}k∈N ⊂ (0,∞) with εk ↓ 0 as k ↑ ∞. Then

Gεk

Γ→ G0 under the L1
loc(R, S

1)−topology as k ↑ ∞, i.e.,

(i) If {mk : R → S1}k∈N is a sequence of 2−periodic functions such that (8) and (16) hold true

and mk
k↑∞→ m in L1

loc(R, S
1), then m ∈ C and

lim inf
k↑∞

Gεk
(mk) ≥ G0(m);
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(ii) For every m ∈ C, there exists a sequence {mk : R → S1}k∈N of smooth 2−periodic functions

that satisfy (8), mk
k↑∞→ m in L1

loc(R, S
1) and

lim
k↑∞

Gεk
(mk) = G0(m).

The sequel of the paper is organized as follows: In Section 3, we review some properties

of functions in homogeneous Sobolev spaces and we recall a logarithmically failing Gagliardo-

Nirenberg inequality that we use in the proof of our results. In Section 4, we prove compactness

of configurations with uniformly bounded energies in all three models as stated in Theorems 1,

3 and 5. In Section 5, we prove the lower bound in the Γ−convergence results given at point

(i) of Theorems 2, 4 and 6. In Section 6, we conclude with the proof of Theorems 2, 4 and 6

by constructing appropriate sequences for any limiting configuration; we also present the proof of

Propositions 1 and 2. We end with an Appendix where we show some characterizations of the

homogeneous Ḣ1/2−seminorm.

3 Preliminaries

First, we recall several definitions and properties of functions in some homogeneous Sobolev spaces.

Let s ∈ R and u : R → R be a tempered distribution in S′(R). We denote the homogeneous Ḣs-

seminorm of u by

‖u‖2
Ḣs :=

∫

R

|ξ|2s|û|2(ξ) dξ,

where û ∈ S′(R) stands for the Fourier transform of u (as a tempered distribution), i.e.,

û(ξ) =
1√
2π

∫

R

e−iξxu(x) dx, ∀ξ ∈ R.

If s ∈ { 1
2 , 1} we have the following properties: ‖u‖Ḣ1 =

∥∥du
dt

∥∥
L2 and

‖u‖2
Ḣ1/2 =

1

2π

∫

R

∫

R

|u(s) − u(t)|2
|s− t|2 dsdt (18)

(see Proposition 7 in Appendix).

If u is periodic (assume that the period is equal to 2), then the periodic Ḣs-seminorm of u is

given by

‖u‖2
Ḣs

per
:=

∑

β∈πZ

|β|2s|û(β)|2,

where the sequence {û(β)}β∈πZ stands for the Fourier coefficients of u, i.e.,

û(β) =
1√
2

∫

[−1,1)

e−iβtu(t) dt, ∀β ∈ πZ. (19)

The formula (18) has an equivalent in the periodic case. Indeed, regarding u as being defined on

the unit circle S1 by the convention u(eiπt) := u(t) for t ∈ [−1, 1), we have that:

‖u‖2

Ḣ
1/2
per

=
1

2π

∫

S1

∫

S1

|u(z1) − u(z2)|2
|z1 − z2|2

dz1dz2
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(see Proposition 7 in Appendix).

Another characterization of the Ḣ1/2-seminorm of u can be expressed as the minimal Ḣ1−semi-

norm of functions U : R2 → R that have u as trace on the horizontal line {(x1, x2) ∈ R2 : x2 = 0}.
In other words, the homogeneous Ḣ1/2-seminorm is given by the Dirichlet energy of the harmonic

extension of u in R2. For the sake of completeness, we give the proof of this property in Appendix.

Proposition 3 Let u : R → R.

(i) If u ∈ Ḣ1/2(R), then we have the following trace estimate:

‖u‖2
Ḣ1/2 =

1

2
min

{∫

R2

|∇U |2 dx1dx2 : U(x1, 0) = u(x1)

}
. (20)

(ii) If u is 2−periodic belonging to Ḣ
1/2
per (R), then

‖u‖2

Ḣ
1/2
per

=
1

2
min

{∫

[−1,1)×R

|∇U |2 dx1dx2 : U is 2−periodic in x1 and U(x1, 0) = u(x1)

}
.

(21)

As mentioned in the introduction, the Ḣ1/2−seminorm of the first component of the magne-

tization represents the stray field energy. Let us discuss in details this property. We call a stray

field associated to the magnetization m = (m1,m2) : R → S1, every two-dimensional vector field

h : R2 → R2 that satisfies
∫

R2

h · ∇ζ dx =

∫

R

dm1

dx1
ζ(·, 0) dx1 for every ζ ∈ C∞

c (R2). (22)

The form of the stray field energy that appears in all three models is justified by the following

proposition. Its proof is presented in Appendix.

Proposition 4 Let m1 : R → R.

(i) If m1 ∈ Ḣ1/2(R), we have that

min
(22)

∫

R2

|h|2 dx =
1

2
‖m1‖2

Ḣ1/2 . (23)

The minimizer H = (H1, H2) of (23) is unique in L2(R2,R2) and it is a gradient field. Moreover,

H satisfies the static Maxwell equations:




∇×H = 0 in R2,

∇ ·H = 0 in {x2 6= 0},
[H2] = − dm1

dx1
on {x2 = 0},

(24)

where [·] stands for the size of the jump over the horizontal line {x2 = 0}.
(ii) If m1 is a 2−periodic function in Ḣ

1/2
per (R), then

min

{∫

[−1,1)×R

|h|2 dx : h : R2 → R2 is 2−periodic in x1 with (22)

}
=

1

2
‖m1‖2

Ḣ
1/2
per
. (25)

The minimizer H of (25) is a 2−periodic (in x1) gradient field that is unique in L2
per(R

2,R2) and

satisfies the static Maxwell equations (24).

11



For the compactness of magnetizations {mk} in Theorems 1, 3 and 5, we need to control the

number of their large variations which consists in studying the derivatives of the first components

{σk :=
dm1,k

dt }. The stray field energy controls the homogeneous Ḣ−1/2-seminorm of σk in the

regime O( 1
| log εk|). The idea is to use a duality argument by estimating the product

< χk, σk >Ḣ1/2,Ḣ−1/2 (26)

for a trial function χk that counts the large variations of m1,k. Therefore, it is enough to analyse

the rate of the failing interpolation embedding

BV ∩ L∞(R) * Ḣ1/2(R)

that corresponds to the failing Gagliardo-Nirenberg type inequality:

‖χk‖2
Ḣ1/2 .

/
sup |χk|

∫
|dχk

dt
|. (27)

By a duality argument, the failing inequality (27) entails via (26) that
∣∣∣∣
∫
χkσk

∣∣∣∣
2

.
/

sup |χk|
∫

|dχk

dt
| ‖σk‖2

Ḣ−1/2 . (28)

Typically, the trial function χk has jumps so that χk /∈ Ḣ1/2(R). That can be corrected by

regularizing the homogeneous Ḣ1/2−seminorm. This perturbation gives a weaker seminorm that

is controlled by the RHS term in (27) with a logarithmically slow rate having the optimal prefactor
2
π :

Proposition 5 (DeSimone, Knüpfer and Otto [6]) For ε ≪ w and for any χ : R → R, we

have that ∫

R

min{1

ε
, |ξ|, w|ξ|2}|χ̂|2 dξ /

2

π

(
log

w

ε

)
sup

R

|χ|
∫

R

∣∣∣∣
dχ

dt

∣∣∣∣ . (29)

If χ is 2−periodic then

∑

β∈πZ

min{1

ε
, |β|, w|β|2}|χ̂(β)|2 /

2

π

(
log

w

ε

)
sup

[−1,1)

|χ|
∫

[−1,1)

∣∣∣∣
dχ

dt

∣∣∣∣ . (30)

Coming back to (28), the logarithmically failing rate of (27) in Proposition 5 matches well

with the control of the Ḣ−1/2-seminorm of σk by the stray field energy of order of O( 1
| log εk| ).

Notice that cutting off the large wave length ≥ 1/εk in the weaker norm in Proposition 5 must

be compensated by the fading L2−control of σk that corresponds to the exchange energy. On

the other hand, the Ḣ−1/2-seminorm of σk can be replaced by the energy of a stray field as in

Proposition 4: there exists a stray field hk : R2 → R2 associated to mk by (22) such that

‖σk‖2
Ḣ−1/2 = 2

∫

R2

|hk|2 dx.

These arguments suggest the following localized version of the failing inequality (28). The reason

of using a cut-off function η is that the localized duality term
∫
η2χkσk

controls the local number of variations
∫
η2
∣∣dχk

dx1

∣∣ of m1,k.
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Proposition 6 (Ignat and Otto [10]) Let R,L > 0 and (x0
1, 0) ∈ R2. Let h : R2 → R2 and

m1 : R → R be related by (22) and let χ : R → R be a bounded function of locally bounded total

variation.

(i) If η ∈ C∞
c (R2) such that

supp η ⊂ B((x0
1, 0), R) ⊂ R2,

then there exists a universal constant C = C(R) > 0 depending only on R such that for all

ε ∈ (0, R],
∣∣∣∣
∫

R

η2(·, 0)χ
dm1

dx1
dx1

∣∣∣∣ ≤
(

4

π
| log ε| sup

R

|χ|
∫

R

η2(·, 0)
∣∣ dχ
dx1

∣∣
∫

R2

η2|h|2 dx
)1/2

+ C(R)

(
ε

∫ x0
1+R

x0
1
−R

∣∣dm1

dx1

∣∣2 dx1 +

∫

B((x0
1
,0),R)

|h|2 dx
)1/2

×
(

sup
R2

|η| + sup
R2

|∇η|
)(

sup
R2

|η| sup
R

|χ| +
∫

R

|η(·, 0)|
∣∣ dχ
dx1

∣∣
)
.

(ii) If η ∈ C∞(R2) with supp η ⊂ R × (−1, 1) and

h, m1, χ and η are L−periodic in x1,

then there exists a universal constant C = C(L) > 0 depending only on L such that for all ε ∈ (0, L],
∣∣∣∣
∫

[0,L)

η2(·, 0)χ
dm1

dx1
dx1

∣∣∣∣ ≤
(

4

π
| log ε| sup

R

|χ|
∫

[0,L)

η2(·, 0)
∣∣ dχ
dx1

∣∣
∫

[0,L)×R

η2|h|2 dx
)1/2

+ C(L)

(
ε

∫

[0,L)

∣∣dm1

dx1

∣∣2 dx1 +

∫

[0,L)×R

|h|2 dx
)1/2

×
(

sup
R2

|η| + sup
R2

|∇η|
)(

sup
R2

|η| sup
R

|χ| +
∫

[0,L)

|η(·, 0)|
∣∣ dχ
dx1

∣∣
)
.

In this paper, we consider several energy functionals {Eε}, {Fε} and {Gε} depending on a small

parameter ε > 0 and we are interested in their limiting behavior as ε ↓ 0. The limit we are looking

for is not the usual pointwise limit, but a limit adapted for the convergence of minimizers. This

appropriate notion of convergence is called the Γ−convergence (see e.g., Attouch [1], Dal Maso [5]).

Let us recall its definition in the particular case of a sequence of energies {Eεk
}k↑∞ given by (5)

where εk ↓ 0 and {αk} ⊂ [−1, 1]. Let X = L1
loc(R, S

1) be endowed with the metric

d(f, g) =
∑

n∈N

1

2n

∫ n

−n

|f − g| dt.

Then (X, d) is a complete metric space. We can naturally extend (5) to a functional Eεk
: X →

[0,∞] defined in the whole space X , i.e., Eεk
(f) < ∞ if f − αk ∈ H1(R, S1) and Eεk

(f) = ∞
otherwise. We say that E0 : X → [0,∞] is the Γ−limit of {Eεk

}k↑∞, or equivalently, Eεk
is

Γ−convergent to E0 under the X−topology if the following two conditions are satisfied:

(i) (lower bound) for every sequence fk → f in X , then lim infk↑∞ Eεk
(fk) ≥ E0(f);

(ii) (upper bound) for every f ∈ X , there exists a recovery sequence fk ∈ X such that fk → f

in X and limk↑∞ Eεk
(fk) = E0(f).

By Theorem 2, the expression of E0 is given by (12) and we have that E0(f) < ∞ if and only if

f ∈ A.
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4 Compactness

We start by proving the compactness results for the three models. For configurations {mk} of

uniformly bounded energy, the control of the stray field energy entails relative convergence of the

first components {m1,k} to a limit function m1 that is a constant. Since |mk| = 1, we deduce that

the second components {m2,k} will asymptotically take two possible values ±
√

1 −m2
1. In order to

prove compactness, it is enough to bound uniformly the number of large variations of {m2,k}. The

number of such variations can be estimated by the total energy through a duality argument based

on the logarithmically failing interpolation inequality presented in Proposition 5. These ideas are

also used in [10].

For the simplicity of notation, every convergence of a sequence should be considered up to a

subsequence in this Section.

Proof of Theorem 1. We proceed in several steps.

Step 1. We show that there exists a constant m1,∞ ∈ [−1, 1] such that

m1,k → m1,∞ in L1
loc(R) as k ↑ ∞.

Indeed, there exists m1,∞ ∈ [−1, 1] such that

αk → m1,∞ as k ↑ ∞. (31)

Since (10) implies that

‖m1,k − αk‖L2 → 0,

we deduce immediately the conclusion of Step 1. Moreover,

|m2,k|2 = 1 − |m1,k|2 → 1 − |m1,∞|2 in L1
loc(R).

Remark that if m1,∞ ∈ {−1, 1}, then m2,k → 0 in L1
loc(R) and the limit function is m = (±1, 0).

Therefore, in the rest of the proof, we analyze the remaining case m1,∞ ∈ (−1, 1).

Step 2. The location of large variations of m1,k and m2,k. Let k be fixed here. The function

m1,k − αk belongs to H1(R), therefore m1,k is continuous in R and has the limit αk at ±∞.

We deduce that m2,k is continuous in R and |m2,k| has the limit
√

1 − α2
k at ±∞. By (31),√

1 − α2
k →

√
1 −m1,∞2 as k ↑ ∞; thus, for k large enough, there exists a bounded interval

Ik ⊂ R such that

|m2,k| ≥
√

1 −m1,∞2

2
outside Ik

and m2,k does not change sign on the left and on the right of Ik, respectively. Hence, one can

detect a finite number Nk of intervals (ak
n, b

k
n) ⊂ Ik, n = 1, . . . , Nk where m2,k varies between

−
√

1−m1,∞
2

2 and

√
1−m1,∞

2

2 (see Figure 8):

ak
1 < bk1 ≤ ak

2 < bk2 ≤ · · · ≤ ak
Nk

< bkNk

and for each n = 1, . . . , Nk,

|m2,k(ak
n)| = |m2,k(bkn)| =

√
1 −m1,∞2

2
and |m2,k(t)| <

√
1 −m1,∞2

2
if t ∈ (ak

n, b
k
n). (32)
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Figure 8: The variations of m2.

Since mk is a continuous function on Ik, the construction of these intervals makes sense. It could

happen that Nk = 0 (i.e., no large variation exists for m2,k). We notice that m2,k(ak
n) has a

different sign than both m2,k(bkn) and m2,k(ak
n+1) for all n. Moreover,

sgn(m2,k(bkn))m2,k ≤
√

1 −m1,∞2

2
in (bkn−1, b

k
n) (33)

for n = 1, . . . , Nk, where we set bk0 = −∞. We can estimate the number Nk of large variations;

more precisely, we prove that

Nk ≤ |Ik|
1 −m1,∞2

∫

R

∣∣dm2,k

dt

∣∣2 dt.

Indeed, the Cauchy-Schwarz inequality yields

1 −m1,∞
2 =

(∫ bk
n

ak
n

dm2,k

dt
dt

)2

≤ (bkn − ak
n)

∫ bk
n

ak
n

∣∣dm2,k

dt

∣∣2 dt ≤ (bkn − ak
n)

∫

R

∣∣dm2,k

dt

∣∣2 dt

and we deduce that

Nk ≤
∑Nk

n=1(b
k
n − ak

n)

1 −m1,∞2

∫

R

∣∣dm2,k

dt

∣∣2 dt ≤ |Ik|
1 −m1,∞2

∫

R

∣∣dm2,k

dt

∣∣2 dt.

Step 3. We prove that the sequence {Nk}k↑∞ is uniformly bounded. The idea is to apply

Proposition 5 for a step function χk that is adapted to mk in order to count the large variations

of m2,k. If Nk > 0, we denote by tkn ∈ [ak
n, b

k
n] the smallest number such that m2,k(tkn) = 0,

n = 1, . . . , Nk. By (32), m1,k does not change sign in (ak
n, t

k
n). Therefore, we consider

χk =

{
sgn(m1,k) in (ak

n, t
k
n) ⊂ Ik, n = 1, . . . , Nk,

0 elsewhere.
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Then, we obtain:

∫

R

∣∣dχk

dt

∣∣ = 2Nk, (34)

∫

R

χk
dm1,k

dt
dt =

Nk∑

n=1

∫ tk
n

ak
n

sgn(m1,k)
dm1,k

dt
dt

=

Nk∑

n=1

(
|m1,k|(tkn) − |m1,k|(ak

n)

)
= Nk

(
1 −

√
3 +m1,∞2

2

)
. (35)

As we mentioned in Section 3, the duality term (26) controls the number Nk of large variations

of m2,k. On the other hand, by Proposition 5, we expect that the duality term (at power 2) is

controlled by the energy Eεk
and Nk. More precisely, setting wk := | log εk|2, Proposition 5 applied

for the parameter δk := εk

| log εk| ≪ wk and the step function χk yields for k large enough:

∣∣∣∣
∫

R

χk
dm1,k

dt
dt

∣∣∣∣ =

∣∣∣∣
∫

R

χ̂k
d̂m1,k

dt
dξ

∣∣∣∣

≤
(∫

R

(δk +
1

|ξ| +
1

wk|ξ|2
)−1|χ̂k|2 dξ

)1/2

×
(∫

R

(δk +
1

|ξ| +
1

wk|ξ|2
)| d̂m1,k

dt
|2 dξ

)1/2

≤
(∫

R

min{ 1

δk
, |ξ|, wk|ξ|2}|χ̂k|2 dξ

)1/2

×
(∫

R

(δk +
1

|ξ| +
1

wk|ξ|2
)|ξ|2 | ̂m1,k − αk|2 dξ

)1/2

(29)

≤ C

(
log

wk

δk
sup

R

|χk|
∫

R

∣∣∣∣
dχk

dt

∣∣∣∣
)1/2

×
(
δk‖m1,k‖2

Ḣ1 + ‖m1,k‖2
Ḣ1/2 +

1

wk
‖m1,k − αk‖2

L2

)1/2

≤C
(

sup
R

|χk|
∫

R

∣∣∣∣
dχk

dt

∣∣∣∣
)1/2

×
(
εk‖m1,k‖2

Ḣ1 + | log εk|‖m1,k‖2
Ḣ1/2 +

1

| log εk|
‖m1,k − αk‖2

L2

)1/2

that is,

∣∣∣∣
∫

R

χk
dm1,k

dt
dt

∣∣∣∣≤C
(
Eεk

(mk)

∫

R

|dχk

dt
|
)1/2

.

(This duality argument was already used in [6].) Therefore, by (10), (34) and (35), we deduce that

Nk ≤ CN
1/2
k ,

which yields that Nk ≤ C for every k where C > 0 is some absolute constant.
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Step 4. We show that the sequence {m2,k}k↑∞ is relatively compact in L1
loc(R). First, we construct

a good approximating step function ψk : R → {±
√

1 −m1,∞2} for m2,k. If Nk > 0, then we choose

ψk =

Nk∑

n=1

2m2,k(ak
n) 1(tk

n−1
,tk

n) + 2m2,k(bkNk
) 1(tk

Nk
,+∞),

where tk0 = −∞ and tkn are given in Step 3 for n = 1, . . . , Nk. If Nk = 0, then m2,k stays either

above −
√

1−m1,∞
2

2 or below

√
1−m1,∞

2

2 in R and it has the same limit at ±∞, i.e., m2,k(−∞) =

m2,k(+∞) ∈ {±
√

1 − α2
k}; in this case, set

ψk ≡ sgn

(
m2,k(+∞)

)√
1 −m1,∞2 in R.

It is obvious that ∫

R

|dψk

dt
| = 2Nk

√
1 −m1,∞2.

It follows by Step 3 that the sequence {ψk} has uniformly bounded total variation. Therefore, any

accumulation point ψ : R → {±
√

1 −m1,∞2} of {ψk}k↑∞ in L1
loc(R) is of bounded total variation

and has the form

ψ =

N+1∑

n=1

(−1)n sin θ 1(tn−1,tn),

where N ∈ N, cos θ = m1,∞, θ ∈ [0, 2π) and −∞ = t0 < t1 < · · · < tN < tN+1 = +∞. Finally,

(33) leads to

|ψk +m2,k| ≥
√

1 −m1,∞2

2
in R, (36)

and by Step 1, we have for every bounded interval I ⊂ R,

∫

I

|ψk −m2,k|2 dt
(36)

≤ 4

1 −m1,∞2

∫

I

|ψ2
k −m2

2,k|2 dt

≤ 4

1 −m1,∞2

∫

I

|(1 −m1,∞
2) −m2

2,k|2 dt

≤ 16

1 −m1,∞2

∫

I

|m1,k −m1,∞|2 dt Step 1→ 0 as k ↑ ∞.

Since ψk → ψ in L1
loc, it follows that m2,k → ψ in L1

loc(R), i.e.,

mk →
(

cos θ

ψ

)
in L1

loc(R, S
1) as k ↑ ∞.

�

Now we prove the compactness result for Model 2 (with the same convention that every con-

vergence should be considered up to a subsequence):

Proof of Theorem 3. The same steps as in the proof of Theorem 1 are to be followed. The only

difference concerns the compactness of {m1,k}. The L2-norm of m1,k − cos θk present in the energy

Eεk
in Model 1 does not appear anymore in the energy Fεk

. However, this term is penalized by Fεk
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via the compact embedding Ḣ1/2(−1, 1) →֒ L2(−1, 1). More precisely, we show that there exists a

constant m1,∞ ∈ [−1, 1] such that

m1,k → m1,∞ in L1
loc(R) as k ↑ ∞.

Indeed, let m1,∞ ∈ [−1, 1] be such that cos θk → m1,∞ as k ↑ ∞. We have

∫

R

|m1,k − cos θk|2 dt
(6)
=

∫ 1

−1

|m1,k − cos θk|2 dt

(6)
=

∫ 1

−1

∫ 3

2

|m1,k(t) −m1,k(t+ s)|2 dt ds

≤ 9

∫ 1

−1

∫ 3

2

|m1,k(t) −m1,k(t+ s)|2
s2

dt ds

≤ 9

∫

R

∫

R

|m1,k(t) −m1,k(t̃)|2
|t− t̃|2 dt dt̃

(18)

≤ 18π
Fεk

(mk)

| log εk|
(14)→ 0 as k ↑ ∞.

The conclusion of Step 1 now is straightforward. As before, if m1,∞ ∈ {−1, 1}, then

m2,k → 0 in L1
loc(R).

In this case, the limit m is a constant function equal to (m1,∞, 0).

If m1,∞ ∈ (−1, 1), the rest of the proof comes by repeating the arguments at Steps 2, 3 and 4 in

the proof of Theorem 1. In this case, condition (6) implies that for k large enough, the number Nk

of intervals {(an
k , b

n
k )}1≤n≤Nk

of large variations of m1,k and m2,k is an odd number. Moreover, any

accumulation point m = (m1,m2) : R → S1 satisfies (6), m is constant on the intervals (−∞,−1)

and (1,+∞), respectively and m2 has different sign on these intervals; therefore, m has an odd

number N of walls. �

The proof for the compactness result in Model 3 can be adapted as follows:

Proof of Theorem 5. The same ideas presented in the proof of Theorems 1 and 3 are to be

repeated. We only develop the arguments that are different with respect to Models 1 and 2. The

main issue is that (8) imposes that the normal component of the limit magnetization across the

walls vanishes. More precisely, we show that

m1,k → 0 in L1
loc(R) as k ↑ ∞.

Indeed, let us denote the mean value of m1,k on (−1, 1) by

αk :=
m̂1,k(0)√

2
=

∫ 1

−1

− m1,k(t) dt ∈ [−1, 1].

There exists m1,∞ ∈ [−1, 1] such that αk → m1,∞ as k ↑ ∞. By Plancherel’s identity, we have

∫ 1

−1

|m1,k − αk|2 dt =
∑

β∈πZ\{0}
|m̂1,k(β)|2

≤
∑

β∈πZ\{0}
|β||m̂1,k(β)|2 ≤ Gεk

(mk)

| log εk|
(16)→ 0 as k ↑ ∞.
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Thus, we deduce that m1,k → m1,∞ in L2
per as k ↑ ∞. On the other hand, we know by (8) that

m1,k(t) = −m1,k(t+ 1) for every t ∈ R. (37)

Passing to the limit k ↑ ∞, we deduce that m1,∞ = 0. As a consequence, |m2,k| → 1 in L2(−1, 1)

as k → ∞.

Then we consider all the intervals (ak
n, b

k
n) ⊂ R, n ∈ Z where m2,k varies between − 1

2 and 1
2

as at Step 2 in the proof of Theorem 1. Since m2,k is 2−periodic, these intervals are periodically

distributed. As before, the number Nk of such intervals included in [−1, 1) is finite.

Now we prove that {Nk} is uniformly bounded. One can construct a 2−periodic step function

χk that is adapted to the large variations of m2,k as at Step 3 in the proof of Theorem 1. Then

we apply inequality (30) for the parameters wk := | log εk|2 and δk := εk

| log εk| ≪ wk and the step

function χk. For the sake of completeness, we rewrite the duality argument in the periodic case.

We have for k large enough:

∣∣∣∣
∫

[−1,1)

χk
dm1,k

dt
dt

∣∣∣∣ =

∣∣∣∣
∑

β∈πZ

χ̂k(β)
d̂m1,k

dt
(β)

∣∣∣∣

≤
( ∑

β∈πZ

min{ 1

δk
, |β|, wk|β|2}|χ̂k(β)|2

)1/2

×
( ∑

β∈πZ

(δk +
1

|β| +
1

wk|β|2
)|β|2 |m̂1,k(β)|2

)1/2

(30)

≤ C

(
log

wk

δk
sup

[−1,1)

|χk|
∫

[−1,1)

∣∣∣∣
dχk

dt

∣∣∣∣
)1/2

×
(
δk

∫

[−1,1)

∣∣∣∣
dm1,k

dt

∣∣∣∣
2

dt+
∑

β∈πZ

|β| |m̂1,k(β)|2 +
1

wk

∫

[−1,1)

|m1,k − αk|2 dt
)1/2

≤C
(

(Gεk
(mk) + 1)

∫

[−1,1)

|dχk

dt
|
)1/2

.

As before, one concludes that {Nk} is uniformly bounded.

As at Step 4 in the proof of Theorem 1, we construct a 2−periodic step function ψk with

values in {±1} that approximates m2,k. The sequence {ψk} has uniformly bounded total variation

in [−1, 1) and the set of its accumulation points coincides with the one of {m2,k}. Such a limit

m2 is a 2−periodic step function belonging to BVloc(R, {±1}). Moreover, by (8), we have that

m2(t) = −m2(t+ 1) for all t ∈ R. Therefore, m2 has an even number 2N of walls on [−1, 1) with

N ≥ 1 and writes as

m2 = ±
N+1∑

n=1

(−1)n

(
1(tn−1,tn) − 1(tn−1+1,tn+1)

)
in [−1, 1),

where −1 = t0 ≤ t1 < · · · < tN < tN+1 = 0.

�
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5 Lower bound

We prove the first assertion in Theorem 2 for the lower bound of the energy Eε in Model 1:

Proof of (i) in Theorem 2. By Theorem 1, we know that m ∈ A, i.e.,

m =
N+1∑

n=1

(
cos θ

(−1)n sin θ

)
1(tn−1,tn),

where θ ∈ [0, 2π) and −∞ = t0 < t1 < · · · < tN < tN+1 = +∞. Notice that if sin θ = 0 (i.e.,

|m1| = 1) or N = 0, then E0(m) = 0 and the inequality (13) is trivial. Therefore, we assume that

N ≥ 1 and | sin θ| > 0. Set the interval

I := (t1 − 1, tN + 1) = (x0
1 −R, x0

1 +R)

with x0
1 := t1+tN

2 and R := 1 + tN−t1
2 . Let

µ :=





1

5
min

2≤n≤N
{|tn − tn−1|, 1} if N ≥ 2,

1

5
if N = 1.

(38)

Since m2,k → m2 in L1(I), there exists kµ ∈ N such that for every k ≥ kµ we have

∫

I

|m2,k −m2| dt ≤
µ| sin θ|

4
. (39)

This condition implies that for every n = 1, . . . , N and every k ≥ kµ, m2,k changes sign on

(tn − µ
2 , tn + µ

2 ). Suppose that this is not the case. W.l.o.g., we may assume that m2,k ≥ 0 in

(tn − µ
2 , tn + µ

2 ). We know that the second component m2 of the limit configuration is negative

either in (tn − µ
2 , tn) or in (tn, tn + µ

2 ). On that interval of length µ/2, we have m2 = −| sin θ| and

|m2,k −m2| ≥ | sin θ|. It would mean that

∫ tn+ µ
2

tn−µ
2

|m2,k −m2| dt ≥
µ| sin θ|

2

which contradicts with (39).

By (39), the continuity of m2,k yields the existence of tkn ∈ (tn − µ
2 , tn + µ

2 ) with

m2,k(tkn) = 0, i.e., |m1,k(tkn)| = 1, n = 1, . . . , N. (40)

For every k ≥ kµ, we define the step functions χk : R → {−1, 0, 1},

χk =





sgn(m1,k(tkn)) in (tn − 2µ, tkn), n = 1, . . . , N,

− sgn(m1,k(tkn)) in (tkn, tn + 2µ), n = 1, . . . , N,

0 elsewhere.

(41)

We also consider the cut-off function ηk ∈ C∞
c (B((x0

1, 0), R) ⊂ R2) be such that

ηk(tkn, 0) = 1 and supp ηk(·, 0) ⊂ ∪N
n=1(tn − µ, tn + µ) and |ηk| ≤ 1, |∇ηk| ≤

C

µ
in B((x0

1, 0), R).

(42)
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We have that ∫

R

η2
k(·, 0)|dχk

dt
| (42)

=

N∑

n=1

∫ tn+µ

tn−µ

η2
k(·, 0)|dχk

dt
| (41),(42)

= 2N. (43)

The localized duality term (26) controls the number N of large variations of m1,k and m2,k. Indeed,

integration by parts leads to

∫

R

η2
k(·, 0)χk

dm1,k

dx1

(41),(42)
=

N∑

n=1

sgn(m1,k(tkn))

(∫ tk
n

tn−µ

η2
k(·, 0)

dm1,k

dx1
−
∫ tn+µ

tk
n

η2
k(·, 0)

dm1,k

dx1

)

(42)
=

N∑

n=1

sgn(m1,k(tkn))

(
2m1,k(tkn) −

∫ tk
n

tn−µ

m1,k
dη2

k(·, 0)

dx1
+

∫ tn+µ

tk
n

m1,k
dη2

k(·, 0)

dx1

)

(42)

≥
N∑

n=1

sgn(m1,k(tkn))

(
2m1,k(tkn) − 2 cos θ −

∫ tn+µ

tn−µ

|m1,k − cos θ|
∣∣dη

2
k(·, 0)

dx1

∣∣
)

(40),(42)

≥ N(2 − 2| cos θ|) − C

µ

∫

I

|m1,k − cos θ| dx1. (44)

Set δk = εk

| log εk| . Let hk : R2 → R2 be any stray field associated to m1,k by (22). We apply

Proposition 6 for the parameter δk ≪ R and the functions χk and ηk (with the support lying

inside B((x0
1, 0), R) ⊂ R2):

∫

R

η2
k(x1, 0)χk

dm1,k

dx1
dx1 ≤

(
4

π
| log δk|

∫

R

η2
k(·, 0)|dχk

dt
|
∫

R2

|hk|2 dx
)1/2

+ C(R)

(
δk

∫

R

|dm1,k

dx1
|2 dx1 +

∫

R2

|hk|2 dx
)1/2

× (1 +
C

µ
)

(
1 +

∫

R

|ηk(·, 0)| |dχk

dt
|
)
.

We minimize over all stray fields hk with (22). By (23), (43) and (44), it implies that

2N(1 − | cos θ|) − C

µ

∫

I

|m1,k − cos θ|

≤
(

4N

π
| log δk| ‖m1,k‖2

Ḣ1/2

)1/2

+
C(R)N

µ
| log εk|−1/2Eεk

(mk)1/2.

Since m1,k → cos θ in L1(I), we conclude by passing to liminf as k ↑ ∞ that

πN(1 − | cos θ|)2 ≤ lim inf
k→∞

| log εk| ‖m1,k‖2
Ḣ1/2

which leads to (13). �

Proof of (i) in Theorem 4. The arguments presented in the proof of (i) of Theorem 2 for

Model 1 are to be repeated for Model 2. �

Proof of (i) of Theorem 6. For the sake of completeness, we adapt the arguments presented

above to the periodic case in Model 3.

(i) Let m ∈ C, i.e.,

m =
∑

n∈Z

(
0

(−1)n

)
1(tn−1,tn)
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where we denote by {tn}n∈Z the sequence of walls of m that is 1−periodically distributed in R
such that m(t) = −m(t+ 1) for every t ∈ R. Let N be the number of jumps of m in [−1, 1) and

N ≥ 2 is an even number. Set

µ =
1

5
min
n∈Z

{|tn − tn−1|}.

For k large enough, using the same argument as in the proof of (i) of Theorem 2, one detects a

sequence {tkn}n∈Z of zeros of m2,k that is 1−periodically distributed in R and contains exactly N

terms in [−1, 1). Then we construct a similar step function χk to (41) and a cut-off function ηk

corresponding to (42) that are both 2−periodic. We have
∫

[−1,1)

η2
k(·, 0)|dχk

dt
|=2N and

∫

[−1,1)

η2
k(·, 0)χk

dm1,k

dx1
≥ 2N − C

µ

∫

[−1,1)

|m1,k| dx1. (45)

We apply the periodic version of inequality in (ii) of Proposition 6 for δk = εk

| log εk| small enough

and any stray field hk : R2 → R2 associated to m1,k by (22) that is 2−periodic in x1. It leads to

∫

[−1,1)

η2
k(x1, 0)χk

dm1,k

dx1
dx1 ≤

(
4

π
| log δk|

∫

[−1,1)

η2
k(·, 0)|dχk

dt
|
∫

[−1,1)×R

|hk|2 dx
)1/2

+ C

(
δk

∫

[−1,1)

|dm1,k

dx1
|2 dx1 +

∫

[−1,1)×R

|hk|2 dx
)1/2

× (1 +
C

µ
)

(
1 +

∫

[−1,1)

|ηk(·, 0)| |dχk

dt
|
)
.

We minimize over all 2−periodic (in x1−direction) stray fields hk that satisfy (22). Using the

assumption that m1,k → 0 in L1
loc(R), it implies by (25) and (45),

2N − C

µ

∫

[−1,1)

|m1,k| dx1≤
(

4N

π
| log δk|‖m1,k‖2

Ḣ
1/2
per

)1/2

+
CN

µ
| log εk|−1/2Gεk

(mk)1/2.

We conclude that

πN ≤ lim inf
k→∞

| log εk|‖m1,k‖2

Ḣ
1/2
per
.

�

6 Upper bound

Now we prove the second assertion in Theorem 2 for the attainment of the lower bound of the

energy Eε in Model 1:

Proof of (ii) in Theorem 2. Let m ∈ A, i.e.,

m =

N+1∑

n=1

(
cos θ

(−1)n sin θ

)
1(tn−1,tn),

where θ ∈ [0, 2π) and −∞ = t0 < t1 < · · · < tN < tN+1 = +∞. We want to construct smooth

transition layers mk such that mk −m has compact support in R, mk → m in L1
loc(R, S

1) and

lim sup
k↑∞

Eεk
(mk) ≤ E0(m). (46)
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In the case when N = 0 or sin θ = 0, i.e., m is constant, then E0(m) = Eε(m) = 0 and hence, we

may consider mk := m. Otherwise, N ≥ 1 and sin θ 6= 0. W.l.o.g., we assume that cos θ ≥ 0. (For

the case cos θ < 0, one should consider the sequence mk = (−m1,k,m2,k).)

Let ε > 0 and set δ := ε| log ε|. We consider the following transition layer (uε, vε) : R → S1

that approximates a wall of angle 2θ centered at the origin (see Figure 9):

uε(t) =





cos θ + (1 − cos θ) | log
√

t2+δ2|
| log δ| if |t| ≤

√
1 − δ2,

cos θ elsewhere,
(47)

and

vε(t) =

{
− sgn(sin θ)

√
1 − u2

ε(t) if t ≤ 0,

sgn(sin θ)
√

1 − u2
ε(t) if t ≥ 0.

(48)

Then (uε, vε) ∈ Ḣ1 ∩ C0(R, S1) and

- 2
1

1

cos

2
1

u

sin

-sin

2
1

- 2
1

v

Figure 9: Transition layer (uε, vε) of angle 2θ with a core of size δ = ε| log ε|.

(uε, vε) → (u0, v0) :=

{
(cos θ,− sin θ) if t ≤ 0,

(cos θ, sin θ) if t ≥ 0,
in L1

loc(R, S
1) as ε ↓ 0.

We will prove that

lim sup
ε↓0

Eε((uε, vε)) ≤ E0((u0, v0)) = π(1 − cos θ)2. (49)
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First, we estimate the exchange energy corresponding to the transition layer:

ε

∫

R

∣∣duε

dt

∣∣2 +
∣∣dvε

dt

∣∣2 dt = ε

∫

R

1

1 − u2
ε

∣∣duε

dt

∣∣2 dt

≤ ε

∫

R

1

1 − uε

∣∣duε

dt

∣∣2 dt

=
2ε(1 − cos θ)

| log δ|

∫ √
1−δ2

−
√

1−δ2

t2

(t2 + δ2)2 log t2+δ2

δ2

dt

≤ 4ε(1 − cos θ)

δ| log δ|

∫ 1/δ

0

s2

(s2 + 1)2 log(s2 + 1)
ds

= O

(
1

| log ε|| log δ|

)
= O

(
1

| log ε|2
)
. (50)

For the anisotropy term, integration by parts leads to the following estimate:

∫

R

|uε − cos θ|2 dt =
(1 − cos θ)2

2| log δ|2
∫ √

1−δ2

0

log2(t2 + δ2) dt

=
2(1 − cos θ)2

| log δ|2
∫ √

1−δ2

0

t2

t2 + δ2
log

1

t2 + δ2
dt

≤ 2(1 − cos θ)2

| log δ|2
∫ √

1−δ2

0

log
1

t2 + δ2
dt

=
4(1 − cos θ)2

| log δ|2
∫ √

1−δ2

0

t2

t2 + 1
dt (51)

= O

(
1

| log δ|2
)

= O

(
1

| log ε|2
)
. (52)

In order to estimate the stray-field energy, let Uε be the radial extension of uε in R2:

Uε(x1, x2) = uε(
√
x2

1 + x2
2 ).

By (20), it follows that

‖uε‖2
Ḣ1/2 ≤ 1

2

∫

R2

∣∣∇Uε|2 dx

≤ π

∫ 1

0

r
∣∣duε

dr

∣∣2 dr

≤ π(1 − cos θ)2

| log δ|2
∫ 1

0

r3

(r2 + δ2)2
dr

=
π(1 − cos θ)2

| log δ|2
∫ 1/δ

0

s3

(s2 + 1)2
ds

≤ π(1 − cos θ)2

| log δ|2 (1 + | log δ|) =
π(1 − cos θ)2

| log ε| +O

(
log | log ε|
| log ε|2

)
. (53)

Hence, (50), (52) and (53) yield that

Eε((uε, vε)) ≤ π(1 − cos θ)2 +O

(
log | log ε|
| log ε|

)
,
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and (49) immediately follows.

We adapt this transition layer for the walls of the limit magnetization m. Let Tpf(·) = f(·− p)

be the translation operator and Rlf(·) = f
( ·

l

)
be the dilation operator. Let µ be given by (38).

For every k ∈ N, we consider

δk := εk| log εk|

and mk := (m1,k,m2,k) with

m1,k(t) =

{
RµTtnuεk

(t) if t ∈ (tn − µ, tn + µ), n = 1, . . . , N,

cos θ elsewhere,

and

m2,k(t) =

{
(−1)n−1RµTtnvεk

(t) if t ∈ (tn − µ, tn + µ), n = 1, . . . , N,

(−1)n sin θ elsewhere in (tn−1, tn), n = 1, . . . , N + 1.

Then

mk −m→ 0 in L1(R,R2) as k ↑ ∞

and (46) holds. Indeed, the exchange energy and the anisotropy estimate like:

εk

∫

R

∣∣dmk

dt

∣∣2 dt = εk

N∑

n=1

∫ tn+µ

tn−µ

∣∣ d
dt
RµTtn(uεk

, vεk
)
∣∣2 dt =

Nεk

µ

∫

R

1

1 − u2
εk

∣∣duεk

ds

∣∣2 ds

(50)
= O

(
N

µ| log εk|2
)
,

and

∫

R

|m1,k − cos θ|2 dt =

N∑

n=1

∫ tn+µ

tn−µ

∣∣RµTtnuεk
− cos θ

∣∣2 dt = µN

∫ 1

−1

|uεk
− cos θ|2 ds

(52)
= O

(
µN

| log εk|2
)
.

In order to estimate the stray-field energy, we introduce the following extension Mk of m1,k in R2:

Mk(x1, x2) =

{
RµT(tn,0)Uεk

(x1, x2) if x1 ∈ (tn − µ, tn + µ), n = 1, . . . , N,

cos θ elsewhere in R2,

where Uεk
is the radial extension of uεk

in R2. Then it follows by (20),

‖m1,k‖2
Ḣ1/2 ≤ 1

2

∫

R2

∣∣∇Mk|2 dx

=
1

2

N∑

n=1

∫

(tn−µ,tn+µ)×R

|∇RµT(tn,0)Uεk
|2 dx

=
N

2

∫

I×R

|∇Uεk
|2 dy

(53)

≤ π(1 − cos θ)2N

| log δk|2
(1 + | log δk|) =

πN(1 − cos θ)2

| log εk|
+O

(
log | log εk|
| log εk|2

)
.
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From here, (46) follows. Observe that mk −m has a compact support in (t1 − 1, tN + 1). For

each k ∈ N, the function mk only belongs to Ḣ1 ∩C0(R, S1) and it is not a C1 function. However,

one can approximate mk in H1
loc(R, S

1) by a sequence of smooth functions {mn
k : R → S1}n∈N that

coincide with m outside the interval (t1 − 1, tN + 1). Then

Eεk
(mn

k ) → Eεk
(mk) as n ↑ ∞.

Therefore, by a diagonal selection argument, m can be approximated by a smooth sequence,

still denoted by {mk}, for which (46) holds. Moreover, since mk → m in L1
loc(R, S

1), by (i) in

Theorem 2, (13) holds and now the conclusion is straightforward. �

Proof of (ii) in Theorem 4. For the construction of the recovery sequence in Model 2, the

only difference with respect to Model 1 is the following: the approximating sequence should satisfy

mk = m in R \ [−1, 1]. This condition is not satisfied by the sequence built for Model 1 if m has a

wall at the boundary of the sample [−1, 1], i.e., t1 = −1 or tN = 1. Let us explain the way to fix

this problem when t1 = −1 (the case tN = 1 is similar). Let µ be given by (38). For 0 < γ < µ,

set t
(γ)
1 = −1 + γ and m(γ) be the modified limit function m that has the first wall present in t

(γ)
1

(and not in t1) and the other walls remain in t2, ..., tN . Then we consider the sequence {m(γ)
k }k∈N

constructed in the proof of (ii) of Theorem 2 for a new µγ := γ
5 . This sequence satisfies the

conditions in (ii) of Theorem 2 for m(γ). Now letting γ ↓ 0, by a diagonal selection procedure, we

can extract the desired sequence {mk} for which conditions in (ii) in Theorem 4 hold true for m.

�

Proof of (ii) in Theorem 6. Let m ∈ C and we consider the set of walls {tn}n∈Z of m that are

1−periodically distributed in R. Set µ = 1
5 minn∈Z{|tn−tn−1|}. Using translation and scaling by µ

of the transition layer (47) & (48) corresponding to a wall (0,±1), the same construction as in the

proof of (ii) of Theorem 2 gives a sequence of smooth 2−periodic functions {mk} that converges

to m and satisfies lim supk↑∞Gεk
(mk) = πN . �

Now we show Proposition 1: the anisotropy term is essential in (3) in order that the variational

problem is nondegenerate.

Proof of Proposition 1 . We construct a sequence of functions {mk = (m1,k,m2,k) : R → S1}k≥2

that satisfies the limit conditions in (1), the wall domain is centered in the origin mk(0) = (1, 0)

and

‖mk‖Ḣ1 → 0, ‖m1,k‖Ḣ1/2 → 0 as k ↑ ∞.

Let

m1,k(t) =




α+ (1 − α)

log k√
t2+1

log k if |t| ≤
√
k2 − 1

α elsewhere,

and

m2,k(t) =




−
√

1 −m2
1,k(t) if t ≤ 0,√

1 −m2
1,k(t) if t ≥ 0.

The difference with respect to the transition layer (47) & (48) consists in the fact that the tails

will spread over the entire R as k ↑ ∞.
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We first estimate the Ḣ1−norm of the transition layer:
∫

R

∣∣dm1,k

dt

∣∣2 +
∣∣dm2,k

dt

∣∣2 dt =

∫

R

1

1 −m2
1,k

∣∣dm1,k

dt

∣∣2 dt

≤
∫

R

1

1 −m1,k

∣∣dm1,k

dt

∣∣2 dt

=
2(1 − α)

log k

∫ √
k2−1

−
√

k2−1

t2

(t2 + 1)2 log(t2 + 1)
dt

≤ 4(1 − α)

log k

∫ ∞

0

t2

(t2 + 1)2 log(t2 + 1)
dt

= O

(
1

log k

)
. (54)

In order to estimate the Ḣ1/2−norm of the transition layer, we consider Uk be the radial extension

of m1,k in R2:

Uk(x1, x2) = m1,k(
√
x2

1 + x2
2 ).

Applying (20), we obtain that

‖m1,k‖2
Ḣ1/2 ≤ 1

2

∫

R2

∣∣∇Uk|2 dx

= π

∫ k

0

r
∣∣dm1,k

dr

∣∣2 dr

≤ π(1 − α)2

log2 k

∫ k

0

r3

(r2 + 1)2
dr

≤ π(1 − α)2

log2 k
(1 + log k) = O

(
1

log k

)
. (55)

For arbitrary δ > 0, we conclude by (54) and (55) that

δ‖mk‖2
Ḣ1 + ‖m1,k‖2

Ḣ1/2 → 0 as k ↑ ∞.

We notice that the anisotropy for the sequence {mk} blows-up. Indeed, integration by parts

leads to:
∫

R

|m1,k − α|2 dt =
(1 − α)2

2 log2 k

∫ √
k2−1

0

log2 k2

t2 + 1
dt

=
k(1 − α)2

2 log2 k

∫ √
1−1/k2

0

log2(y2 + 1/k2) dy

=
2k(1 − α)2

log2 k

∫ √
1−1/k2

0

y2

y2 + 1/k2
log

1

y2 + 1/k2
dy

≥ 2k(1 − α)2

log2 k

∫ √
1/2−1/k2

√
1/3−1/k2

y2

y2 + 1/k2
log

1

y2 + 1/k2
dy

≥ 4k(1 − α)2 log 2

log2 k

∫ √
1/2−1/k2

√
1/3−1/k2

y2 dy

∼ k

log2 k
→ ∞ as k ↑ ∞,
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where we used that the function x → x log x is increasing in [1,∞) and
1

y2 + 1/k2
≥ 2 if y ∈

(
√

1/3 − 1/k2,
√

1/2− 1/k2). �

Finally, we highlight in Proposition 2 the importance of the fading H1−control in the energy

expression in order for the compactness result in the previous theorems to hold true. In general,

the only control in the H1/2−norm of the magnetization is not sufficient to enforce a compactness

result:

Proof of Proposition 2. Let us consider the transition layer (47) & (48) corresponding to a 180◦

Néel wall for a small ε ∈ (0, 1/3), i.e.,

uε(t) =





| log
√

t2+ε2|
| log ε| if |t| ≤

√
1 − ε2

0 elsewhere,

and

vε(t) =

{
−
√

1 − u2
ε(t) if t ≤ 0,

√
1 − u2

ε(t) if t ≥ 0

(see Figures 2 and 3). By (53), it follows that

‖uε‖2
Ḣ1/2 ≤ 2π

| log ε| .

For every n ∈ N, we construct a functionmn = (m1,n,m2,n) : R → S1 that has 2n+1 transitions

of 180◦ and suppm1,n ⊂ [0, 1]. Set εn = 1
n4n , µn = 1

16n , tn0 = −∞, tnk = 2k−1
4n+2 for k = 1, . . . , 2n+ 1

and tn2n+2 = ∞. As in the proof of (ii) of Theorem 2, let Tp and Rl be the translation and the

dilation operator, respectively. We define

m1,n(t) =

{
RµnTtn

k
uεn(t) if t ∈ (tnk − µn, t

n
k + µn), k = 1, . . . , 2n+ 1,

0 elsewhere,

and

m2,n(t) =

{
(−1)k+1RµnTtn

k
vεn(t) if t ∈ (tnk − µn, t

n
k + µn), k = 1, . . . , 2n+ 1,

(−1)k elsewhere in (tnk−1, t
n
k ), k = 1, . . . , 2n+ 2.

Then

m1,n → 0 in L2(R) as n ↑ ∞. (56)

Indeed,

‖m1,n‖2
L2 = (2n+ 1)µn

∫ 1

−1

u2
εn

(s) ds ≤ C

| log εn|2
∫ √

1−ε2
n

0

log2(s2 + ε2n) ds = O

(
1

| log εn|2
)
.

We now prove that

‖m1,n‖2
Ḣ1/2 ≤ 2π

| logn| .

Indeed, we consider Uεn be the radial extension of uεn in R2:

Uεn(x1, x2) = uεn(
√
x2

1 + x2
2 ).
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Then let Mn be the following extension of m1,n in R2:

Mn(x1, x2) =

{
RµnT(tn

k ,0)Uεn(x1, x2) if x1 ∈ (tk − µ, tk + µ), k = 1, . . . , 2n+ 1,

0 elsewhere in R2.

Applying (20) to the extension Mn of m1,n, it follows

‖m1,n‖2
Ḣ1/2 ≤ 1

2

∫

R2

∣∣∇Mn|2 dx

=
1

2

2n+1∑

k=1

∫

(tn
k−µn,tn

k+µn)×R

|∇RµnT(tn
k

,0)Uεn |2 dx

=
2n+ 1

2

∫

(−1,1)×R

|∇Uεn |2 dy

(53)

≤ 2π(2n+ 1)

| log εn|
≤ 2π

| logn| for n large enough.

It remains to prove that {m2,n} is not relatively compact in L1
loc. Assume by contradiction

that this would be the case. Without loss of generality, we may then assume that m2,n → m2 in

L1 and a.e. in (−1, 1). Then there exists n0 > 0 such that

∫ 1

−1

|m2,n −m2,n0
| dt ≤ 1

100
, for all n ≥ n0. (57)

By construction, the set {t : m2,n0
(t) = 1} contains disjoint intervals Ik = (tn0

2k−1 +µn0
, tn0

2k −µn0
),

k = 1, . . . , n0 of total length larger than 1/4. On each such interval Ik, a function m2,n takes the

value −1 at least on a subset of measure |Ik|/5, for n large enough. Therefore,

∫ 1

−1

|m2,n −m2,n0
| dt ≥

n0∑

k=1

∫

Ik

|m2,n − 1| dt ≥ 2

5

n0∑

k=1

|Ik| ≥
1

10
,

which is a contradiction with (57). �

7 Appendix

We prove some known characterizations of the homogeneous Ḣ1/2−seminorm that we used in the

previous sections.

Proposition 7 Let u : R → R. Then

(i)

‖u‖2
Ḣ1/2 =

1

2π

∫

R

∫

R

|u(s) − u(t)|2
|s− t|2 dsdt.

(ii) If u is 2−periodic, we have

‖u‖2

Ḣ
1/2
per

=
π

2

∫

[−1,1)

∫

[−1,1)

|u(s) − u(t)|2
|eiπs − eiπt|2 dsdt.

29



Proof. (i) By Plancherel’s identity, we have that
∫

R

∫

R

|u(s) − u(t)|2
|s− t|2 dsdt

l:=s−t
=

∫

R

∫

R

|u(t+ l) − u(t)|2
l2

dldt

=

∫

R

1

l2

∫

R

|eilξ − 1|2|û(ξ)|2 dldξ

= 4

∫

R

|û(ξ)|2
∫

R

1

l2
sin2

(
l|ξ|
2

)
dξdl

y:=l|ξ|/2
= 4

∫

R

|ξ| |û(ξ)|2 dξ ·
∫ ∞

0

sin2 y

y2
dy.

In order to conclude, it is enough to prove that
∫ ∞

0

sin2 y

y2
dy =

π

2
.

Indeed, integration by parts leads to
∫ ∞

0

sin2 y

y2
dy =

∫ ∞

0

sin(2y)

y
dy

s=2y
=

∫ ∞

0

sin s

s
ds.

To compute the last integral, we use the Laplace transform of the function s 7→ sin s
s , i.e.,

L(p) =

∫ ∞

0

e−ps sin s

s
ds, p ≥ 0.

We have that
dL

dp
(p) = − 1

1 + p2
and lim

p→∞
L(p) = 0.

Therefore, L(0) = π/2.

(ii) We compute:
∫

[−1,1)

∫

[−1,1)

|u(s) − u(t)|2
|eiπs − eiπt|2 dsdt

h:=s−t
=

∫

[−1,1)

dt

∫

[−1−t,1−t)

|u(t+ h) − u(t)|2
|eiπh − 1|2 dh

=

∫

[−1,1)

dt

∫

[−1,1)

|u(t+ h) − u(t)|2
|eiπh − 1|2 dh.

By the Fourier representation, we know that

u(t+ h) − u(t) =
∑

β∈πZ

û(β)(eiβh − 1)
eiβt

√
2
.

Then Parseval’s identity leads to
∫

[−1,1)

dh

|eiπh − 1|2
∫

[−1,1)

|u(t+ h) − u(t)|2 dt =

∫

[−1,1)

∑

β∈πZ

|û(β)|2 |e
iβh − 1|2

|eiπh − 1|2 dh

=
∑

β∈πZ

|û(β)|2
∫

[−1,1)

sin2 βh
2

sin2 πh
2

dh

=
∑

β∈πZ∗

|β| |û(β)|2
∫

[−1,1)

Jβ(h) dh,
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where Jβ(h) =
1

|β|
sin2 βh

2

sin2 πh
2

, β ∈ πZ∗ stands for the Fejér kernel. In order to conclude it is enough

to show that ∫

[−1,1)

Jβ(h) dh =
2

π
.

For that, we introduce the Dirichlet kernel:

Dn(h) =

n∑

k=−n

eikh = 1 + 2

n∑

k=1

cos(kh)

and we compute that

∫

[−1,1)

Jβ(h) dh =
1

|β|

∫

[−1,1)

|β|
π −1∑

n=0

Dn(h) dh =
1

|β|

|β|
π −1∑

n=0

2 =
2

π
.

�

Finally we prove Proposition 4 and then Proposition 3:

Proof of Proposition 4. (i) First we solve the problem (24). We search the solution H as a

gradient field, i.e., H = ∇U with U : R2 → R. In terms of U , (24) turns into a Neumann type

problem for Laplace’s equation:




∆U = 0 in {x2 6= 0},
[U ] = 0,

[
∂U
∂x2

]
= − dm1

dx1
on {x2 = 0}.

(58)

In the sequel, we will denote by Û the Fourier transform of U with respect to the x1−direction.

Then Û solves a second order ODE in x2 having the Fourier variable ξ as a parameter that is

obtained via (58):




∂2

∂x2
2

Û(ξ, ·) − ξ2Û(ξ, ·) = 0 if x2 6= 0,[
Û(ξ, ·)

]
= 0,

[
∂

∂x2
Û(ξ, ·)

]
= −iξm̂1(ξ) if x2 = 0.

Solving explicitly the ODE, we obtain

Û(ξ, x2) =
iξ

2|ξ|e
−|ξ||x2|m̂1(ξ), ξ 6= 0, x2 ∈ R. (59)

How to deduce regularity results for U starting from the Fourier expression (59), for arbitrary

functions m1 ∈ Ḣ1/2(R)? We will proceed as follows. We start with the a-priori formula of

H := ∇U in the Fourier transform in x1−direction and we prove the properties of the stray field

stated in Proposition 4. In particular, we will deduce that U ∈ Ḣ1(R2) ∩ L1
loc(R

2).

We set H ∈ L2(R2,R2) be given by its Fourier transform in x1:

Ĥ(ξ, x2) =

(
iξÛ(ξ, x2),

∂Û

∂x2
(ξ, x2)

)
:= e−|ξ||x2| d̂m1

dt
(ξ)

(
iξ

2|ξ| ,−
sgn(x2)

2

)
, ξ 6= 0, x2 6= 0.

Let us check that H belongs to L2(R2,R2). Indeed, by Plancherel’s identity, it follows that:
∫

R2

|H |2 dx =
1

2

∫

R

∫

R

ξ2e−2|ξ||x2||m̂1(ξ)|2 dξdx2

=
1

2

∫

R

|ξ| |m̂1(ξ)|2 dξ =
1

2
‖m1‖2

Ḣ1/2 < +∞.
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We will rigourously prove that H is a gradient field (formally, H is the gradient ∇U). For that,

we check that

∇×H = 0, i.e.,
∂H1

∂x2
=
∂H2

∂x1
in S′(R2).

Indeed, integration by parts and Parseval’s identity lead to

∫

R2

∂H2

∂x1
ζ dx = −

∫

R2

Ĥ2
∂̂ζ

∂x1
dξdx2

=

∫

R2

iξĤ2ζ̂ dξdx2

=

∫

R2

∂(iξÛ)

∂x2
ζ̂ dξdx2

= −
∫

R2

iξÛ
∂

∂x2
ζ̂ dξdx2

= −
∫

R2

Ĥ1
∂̂ζ

∂x2
dx

=

∫

R2

∂H1

∂x2
ζ dx, ∀ζ ∈ S(R2).

Therefore, by Poincaré’s lemma, there exists Ũ ∈ Ḣ1(R2)∩L1
loc(R

2) such that ∇Ũ = H . Obviously,

up to a constant, Ũ coincides with U a.e. in R2.

We now check that H is a stray field; indeed, Parseval’s identity and integration by parts yield

that

∫

R2

H · ∇ζ dx =

∫

R2

Ĥ(ξ, x2) ·
(
iξζ̂(ξ, x2),

∂ζ̂

∂x2
(ξ, x2)

)
dξdx2

=

∫

R2

ξ2Û · ζ̂ dξdx2 +

∫

R

d̂m1

dt
(ξ)

(∫

R

− sgn(x2)

2
e−|ξ||x2| ∂ζ̂

∂x2
(ξ, x2) dx2

)
dξ

=

∫

R2

ξ2Û · ζ̂ dξdx2 +

∫

R

d̂m1

dt
(ξ)

(
ζ̂(ξ, 0) −

∫

R

|ξ|
2
e−|ξ||x2|ζ̂ dx2

)
dξ

=

∫

R

dm1

dx1
ζ(·, 0) dx1, ∀ζ ∈ C∞

c (R2).

Then (24) follows by (22) and from the fact that H is a gradient field.

We want to prove that H is a minimizer of (23). First, we notice that for every stray field

h ∈ L2(R2,R2), (22) makes sense for every test function ζ ∈ Ḣ1(R2) ∩ L1
loc(R

2). Indeed, we

regularize ζ by a sequence {ζn}n∈N ⊂ C∞
c (R2) that converges to ζ in Ḣ1(R2). For example, one

can take ζn = χnρn ⋆ (ζ − an) where {ρn} is a mollifying sequence, an =
∫

n<|x|<2n
− ρn ⋆ ζ dx and

χn(x) = χ( |x|n ) where χ is a smooth cut-off function such that χ = 1 in (−1, 1) and χ = 0 outside

(−2, 2). The fact that the function fn := ρn ⋆ (ζ − an) is of vanishing mean value in the annulus

{n < |x| < 2n} is used for showing that fn∇χn → 0 in L2(R2) as n ↑ ∞. More precisely, by

Poincaré’s inequality, we have that:

∫

R2

|fn|2 |∇χn|2 dx ≤ C

n2

∫

n<|x|<2n

|fn|2 dx ≤ C

∫

n<|x|<2n

|∇fn|2 dx→ 0 as n ↑ ∞,
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since fn → ζ in Ḣ1 (here, C stands for a universal constant). Therefore, ζn → ζ in Ḣ1(R2). Then

Parseval’s identity leads to

∫

R2

h · ∇ζn dx =

∫

R

dm1

dx1
ζn(·, 0) dx1

=

∫

R

d̂m1

dx1
ζ̂n(·, 0) dξ

≤ ‖m1‖2
Ḣ1/2‖ζn(·, 0)‖2

Ḣ1/2

(20)

≤ 1√
2
‖m1‖2

Ḣ1/2‖ζn‖Ḣ1(R2)

and we conclude that (22) holds for ζ by passing to the limit n ↑ ∞ (here, ζ(·, 0) ∈ Ḣ1/2(R) is the

trace of ζ on the horizontal line {x2 = 0}). The stray field H is a minimizer of (23); indeed, for

every stray field h ∈ L2(R2,R2), we have that

∫

R2

|H |2 dx =

∫

R2

|∇U |2 dx (22)
=

∫

R

dm1

dx1
U dx1

(22)
=

∫

R2

h · ∇U ≤ ‖h‖L2‖∇U‖L2 = ‖h‖L2‖H‖L2.

Therefore, ‖h‖L2 ≥ ‖H‖L2.

Moreover, H is the unique minimizer in L2; indeed, if h is another minimizing stray field, then

h+ t(H − h) is also a stray field associated to m1 and satisfies

‖h‖L2 ≤ ‖h+ t(H − h)‖L2 , ∀t ∈ R.

That implies ∫

R2

h · (H − h) dx = 0.

Interchanging h by H , we get ∫

R2

H · (h−H) dx = 0.

Adding the last two identities, we obtain ‖H − h‖L2 = 0, i.e., H = h a.e. in R2.

(ii) The same argument as in (i) leads to the conclusion in the periodic case, too. �

Proof of Proposition 3. (i) We solve the Laplace equation with Dirichlet boundary data:

{
∆U = 0 in {x2 6= 0},
U(x1, ·) = u(x1) on {x2 = 0}.

As in the proof of Proposition 4, the Fourier transform in x1−direction turns this problem into an

ordinary differential equation in x2 having the Fourier variable ξ as a parameter:





∂2

∂x2
2

Û(ξ, ·) − |ξ|2Û(ξ, ·) = 0 if x2 6= 0,

Û(ξ, ·) = û(ξ) if x2 = 0.

The solution of the ODE is given by

Û(ξ, x2) = e−|ξ||x2|û(ξ).
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Starting from the a-priori formula of the gradient field H := ∇U , one can repeat the procedure

presented in the proof of Proposition 4. It follows that U ∈ Ḣ1(R2) ∩ L1
loc(R

2) with

∫

R2

|∇U |2 dx =

∫

R

∫

R


|ξ|2|Û |2 +

∣∣∣∣∣
∂Û

∂x2

∣∣∣∣∣

2

 dξdx2

= 2

∫

R

∫

R

|ξ|2e−2|ξ||x2||û(ξ)|2 dξdx2

= 2

∫

R

|ξ| |û(ξ)|2 dξ.

It also satisfies the condition:
∫

R2

∇U · ∇ζ dx = −
∫

R

[
∂U

∂x2

]
ζ dx1, ∀ζ ∈ C∞

c (R2). (60)

Here, the jump of the normal derivative of U across the line {x2 = 0} is given by the Fourier

transform in x1−direction: [
∂̂U

∂x2

]
= −2|ξ|û ∈ Ḣ−1/2(R).

Notice that (60) stands true for every ζ ∈ Ḣ1(R2); it comes by regularizing ζ in Ḣ1(R2) by smooth

functions of compact support as in the proof of Proposition 4. Then we show that U is a minimizer

of (20): for every V ∈ Ḣ1(R2) with V (·, 0) = u, (60) leads to

∫

R2

∇U · ∇V dx= −
∫

R

[
∂U

∂x2

]
u dx1 =

∫

R2

|∇U |2 dx.

Therefore, ‖V ‖Ḣ1(R2) ≥ ‖U‖Ḣ1(R2). Moreover, U is the unique minimizer of (20); indeed, if V is

another minimizer of (20), then ‖V ‖Ḣ1(R2) ≤ ‖V + t(U − V )‖Ḣ1(R2) for all t ∈ R. That implies∫
R2 ∇V · ∇(U − V ) dx = 0. Interchanging U and V , it follows

∫
R2 ∇U · ∇(V − U) dx = 0. Adding

the last two identities, we obtain ‖U − V ‖Ḣ1(R2) = 0, i.e., U − V is a constant. Since U and V

have the same trace in Ḣ1/2 on the horizontal line {x2 = 0} as Ḣ1(R2)−functions, we conclude

that U = V a.e. in R2.

(ii) The periodic case follows similarly. �
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