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1 Introduction

Ferromagnetic materials are widely used in nowadays as technological tools, especially for ma-
gnetic data storage. The modelling of very small ferromagnetic particules is based on the microma-
gnetic theory. The micromagnetic model states that ferromagnetic materials can be described by a
3−D vector-field distribution, called magnetization, where the stable configurations correspond to
(local) minimizers of the micromagnetic energy. The associated variational problem is nonconvex
and nonlocal. Moreover, it is a multi-scale system involving both intrinsic parameters (depending
on the nature of the ferromagnetic material) and extrinsic parameters (coming from the geome-
try of the sample). According to the relative smallness of these parameters, different asymptotic
regimes appear and lead to the formation of various magnetization patterns.

The qualitative and quantitative analysis of the magnetization patterns is an extensively explo-
red topic. Generically, a pattern (stable state) consists in large uniformly magnetized 3−D regions
(magnetic domains) separated by narrow transition layers (magnetic walls) where the magnetiza-
tion varies very rapidly. Depending on the scales of the system, the experiments predict different
type of magnetic walls : 2−D wall defects (Néel walls, asymmetric Bloch wall), 1−D vortex-lines
(Bloch lines) or a mixed type of vortex-wall defects (cross-tie walls). The main goal is to give a
mathematical justification of the physical prediction on the formation and characterization of these
defects. Classical methods of functional analysis are often insufficient to detect these phenomena
of loss of regularity. New approches need to be developed in order to implement geometric measure
theory contributing to the analysis of partial differential equations.

In this survey, we focus on pattern formation in very thin films. The ferromagnetic samples are
assumed to be cylinders with a very small thickness. In our regime, two types of magnetic walls are
expected to be observed : Néel walls and Bloch lines. Moreover, there exists a physical prediction
on global configurations of the magnetization : as stated by van den Berg [29], the observed magne-
tizations at the “mesoscopic” level are 2−D unit-length vector fields of distributionally vanishing
divergence. A special configuration is the Landau state that corresponds to the viscosity solution
of the eikonal equation. It fits perfectly to the magnetization pattern observed in experiments on
rectangular thin films (see Hubert and Schafer [15]).

Our aim is to present some results that rigourously prove the van den Berg conjecture at least
in a special regime. For this purpose, we discuss the properties of Néel walls and Bloch lines. These
defects give the leading order term of the energy of the Landau state. The main result shows
compactness of configurations energetically close to the Landau state in the case where a Bloch
line is energetically more expensive than a Néel wall. Consequently, their limiting pattern satisfies
the van den Berg prediction.

The paper is organized as follows : we start with a mathematical description of the 3−D micro-
magnetic model. Then we discuss a thin film regime where the 3−D model can be asymptotically
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reduced to a 2−D problem. In Section 4, we introduce a toy problem that is a slight simplifica-
tion of the reduced 2−D model and we explain heuristically the van den Berg prediction on the
magnetization at the mesoscopic level. Next we present two models that are related with our toy
problem : the Aviles-Giga model and the Rivière-Serfaty model. They appear in different asympto-
tic regimes in micromagnetics and exhibit the same van den Berg limiting configuration. In Section
6, we review the properties of the Néel walls, together with some new results on the optimality
and Γ−convergence of these 1−D transition layers. In Section 7, we characterize the Bloch lines
by analogy with vortices in Ginzburg-Landau type problems. These results enable us to deduce
the energy level of the Landau state in the toy problem and to present a compactness result for
magnetizations energetically close to the Landau state in Section 8.

2 The 3−dimensional model

The magnetization of a ferromagnetic sample Ω ⊂ R3 is created by the spontaneous alignment
of electron spins and can be described in the non-dimensionalized form by a unit 3−D vector field
m : Ω → S2. Let us assume that the sample is a cylinder, i.e., Ω = Ω′× (0, t) where Ω′ is the cross
section of the sample of diameter ` and t is the thickness of the cylinder (see FIG. 1). According
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Fig. 1 – A ferromagnetic sample.

to micromagnetics, stable magnetizations on Ω are described by (local) minimizers of the energy
functional defined as :

E3D(m) = d2

∫

Ω

|∇m|2 dx + Q

∫

Ω

ϕ(m) dx +
∫

R3
|∇U |2 dx− 2

∫

Ω

Hext ·mdx. (1)

In the following we explain the four components of the micromagnetic energy E3D.
The first term, called exchange energy is due to short range interactions of spins and favors

parallel alignement of neighboring spins. The constant d is the exchange length and corresponds
to an intrinsic parameter of the material on the order of nanometers.

The second term in (1) represents the anisotropy energy that penalizes certain magnetization
axes. The anisotropy energy density ϕ is a nonnegative function with symmetry properties inherited
from the crystalline lattice. The preferred directions of magnetization are the zeros of ϕ. Typically,
we have uniaxial or multiaxial anisotropy (e.g., ϕ(m) = 1−m2

1 that favors the direction (±1, 0, 0))
and surface anisotropy (e.g., ϕ(m) = m4

3 where the easy plane is the horizontal one). The quality
factor Q is a second intrinsic parameter of the material that measures the strength of the anisotropy
energy relative to that of the stray field. According to the values of Q, we distinguish two classes
of materials : soft materials if Q < 1 and hard materials if Q > 1.

The third term of E3D is the stray field energy and is created by long range interactions between
electron spins modelled by the static Maxwell equation. More precisely, the stray field potential
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U : R3 → R is determined by

∆U = ∇·
(

m1Ω

)
in R3, (2)

i.e.,
∫

R3
∇U · ∇ζ dx =

∫

Ω

m · ∇ζ dx, ∀ζ ∈ C∞c (R3).

By the electrostatic analogy, two types of charges generate the potential U : volume charges with
density given by the divergence of m at the interior of the sample Ω and surface charges represented
by the normal component of the magnetization on the boundary of Ω. Therefore, this nonlocal term
favors domain patterns that achieve flux closure.

The last term in (1) denotes the external field energy generated by an applied external field
Hext : R3 → R3. It favors alignment of the magnetization with the external field Hext.

More details about the mathematical modelling of micromagnetics can be found in the book of
Hubert and Schäfer [15] or in the overview of DeSimone, Kohn, Müller and Otto [12].

We will concentrate on the analysis of global minimizers of energy (1). In fact, physically acces-
sible local minima share the same features as the ground state (see DeSimone, Kohn, Müller, Otto
and Schäfer [13]). It is a variational problem relying on the nonconvex constraint |m| = 1 and the
nonlocality of the stray field energy due to definition (2). On the other side, four length scales are
involved in the system : two intrinsic parameters (d and Q) and two extrinsic scales (t and `). The
combination of nonlocality and nonconvexity with the multiscale nature of the variational problem
leads to a rich pattern formation of the magnetization.

3 A reduced 2−D model

We are interested in the following thin-film regime that was studied by DeSimone, Kohn, Müller
and Otto [10] : The cylinder Ω has a small aspect ratio

t

`
¿ 1 (3)

and the sample is large in the sense that

d2

t`
¿ 1
| log `

t |
. (4)

This regime is appropriate for permalloy films of diameter of tens of microns and thickness on
the order of tens of nanometers. So, it can be achieved experimentally, though not by numerical
simulation which is generally restricted to a thickness on the order of submicrons.

The main result in [10] is the reduction of the 3−D micromagnetic model to a 2−D problem
by the method of Γ−convergence in the thin-film limit. In particular, the 3−D minimizers of the
3−D energy converge to configurations that only depend on the in-plane coordinates x′ = (x1, x2)
and minimize a reduced 2−D energy. Here and below, the dash ’ always indicates a 2−D quantity.

The reduced 2−D energy can be deduced by the following ansatz : we consider that m is
invariant in the vertical variable x3, i.e.,

m = (m′,m3)(x′) : Ω′ → S2. (5)

In fact, because of the cylinder shape of the film and the asymptotic regime (3) & (4), the variations
in the thickness direction x3 ∈ (0, t) are strongly penalized by the exchange energy. It is also
assumed that the external field is in-plane and constant in x3, i.e.,

Hext = (H ′
ext(x

′), 0).
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The exchange energy, anisotropy and external field energy write as
∫

Ω

(
d2|∇m|2 + Qϕ(m)− 2Hext ·m

)
dx = t

∫

Ω′

(
d2|∇′m|2 + Qϕ(m)− 2H ′

ext ·m′) dx′. (6)

What is the appropriate scaling of the stray field energy ? For configurations (5), the Maxwell
equation (2) turns into :

∆U = ∇′ ·m′ 1Ω + m · ν 1∂Ω in R3, (7)

where ν is the unit outer normal vector on ∂Ω. Therefore, the volume charges are given by the in-
plane flux and the surface charges on the top and the bottom side of the cylinder are represented by
the out-of-plane component m3 of the magnetization. Equation (7) is a transmission problem that
can be solved explicitly using the Fourier transform F(·) in the horizontal variables (see Appendix)
and the computation yields

∫

R3
|∇U |2 dx = t

∫

R2
f(

t

2
|ξ′|)∣∣ ξ′

|ξ′| · F(m′1Ω′)
∣∣2 dξ′ + t

∫

R2
g(

t

2
|ξ′|)∣∣F(m31Ω′)

∣∣2 dξ′,

where

g(s) =
1− e−2s

2s
and f(s) = 1− g(s) if s ≥ 0.

Approximating g(s) ≈ 1 and f(s) ≈ s if s = o(1), we obtain
∫

R3
|∇U |2 dx ≈ t2

2

∫

R2

∣∣∣∣|∇′|−
1
2∇′ · (m′1Ω′)

∣∣∣∣
2

dx′ + t

∫

Ω′
m2

3 dx′. (8)

Observe that the first term in (8) is related with the stray field energy associated to the following
equation obtained from (7) by passing to the limit t ↓ 0 :

∆u = ∇′ · (m′1Ω′)H2x{x3 = 0} in R3.

More precisely, the homogeneous H−1/2−seminorm of the in-plane divergence of m′ is given by
the Dirichlet integral of u :

1
2

∫

R2

∣∣∣∣|∇′|−
1
2∇′ · (m′1Ω′)

∣∣∣∣
2

dx′ =
∫

R3
|∇u|2 dx. (9)

In order for (9) to be finite, we need to enforce vanishing charges on the lateral boundary :

m′ · ν′ = 0 on ∂Ω′.

For simplicity of the notation, we will think of m′ as being extended to 0 outside Ω′ and we will
still denote this application by m′, i.e.,

m′ := m′1Ω′ .

The scaling of the RHS of (6) and (8) in the length scale ` of Ω′ is obtained by the change of
variable x̃′ = x′/` (Ω̃′ = Ω′/`), m̃(x̃′) = m(x′) and H̃ ′

ext(x̃
′) = H ′

ext(x
′) and leads to the following

2−D approximating thin film energy :

E2D(m̃) = td2

∫

Ω̃′
|∇̃′m̃|2 dx̃′+

t2`

2

∫

R2

∣∣∣∣|∇̃′|−
1
2 ∇̃′ ·m̃′

∣∣∣∣
2

dx̃′+t`2
∫

Ω̃′

(
m̃2

3+Qϕ(m̃)−2H̃ ′
ext ·m̃′

)
dx̃′.

(10)
This ansatz of considering x3−invariant magnetizations in the regime (3) & (4) is rigourously
justified in [10] by the method of Γ−convergence and it explains why the energy E2D is a good
approximation of the 3−D functional E3D.
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4 A toy problem

We will discuss a simplified problem for the thin-film model presented in the previous section.
We will ignore the anisotropy and the external field energy (Q = 0, Hext = 0) ; in fact, they
represent a small perturbation of the remaining terms in (10) by scaling appropriately the quality
factor Q and Hext. The setting of our toy problem is given in the following :

Let ω ⊂ R2 be a planar simply connected domain with Lipschitz boundary. We focus on
configurations

m = (m′,m3) : ω → S2

that are tangent at the boundary, i.e.,

m′ · ν = 0 on ∂ω, (11)

where ν is the normal vector to ∂ω. We consider the following energy functional :

Eε,η(m) =
∫

ω

|∇m|2 dx +
1
η

∫

R2

∣∣∣∣|∇|−1/2(∇ ·m′)
∣∣∣∣
2

dx +
1
ε2

∫

ω

m2
3 dx, (12)

where ε and η are small positive parameters standing for the core of the Bloch line and the Néel
wall, respectively (see Sections 6 and 7).

From now on, we will denote by x = (x1, x2) the in-plane variables and by ∇ the differential
operator

∇ = (∂x1 , ∂x2).

The functional Eε,η represents the renormalization of the energy (10) by a factor td2 and the
penalizing parameters correspond to ε := d

` and η := 2d2

t` . The thin-film regime (3) & (4) turns
into the constraint

ε ¿ 1 & η ¿ 1. (13)

Notice that the boundary condition (11) creates a topological obstruction for the system that
enforces the existence of zeros of m′ in ω. These zeros play the role of topological point-singularities
(vortices) that carry a degree. In a 3−D bulk, they correspond to line-singularities in the vertical
section, so called Bloch-lines.

Our aim is to study the limiting behavior of global minimizers of Eε,η in the regime (13). In
this context, the last two terms in (12) are strongly penalized and favor charge-free configurations.
This type of limiting configuration was predicted by van den Berg [29] : they are 2−D unit-length
vector fields of weakly divergence-free, i.e.,

{
m3 = 0, |m′| = 1 and ∇ ·m′ = 0 in ω,

m′ · ν = 0 on ∂ω.
(14)

We notice that the conditions in (14) are too rigid for smooth magnetization m. This can be

Fig. 2 – Landau state.

seen by writing m′ = ∇⊥ψ with the help of a “stream function” ψ. Here, ⊥ denotes an in-plane
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rotation by 90◦. Then (14) implies that ψ is a solution of the Dirichlet problem for the eikonal
equation :

|∇ψ| = 1 in ω. (15)

Using the method of characteristics, it follows that there is no smooth solution of the equation (15)
in a bounded simply connected domain ω such that m′ satisfies the boundary conditions (11). On
the other hand, there are many continuous solutions that satisfy (15) away from a set of vanishing
Lebesgue measure. One of them is the “viscosity solution” given by the distance function

ψ(x) = dist(x, ∂ω)

that corresponds to the so-called Landau state for the magnetization m′ (see FIG. 2). Hence, the
divergence-free equation in (14) has to be interpreted in the distribution sense and the boundary
conditions (11) are expected to induce line-singularities for solutions m′ (or a point singularity
in the case of a circular domain ω). These ridges (“ridges” from the point of view of ψ) are an
idealization of walls in thin-film elements at the mesoscopic level. At the microscopic level, they
are replaced by smooth transition layers (called Néel walls) where the magnetization varies very
quickly on a small length scale. A final remark is that the normal component of m′ does not jump
across these discontinuity lines (because of (14)) and therefore, the normal of the mesoscopic wall
is determined by the angle between the mesoscopic levels in the adjacent domains (see FIG. 3).

m’

Jm’ 

Fig. 3 – Angle wall.

We expect that the leading order term of the energy of the Landau state is given by the cost
of line and point defects. Therefore, we analyse the qualitative and quantitative behavior of the
Néel walls and Bloch-lines in Sections 6 and 7. This study allows us to state a compactness result
for the Landau state in Theorem 4 and to conclude that the limiting configurations in that regime
satisfy the van den Berg prediction.

5 Two related problems

Let us compare the toy problem with two related singularly perturbed variational problems.
The first one was raised by Aviles and Giga [4] in connection with several physical applications
(smectic liquid crystals, film blisters or convective pattern formation) and it was intensively studied
since then, e.g. by Ambrosio, DeLellis and Mantegazza [3], DeSimone, Kohn, Müller and Otto [9],
Jin and Kohn [20] etc. It consists in minimizing the energy functional





AGε(m′) =
∫

ω

(
ε|∇m′|2 +

1
ε
(1− |m′|2)2

)
dx,

m′(x) : ω ⊂ R2 → R2, ∇ ·m′ = 0 in ω,
(16)
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or more generally, in studying 2−D divergence-free vector fields {m′
ε} with uniformly bounded

energy AG(m′
ε) ≤ C as ε ↓ 0. With respect to (12), the vector fields are constrained to be of

divergence-free in problem (16) ; they will tend to be of length 1 as ε ↓ 0.
The second problem was considered by Rivière and Serfaty [26, 27] and Alouges, Rivière and

Serfaty [2] as a model for x3−invariant magnetizations in thicker films with strong planar aniso-
tropy. It consists in reversing the limiting processes in (16), i.e., the vector fields are restricted to
be of unit length and they are no longer of divergence-free, but the latter condition is forced by a
penalization in the H−1−norm as ε ↓ 0 :





RSε(m′) =
∫

ω

ε|∇m′|2 dx +
1
ε

∫

R2
||∇|−1∇ · (m′1ω)|2 dx,

m′(x) : ω ⊂ R2 → R2, |m′| = 1 in ω.
(17)

Observe that the first problem (16) is local, whereas (17) has a nonlocal behavior due to the
last term of the energy RSε. Therefore, the feature of (17) is much closer to our toy problem.
However, the boundary condition (11) cannot stand true for problem (17). Indeed, there are no
H1(ω, S1)−vector fields with values into the unit circle that are tangent at the boundary of a
simply connected domain ω. On the other hand, (11) is strongly penalized by the second term in
the energy RSε as ε ↓ 0.

As in the toy problem, the limiting configurations in (16) and (17) will satisfy as ε ↓ 0 :

∇ ·m′ = 0 and |m′| = 1 in ω.

In fact, compactness results for sequences {m′
ε} of uniformly bounded energy are proved for problem

(16) in [3] and [9], respectively for problem (17) in [26, 27]. The accumulation points are indeed 2−D
unit-length vector fields of weakly divergence free. Therefore, we expect to have line-singularities
for solutions m′ in the limit ε ↓ 0 and the normal component m′

ν of m′ does not jump across these
ridges.

However, the Γ−limit energies for these functionals have different behavior. In fact, the energetic
cost on a ridge Jm′ can be computed by considering 1−D transition layers that connect two
directions of angle −θ and θ with θ ∈ (0, π/2] (see FIG. 3). In the first model (16), the divergence-
free constraint enforces that the normal component of the 1−D transition layer across the ridge is
constant. Therefore, the associated variational problem can be expressed in terms of the tangential
component mτ and corresponds to a Cahn-Hilliard type model :





AG1D
ε (mτ ) =

∫

R

(
ε
∣∣dmτ

dt

∣∣2 +
1
ε
(sin2 θ −m2

τ )2
)

dt,

mτ : R→ [− sin θ, sin θ] and mτ (±∞) = ± sin θ.

The energy AG1D
ε is invariant under translation. Since configurations mτ of finite energy are

continuous, the limit conditions enforce a zero (transition wall) for mτ and one can fix the center
of the wall at the origin by setting mτ (0) = 0. The minimizer mτ of AG1D

ε is unique and satisfies
the Cauchy problem associated to the first order ODE (see [20]) :

dmτ

dt
=

1
ε
(sin2 θ −m2

τ ), mτ (0) = 0.

Therefore, it is a transition layer with a single length scale ε, i.e.,

mτ (t) = sin θ tanh(
t sin θ

ε
)

and satisfies the limit conditions mτ (±∞) = ± sin θ. The minimal energy is equal to

min AG1D
ε =

8
3
| sin θ|3 =

1
3
|m+ −m−|3,
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where m± = (cos θ,± sin θ) are the traces of the magnetization on the ridge Jm′ .
Let us now compute the cost of the Γ−limit of {RSε} on the ridge Jm′ for the second model

(17). Since the transition layer is of length 1, we transpose the corresponding variational problem
in terms of the phase (lifting) ϕ of m′ (see [26]) :





RS1D
ε (ϕ) =

∫

R

(
ε
∣∣dϕ

dt

∣∣2 +
1
ε
(cos ϕ− cos θ)2

)
dt,

ϕ : R→ [−θ, θ] and ϕ(±∞) = ±θ.

As before, since the energy RS1D
ε is invariant under translation, we fix the center of the phase

transition at the origin by setting ϕ(0) = 0. The minimizer ϕ of RS1D
ε is unique and satisfies the

Cauchy problem associated to the first order ODE (see [26]) :

dϕ

dt
=

1
ε
(cos ϕ− cos θ), ϕ(0) = 0.

It is an increasing transition layer with a single length scale ε that satisfies the limit conditions
ϕ(±∞) = ±θ and the minimal energy is equal to

min RS1D
ε = 2

∫

R
(cos ϕ− cos θ)

dϕ

dt
dt = 4(sin θ − θ cos θ).

Remark : The energetic cost (per unit length) of a jump across a ridge of angle 2θ is cubic (≈ θ3)
in both models (16) and (17) for small angles θ. However, for large angles θ, the Γ−limit energy
charges differently a jump in (16) and (17).

6 Néel walls

The Néel wall is a dominant transition layer in thin ferromagnetic films. It is characterized by
a one-dimensional in-plane rotation connecting two (opposite) directions of the magnetization (see
FIG. 3) :

m3 = 0 and m = m(x1).

It is a two length scale object : a small core with fast varying rotation and two logarithmically
decaying tails. There are three confining mechanisms for the Néel tails : the anisotropy of the
material, the steric interaction with the sample edges and the steric interaction with the tails
of neighboring Néel walls. These models correspond to three nonconvex and nonlocal variational
problems depending on a small parameter (see Ignat [16]).

For simplicity, here we only describe the case of confining tails by the finite size of the sample.
The constraints are given by :

m′ = (m1,m2) : R→ S1 and m′(±x1) =

(
α

±√1− α2

)
for ± x1 ≥ 1, (18)

with α ∈ [0, 1) (see FIG. 4). Denoting θ = arccos α, then 2θ is called the Néel wall angle. For
configurations (18), the energy (12) per unit length in x2−direction turns into :

E1D
η (m′) =

∫

R

∣∣dm′

dx1

∣∣2 dx1 +
1
η

∫

R

∣∣∣∣
∣∣ d

dx1

∣∣1/2
m1

∣∣∣∣
2

dx1. (19)

Under these restrictions, a Néel wall corresponds to a minimizer of energy (19).
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m1

m’

S
1

m’
-1

1

Fig. 4 – Néel wall of angle 2θ confined in [−1, 1].

Notice that the continuous transition layers are necessarily not charge-free, i.e.,

∇ ·m′ =
dm1

dx1
6= 0.

Hence there is a competition between the first and second term in (19). The main feature of the
variational problem is that the renormalized energy ηE1D

η only gives uniform bound of m1 in
Ḣ1/2(R) that barely fails to control the L∞(R)-norm ‖m1‖L∞(R) = 1. This suggests a logarithmic
singular behavior. The prediction of the logarithmic scaling for minimal energies ηE1D

η was formally
proved by Riedel and Seeger [25] ; a detailed mathematical discussion of their results was carried
out by Garcia-Cervera [14] by means of a perturbation argument. The exact leading order term of
the minimal energy was finally deduced by DeSimone, Kohn, Müller and Otto [8, 11] by matching
upper and lower bounds in the case of a 180◦ Néel wall, i.e., α = 0 :

min
(18)

α=0

E1D
η ≈ π

η| log η| as η ↓ 0. (20)

The analysis of the structure of a minimizer of (20) is rather subtle due to the different scaling
behavior of the energy terms in (19). This suggests the existence of two length scales of the
transition layer. The Néel wall is divided in two regions : a core (|t| . wcore) and two tails (wcore .
|t| . wtail). This particular structure enables the magnetization to decrease the renormalized
energy ηE1D

η by a logarithmic factor (20). Melcher [22, 23] rigorously established the optimal
profile of the Néel wall, i.e., the minimizer m′ of (20) with m1(0) = 1 is unique and exhibits two
uniform logarithmic tails beyond a core region of order η close to the origin (see FIG. 5 and FIG.
6) :

m1(t) ∼ | log |t| |
| log η| for η < |t| ¿ 1.

O( )

m1

0

1

t

Fig. 5 – First component of a 180◦ Néel wall.

The stability of 180◦ Néel walls under arbitrary 2−D modulation was proved by DeSimone,
Knüpfer and Otto [7]. The setting is the following : We consider the cross section of the thin
ferromagnetic sample as a 2−D sheet ω = (−1, 1) × R. The admissible magnetizations are 2−D
unit-length vector fields

m′ = (m1,m2) : R2 → S1
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m2

1

-1

t

Fig. 6 – Second component of a 180◦ Néel wall.

that satisfy the boundary conditions in (18) and m′ is L−periodic in the infinite x2-direction, i.e.,

m′(x1, x2+L) = m′(x1, x2),∀(x1, x2) ∈ R2 and m′(±x1, x2) =

(
α

±√1− α2

)
,∀x2 ∈ R,±x1 ≥ 1,

(21)
where L is an arbitrary positive number. These magnetizations macroscopically connect two di-
rections which form an angle (see FIG. 7). Then the energy density (12) for this configuration

x2

x1

m2

m1

m’

m’

S
1

L

Fig. 7 – The admissible magnetization m′

writes

Eper
η (m′) =

∫

R×[0,L)

|∇m′|2 dx +
1
η

∫

R×[0,L)×R

∣∣∣∣|∇|−1/2(∇ ·m′)
∣∣∣∣
2

dx. (22)

The stability result for the 180◦ Néel wall in [7] is stated as follows :

min
m′=m′(x1,x2) with (21)

|m′|=1, α=0

Eper
η (m′) ≈ min

m′=m′(x1) with (18)

α=0

Eper
η (m′) ≈ πL

η| log η| as η ↓ 0.

This means that asymptotically, the minimal energy Eper
η is assumed by a straight wall. More

precisely, the variations of the optimal 1−D transition layer in x2-direction will not decrease the
leading order term in the energy.

Later, Ignat and Otto[17] showed a qualitative property of the optimal 1−D transition layers :
asymptotically, the minimal energy can be attained only by the straight walls. This property holds
for general boundary conditions (21). It is based on a compactness result for in-plane unit-length
magnetizations with energies close to the minimal energy level : Any accumulation limit m∗ has
its singularities concentrated on a vertical line (see FIG. 8).
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Theorem 1 (Ignat and Otto [17]) Let α ∈ [0, 1) and L > 0 be given. For any δ > 0 there exists
η0 > 0 with the following property : Given m′ : R2 → S1 such that (21) holds and

η| log η|Eper
η (m′) ≤ Lπ(1− α)2 + η0, for some 0 < η ≤ η0,

then we have ∫

R×[0,L)

|m′ −m∗| dx ≤ δ,

where m∗ is a straight wall given by

m∗(x1, x2) =

(
α

±√1− α2

)
for ± x1 > ±x∗1, (23)

for some x∗1 ∈ [−1, 1].

x2

x1

m
*

-1 x1

*
1

Fig. 8 – Straight wall

A natural question about the Γ−convergence for the Néel walls arises in this framework. Due
to (20), we consider a new length scale δ > 0 such that η = δ/| log δ| and we renormalize the energy
(19) by a factor η| log δ| in order for the minimal energy to become of order O(1) :

Ẽδ(m′) = δ

∫

R

∣∣dm′

dx1

∣∣2 dx1 + | log δ|
∫

R

∣∣∣∣
∣∣ d

dx1

∣∣1/2
m1

∣∣∣∣
2

dx1. (24)

The goal is to study the Γ−limit of energies {Ẽδ} as δ ↓ 0 and to characterize the limiting
configurations of the magnetization.

The compactness result of configurations of uniformly bounded energy {Ẽδ}δ↓0 is given in the
following :

Theorem 2 (Ignat and Otto[17], Ignat [16]) Let δk ↓ 0 as k ↑ ∞, αk ∈ [−1, 1] and m′
k =

(m1,k,m2,k) : R→ S1 be such that (18) holds and

lim sup
k↑∞

Ẽδk
(m′

k) < +∞. (25)

Then {m′
k}k↑∞ is relatively compact in L1

loc(R, S1). Any accumulation point m′ : R → S1 is of
bounded total variation and can be written as

m′ =
N+1∑
n=1

(
cos θ

(−1)n sin θ

)
1(tn−1,tn), (26)

where θ ∈ [0, 2π), N ≥ 0 and −∞ = t0 < −1 ≤ t1 < · · · < tN ≤ 1 < tN+1 = +∞. Moreover, if
sin θ 6= 0, then N is an odd integer and m′ satisfies (18).

11



t

m’

t1 t2 t3

Fig. 9 – A limit configuration with 3 walls.

Remark :
i) The limiting configurations exhibit a finite number of walls of identical angle 2θ. All these

walls are confined in [−1, 1] because of the boundary condition (18).
ii) Observe that the initial configurations {m′

k} satisfy boundary conditions (18) determined by
different numbers {αk}. The angle of the limit configuration m′ represents an accumulation
point of the sequence {2 arccos αk}.

iii) The fading Ḣ1−control of the magnetization is essential for the compactness result. In
the absence of it, we can construct a sequence of magnetizations {m′

k} that satisfy (18),
‖m1,k‖Ḣ1/2 → 0 as k ↑ ∞ and {m′

k} is not relatively compact in L1
loc (see [16]).

iv) The compactness result in Theorem 2 fails in general in the BVloc−topology even if the
limiting configurations are of bounded variation in R. In fact, Ignat and Otto [17] constructed
a sequence of magnetizations {m′

k} with (18) and of uniformly bounded energy Ẽδk
(m′

k) ≤ C

such that the sequence of total variations {∫R
∣∣dm1,k

dt

∣∣} blows-up.

Let us denote by A the set of all limiting configurations given by (26). For such a configuration
m′ ∈ A, we define the following energy :

Ẽ0(m′) = π(1− |m1|)2 ·
(

number of jumps of m′
)

,

where the number N of jumps of m′ corresponds to the number of straight walls of the limiting
magnetization m′. We can show that Ẽ0 represents the Γ−limit of energies Ẽδ as δ ↓ 0 :

Theorem 3 (Ignat [16]) Let δk ↓ 0 as k ↑ ∞. Then

Ẽδk

Γ→ Ẽ0 under the L1
loc(R, S1)−topology as k ↑ ∞, i.e.,

(i) If m′
k : R → S1 and αk ∈ [−1, 1] are such that (18) and (25) hold and m′

k → m′ in
L1

loc(R, S1), then m′ ∈ A and

lim inf
k↑∞

Ẽδk
(m′

k) ≥ Ẽ0(m′);

(ii) For every m′ ∈ A, there exist smooth functions m′
k : R → S1 such that m′

k = m′ in
R \ [−1, 1], m′

k −m′ → 0 in L1(R,R2) and

lim
k↑∞

Ẽδk
(m′

k) = Ẽ0(m′).

Remark : Our result yields that the energy of a Néel wall is quartic in θ for a small angle 2θ :

min
(18)

Ẽδ

δ↓0≈ π(1− | cos θ|)2 ≈ π

4
θ4 as θ ↓ 0.

12



Observe the difference between models (16) and (17) where the limit energy charges a jump across
a ridge of angle 2θ as a cubic power θ3 for small angles θ. Therefore, the Γ−convergence for Néel
walls is rather non-standard because the optimal profiles of the phase-transitions in (24) have a
logarithmic tail, and thus the competition between the two terms of the energy Ẽδ is uneven. In
particular, the method of “entropies” used in [20] and [9] does not work for this problem. The idea
is to use a logarithmically failing interpolation inequality. For the compactness of magnetizations
{m′

k} in Theorems 2, we need to control in some sense their variations which consists in studying
the derivatives of the first components {σk := dm1,k

dt }. The energy controls the homogeneous Ḣ−1/2-
seminorm of σk in the regime O( 1

| log δk| ). The idea is to use a duality argument by estimating the
product

< χk, σk >Ḣ1/2,Ḣ−1/2

for a trial function χk that counts the variations of m1,k. Therefore, it is enough to analyse the
rate of the failing interpolation embedding

BV ∩ L∞(R) * Ḣ1/2(R)

that corresponds to the failing Gagliardo-Nirenberg type inequality :
∫ ∣∣ | d

dt
|1/2χk

∣∣2 .
/

sup |χk|
∫
|dχk

dt
|. (27)

Typically, the trial function χk has jumps so that χk /∈ Ḣ1/2(R). That can be corrected by using
a perturbation of the homogeneous Ḣ1/2−seminorm that gives a weaker seminorm as in the work
of DeSimone, Knüpfer and Otto [7]. This seminorm is controlled by the RHS term in (27) by a
logarithmically slow rate with an optimal prefactor 2

π . This optimal factor gives the exact leading
order term of the energy (20).

7 Bloch line

A Bloch line is a smooth 3−D structure on the microscopic level of the magnetization that
replaces a topological point singularity at the mesoscopic level. The prototype of a Bloch line is
given by a vector field

m : ω → S2

that is defined in a circular cross-section ω := B1 ⊂ R2 of a film and satisfies :

∇ ·m′ = 0 in B1 and m′(x) = x⊥ on ∂B1. (28)

Here, the Bloch line is assumed to be invariant in the vertical direction and the word “line” refers
to that direction. The magnetization turns in-plane at the boundary of the disk B1. Therefore, the
in-plane component m′ looks like a regularization of a vortex x⊥/|x|. This topological constraint
creates a localized region, the core of the Bloch line, where the magnetization becomes perpendi-
cular to the horizontal plane (see FIG. 10). The out-of-plane component m3 represents the surface
charges. Compared to Néel walls, the Bloch line is a configuration that avoids volume charges.

The energy (12) for a magnetization (28) writes as :

Eε,η(m) =
∫

B1

|∇m|2 dx +
1
ε2

∫

B1

m2
3 dx. (29)

The Bloch line corresponds to the minimizer of (29) under the constraint (28). Observe that
the competition between the exchange and the stray field energy (by the penalization of surface

13



x3

x2

x1 x1

Fig. 10 – Bloch line.

charges) yields that the size of the core of the Bloch line is of order ε. Since |∇m′| ≤ |∇m| and
1 ≥ m2

3 ≥ m4
3 = (1−|m′|2)2, (29) has a lower bound given by the following Ginzburg-Landau type

functional :
GLε(m′) =

∫

B1

|∇m′|2 dx +
1
ε2

∫

B1

(1− |m′|2)2 dx.

The theory developed in the book of Béthuel, Brezis and Hélein [5] shows that the minimal
energy GLε under the restriction that m′ has winding number 1 is of order | log ε| :

min
m′∈H1(B1,R2)

m′=x⊥ on ∂B1

GLε(m′) ≈ 2π| log ε| as ε ↓ 0.

Moreover, Rivière and Pacard [24] proved that the minimizer of GLε is unique and radially sym-
metric around the origin for a sufficiently small ε > 0, i.e.,

m′(x) = f(|x|)x⊥

|x| , (30)

where the profile f is the unique solution of the following Cauchy problem associated to a second
order ODE : {

−d2f
dr2 − 1

r
df
dr + f

r2 = 2
ε2 f(1− f2) in (0, 1),

f(0) = 0, f(1) = 1.

Also notice that the minimizer (30) of GLε is divergence-free, hence it satisfies (28).
An upper bound for our energy (29) can be deduced by computing the energetic level of the

configuration

m̃′(x) = f̃(|x|)x⊥

|x| , m̃3 =
√

1− |m̃′|2 with f̃(r) =

{
sin(πr

2ε ) if r ∈ (0, ε),
1 if r ∈ (ε, 1).

Then m̃′ satisfies (28) and we have for ε < 1,

Eε,η(m̃′) ≤ 2π| log ε|+ C,

where C is some positive constant.
Therefore, we conclude that

EBloch ≈ 2π| log ε| as ε ↓ 0.
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8 Compactness of the Landau state

We are now able to estimate the energy of the Landau state. The Landau state is a smooth
structure at the microscopic level whose in-plane component replaces the viscosity solution m′ =
∇⊥ψ associated to the problem (14) at the mesoscopic level where the stream function is ψ =
dist(x, ∂ω). As explained in Section 4, ψ generates ridges (line-defects) that turn into Néel walls
for the Landau state. Also, the Landau state presents point-defects corresponding to Bloch lines.
The existence of a Bloch line is enforced by the topological constraint involved in the boundary
condition (11). Therefore, we expect that the energy of the Landau state is of the following leading
order :

ELandau ≈ 2π| log ε|+ A

η| log η| ,

where ε and η are the sizes of the core of the Bloch line and the Néel wall, respectively. Here, A is
a positive constant depending on the angle and length of the Néel walls.

In the regime where ε is exponentially small with respect to η, we prove the compactness
of 3−D magnetizations that are energetically close to the Landau state. Consequently, the limit
configurations do satisfy the van den Berg prediction.

Theorem 4 (Ignat and Otto [18]) Let ω ⊂ R2 be a smooth simply connected domain and let
A > 0 and α ∈ (0, 1/2) be two arbitrary constants. Let εk, ηk > 0, k ∈ N be two sequences such
that

A

ηk| log ηk| ≤ 2πα| log εk| for every k ∈ N (31)

and
εk ↓ 0, ηk ↓ 0 as k ↑ ∞.

If mk : ω → S2 are C1 functions satisfying (11) and

Eεk,ηk
(mk) ≤ 2π| log εk|+ A

ηk| log ηk| , (32)

then {mk}k↑∞ is relatively compact in L1(ω) and any accumulation point m : ω → S2 satisfies

m3 = 0, |m′| = 1 a.e. in ω and ∇ ·m′ = 0 distributionally in ω. (33)

The compactness result in Theorem 4 is based on the approximation of 3−D configurations
by unit 2−D vector fields away from a small region. That region is detected via the following
theorem. It comes by using some topological techniques due to Jerrard [19] and Sandier [28] for
the concentration of the Ginzburg-Landau energy around vortices (see also Lin [21]). In our regime
(31), the level of energy (32) supports only one interior vortex or it concentrates on the boundary
(when boundary vortices do exist).

Theorem 5 (Ignat and Otto [18]) We consider ω ⊂ R2 be a smooth simply connected domain.
Let σ > 0, α ∈ (0, 1/2) and m′ : ω → R2 be a C1 function satisfying (11). Then there exists ε0 > 0
such that the condition

∫

ω

GLε(m′) dx ≤ 2π(1 + α)| log ε| for 0 < ε ≤ ε0 (34)

imply either the existence of a vortex ball B(x∗, σ) ⊂ ω with
∫

B(x∗,σ)

GLε(m′) dx ≥ 2π| log
σ

ε
| − C(α),
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or the following lower estimate of the energy at the boundary ∂ω :
∫

{x∈ω : dist(x,∂ω)<σ}
GLε(m′) dx ≥ 2π| log

σ

ε
| − C(α).

In Theorem 5, a small region is detected where GLεk
(m′

k) is concentrated : either a disk of
radius σ or a band of width σ near the boundary ∂ω. Let us denote this region by ωσ. Away
from ωσ, the energy level (32) only allows line singularities. Fix a disk D inside ω \ ωσ. One can
detect a square grid in the interior of the disk with the following properties : each cell has a small
size, |m′

k| ≥ 1/2 on the grid and the degree of m′
k vanishes on the boundary of each cell of the

grid. Thus, m′
k can be approximated by a unit 2-D vector field vk in the interior of D and vk

has the same level of energy O( 1
ηk| log ηk| ) as m′

k in D. The following compactness result for 2−D
configurations applies and the conclusion of Theorem 4 follows immediately.

Theorem 6 (Ignat and Otto[17]) Consider a sequence {ηk}k∈N ⊂ (0,∞) with ηk ↓ 0 and for
k ∈ N, let vk : B1 ⊂ R2 → S1. Suppose that

lim sup
k→∞

ηk| log ηk|
( ∫

B1

|∇vk|2 dx +
1
ηk

∫

B1

∣∣|∇|−1/2(∇ · vk)
∣∣2 dx

)
< ∞.

Then {vk}k↑∞ is relatively compact in L1(B1) and any accumulation point v : B1 → R2 satisfies

|v| = 1 a.e. in B1 and ∇ · v = 0 distributionally in B1. (35)

Theorem 6 is the generalization of Theorem 2 for 2−D magnetizations. The proof uses a localized
version of the interpolation-type inequality that is explained in the last remark in Section 6. The
idea is to control the length of an orbit of the flow v⊥k as in the work of DeSimone, Knüpfer and
Otto [7]. In fact, such an orbit corresponds to a flow line of v⊥ in the limit k ↑ ∞, which is a
straight characteristic in the case of a smooth solution v of (35). If χk is a characteristic function
with the jump set concentrated on an orbit of v⊥k and ρ is a cut-off function, then the localized
“duality” term < χk,∇ · vk >Ḣ1/2,Ḣ−1/2 , i.e.,

∫
ρχk∇ · vk dx

controls the local length
∫

ρ|∇χk| dx of the orbit of v⊥k . The energy gives an upper bound of
the homogeneous Ḣ−1/2-seminorm of the divergence ∇ · vk in the regime O( 1

| log ηk| ) and also, it

has a fading control on the Ḣ1-seminorm of vk. Therefore, it is enough to estimate a perturbed
homogeneous Ḣ1/2-seminorm of χk by the total variation of χk. That holds true by the following
localized version of a logaritmically failing interpolation inequality (see [7]) :

∫

1<|ξ|<1/ηk

|ξ||F(χk)|2 dξ ≤ 2
π
| log ηk| sup |χk|

∫
|∇χk| dx.

9 Appendix

We compute the stray field energy for x3−invariant magnetizations in the general 3−D model.
Let Ω = Ω′ × (0, t), Ω′ ⊂ R2 be a bounded simply connected domain with Lipschitz boundary and
m = (m′,m3) : Ω → R3. We extend m by 0 outside the domain Ω, so that we will always identify

m = m1Ω.
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The stray field potential U : R3 → R is the solution of the transmission problem (2) :




∆U = ∇ ·m in Ω,

∆U = 0 in R3 \ Ω,

[U ] = 0 on ∂Ω,[
∂U
∂ν

]
= m · ν on ∂Ω,

(36)

where [h] = h+ − h− stands for the jump of a quantity h with respect to the outer unit normal
vector ν on ∂Ω. If m ∈ L2(Ω) and the normal trace m · ν belongs to H−1/2(∂Ω), problem (36) has
a unique solution in the Beppo-Levi space (see Dautray and Lions [6]) :

BL = {U : R3 → R : ∇U ∈ L2(R3),
U

1 + |x| ∈ L2(R3)}.

In fact, ∇U is the Helmholtz projection onto gradient fields of the magnetization m in the
L2−topology and the potential U is fixed by the decay condition U/(1 + |x|) ∈ L2.

From now on, we assume that m does not depend on x3 :

m = (m′,m3)(x′).

The following formula holds for the stray field energy (see also DeSimone, Kohn, Müller and
Otto [10] or Alouges and Labbé[1]) :

Proposition 1 If m is x3−invariant in Ω, then
∫

R3
|∇U |2 dx = t

∫

R2
f(

t

2
|ξ′|)∣∣ ξ′

|ξ′| · F(m′1Ω′)
∣∣2 dξ′ + t

∫

R2
g(

t

2
|ξ′|)∣∣F(m31Ω′)

∣∣2 dξ′,

where

g(s) =
1− e−2s

2s
and f(s) = 1− g(s) if s ≥ 0.

Proof. Indeed, the Fourier transform F(U)(ξ′, x3) in the in-plane variables x′ turns (36) into a
second order ODE in the vertical variable x3 for the wave number ξ′ as a parameter :

∂2

∂x2
3

F(U)(ξ′, x3)− |ξ′|2F(U)(ξ′, x3) =

{
0 if x3 < 0 or x3 > t,

F(∇′ ·m′)(ξ′) if x3 ∈ (0, t),

with the boundary conditions

[F(U)] (ξ′, 0) = [F(U)] (ξ′, t) = 0 and
[

∂

∂x3
F(U)

]
(ξ′, 0) =

[
− ∂

∂x3
F(U)

]
(ξ′, t) = F(m31Ω′)(ξ′).

The solution is given by

F(U)(ξ, x3) =





α(ξ′)(e|ξ
′|(x3−t) − e|ξ

′|x3) if x3 < 0,

β(ξ′)e−|ξ
′|x3 + α(ξ′)e|ξ

′|(x3−t) − F(∇′·m′)(ξ′)
|ξ′|2 if x3 ∈ (0, t),

β(ξ′)(e−|ξ
′|x3 − e|ξ

′|(t−x3)) if x3 > t,

where

α(ξ′) =
F(∇′ ·m′)(ξ′)

2|ξ′|2 +
F(m3)(ξ′)

2|ξ′| and β(ξ′) =
F(∇′ ·m′)(ξ′)

2|ξ′|2 − F(m3)(ξ′)
2|ξ′| .
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Therefore, Plancherel’s identity leads to

∫

R3
|∇U |2 dx =

∫

R

∫

R2

(∣∣∣∣
∂F(U)

∂x3

∣∣∣∣
2

+ |ξ′|2|F(U)|2
)

dξ′dx3 = I1 + I2 + I3

where

I1 =
∫ 0

−∞

∫

R2

(∣∣∣∣
∂F(U)

∂x3

∣∣∣∣
2

+ |ξ′|2|F(U)|2
)

dξ′dx3 =
∫

R2
|ξ′|α(ξ′)2(1− e−|ξ

′|t)2 dξ′,

I2 =
∫ t

0

∫

R2

(∣∣∣∣
∂F(U)

∂x3

∣∣∣∣
2

+ |ξ′|2|F(U)|2
)

dξ′dx3

=
∫

R2

(
|ξ′|(α(ξ′)2 + β(ξ′)2)(1− e−2|ξ′|t)− 2(α(ξ′) + β(ξ′))(1− e−|ξ

′|t)
F(∇′ ·m′)(ξ′)

|ξ′|
)

dξ′+
∫

R2
t
(F(∇′ ·m′)(ξ′))2

|ξ′|2 dξ′

and

I3 =
∫ ∞

t

∫

R2

(∣∣∣∣
∂F(U)

∂x3

∣∣∣∣
2

+ |ξ′|2|F(U)|2
)

dξ′dx3 =
∫

R2
|ξ′|β(ξ′)2(1− e−|ξ

′|t)2 dξ′.

The conclusion is now straightforward. ¤
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[15] A. Hubert and R. Schäfer, Magnetic domains, Springer, 1998.

[16] R. Ignat, A Γ−convergence result for the Néel wall, preprint.
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