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Abstract

Three reduced models are considered for Néel walls which are dominant transition layers in
thin-film micromagnetics. Each model comes as a nonlocal and nonconvex variational principle
for one-dimensional magnetizations and it depends on a small parameter € > 0. Our aim is to
study the I'—convergence of these models as € | 0. We prove that the limiting magnetization
patterns are piecewise constant functions that correspond to a finite number of walls of the
same angle. The I'—limit energy is proportional to the number of walls of these configurations
and the energetic cost of each wall is quartic for small wall angles.

AMS classification: Primary: 49J45, Secondary: 35B25, 49505, 78A30, 82D40.
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1 Introduction

The Néel wall is a dominant transition layer in thin ferromagnetic films. It is characterized by a
one-dimensional in-plane rotation connecting two (opposite) directions of the magnetization. It
has two length scales: a small core with fast varying rotation and two logarithmically decaying
tails. In order for the Néel wall to exist, the tails are to be contained. There are three confining
mechanisms for the Néel wall tails: the anisotropy of the material, the steric interaction with the
sample edges and the steric interaction with the tails of neighboring Néel walls. In the following,
we describe these models that correspond to three nonconvex and nonlocal variational problems
depending on a small parameter:

Model 1. Confinement of Néel wall tails by anisotropy. The admissible configurations are
functions satisfying the following conditions:

m = (my,ms) : R — St and m(+o0) = . 5
( ):R (+00) <im> (1)

where a € [0, 1). Denoting 6 = arccos «, then 20 is called the wall angle (see Figure 1). The energy
is defined as follows:
m = SllmlF + Il . + llma = oll7 (2)

with § > 0 a small parameter.
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Figure 1: Néel wall of angle 26.

It is a model for one-dimensional magnetization in infinite ferromagnetic layers of small thick-
ness (see Melcher [11]). The first term in (2) is called the exchange energy and is due to short-range
spin interactions; it favors parallel alignment of neighboring spins. The second term stands for the
stray field energy and is due to long-range spin interactions modelled by the static Maxwell equa-
tion (see Proposition 4). The last term in (2) comes from the crystalline anisotropy and favors the
direction (v, /1 — a?) of the magnetization. The energy (2) is invariant under translation. Since
configurations m of finite energy are continuous, the limit conditions in (1) enforce a transition
(wall domain) for the magnetization. One can fix the center of the wall at the origin by setting
m(0) = (1,0). Under these restrictions, a Néel wall corresponds to a minimizer of the energy (2).

The variational problem is nonconvex because of the saturation constraint |m| = 1 and nonlocal
due to the stray-field interaction. It is a nondegenerate problem since the anisotropy term prevents
a Néel wall to spread over the complete domain R; therefore, the Néel wall tails are forced to be
limited and the energy cannot reach arbitrary small levels (see Proposition 1). The main feature of
the variational problem is that energy (2) only gives uniform bound of m; in HY/ 2(R) that barely
fails to control the L>°(R)-norm ||m1 |z ) = 1. This suggests a logarithmic decay of the energy.
The prediction of the logarithmic scaling for minimal energies (2) was formally proved by Riedel
and Seeger [13]; a detailed mathematical discussion of their results was carried out by Garcia-
Cervera [4] by means of a perturbation argument. The exact leading order term of the minimal
energy was finally deduced by DeSimone, Kohn, Miller and Otto [7, 9] by matching upper and
lower bounds in the case of a 180° Néel wall (when o = 0):

2 7+ o(1)

indl|ml? . fo= st 010 ’
minollmilg +llmalg o +llmallze = omem as 0l Y

a=0

The analysis of the structure of a minimizer of (3) is rather subtle due to the different scaling
behavior of the energy terms in (2). Remark that omitting the H'/2_norm, the formulation of (3)
in terms of v := my corresponds to a variational problem associated to the Cahn-Hilliard model

(see Cahn and Hilliard [3]):
. 0 dv2 5
— 1-— dt. 4
U:RE}[IFLH /R (1 — 2 ’ dt ’ + v > (4)

v(0)=0,v(£to0)==+1

The minimizer v of (4) satisfies the Cauchy problem associated to the first order ODE:

dv 1 9 B
i %(l—v ), v(0)=0.



Therefore, it is a transition layer with a single length scale v/3, i.e., v(t) = tanh(z/+/9) and satisfies
v(#00) = +1. The first component of the magnetization m; would correspond in (4) to sech(z/v/d)
and the minimal energy is equal to 4v/4.

Coming back to our variational problem (3), the presence of the nonlocal term as an homo-
geneous H/? (R)—seminorm in competition with the energy (4) creates a second length scale of
the transition layer. The Néel wall is divided in two regions: a core (|t| < weore) and two tails
(Weore S |t| < wiqar). This particular structure enables the magnetization to decrease the energy
by a logarithmic factor (3). Melcher [11, 12] rigorously established the optimal profile of the Néel
wall, i.e., a minimizer m of (3) with m4(0) = 1 exhibits two uniformly logarithmic tails beyond a
core region of order ¢ close to the origin (see Figures 2 and 3):
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Figure 3: Second component of a 180° Néel wall.

We are interested in the asymptotics of the energy (2) as ¢ | 0. Due to the logarithmic decay
(3), we consider a new length scale £ > 0 such that 6 = £/|loge| and we renormalize the energy
(2) by a factor |loge| in order that the minimal energy become of order O(1):

E.(m) = ellm|3, + [loge| ([Imall: - + llma — allZ:) - ()

Our goal is to study the I'—convergence of energies {E.} as ¢ | 0 and to characterize the limiting
configurations of the magnetization. We will prove that the limiting configurations are piecewise
constant functions of bounded total variation that can take two values {(a,4+v1 —a2)}. The
I'—limit energy is proportional to the number of jumps of these configurations and the energetic
cost of each jump is 7(1 — |a)?.



Model 2. Confinement of Néel wall tails by the finite size of the sample. The constraints
are given by:

m = (my,ms) : R — S' and m(%t) = ( cos? ) for +t>1, (6)
+sind
with 6 € [0,27) (see Figure 4), whereas the energy functional is:
m = dllm|F, + [malF (7)
with § > 0 a small parameter.
m
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Figure 4: Néel wall of angle 20 confined in [—1, 1].

It models a one-dimensional magnetization in a thin-ferromagnetic film of finite width where
the effect of cristalline anisotropy and external magnetic fields is neglected. The corresponding
variational problem was considered by DeSimone, Kohn, Miiller and Otto [8], DeSimone, Kniipfer
and Otto [6] and Ignat and Otto [10]. The main difference with respect to Model 1 consists in the
confinement of Néel wall tails by the interaction with the sample edges played by —1 and 1 in our
framework. However, the properties of the transition layer in Model 1 naturally transfer to the
structure of a minimizer of (7) that satisfies m(0) = (1,0). It is a two length scale object with a

small core of order ¢ and two logarithmically decaying tails contained in [—1,1] and it attains the

74o(1)
log 4]

the corresponding energy writes:

same level of minimal energy as d | 0. As before, by rescaling and renormalization of (7),

Fe(m) = ellml[3, + [logelllmal|, -

for a small parameter € > 0. We will analyse the asymptotics of F. by the I'—convergence method
as € | 0. We expect to have a similar behavior for the limiting configurations and the I'—limit
energy as in Model 1. The difference will consist in having all the walls confined in the interval
[—1,1].

Model 3. Confinement of Néel wall tails by the neighboring Néel walls. The magneti-
zations are periodic functions such that:

m=e" ¢:R— R with o(t +2) = ¢(t) and (t + 1) = (t) + 7 (8)
(see Figure 5). The energy is given by:
e Sl il 9)

for a small parameter § > 0.



Figure 5: Periodic array of winding walls.

This model was investigated by DeSimone, Kohn, Miiller and Otto [9] in order to quantify the
repulsive interaction of Néel walls. It consists in considering a periodic array of winding walls
at a renormalized distance w = 2 in the absence of anisotropy and external magnetic fields. A
transition of 180° is enforced in the middle of each period by the constraint (8). Therefore, the
tails of a Néel wall are limited by the tails of the neighboring walls at a distance 1 and we expect
that this model generates only 180° Néel walls. As before, we will analyse the following rescaled
and renormalized energy associated to (9):

Gem) = ellml, +|logellmil,

in the asymptotic € | 0.

2 Main results

First we show a compactness result for magnetizations with uniformly bounded energies and we
deduce the pattern of the limiting configurations for all three models. Then we present our main
result: we compute the I'—limit of the three families of energies { E: }- |0, {F:}cj0 and {G:}- |0 and
we prove the corresponding I'—convergence result for each of these models.

Model 1. We start with the compactness result in Model 1. It is related with a result for 1—d
magnetizations proved by Ignat and Otto [10] (see Theorem 2 in [10]) where Model 2 is treated for
fixed boundary data. In our context, the anisotropy replaces the role of interaction of Néel wall
tails with the edges of a finite sample and no fixed boundary conditions are imposed.

Theorem 1 Consider a sequence {ex}tren C (0,00) with € | 0 as k 1 oco. For k € N, let
ay € [—1,1], E., be the energy functional (5) associated to ey, and oy, and let my = (mq g, Mo k) :
R — S'. Suppose that

limsup E., (my) < +00. (10)
kToo

1

LR, SY). Moreover, any accumulation point m : R — S*

Then {my}rtoo is relatively compact in L
is of bounded total variation, takes values in the set {(cos@,£sin0)} for some 6 € [0,27) and can

N+1 cosf
m= Z < ( ) 1(tn717tn)’ (11)

=1 1)"siné

be written as:

where N >0 and —oco =ty <t} <--- <ty <tnyy1 = +o00.
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Figure 6: A limit configuration with 3 walls.

Remark 1 i) The walls of a limiting configuration have the same angle 26, i.e., m; is a constant

ii)

iii)

iv)

function in R equal to cosf and ms has a finite number of jumps of size 2|sin#|. The angle
6 represents an accumulation point of the set {Arccos ay }ren in [0, 27).

The number of walls may vanish in the limit, i.e., N = 0. Indeed, one can imagine a transition
layer my, of angle 20 centered in k so that the center of the wall tends to infinity and my
converges to the constant function (cosf, —sinf) as k T co. Moreover, one can easily check
that a limiting configuration (11) is constant if and only if N = 0 or sinf = 0 (i.e., |ag| — 1).
Also notice that N can be both an odd or an even integer. In fact, condition (1) is not
imposed for configurations {my} in Theorem 1, so that mj may exhibit an even number of
wall transitions and ms ; may have the same limit at £oo.

A configuration my, of finite energy E., is continuous and the first component m; j has the
limit o at +oo. Indeed, if E., (my) < oo, then my x — ay € H'(R) which entails the latter
statement (see e.g., Brezis [2]). We highlight the fact that we do not impose a fixed boundary
condition for the sequence {my }ren at infinity in Theorem 1, i.e., {ay }reny may vary with k.
For an accumulation point m as in (11), we have that aj, — cos as k ] oo.

P
loc

The compactness result is also valid in the LY (R, S')—topology for every p € [1,00) since

the values of limiting configurations are of length 1. Due to the constraint |m| = 1 which

implies m ¢ LP(R,RR?), we always work in the framework of L} (R,RR?)-spaces.

Let us denote by A the set of all limiting configurations given by (11). For such a configuration

m € A, we define the following energy:

Eo(m) = (1 — |mq])? - ( number of jumps of m>, (12)

where the number N of jumps of m corresponds to the number of walls of the limiting magnetization

m. Our main result shows that Ey represents the I'—limit of energies Fy:

Theorem 2 Consider a sequence {eg}tren C (0,00) with e, | 0 as k 1 oo. For k € N, let

ay € [-1,1] and E., be the energy functional (5) associated to e, and oy. Then

E., L Ey under the L} (R, Y —topology as k 1 oo, i.c.,



1 the sequence {my : R — keN satisfies ana myp — min R , then m €
) If th R — S isfies (10) and my 5" m in LY (R, SY), th A

loc
and

Hg% inf E., (my) > Eo(m); (13)

(ii) For every m € A, there exists a sequence of smooth functions {my : R — S'}ren such that
my —m has compact support in R for all k € N, mp —m M0 in LY(R,R?) and
lim E., (my) = Eo(m).
kToo

Remark 2 If {E.}.| is the family of energies (5) associated to a fixed « := cos 6, then Theorem 2
yields that the energy of a Néel wall of angle 26 is quartic in 6 for small angles 6:

11(111)11EE <X (1 — |cos9|)2zgt94 as 6 ]0.

Observe the importance of the anisotropy in Model 1: it is the confining mechanism that
prevents the tails to spread over R. In the absence of the anisotropy, the variational problem (3)
becomes degenerate. It is stated in the following proposition:

Proposition 1 Let o € [0,1). We have that

min 8llml1%, + llmal|
m(0)=(1,0)

2 —
H1/2 — 07

for every § > 0.

Model 2. Now we present the corresponding results for Model 2 when the anisotropy effect
is replaced by a confinement of Néel wall tails in a finite interval. The compactness result of
configurations of uniformly bounded energy F. is given in the following:

Theorem 3 Consider a sequence {ei}tren C (0,00) with e, | 0 as k 1 oo. For k € N, let
Ok € [0,27) and my = (my g, may) : R — St be such that (6) holds. Suppose that

limsup Fy, (my) < +oc. (14)
kToo

Then {mg}rroo is relatively compact in L}, (R, SY). Any accumulation point m : R — St is of

bounded total variation and can be written as
N+l cos
m= 1(tn7 7tn)’ (15)
,;1 < (=1)"sinf ) '
where 6 € [0,27), N >0 and —o00 = tp < =1 <t3 < -+ <ty <1< tny1 = +o0. Moreover, if

sin@ # 0, then N is an odd integer and m satisfies (6).

Remark 3 i) The limiting configurations in Model 2 have the same feature as in Model 1:
they exhibit a finite number of walls of identical angle 20. The difference consists in having
all these walls confined in [—1, 1] because of the boundary condition (6).



ii) The compactness result fails in general under the strict convergence in BVj,. even if the
limiting configurations are of bounded variation in R. In fact, it is constructed in [10] a
sequence of magnetizations {my} with (6) and of uniformly bounded energies F;, (my) < C

such that the sequence of total variations { [ ’dn;;"“ |} blows-up (see Theorem 3 in [10]).

The fading H'—control of the magnetization is essential for the compactness result: in the
absence of it, we can construct a sequence of magnetizations that does not converge in L}, .. These
magnetizations will asymptotically have an infinite number of transition walls and the sequence of
their homogeneous H'/2 _seminorm converges to zero. Obviously, the condition (14) fails for these

configurations.

Proposition 2 There exists a sequence of smooth magnetizations {my : R — S'}ren with (6)
such that

C
||1”1"L1);€||§-1,1/2 < Tog 1| and  {my} is not relatively compact in L, (R,R?).
k

Let us denote by B the set of all limiting configurations given by (15). We have a similar
I'—convergence result of energies {F.}.|o to the same I'—limit Ey as in Model 1:

Theorem 4 Consider a sequence {eg}ren C (0,00) with e | 0 as k T oo. Then
., L Ey under the L}, (R, SY—topology as k 1 oo, i.c.,

(i) If for any k € N, ), € [0,27) and my : R — ST are such that (6) holds, then the condition
(14) together with my, M m in L} (R, S1) imply that m € B and

loc

liir% inf F., (my) > Eo(m);

(ii) For every m € B, there exists a sequence of smooth functions {my : R — S1}ren such that
mr =m in R\ [-1,1], mi —m 1200 in L'(R,R?) and

]11%10 FE.,(my) = Eo(m).

Observe that for the upper bound in the I'—convergence result, we construct a sequence of
magnetizations that coincide with the limit configuration outside the sample [—1,1] and they
asymptotically have the same energy.

Model 3. Finally, we discuss the third model when the Néel wall tails are confined by interaction
with neighboring walls. The setting consists in periodic configurations where rotations of 180° are
enforced. Therefore, we expect that the limit magnetization points in opposite directions across
each wall.

Theorem 5 Consider a sequence {ei}tren C (0,00) with e, | 0 as k 1 oo. For k € N, let
my = (m1 g, may) : R — St be such that (8) holds. Suppose that

limsup G, (my) < +00. (16)
kToo



Then {mp koo is relatively compact in L}, (R, S*). Any accumulation point m : R — S' is a

0
2—periodic function of bounded total variation on [—1,1) that takes exactly two values < )
+1

and satisfies m(t) = —m(t + 1) for every t € R.

ol
T

Figure 7: A periodic limit configuration having 2 walls per period.

Remark 4 The constraint (8) imposes for the limiting configuration an even number 2N of walls
of 180° in [—1,1) with N > 1. Suppose that these N pairs of walls are placed in ¢,, € [-1,0) and
tn+1 € [0,1) respectively, for n = 1,..., N where the orientation of the magnetization is reversed.
Then the limit magnetization m can be written on the interval [—1,1) as

N+1 0
m ==+ Z < 1y ) <1(tn1,tn) - 1(tn1+l,tn+l)> in [-1,1), (17)
n=1 -

WhQI‘QNZland—lztogtl<-"<tN<tN+1=0.

Let us denote by C the set of all limiting configurations in Model 3 given by Theorem 5. For
every m € C, we denote

Go(m) = - < number of jumps of m in [—1, 1))
We have the same I"'—convergence result of energies {G.} as in Models 1 and 2:

Theorem 6 Consider a sequence {ey}ren C (0,00) with e | 0 as k T oo. Then
Ge, L Gy under the Li,.(R, Y —topology as k 1 oo, i.c.,

(i) If {my : R — S1}ren is a sequence of 2—periodic functions such that (8) and (16) hold true
and my, "5° m in L} (R, SY), then m € C and

loc

1111[61% inf Ge, (mg) > Go(m);



(ii) For every m € C, there exists a sequence {my : R — S'}ren of smooth 2—periodic functions
that satisfy (8), my 1% m in L} (R, SY) and

lliTm Ge, (my) = Go(m).

The sequel of the paper is organized as follows: In Section 3, we review some properties
of functions in homogeneous Sobolev spaces and we recall a logarithmically failing Gagliardo-
Nirenberg inequality that we use in the proof of our results. In Section 4, we prove compactness
of configurations with uniformly bounded energies in all three models as stated in Theorems 1,
3 and 5. In Section 5, we prove the lower bound in the I'—convergence results given at point
(i) of Theorems 2, 4 and 6. In Section 6, we conclude with the proof of Theorems 2, 4 and 6
by constructing appropriate sequences for any limiting configuration; we also present the proof of
Propositions 1 and 2. We end with an Appendix where we show some characterizations of the
homogeneous H'/2—seminorm.

3 Preliminaries

First, we recall several definitions and properties of functions in some homogeneous Sobolev spaces.
Let s € R and u : R — R be a tempered distribution in S’(R). We denote the homogeneous H*-
seminorm of u by

HWFAWWW&

where 4 € §'(R) stands for the Fourier transform of u (as a tempered distribution), i.e.,

U = L e %%y () da
i6) = o= [ e Fu@ydn, Ve eR

d
If s € {1,1} we have the following properties: [ul|z = Hd—?Hm and

1 u(s) — u(®)?
2 = dsdt 1
”U”Hl/z 27/}1{/}1{ |S—t|2 S ( 8)

(see Proposition 7 in Appendix).
If u is periodic (assume that the period is equal to 2), then the periodic H*-seminorm of u is

el = > IBPlas)

pBenZ

given by

where the sequence {4(0)}gerz stands for the Fourier coefficients of u, i.e.,

1
Vi [-1,1)

The formula (18) has an equivalent in the periodic case. Indeed, regarding u as being defined on
the unit circle S* by the convention u(e™) := u(t) for t € [~1,1), we have that:

|u(z1) = u(z2)?
= dz1d
[l 1% e = 5 /51 /51 |Z1 —22|2 21d29

10

u(p) = e~ Plyu(t)dt, V3 € nZ. (19)



(see Proposition 7 in Appendix).

Another characterization of the H'/2-seminorm of u can be expressed as the minimal H'—semi-
norm of functions U : R? — R that have u as trace on the horizontal line {(z1,z2) € R? : x5 = 0}.
In other words, the homogeneous H'/2_seminorm is given by the Dirichlet energy of the harmonic
extension of u in R?. For the sake of completeness, we give the proof of this property in Appendix.

Proposition 3 Let u: R — R.
(i) If u € HY*(R), then we have the following trace estimate:

1.
HquL-p/2 =3 min {/2 |VU|2d:c1d:c2 : U(x1,0) = u(xq) } . (20)
R
1) If u is 2—periodic belonging to Hle/f R), then
P

1
||u||§{;éf =3 min {/[ - |VU|? dzydxs = U is 2—periodic in vy and U(x1,0) = u(z;) } .
1%

(21)

As mentioned in the introduction, the H'/2—seminorm of the first component of the magne-
tization represents the stray field energy. Let us discuss in details this property. We call a stray
field associated to the magnetization m = (mq,ms) : R — S, every two-dimensional vector field
h : R? — R? that satisfies

l/ h-VCdx::/n§T1C(JDdxlﬂﬁevuyCGECSXR%. (22)
R2 R dIl

The form of the stray field energy that appears in all three models is justified by the following
proposition. Its proof is presented in Appendix.

Proposition 4 Let m; : R — R.
(i) If my € H'/?(R), we have that

1
. 2 2
min [ 10 do = 5llmi .. (23)

The minimizer H = (Hy, Ha) of (23) is unique in L*(R?,R?) and it is a gradient field. Moreover,
H satisfies the static Mazwell equations:

VxH=0 in RZ
V-H=0 in {zy # 0}, (24)
[HQ] = _(27;111 on {x2 = 0}7

where [] stands for the size of the jump over the horizontal line {x2 = 0}.
(i) If my is a 2—periodic function in H;e/f (R), then

1
min {/ |h|*dx : h:R? — R? is 2—periodic in 1 with (22)} = Zlmal% . (25)
[-1,1) xR 2 Hplr

The minimizer H of (25) is a 2—periodic (in x1) gradient field that is unique in L2, (R?* R?) and

per

satisfies the static Mazwell equations (24).

11



For the compactness of magnetizations {my} in Theorems 1, 3 and 5, we need to control the
number of their large variations which consists in studying the derivatives of the first components
- dm 1/2

{Uk — 1 k

regime O(

} The stray field energy controls the homogeneous H~'/2-seminorm of oy, in the

—‘ Tom e ‘) The idea is to use a duality argument by estimating the product
< Xk, Ok >H1/21H71/2 (26)

for a trial function xy, that counts the large variations of my . Therefore, it is enough to analyse
the rate of the failing interpolation embedding

BV NL®R) ¢ HY*(R)

that corresponds to the failing Gagliardo-Nirenberg type inequality:

dx
Ielios 2 sup el [ 151 )

By a duality argument, the failing inequality (27) entails via (26) that

2
[ 2

Typically, the trial function y; has jumps so that y, ¢ H'2(R). That can be corrected by

sup x| / 2 ok2, e (28)

regularizing the homogeneous H'/2_seminorm. This perturbation gives a weaker seminorm that
is controlled by the RHS term in (27) with a logarithmically slow rate having the optimal prefactor
2.

P

Proposition 5 (DeSimone, Kniipfer and Otto [6]) For ¢ < w and for any x : R — R, we
have that

.1 . 2 w dx
[ min el ey e 2 (o L) sl [ |5, (29)
R e s g R R t
If x is 2—periodic then
.1 . 2 w dx
> min{=, 8, wlB2}HRB)P £ = (log =) sup |x] = (30)
BenZ € m €/ [-1,1) [—1,1) | dt

Coming back to (28), the logarithmically failing rate of (27) in Proposition 5 matches well
with the control of the H~'/2-seminorm of o), by the stray field energy of order of O(“Ogsk‘)
Notice that cutting off the large wave length > 1/¢ in the weaker norm in Proposition 5 must
be compensated by the fading L?—control of o that corresponds to the exchange energy. On
the other hand, the H~/2-seminorm of o}, can be replaced by the energy of a stray field as in

Proposition 4: there exists a stray field hy, : R? — R? associated to my by (22) such that

lowlBy va =2 [ Wl da.
R2

These arguments suggest the following localized version of the failing inequality (28). The reason
of using a cut-off function 7 is that the localized duality term

/772Xk0k

controls the local number of variations f n ‘dX’“ ‘ of my .

12



Proposition 6 (Ignat and Otto [10]) Let R,L > 0 and (29,0) € R®. Let h : R? — R? and
1: R — R be related by (22) and let x : R — R be a bounded function of locally bounded total
variation.
(i) If n € C>(R?) such that
supp7 C B((2Y,0), R) C R?,

then there exists a universal constant C = C(R) > 0 depending only on R such that for all
€ (0, R],
4 d 1/2
< (—Ilogsl Suplxl/n2(-,0)!d—!/ 772|h|2dw>
7T R R T1 R2

w(l)-i-R d 1/2
+C(R) (5/ |22 day +/ |h|2d:c)
H-Rr AT B((29,0),R)

dx
x (sup|n|+sup|V77|) (suplnlsup|x|+/ I 0| === \)-
R2 R2 R2 R R X1

(ii) If n € C°°(R?) with suppn C R x (—1,1) and

dm
2 1
L0V 2L
/Rm N day

h, m1, x and n are L—periodic in x1,

then there exists a universal constant C' = C(L) > 0 depending only on L such that for alle € (0, L],

dmy 1/2
‘/ -, 0) X— dzp| < (—|1oga| sup | x| / } n?|h)? da:)
OL) )X R
d 1/2
+C(L)(s/ |22 day +/ |h|2d:v>
[0,L) dzy [0,L)xR

dx
 (suplal-+sup 1931 ) (sup lsupl + [ .01 55).
R2 R2 R2 R [0,1) 1

In this paper, we consider several energy functionals {E.}, {F.} and {G.} depending on a small

parameter € > 0 and we are interested in their limiting behavior as € | 0. The limit we are looking
for is not the usual pointwise limit, but a limit adapted for the convergence of minimizers. This
appropriate notion of convergence is called the I'—convergence (see e.g., Attouch [1], Dal Maso [5]).
Let us recall its definition in the particular case of a sequence of energies {E:, }r1o0 given by (5)
where ¢ | 0 and {ax} C [-1,1]. Let X = L} (R, S') be endowed with the metric

loc
%Qn/ \f — gldt.

Then (X,d) is a complete metric space. We can naturally extend (5) to a functional E,, : X —

[0, 00] defined in the whole space X, i.e., E., (f) < oo if f —ax € H'(R,S') and E., (f) =

otherwise. We say that Ey : X — [0,00] is the I'=limit of {E:, }x1c0, Or equivalently, E., is

I'—convergent to Ey under the X —topology if the following two conditions are satisfied:

(i) (lower bound) for every sequence f — f in X, then liminfyjeo Ex, (fx) > Eo(f);

(ii) (upper bound) for every f € X, there exists a recovery sequence f € X such that fr — f
in X and hkaOO Esk (fk) = Eo(f)

By Theorem 2, the expression of Ey is given by (12) and we have that Ey(f) < oo if and only if
feA
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4 Compactness

We start by proving the compactness results for the three models. For configurations {my} of
uniformly bounded energy, the control of the stray field energy entails relative convergence of the
first components {m1 i} to a limit function m; that is a constant. Since |my| = 1, we deduce that
the second components {ms j } will asymptotically take two possible values +1/1 — mZ. In order to
prove compactness, it is enough to bound uniformly the number of large variations of {msz 1 }. The
number of such variations can be estimated by the total energy through a duality argument based
on the logarithmically failing interpolation inequality presented in Proposition 5. These ideas are
also used in [10].

For the simplicity of notation, every convergence of a sequence should be considered up to a
subsequence in this Section.

Proof of Theorem 1. We proceed in several steps.

Step 1. We show that there exists a constant my o € [—1,1] such that
mig — Miee in L. (R)askT oo
Indeed, there exists m1 o € [—1,1] such that
Qp — My,00 as k T oo. (31)

Since (10) implies that

[mak — arllz — 0,
we deduce immediately the conclusion of Step 1. Moreover,
magl® =1 = migl* = 1= |miecl* in Li(R).
Remark that if my o € {—1,1}, then mo — 0in L}, .(R) and the limit function is m = (£1,0).
Therefore, in the rest of the proof, we analyze the remaining case mj oo € (—1,1).

Step 2. The location of large variations of my j and ms . Let k be fixed here. The function
mi x — ax belongs to H'(R), therefore m; ;. is continuous in R and has the limit aj at 4-oc.
We deduce that msj is continuous in R and |ma | has the limit /1 —af at +oo. By (31),
\/1 - — \/1 —mM1002 as k T oo; thus, for k large enough, there exists a bounded interval

I, C R such that
\/ 1-— m17m2

|ma.k| > outside I},

2
and my ;, does not change sign on the left and on the right of I, respectively. Hence, one can
detect a finite number N}, of intervals (a¥,b%) C I, n = 1,..., Ny where ma varies between

\/177711’302 \/177711’302
- 5 and 5 (

see Figure 8):

af <bf <af <bf <. <af, <R,

and for each n =1,..., Nk,
11— "nl,oo2 1- ml,oo2 .
ma(af)] = maa) = Y and a0 < Y it ve (ah,8h). (32)

14



Figure 8: The variations of mao.

Since my, is a continuous function on Iy, the construction of these intervals makes sense. It could
happen that Ny = 0 (i.e., no large variation exists for ma ). We notice that ma(aX) has a
different sign than both mo (b%) and mo i (ak ) for all n. Moreover,
1 —m o2
S in (b)) (33)

Sgn(mlk(bﬁ)) mo g < s in

for n = 1,..., Nj, where we set bf = —oo. We can estimate the number Ny of large variations;

N, < | Tk | /’dm2k 2,

1-— ml_,oo

more precisely, we prove that

Indeed, the Cauchy-Schwarz inequality yields

k
dmgk & & /b" dmeo f 2 / dma i, 2
1—my o’ = dt ] < (F - —=2 7 dt < (
" (/a'; Cdt ) < (bn —an) ak | di T

and we deduce that

N, <Z /|dm2k2 _1_|Ik| /|dm2k

1—m1 mi, e

Step 3. We prove that the sequence {Ni}rioo s uniformly bounded. The idea is to apply
Proposition 5 for a step function yj that is adapted to my in order to count the large variations
of mag. If Ny > 0, we denote by tk € [a¥ bF] the smallest number such that ms x(t5) = 0,

n=1,...,Ny. By (32), mix does not change sign in (a%,t*). Therefore, we consider

n’n

sgn(ma ) in (afthych,n=1,... Ny,
Xk =
0 elsewhere.

15



Then, we obtain:

d
[ 15 =2, m
/ dma gt i/tﬁs ( )dml,k gt
= nim
RXk o 2 o g 1,k i
Ny
34+ M 002
—Z(mm@%wmmﬁﬂ—m@—i——i—) (35)
n=1

2

As we mentioned in Section 3, the duality term (26) controls the number Ny, of large variations
of ma . On the other hand, by Proposition 5, we expect that the duality term (at power 2) is
controlled by the energy EE and Nj. More precisely, setting wy, := |logey|?, Proposition 5 applied
for the parameter d; := |log€ << wy and the step function xy yields for k£ large enough:

oSt -

dm1 k

d§’
S 1 . 1/2
—(A<“*H ) Q
- 1/2
(/(6k+ Ly 1 2)Idmlkl2 )
Lt
1/2
S(Amm§EMWMWHﬁP%)

1 1 , \V?
(/wy+u+- mﬂmlmm—aﬂdg

(29)
< C(log—suplxkl/’ )

1/2
1
x@umm| el + |mm—aﬂm)

>1/2

1 1/2
x<aMmu;+u%anm;m+E§5ka—%@ﬁ

that is,

1/2
[t [125)”

(This duality argument was already used in [6].) Therefore, by (10), (34) and (35), we deduce that
Ny < ON?,

which yields that N < C for every k where C' > 0 is some absolute constant.
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Step 4. We show that the sequence {ma i }k1oo is relatively compact in L}, (R). First, we construct
a good approximating step function ¢, : R — {£+/1 — mq o2} for mg k. If Ni > 0, then we choose

k
wk = Z 2m2’k(a:') 1(ti€z—17t1fz) + 2m2’k(b§€vk) 1(tlka7+oo)7

where t’g = —oo and tk are given in Step 3forn=1,...,N;. If N =0, then mgyj stays either
above — YT ml =" or below V=7’ ml =" in R and it has the same limit at +oo, Le., mgp(—o0) =
ma i (+00) € {:l:\/ — a2} in thls case, set

Py = sgn <m27k(+oo)) \J1—-mi? in R
dypy, 2
| | = 2Nk 1-— mi,c0”-

It follows by Step 3 that the sequence {wk} has uniformly bounded total variation. Therefore, any
accumulation point ¢ : R — {£1/1 —m1 o2} of {t)}r1eo in L}, (R) is of bounded total variation
and has the form

It is obvious that

N+1

1/) = Z(—l)n sin 6 l(tn—17tn)’

n=1

where N € N, cosf = m1 00, 0 € [0,27) and —0co =ty < t1 < -+ < tny < ty4+1 = +oo. Finally,

(33) leads to
V1—mi?
Y= inR

[+l > , (36)
and by Step 1, we have for every bounded interval I C R,
2, (39 4 2 2 12
, [, —mo k|~ dt < m , [V) — ma | dt
4
< m / (1= m1,00%) = m3 [ dt
S m1 k— M1l dl as 0.
- 2d Stepl 0 kT
—m oo
Since ¢ — ¢ in Lj,, it follows that ms — ¢ in L}, (R), i.e.,
cos 0 I 1
my — in Lj,.(R,S") as kT 0.
1/} loc
O

Now we prove the compactness result for Model 2 (with the same convention that every con-
vergence should be considered up to a subsequence):

Proof of Theorem 3. The same steps as in the proof of Theorem 1 are to be followed. The only
difference concerns the compactness of {m; 1 }. The L?-norm of mq i, — cos 0 present in the energy
E,, in Model 1 does not appear anymore in the energy Fr, . However, this term is penalized by Fr,
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via the compact embedding Hl/Q(—l, 1) — L?(—1,1). More precisely, we show that there exists a
constant mq o, € [—1,1] such that

mig — Miee in Li.(R)ask T oc.

Indeed, let m o € [—1,1] be such that cosf; — my o as k T co. We have

1
/ |mak — cos O |* dt © / |ma g — cos O |* dt
R -1

(6) 1 3

:/ / |m17k(t)—m1,k(t+8)|2dtds
—1J2
13 B 2

cof [ imatmatceat
—-1J2

82
t) — )2 _(18) F,
gg// me® = mak@F g, 7 & g Felme) ady g oy oo
RJR |t —¢[? |log x|

The conclusion of Step 1 now is straightforward. As before, if my o € {—1,1}, then
moy — 0 in L. (R).

In this case, the limit m is a constant function equal to (Mm1,0c,0).

If my 0 € (—1,1), the rest of the proof comes by repeating the arguments at Steps 2, 3 and 4 in
the proof of Theorem 1. In this case, condition (6) implies that for k large enough, the number N
of intervals {(af, b}) }1<n<n, of large variations of mq , and ms ;, is an odd number. Moreover, any
accumulation point m = (m1,mz) : R — S! satisfies (6), m is constant on the intervals (—oo, —1)
and (1,400), respectively and mso has different sign on these intervals; therefore, m has an odd
number N of walls. O

The proof for the compactness result in Model 3 can be adapted as follows:

Proof of Theorem 5. The same ideas presented in the proof of Theorems 1 and 3 are to be
repeated. We only develop the arguments that are different with respect to Models 1 and 2. The
main issue is that (8) imposes that the normal component of the limit magnetization across the
walls vanishes. More precisely, we show that

mir —0 in L. (R)as kT oo.
Indeed, let us denote the mean value of my  on (—1,1) by

Fi(0) _

V2

There exists m1 o € [—1,1] such that a, — m1 o as k T co. By Plancherel’s identity, we have

1
/ ik —axlPdt= Y RO
—1

A =

][1m17k(t) dt € [—1,1].

perz\{0}

— G..(my) (16)
< X plmEePs S W w ko
perz\{0}
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Thus, we deduce that mq  — M, in L12)e7‘ as k 7 co. On the other hand, we know by (8) that
m1i(t) = —myk(t+1) for every ¢t € R. (37)

Passing to the limit k& T oo, we deduce that m; - = 0. As a consequence, |ma | — 1 in L*(—1,1)
as k — oc.

Then we consider all the intervals (a¥,b%) C R, n € Z where ma . varies between —% and %
as at Step 2 in the proof of Theorem 1. Since mg j is 2—periodic, these intervals are periodically
distributed. As before, the number N, of such intervals included in [—1,1) is finite.

Now we prove that {Nj} is uniformly bounded. One can construct a 2—periodic step function
Xk that is adapted to the large variations of mg j as at Step 3 in the proof of Theorem 1. Then
we apply inequality (30) for the parameters wy := |logeg|? and &y = noi;—km < wy and the step
function xj. For the sake of completeness, we rewrite the duality argument in the periodic case.
We have for k large enough:

d
} / w Mdt’ _
[~1,1) dt

T
PR d;’%ﬁ)}

BeTL
1/2
= ( > min{%a|ﬁ|7wk|5|2}|ﬁ(g)|2>
BETZ
1) 1 1 ﬁ2 (3 ) 1/2
) <B§Z( k+m+ wk|5|2)| | |m17;€( )| )

Xk
dt

)1/2

2 1/2
_ 1
i+ Y 1ol mRoP + - [ |m1,k—ak|2dt)
Z Wk J[-1,1)

penZ

(30)
< C(log—?k sup |xx|
J2

[—1,1) [-1,1)
X <5k/
[7171)
ka )1ﬁ

gc((GEk (mi) + 1) /[M) | X

dmlﬁk
dt

As before, one concludes that { N} is uniformly bounded.

As at Step 4 in the proof of Theorem 1, we construct a 2—periodic step function v with
values in {£1} that approximates mg . The sequence {t;} has uniformly bounded total variation
in [—1,1) and the set of its accumulation points coincides with the one of {ms }. Such a limit
ms is a 2—periodic step function belonging to BV,.(R,{+1}). Moreover, by (8), we have that
meo(t) = —me(t 4+ 1) for all ¢ € R. Therefore, mo has an even number 2N of walls on [—1,1) with
N > 1 and writes as

N+1
mo =+ Z (_1>n <]‘(tn17tn) - 1(tnl+17tn+1)) in [_L 1)7
n=1

Where—1:t0§t1<~-~<tN<tN+1:(),

19



5 Lower bound

We prove the first assertion in Theorem 2 for the lower bound of the energy E. in Model 1:
Proof of (i) in Theorem 2. By Theorem 1, we know that m € A, i.e.,
N+l cosf
m = 1 tr—1,tn)?
,;1 < (=1)"sinf ) (tmnte)

where 6 € [0,27) and —co = tg < t; < -+- < tny < ty41 = +00. Notice that if sinf = 0 (i.e.,
|mi| =1) or N =0, then Ep(m) = 0 and the inequality (13) is trivial. Therefore, we assume that
N >1 and |sinf| > 0. Set the interval

I=(t —1Lty+1)= (2% - R,2) + R)

with 2§ := % and R:=1+ @ Let

1
po=q gl (38)
- if N =1.
5
Since mag  — ma in LY(I), there exists kyu € N such that for every k > k,, we have
in 6
/|m2,k ) dt < M5O (39)
I 4
This condition implies that for every n = 1,..., N and every k > k,, mo ) changes sign on

(tn — 5,tn + %5). Suppose that this is not the case. W.l.o.g., we may assume that max > 0 in
(tn — 5,tn + 5). We know that the second component my of the limit configuration is negative
either in (¢, — §,t,) or in (tn,t, + 5). On that interval of length 11/2, we have my = —|sin | and
|mak — ma| > |sind]. It would mean that

tnt+s ino
/ ma — mofat > #1507
t

K
n 2

which contradicts with (39).
By (39), the continuity of my,; yields the existence of tf € (t,, — &,t, + &) with

mak(th) =0, ie, mip(tf) =1, n=1,....N. (40)

For every k > k,,, we define the step functions xz : R — {—1,0,1},

sen(min(t) i (b= 2wt =1, N,
Xk = { —sgn(m x(tF)) in (tF t, +2u),n=1,...,N, (41)
0 elsewhere.

We also consider the cut-off function 1, € C2°(B((29,0), R) C R?) be such that

C
Mk (th,0) = 1 and suppne(-,0) C UL, (tn — p1,tn + p) and || < 1, [V | < L B((21,0),R).
(42)
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We have that
ka (42) ka (41),(42)
[ o Z )| Xk (L o (13)
R tn

The localized duality term (26) controls the number N of large variations of my , and mg . Indeed,
integration by parts leads to

N ¢k tn+
dm n dm nTH dm
2 1,k (41),(42) k 2 1,k 2 1,k
-0 = g t -0 - -0
/l;nk( ; 0) Xk da Sgn(ml,k( n))</; n5(+,0) day /t ni.(+,0) day >

n—H ITC,,
N th 2 tnt 2

(42 " dny. (-, 0) /"“ dn(+,0)
: 2 tk _ k\ > k\

z:: n(ms, k ( ma, k( ) /n #ml,k oy + " mik 4z,
42) X tntp dn2(-,0
> Z n(my k(¢ ))(2m1 k(tF) —2cosb — / |m17k—0050|’%‘>

n= tn—p T1
(40),(42) C

>  N(2-2|cosf|) — — / |max — cos 0| dxy. (44)

wJr

Set d, = |10€g—k5k|' Let hy : R? — R? be any stray field associated to my , by (22). We apply
Proposition 6 for the parameter d; <« R and the functions yx and n, (with the support lying

inside B((z9,0), R) C R?):
d 1/2
o < (2ogs [0l S [ )

dm
/ni(:vl,O)xk
R
. 1/2
+C(R)(5k/|—l’k|2d$1+/ |hk|2d$>

ey )

We minimize over all stray fields hy, with (22). By (23), (43) and (44), it implies that

C
N(1—]cosf|) — — / |ma,x — cos 6|
AN V2 (RN B
s<—|log5k| s, k|H1/2> " %uogm V2B, (my) /2.

Since my  — cos® in L'(I), we conclude by passing to liminf as k T co that
N(1L~[cosf])” < liminf [log =i/ 1 x[%

which leads to (13). O

Proof of (i) in Theorem 4. The arguments presented in the proof of (i) of Theorem 2 for
Model 1 are to be repeated for Model 2. O

Proof of (i) of Theorem 6. For the sake of completeness, we adapt the arguments presented
above to the periodic case in Model 3.

(i) Let m € C, i.e.,
m= Z < ) (tn—1,tn)
nez )
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where we denote by {t,}ncz the sequence of walls of m that is 1—periodically distributed in R
such that m(t) = —m(t + 1) for every t € R. Let N be the number of jumps of m in [—1,1) and
N > 2 is an even number. Set

1
= Zmin{|t, — t,_1|}.
1 5glég{| 1]}

For k large enough, using the same argument as in the proof of (i) of Theorem 2, one detects a
sequence {t¥}, ¢z of zeros of meo,j, that is 1—periodically distributed in R and contains exactly N
terms in [—1,1). Then we construct a similar step function x; to (41) and a cut-off function 7y
corresponding to (42) that are both 2—periodic. We have

d d C
[oeolgtieey wd [ o Tz - S [ de. @)
[ 1,1) [—1,1) dxy Ko Ji—1,1)

We apply the periodic version of inequality in (i7) of Proposition 6 for §, = small enough

£k
[logeg|
and any stray field hy, : R? — R? associated to mq x by (22) that is 2—periodic in ;. It leads to

dm d
[ e o iy < <—|log5k|/ X’“|/ |hk|2da:>
[71,1) 11
J 1/2
+C(6k/ | m1k|2d +/ |hk|2d$>
1,1 dr —1,1)xR

c ka)
x 1+ — 1—|—/ S0 =1 -
e D1 [ e olS

We minimize over all 2—periodic (in z;—direction) stray fields hj that satisfy (22). Using the

/2

assumption that my , — 0 in L}, (R), it implies by (25) and (45),

C AN V2 ON R
2N — —/ [ma | d:101§<7| 10g6k|||m1,;€||2;/2) + 7| loger|~Y%G., (my) 2.
[_1)1) er

We conclude that
7N < liminf | 10g5k||\m17k|\21/2.
k—oo per

6 Upper bound

Now we prove the second assertion in Theorem 2 for the attainment of the lower bound of the
energy E. in Model 1:

Proof of (ii) in Theorem 2. Let m € A, i.e.,
NAl cos 6
m = 1 tn—1,tn)s
,;1 < (—1)"sin6 ) (tnnt)

where 0 € [0,27) and —co = tp < t; < -+ <ty < ty41 = +0oo. We want to construct smooth
transition layers my, such that my —m has compact support in R, my — m in L}, (R, S') and

limsup E., (my) < Ep(m). (46)
kToo
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In the case when N =0 or sinf = 0, i.e., m is constant, then Fy(m) = E.(m) = 0 and hence, we
may consider my, := m. Otherwise, N > 1 and sinf # 0. W.l.o.g., we assume that cos > 0. (For
the case cosf < 0, one should consider the sequence my = (—mq j, maj).)

Let £ > 0 and set § := ¢|loge|. We consider the following transition layer (uc,v.) : R — S*
that approximates a wall of angle 26 centered at the origin (see Figure 9):

cosf + (1 — cos g)Lloe Y2107 if |t] < V1 —42,

uc(t) = [og 0] 47
() cos 6 elsewhere, 47)
and
- inf)/1—u2(t if t <0,
ve(t) = sgn(sin 0) uZ(t) = (48)
sgn(sind)/1 — u2(t) if t > 0.
Then (u.,v.) € H' N CO(R, S") and
Ue
1
‘ cos 6 ‘
: | A >
_,l1_52 l1_52
Ve s
sin 0
1-62
Vi-52
-sin 0
Figure 9: Transition layer (ue,v.) of angle 20 with a core of size 6 = ¢|loge].
cosf, —sinf if t <0,
(ue, ve) = (uo, vo) = ( nf) nhe in L}, (R,S") as ¢ | 0.
(cosB,sin6) ift >0,
We will prove that
lim sup E.((ue,v:)) < Eo((ug,v0)) = 7(1 — cos ). (49)

£]0
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First, we estimate the exchange energy corresponding to the transition layer:
dug 2 dvg 2 / 1 due 2
€ —\dt=¢ | —— dt
LG 15 T a

1 dug 2
<c| ol

~ 2¢(1 —cosb) /V =0 t? gt
— og o] _ VT (2 + 62)2log 752;_252

4e(1 — cosb) /1/5 52 ds
—  llogd] o (s241)%2log(s2+1)
1 1
= fgetian) = Ol s ) o0

For the anisotropy term, integration by parts leads to the following estimate:

j[|“ _(”Sﬂzdt__ﬁlijfiﬁfl/ﬁT<ﬂ
R 2logd|2 /o

2(1 — cos 0)? /” 1= g2 o 1 it
logo?  Jy 2+ et
2(1 — cos 0)? /” -0

= |logdlr o

~ 4(1 — cos)? /v 1= 42

N og te +

In order to estimate the stray-field energy, let U, be the radial extension of u. in R?:

U-(z1,22) = ue (/22 + 23).

log?(t? + &%) dt

log —— dt
Bt

dt (51)

By (20), it follows that

1
Mﬂ%négéjvwﬁm

! du, 2
Sw/or’dr}dr

_ 2 1 3
- (1 — cosf) / r dr
o (

~  |logd|? r2 +02)2
(1 —cosf)? /1/‘S 3 ds
[logd|*  Jo  (s*+1)
7(1 — cosf)?

_ 2
(1+|10g5|):7r(1 cos b)) O<log|log6|>.

53
|log e| |log ¢]? (53)

|log 6]
Hence, (50), (52) and (53) yield that

B ((ue,v:)) < 7m(1 —cosf)? + O(M>7

|loge|
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and (49) immediately follows.
We adapt this transition layer for the walls of the limit magnetization m. Let T, f(-) = f(- —p)
be the translation operator and R;f(-) = f(;) be the dilation operator. Let p be given by (38).
For every k € N, we consider
O = e| log ey

and my, == (my k, ma ) with

R, T, uc, (t) itte (ty —p,tn+p),n=1,...,N,
mq k(t) =

cos 6 elsewhere,
and
(=) 'R, Ty, v, (t) ifte (ty—ptn+p),n=1...,N,
mg)k(t) =
(—1)"sind elsewhere in (t,—1,tn),n=1,..., N+ 1.
Then

mry—m — 0 in L*(R,R?) as k | oo

and (46) holds. Indeed, the exchange energy and the anisotropy estimate like:

dm bntp d Ne 1 dug, 2
/’ k‘ dt = skZ/n RTt (usk,vsk‘ dt = uk/Rl_qu’ d;k’ ds

(50) N )
= O —_ s |,
(u| logey|?

N o ptntp 1
/ |m1 1 — cos @) dt = Z/ |R. Ty, ue, — cos 9}2 dt = ,uN/ |ue, — cos B ds
R n=1"tn—p —1

52 uN .
|logex|?

In order to estimate the stray-field energy, we introduce the following extension M}, of my j in R%:

and

R.T. o\Us, (21, if 21 € (tn — ptstp +p)yn=1,..., N,
Mk(arl,xz)_{ #E (tn,0) e (71, 72) if 21 € ( H )

cosf elsewhere in R?,

where U,, is the radial extension of u., in R?. Then it follows by (20),

1
HmLkHip/z < 5/2 |VMk|2d1'
R

N
1
=3 Z / VR, T, 0)Us, | d
n—= —pytn+p) XR

N
= E |Vng|2dy
IxR
(53) 7(1 — cos0)’N 7N (1 — cos)? log | log ey
< —————= " (1+|logdi]) = @) .
|log 6|2 (1 +[log 3x[) |log ek + [log e |?
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From here, (46) follows. Observe that mj — m has a compact support in (¢; — 1,t5 + 1). For
each k € N, the function my only belongs to H'NnCo (R, S1) and it is not a C* function. However,
one can approximate my, in H (R, S') by a sequence of smooth functions {m} : R — S'}, cn that
coincide with m outside the interval (£ — 1,45 + 1). Then

E. . (m}) — E._ (mg) asn | oo.

Therefore, by a diagonal selection argument, m can be approximated by a smooth sequence,
still denoted by {my}, for which (46) holds. Moreover, since my — m in L} (R, S'), by (i) in
Theorem 2, (13) holds and now the conclusion is straightforward. (]

Proof of (i) in Theorem 4. For the construction of the recovery sequence in Model 2, the
only difference with respect to Model 1 is the following: the approximating sequence should satisfy
my, = m in R\ [—1,1]. This condition is not satisfied by the sequence built for Model 1 if m has a
wall at the boundary of the sample [—1,1], i.e., t; = —1 or t;y = 1. Let us explain the way to fix
this problem when t; = —1 (the case tx = 1 is similar). Let u be given by (38). For 0 < v < p,

set £ = —1+~ and m be the modified limit function m that has the first wall present in ¢\”’

(and not in ¢;) and the other walls remain in ¢s, ..., ty. Then we consider the sequence {m,(:)} EEN
constructed in the proof of (ii) of Theorem 2 for a new s, := %. This sequence satisfies the

conditions in (ii) of Theorem 2 for m). Now letting v | 0, by a diagonal selection procedure, we
can extract the desired sequence {my} for which conditions in (i7) in Theorem 4 hold true for m.
O

Proof of (i) in Theorem 6. Let m € C and we consider the set of walls {t, }nez of m that are
1—periodically distributed in R. Set u = % mingez{|t, —tn—1|}. Using translation and scaling by p
of the transition layer (47) & (48) corresponding to a wall (0, £1), the same construction as in the
proof of (i) of Theorem 2 gives a sequence of smooth 2—periodic functions {my} that converges
to m and satisfies limsupy;,, G-, (mx) = 7. O

Now we show Proposition 1: the anisotropy term is essential in (3) in order that the variational
problem is nondegenerate.

Proof of Proposition 1 . We construct a sequence of functions {my = (my , m2x) : R — Sl}kzg
that satisfies the limit conditions in (1), the wall domain is centered in the origin my(0) = (1,0)

and
HmkHHl — 0, Hml,kHH1/2 —0 as k17Too.
Let .
log
_ V241 . T
mlyk(t) = o+ (1 CY) log k if |t| < k 1
o elsewhere,
and
—\/1=mi,t)  ift<0,
mgyk(t) = )
1—m?,(t) if t > 0.

The difference with respect to the transition layer (47) & (48) consists in the fact that the tails
will spread over the entire R as k T oco.
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We first estimate the H'—norm of the transition layer:

/|dm1k dek} dt — /%}dmlk} dt
Rl_ml_’k

S/ 1 ‘dmlk‘ dt
Rl—ml_’k

2(1 - a) /Vk? 2
== dt
vt (24 1)%log(t? +1)

log k

4(1 — ) /°° t? gt
— logk Jy (t2+1)%log(t2+1)

o) -

In order to estimate the H'/2—norm of the transition layer, we consider Uy, be the radial extension
Uk(z1,22) = m1k(y/ 2] + 23).
Applying (20), we obtain that

1
HmlkaQHl/2 < 5/ ’VUk|2d:C
R2
k
d
:w/ T‘ ml"k‘er
0 dr
r(l—a)? [F 3
= D) PR dr
log’k Jo (r*+1)

< J(1+1ogk)_0<10;k>. (55)

of my  in RZ:

For arbitrary § > 0, we conclude by (54) and (55) that
5||mk” + [lma, k}HHl/z —0 askToo.

We notice that the anisotropy for the sequence {my} blows-up. Indeed, integration by parts

leads to:

1—q)2 rvk-1 2
/|m1)k—a|2dt: %/ log” 3 dt
R 2log”k Jo t°+1

k(l _ a)2 \/1-1/k2
- 21og” k /0
2k(1 — )? /v“/“ v L
_— 0

log? k 0 Y2+ 1/k? ng—i-l/kz2 4
_ 2k(1—a)? /V ey

Visoie YRk T YR+ 1/k?

_ 4k(1—a)*log?2 /v1/21/k2
N /1/3—1/k2

— o0 as kT oo,

log®(y® + 1/k%) dy

d
log? k Y

2
d

log? k v

ko

log? k
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where we used that the function © — xzlogz is increasing in [1,00) and 2ify €

1
y2+1/k? 2
(V1/3 = 1/k2,\/1/2 — 1/k2). O

Finally, we highlight in Proposition 2 the importance of the fading H'!—control in the energy
expression in order for the compactness result in the previous theorems to hold true. In general,
the only control in the H'/?2—norm of the magnetization is not sufficient to enforce a compactness
result:

Proof of Proposition 2. Let us consider the transition layer (47) & (48) corresponding to a 180°
Néel wall for a small € € (0,1/3), i.e.,

|log V#2+e?| ; /
UE(t) = [loge| if |t| =Vl —e?
0 elsewhere,

and

. (t):{—s/l—ug(t) if t <0,

1 —u2(t) ift>0
(see Figures 2 and 3). By (53), it follows that

9 2T

el Fa/e < [oge|

For every n € N, we construct a function m,, = (my_,, ma ) : R — S* that has 2n+1 transitions

of 180° and suppmq,, C [0,1]. Set &, = n%, Ly = ﬁ, 1y = —o0, 1} = ifljré fork=1,...,2n+1

and t%, ., = 00. As in the proof of (i) of Theorem 2, let T}, and R; be the translation and the

dilation operator, respectively. We define

Ry, Tirue, (1) ifte (tf — pn,th +pn),k=1,....2n+1,
mq n(t) =

0 elsewhere,
and
o () = (—1)k+1R#nthvsn (t) ifte (t — pn,th +pn),k=1,....2n+1,
" (—1)k elsewhere in (t7_,,#7),k=1,...,2n+ 2.
Then
min, — 0 in L*(R) asn T co. (56)
Indeed,

1 1—¢2
C e 1
[minll2: = (2n + l)un/ u? (s)ds < 7/ log?(s% 4+ €2)ds = O(7>
~1 0

~ |logen,|? |log e, |?
We now prove that
Il < o
Lnllgiz = |10gn|

Indeed, we consider U., be the radial extension of u., in R?:

Ue, (71,72) = uan(\/ x% + x% )-
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Then let M, be the following extension of m; , in RZ:

R Tn U 5 .f E t —_ ,t + 7k:17...,2 +17
Mnm,m_{ T oUey (arss) i € (b= pote+ 1) "

elsewhere in R2.

Applying (20) to the extension M, of my ,, it follows

l/ |VM,,|? dx
2n+1

= 2 Z/ |VRHnT(tZ,O)UEn|2dx

k Hn;t +Hn)><]R

| A

Imam 52

2n+1
== / |VU., |>dy
(—=1,1)xR
(53) 27r(2n + 1) 27
|logen| — [logn|

for n large enough.

It remains to prove that {ms,} is not relatively compact in L], .. Assume by contradiction
that this would be the case. Without loss of generality, we may then assume that ms, — mq in
L' and a.e. in (—1,1). Then there exists ng > 0 such that

1
1
/ |man — man,|dt < —, for all n > ny. (57)

I : 100

By construction, the set {t : mg ,,(t) = 1} contains disjoint intervals I, = (57 _; + fings top — Ling )
k=1,...,n9 of total length larger than 1/4. On each such interval Ij, a function ms,, takes the
value —1 at least on a subset of measure |I|/5, for n large enough. Therefore,

1 no no
2 1

n— no | dt > n— 1l dt > = Ii| > —,

/_1 |ma.n — Mo, | dt > ;:1 /Ik |ma, | 51;:1' k| 10

which is a contradiction with (57). O

7 Appendix

We prove some known characterizations of the homogeneous H'/2—seminorm that we used in the

previous sections.

Proposition 7 Let u: R — R. Then
v |u(s) —u(®)”
1 u(s) —u(t
= — —————dsdt.
||u||H1/2 27T R‘/]R |S —t|2 S

(i) If u is 2—periodic, we have

2
|U|| 1/2 - / / ] 7,(7'rt)|2 dsdt.
[—1,1) J[-1,1) |6 — eimt]
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Proof. (i) By Plancherel’s identity, we have that

:/ﬁ/FM—mewm
_4/| |2/l2 <|§|>d§dl
yﬂ%@mw%%$yw

In order to conclude, it is enough to prove that

> gin?y
|, St
0 Y
Indeed, integration by parts leads to

/oo Sinz Y dy _ /oo 51n(2y) dy S::2y /00 sin s ds.
0 Y 0 Y 0 s

To compute the last integral, we use the Laplace transform of the function s — Si‘; 5 ie.,

o3

L(p) = / ePe 208 ds, p>0.
0 S

We have that

T, and plirgo L(p) = 0.

Therefore, L(0) = 7/2.
(i) We compute:

/ / Ju(s) —u®F *”/ dt/ ult +h) —u(®) 5
1,1) J[-1,1) ems €Mt|2 [~1,1) [—1-t,1-1) leimh —1[2

_ 2
/ dt/ fut + 1) ~ ) g
[—1,1) 1,1) etmh — 1

By the Fourier representation, we know that

u(t+h) —u(t) = > a(B) (" 1)

Then Parseval’s identity leads to

dh / |e _ 1|2
— L4 h) —u(t)|? dt = / )2
/[1,1) lemh — 112 Ji_1 1 fut ) ) Z |a(5)] etk 12 1|2

L1) ﬁGﬂZ
.2 Bh
:wa/ Sl 1)
Ben, [_1)1) Sin =5
= 3 1Ba®P [ Jawan
BeEnZH [—1,1)
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where Jg(h) = , B € wZ* stands for the Fejér kernel. In order to conclude it is enough

P
/ Jo(h)dh = 2.
[-1,1) Q

For that, we introduce the Dirichlet kernel:

Bh
ism 5
8] sin® 2
to show that

n

Z e’ —1+2icos(kh)

k=—n k=1

and we compute that

h)dh = — n(h)dh = — 2=—.
/[—1,1) |5| -1,1) ,= 0 5] n—0 ™

[y
ol
[N}

O
Finally we prove Proposition 4 and then Proposition 3:

Proof of Proposition 4. (i) First we solve the problem (24). We search the solution H as a
gradient field, i.e., H = VU with U : R? — R. In terms of U, (24) turns into a Neumann type
problem for Laplace’s equation:

AU =0 in  {xe # 0},
[U] =0, {O—U} = —dm on {zz=0}.

Oxo dxq

(58)

In the sequel, we will denote by U the Fourier transform of U with respect to the xi—direction.
Then U solves a second order ODE in z- having the Fourier variable £ as a parameter that is
obtained via (58):

axz SU(E, ) — €U ) =0 if 2o #£ 0,
ve.)] - o, (LU )] = —igmi(e) itz =0,
Solving explicitly the ODE, we obtain

O(€,22) = -5

2l¢]

How to deduce regularity results for U starting from the Fourier expression (59), for arbitrary

e IEllm2l i (), € £ 0,20 € R, (59)

functions m; € HY2(R)? We will proceed as follows. We start with the a-priori formula of
H := VU in the Fourier transform in x; —direction and we prove the properties of the stray field
stated in Proposition 4. In particular, we will deduce that U € H'(R?) N L}, (R?).

We set H € L?(R? R?) be given by its Fourier transform in z;:

ﬁ(gu ,’EQ) = (Zé-U(gu ,’EQ), g—xU;(gaJ‘Q)) =€ ~ &l dnzl (€)<2l|§| Sgn§x2)>7 5 7é O,Jig 7é 0.

Let us check that H belongs to L*(R? ,R?). Indeed, by Plancherel’s identity, it follows that:
1 _
HPdo = [ [ eIl m o) deday
2 JrJr
1 e 1D 1 9
=3/ (€ m1(E)7 d€ = Sllmallf,. < +oo.

R2
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We will rigourously prove that H is a gradient field (formally, H is the gradient VU). For that,

we check that oH o
VxH=0, ie, — =—2 in S'(R?).
X ,16,6962 o in (R*)

Indeed, integration by parts and Parseval’s identity lead to

OHy .
R2 8$1 / H2 8171 dé.dx2
- / i€ HC dedrs
R2
- / 8(’§U)Zd§dx2
R2 8$2

0H
- dz, V¢ € S(R?
|, e v € SR,
Therefore, by Poincaré’s lemma, there exists U € H'(R?)NL}, (R?) such that VU = H. Obviously,
up to a constant, U coincides with U a.e. in R2.

We now check that H is a stray field; indeed, Parseval’s identity and integration by parts yield
that

RESE / (6 22) - (z§C(§,w2) o (&m)) dédzs
2 i, —5En(2) _jgljay) OC
/§U Cagde + [ 2 (5)(/R — 8x2(§,x2)dx2 it

- / @c( 0) da, ¥ € O (B2)
dl‘l

Then (24) follows by (22) and from the fact that H is a gradient field.

We want to prove that H is a minimizer of (23). First, we notice that for every stray field
h € L*(R%R?), (22) makes sense for every test function ¢ € H'(R?) N L}, (R?). Indeed, we
regularize ¢ by a sequence {(pbnen C C°(R?) that converges to ¢ in H'(R?). For example, one
can take ¢, = xnpn * (¢ — ay) where {p,} is a mollifying sequence, a,, = fn<‘w‘<2n pn * Cdx and
Xn(z) = x(l I) where x is a smooth cut-off function such that x =1 in (—1,1) and x = 0 outside
(—2,2). The fact that the function f, := p, * (( — a,) is of vanishing mean value in the annulus
{n < |z| < 2n} is used for showing that f,Vx, — 0 in L?(R?) as n | co. More precisely, by
Poincaré’s inequality, we have that:

C
/ [ ful? [Vxa|? dz < e} |fn|2d17§0/ |Vful?dz — 0asn T oo,
R2

n<|z|<2n n<|z|<2n
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since f, — ¢ in H' (here, C stands for a universal constant). Therefore, ¢, — ¢ in H'(R?). Then

Parseval’s identity leads to

dm1
h-Vndxz/— n(+,0)dx
/}R2 ¢ Rd:mC( ) dxq

—

dm, ——
= [ ==, 0)d
| G0

L1

< HmlHi]l/2||<n('7 O)H%{lp

(20) 1 )
< i allGall s e

and we conclude that (22) holds for ¢ by passing to the limit n T oo (here, ¢(-,0) € H'/2(R) is the
trace of ¢ on the horizontal line {z3 = 0}). The stray field H is a minimizer of (23); indeed, for
every stray field h € L?(R? R?), we have that

22 dm 22)
/ |H|2d:v:/ IVU|? do (:)/d—lUd:vl 2 / h-VU < |8 12| VU 22 = ||l 12| H | 2.
R2 R2 R @1 R2

Therefore, ||h]z2 > || H||L2-
Moreover, H is the unique minimizer in L?; indeed, if h is another minimizing stray field, then
h+t(H — h) is also a stray field associated to m; and satisfies

hllzz < ||h+t(H — h)||r2, VteR.

That implies
/ h-(H —h)dz = 0.
R2

Interchanging h by H, we get
H-(h—H)dx=0.

R2
Adding the last two identities, we obtain ||H — k|2 = 0, i.e., H = h a.e. in R%.
(#1) The same argument as in (i) leads to the conclusion in the periodic case, too. (]

Proof of Proposition 3. (i) We solve the Laplace equation with Dirichlet boundary data:

{AUzO in {x9 #0},
U(zy,-) =u(z1) on {z2=0}.

As in the proof of Proposition 4, the Fourier transform in x; —direction turns this problem into an
ordinary differential equation in zo having the Fourier variable £ as a parameter:

2206~ [€PUE) =0 ifas £0,

The solution of the ODE is given by

U(& 2) = e Ellm2lqg).
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Starting from the a-priori formula of the gradient field H := VU, one can repeat the procedure

presented in the proof of Proposition 4. It follows that U € H'(R?) N L}, .(R?) with
ot |”
|VU|? dz = / / €2 + | 2= | dedas
R2 R JR O
= 2/ / |§|2e—2|£||wz\|a(§)|2 dedas
R JR
—2 [ f¢lla(o) P de
R
It also satisfies the condition:
oU o 2
VU -V({dxr = — — | Cdxy, V(¢ e CX(R?). (60)
R2 R 8$2

Here, the jump of the normal derivative of U across the line {x2 = 0} is given by the Fourier
transform in x; —direction:
ou

oYVl _ _ N r—1/2
s 2/¢|a € HY2(R).

Notice that (60) stands true for every ¢ € H'(R?); it comes by regularizing ¢ in H'(R?) by smooth
functions of compact support as in the proof of Proposition 4. Then we show that U is a minimizer
of (20): for every V € H'(R?) with V(-,0) = u, (60) leads to

{a—U} udry = [ |VU|? da.
R2

VU -VV dz=— /
(91:2

R2 R

Therefore, ||V g1 g2y = [|Ull g1 (ge)- Moreover, U is the unique minimizer of (20); indeed, if V' is
another minimizer of (20), then [|V{| g1 g2y < [V 4+ €U = V)| g1 (gey for all ¢ € R. That implies
Jg: VV - V(U — V) dx = 0. Interchanging U and V, it follows [;, VU - V(V — U) dx = 0. Adding
the last two identities, we obtain [|[U — V|| g1 g2y = 0, i.e., U — V is a constant. Since U and V

have the same trace in H'/2 on the horizontal line {zo = 0} as H'(R?)—functions, we conclude
that U =V a.e. in R2
(i1) The periodic case follows similarly. O
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