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Abstract

We prove the following regularity result: any two-dimensional unit-length divergence-free vector field
belonging to W1/p,p (p ∈ [1,2]) is locally Lipschitz except at a locally finite number of vortex-point
singularities. We also prove approximation results for such vector fields: the dense sets are formed either
by unit-length divergence-free vector fields that are smooth except at a finite number of points and the

approximation result holds in the W
1,q
loc -topology (1 � q < 2), or by everywhere smooth unit-length vector

fields (not necessarily divergence-free) and the approximation result holds in a weaker topology.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω ⊂ R2 be an open bounded set. We will focus on measurable vector fields m : Ω → R2

that satisfy

|m| = 1 a.e. in Ω and ∇ · m = 0 in D′(Ω). (1)

One can equivalently consider measurable vector fields v : Ω → R2 such that

|v| = 1 a.e. in Ω and ∇ × v = 0 in D′(Ω). (2)
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Fig. 1. Landau states in a rectangle and a disk.

(The passage from (1) to (2) is done via v = m⊥ = (−m2,m1).) Locally, m (resp. v) can be
written in terms of a stream function ψ , i.e., m = ∇⊥ψ (resp. v = −∇ψ ) so that we get to the
eikonal equation through ψ :

|∇ψ | = 1. (3)

Typically, one can construct such vector fields by considering stream functions of the form ψ =
dist(·,K) for some closed set K ⊂ R2; these vector fields are called Landau states in micromag-
netic jargon (see Fig. 1). However, not every stream function can be written as a distance function
(up to a sign ±1 and an additive constant); for example, if ψ(x) = max{dist(x,P1),dist(x,P2)}
for two different points P1,P2 ∈ R2, then (3) holds even if ψ is not a distance function.

2. Main results

For p � 1 and s > 0, we denote by

W
s,p

div

(
Ω,S1) = {

m ∈ Ws,p
(
Ω,R2): m satisfies (1)

}
.

2.1. Regularity results

The first goal is to prove the following regularity result:

Theorem 1. If m ∈ W
1/p,p

div (Ω,S1) for some p ∈ [1,2] then m is locally Lipschitz continuous
inside Ω except at a locally finite number of singular points. Moreover, every singular point P

of m corresponds to a vortex singularity of degree 1 of m, i.e., there exists a sign α = ±1 such
that

m(x) = α
(x − P)⊥

|x − P | for every x �= P in any convex neighborhood of P in Ω.

In particular, if m ∈ H 1
div(Ω,S1) then m is locally Lipschitz.

Remark 1. The above result was proved by Jabin, Otto, and Perthame [25] in the particular case
of zero-energy states of a line-energy Ginzburg–Landau model. More precisely, for ε > 0, one
defines the functional Eε : H 1(Ω,R2) → R+ by

Eε(mε) = ε

∫
|∇mε|2 dx + 1

ε

∫ (
1 − |m|2)2

dx + 1

ε
‖∇ · mε‖2

Ḣ−1(Ω)
, mε ∈ H 1(Ω,R2)
Ω Ω
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(we refer to [1,3,27,15,26,32,25] for the analysis of this model). A vector field m : Ω → R2 is
called zero-energy state if there exists a family {mε ∈ H 1(Ω,R2)}ε→0 satisfying

mε → m in L1(Ω) and Eε(mε) → 0 as ε → 0.

Then m satisfies (1) and shares the structure stated in Theorem 1 (see [25]). Conversely, as we
shall see later at Remark 9, any vector field sharing the structure in Theorem 1 (that in addition,
has H 1 regularity near the boundary ∂Ω) is a zero-energy state.

The hypothesis m ∈ W 1/p,p in Theorem 1 is a critical regularity assumption in order to avoid
line-singularities for vector fields m satisfying (1) (see Proposition 8 in Appendix A). As conse-
quence of Theorem 1, one has the following equality

{
m ∈ W

1,1
loc

(
Ω,R2): m satisfies (1)

} = {
m ∈ H

1/2
loc

(
Ω,R2): m satisfies (1)

}
.

Let us now discuss the optimality of the result in Theorem 1: Firstly, observe that Lipschitz
regularity of m cannot be improved.

Proposition 1. There exist Lipschitz vector fields m : Ω → R2 that satisfy (1) and are not C1

in Ω .

In general, a vector field m ∈ W
1/p,p

div (Ω,S1) (p ∈ [1,2]) (without interior vortex singular-
ities) is only locally Lipschitz, and not necessary globally Lipschitz in Ω . This is the case of

a “boundary vortex” vector field, e.g., m(x) = (x−P)⊥
|x−P | for every x ∈ Ω where P is some point

on ∂Ω . If the domain Ω has a cusp in P ∈ ∂Ω , the “boundary vortex” vector field could belong
even to H 1(Ω,R2); moreover, there exist convex domains Ω and m ∈ H 1

div(Ω,S1) such that m

is not globally Lipschitz in Ω (see Section 4.2).
The geometry of Ω influences the number of vortex singularities of W 1/p,p-vector fields

satisfying (1). For example, if Ω is convex, then every vector field m ∈ W
1/p,p

div (Ω,S1) (with

p ∈ [1,2]) is either a “vortex” vector field (i.e., m(x) = ± (x−P)⊥
|x−P | for every x ∈ Ω where P

is some point in Ω), or locally Lipschitz in Ω (i.e. no interior vortex singularity); therefore,
convex domains do not allow for more than one interior vortex singularity (see Remark 6). How-
ever, we prove that there are nonconvex domains where configurations with arbitrary number
of vortex-point singularities do exist: vector fields with infinitely many vortex singularities can
be constructed in some nonconvex piecewise Lipschitz domains Ω (i.e., ∂Ω = ⋃k

j=1{γj } where
γj : [0,1] → ∂Ω are parametrized Lipschitz curves, each two curves having disjoint interiors).

Proposition 2. There exist an open simply-connected nonconvex piecewise Lipschitz domain Ω

and a vector field m ∈ W
1,q

div (Ω,S1) for every q ∈ [1,2) that has infinitely many vortex-point
singularities {P1,P2, . . .}.

Observe that the following embedding holds: W
1,q

loc (Ω,S1) ⊂ W
1/p,p

loc (Ω,S1) for q > 1 and
p � 1, and the embedding fails for q = 1 (see Proposition 9 in Appendix A and [6, Lemma D.1]).
Also notice that configurations with infinitely many (interior) vortex-point singularities can
occur only in a non-Lipschitz domain Ω ; indeed, if ∂Ω is Lipschitz, then a configuration
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Fig. 2. Characteristics of m.

m ∈ W
1/p,p

div (Ω,S1) (with p ∈ [1,2]) has only a finite number of interior vortex singularities
(see Proposition 7).

The main ingredient of the proof of Theorem 1 resides in the following kinetic formulation.
It is a generalization to the case of W

1/p,p

div (Ω,S1) vector fields (with p ∈ [1,2]) of the result
in [25] for zero-energy states of Eε (given in Remark 1):

Proposition 3 (Kinetic formulation). Let m ∈ W
1/p,p

div (Ω,S1) (with p ∈ [1,2]). For every direc-
tion ξ ∈ S1, we define χ(·, ξ) : Ω → {0,1} (resp. χ̃ (·, ξ) : S1 → {0,1}) by

χ(x, ξ) = χ̃
(
m(x), ξ

) =
{

1 for m(x) · ξ > 0,

0 for m(x) · ξ � 0.

Then the following kinetic equation holds for every ξ ∈ S1:

ξ · ∇χ(·, ξ) = 0 in D′(Ω). (4)

Here, χ corresponds to the concept of characteristic of a weak solution m satisfying (1).
Indeed, if m is smooth around a point x ∈ Ω , then the characteristic of m at x (by means of the
eikonal equation (3) with m = ∇⊥ψ around x) is given by Ẋ(t, x) = m⊥(X(t, x)) with the initial
condition X(0, x) = x; then the orbit {X(t, x)}t is a straight line (i.e., X(t, x) = x + tm⊥(x) for
t in some interval around 0) along which m is perpendicular and constant. Therefore, in the
direction ξ := m⊥(x), either ∇χ(·, ξ) locally vanishes (if m is constant in a neighborhood of x),
or it concentrates on {X(t, x)}t and is oriented by ξ⊥ (see Fig. 2). The knowledge of χ(·, ξ)

in every direction ξ ∈ S1 determines completely the vector field m due to the straightforward
formula

m(x) = 1

2

∫

S1

ξχ(x, ξ) dξ for a.e. x ∈ Ω. (5)
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Remark 2. Classical kinetic averaging lemma (see e.g. Golse, Lions, Perthame, and Sentis [17])
shows that a measurable vector-field m : Ω → S1 satisfying (4) belongs to H

1/2
loc (due to (5)).

(This property could be read as the inverse of Proposition 3 for the case m ∈ H 1/2(Ω,S1).)
Moreover, Jabin–Otto–Perthame (see Theorem 1.3 in [25]) proved that such a vector field has
stronger regularity, i.e., it shares the structure described in Theorem 1. Therefore, the proof of
Theorem 1 strongly relies on Jabin–Otto–Perthame’s result [25] via Proposition 3.

Remark 3. The proof of Proposition 3 strongly relies on the structure of lifting of vector
fields m ∈ W 1/p,p(Ω,S1) (with p ∈ [1,2]) and an appropriate chain rule. More precisely, if
m ∈ W 1/p,p(Ω,S1), then there exists a lifting Θ = Θ1 + Θ2 with Θ1 ∈ W 1/p,p , Θ2 ∈ SBV
and eiΘ2 ∈ W 1/p,p ∩ W 1,1 (see [7] and [30]). Recall that SBV(Ω,Rd) is the subspace of vector
fields m ∈ BV(Ω,Rd) whose differential Dm has vanishing Cantor part Dcm (i.e., Dcm ≡ 0 as
a measure in Ω).

We conjecture that Proposition 3 also holds for p > 2 so that Theorem 1 is expected to be
valid for p > 2, too.

A natural question concerns higher dimensions N � 3 in the same context of the eikonal
equation (3). We mention that our technics seem to be typical for the two-dimensional case
and do not adapt to the case N � 3. Indeed, if N = 3, the system of scalar conservation laws
associated to (3) admits only the trivial entropies. Moreover, the regularity result in Theorem 1
is based on a certain order relation between the characteristics of m. Obviously, such an order
relation does not exist in higher dimensions. However, a positive answer to this question is given
in a recent paper of Caffarelli and Crandall [9] under the stronger assumption that v = ∇ψ is
pointwise differentiable away from a set of zero Hausdorff 1-measure.

We also address the following open problem:

Open Problem 1. Is it true that every m ∈ BV(Ω,R2) with (1) satisfies m ∈ SBV?

This question is related with a recent work of Bianchini, DeLellis, and Robyr [5]: they show
that the viscosity solution ψ of a Hamilton–Jacobi equation H(∇ψ) = 0 in Ω (with a uniformly
convex hamiltonian H ) satisfies ∇ψ ∈ SBV . Open Problem 1 asks whether for the particular case
of the eikonal equation (3), the result in [5] still holds when replacing the assumption of viscosity
solution with the hypothesis of a general solution ψ of (3) with ∇ψ ∈ BV .

2.2. Density results

The second goal of the paper is to present approximation results for the class of vector fields
W

1/p,p

div (Ω,S1) (with p ∈ [1,2]): our subsets are formed either by divergence-free vector fields
that are smooth except at a finite number of points and the approximation result holds in the
W 1/p,p-topology, or by everywhere smooth vector fields (not necessarily divergence-free) and
the approximation result holds in a weaker topology. We start by extending Bethuel–Zheng’s den-
sity result (see [4]) for W 1,1(Ω,S1) vector fields, respectively Rivière’s density result (see [31])
for H 1/2(Ω,S1) vector fields to the case of divergence-free vector fields:

Theorem 2. Let Ω be a Lipschitz bounded simply-connected domain and m ∈ W
1/p,p

div (Ω,S1)

(with p ∈ [1,2]). Then m has a finite number k � 0 of vortex-point singularities {P1, . . . ,Pk}
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and m can be approximated in W
1,q

loc (Ω) ( for any q ∈ [1,2)) by divergence-free vector fields
mn ∈ C∞(Ω \ {P1,n, . . . ,Pk,n}, S1) that are smooth except at the k vortex singularities of mn. In
particular, if m ∈ H 1

div(Ω,S1), the sequence {mn} can be chosen to be smooth everywhere in Ω

and the approximation result holds in H 1
loc(Ω).

In various applications (see e.g. Remarks 1 and 4), we need to approximate vector fields m

(with the structure given in Theorem 1) by H 1(Ω,S1) vector fields. But H 1(Ω,S1)-vector fields
cannot allow for vortex-point singularities. Therefore, an approximation result by everywhere
smooth vector fields is needed in some weak topology. What is the optimal weak topology where
such a density result holds? The following result shows that L1-topology is too strong for having
density of smooth vector fields of vanishing divergence and values in S1.

Proposition 4. Let m : B2 → S1 be the vortex vector field m(x) = x⊥
|x| in the unit disk B2. Then

there exists no sequence of vector fields mn ∈ C∞(Ω,S1) of vanishing divergence such that
mn → m a.e. in B2.

We now generalize this property: the density result still fails if we relax the divergence-free
constraint on the approximated smooth vector fields, but we impose this restriction in the limit
in L1-topology (or H−s weak topology for some s ∈ [0, 1

2 )).

Proposition 5. Let m : B2 → S1 be the vortex vector field m(x) = x⊥
|x| in B2. Then there exists no

sequence of vector fields mn ∈ C∞(Ω,S1) such that mn → m a.e. in B2 and one of the following
two conditions holds:

(a) ∇ · mn → 0 in L1(B2);
(b) ∇ · mn ⇀ 0 weakly in H−s(B2) for some s ∈ [0, 1

2 ).

Finally, we prove an approximation result in L1-topology by smooth vector fields with values
in S1 (not necessary divergence-free), but the divergence-free constraint holds in the limit in the
H−1/2 topology. This topology is optimal due Proposition 5(b).

Theorem 3. Let Ω be a Lipschitz bounded simply-connected domain and m ∈ W
1/p,p

div (Ω,S1)

(with p ∈ [1,2]). Then there exists a sequence of vector fields mn ∈ C∞(Ω,S1) such that
mn → m a.e. in Ω and (∇ · mn)1Ω → 0 in Ḣ−1/2(R2).

Remark 4. The motivation of Theorem 3 comes from thin-film micromagnetics. The following
2D energy (see [14]) is considered as an approximation of the full 3D micromagnetic model for
thin films: for ε > 0, one defines the functional Fε : H 1(Ω,S1) → R+ by

Fε(mε) = ε

∫
Ω

|∇mε|2 dx + ∥∥(∇ · mε)1Ω

∥∥2
Ḣ−1/2(R2)

, mε ∈ H 1(Ω,S1).

This model was analyzed in [13,24,21]. In particular, it is proved in [21] that a vortex configura-

tion m0(x) = x⊥
in Ω := B2 is a zero-energy state, i.e., there exists a family {mε ∈ H 1(B2, S1)}
|x|
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such that mε → m0 a.e. in B2 and Fε(mε) → 0 as ε → 0. The role of Theorem 3 is to generalize
this approximation result for every vector field m ∈ W 1/p,p (p ∈ [1,2]) satisfying (1).

Most of the results of the paper have been announced in [20].
The outline of the paper is the following: in Section 3, we define a class of entropies that is

used in the proof of Proposition 3 and Theorem 1. In Section 4, we present several examples of
vector fields satisfying (1); in particular, we prove Propositions 1 and 2. Section 5 deals with the
proof of non-density results in Propositions 5 and 4, while in Section 6, we present the proofs of
density results in Theorems 2 and 3. We finish with Appendix A where we recall some properties
of Sobolev spaces.

3. Entropies. Proof of Theorem 1

The starting point consists in regarding the structure (1) of our configurations as a scalar
conservation law. Indeed, writing m = (u,h(u)) for the flux h(u) = ±√

1 − u2, the vanishing
divergence condition in m turns into

∂tu + ∂sh(u) = 0, (6)

where (t, s) := (x1, x2) correspond to (time, space) variables. Let us recall some definitions from
the theory of scalar conservation laws. Since the flux h is nonlinear, there is in general no smooth
solution of the Cauchy problem associated to (6). Therefore, the solutions of (6) are to be under-
stood in the sense of distributions and in general, there are infinitely many weak solutions for the
Cauchy problem. The concept of entropy solution has been formulated in order to have unique-
ness (see Kružkov [28]). To introduce this notion, the pair (entropy, entropy-flux) is defined as a
couple of scalar functions (η, q) such that dq

ds
= dh

ds
dη
ds

; then for every smooth solution u of (6),
the entropy production vanishes, i.e.,

∂t

[
η(u)

] + ∂s

[
q(u)

] = 0.

A solution u of (6) (in the sense of distributions) is called entropy solution if for every con-
vex entropy η, the entropy production ∂t [η(u)] + ∂s[q(u)] � 0 is a nonpositive measure. Such
solutions u have the property that for every pair (η, q), the entropy production concentrates on
lines (corresponding to “shocks” of u). It suggests the interest of using “global” quantities (η, q)

to detect “local” line-singularities of u. This idea has been used by Jin and Kohn [27], Aviles
and Giga [3], DeSimone, Kohn, Müller, and Otto [15], Ambrosio, DeLellis, and Mantegazza [1],
Ignat and Merlet [23,22].

In the sequel we will always use the following notion of entropy introduced in [15] (see also
[12,22]). It corresponds to the pair (entropy, entropy-flux) from the scalar conservation laws, but
the pair is defined in terms of the couple (u,h(u)).

Definition 1. (See [15].) We will say that Φ ∈ C∞(S1,R2) is an entropy if

d

dθ
Φ(z) · z = 0, for every z = eiθ = (cos θ, sin θ) ∈ S1. (7)

Here, d
dθ

Φ(z) = d
dθ

[Φ(eiθ )] stands for the angular derivative of Φ . The set of all entropies is
denoted by ENT .
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Remark 5. A way to construct entropies is given by the following equivalent definition: if Φ ∈
C∞(S1,R2), then Φ ∈ ENT is an entropy if and only if there exists a (unique) 2π -periodic
ϕ ∈ C∞(R) such that for every z = eiθ ∈ S1,

Φ(z) = ϕ(θ)z + dϕ

dθ
(θ)z⊥; (8)

therefore, one has

d

dθ
Φ(z) · z⊥ = ϕ(θ) + d2ϕ

dθ2
(θ) =: γ (z) for every z ∈ S1 (9)

for some smooth function γ ∈ C∞(S1) (see details in [15,22]).

This notion is coherent with the property that a smooth vector field m satisfying (1) induces
vanishing entropy production ∇ · [Φ(m)] = 0. In fact, it is equivalent to Definition 1 as stated in
the following property:

Proposition 6. Let Φ ∈ C∞(S1,R2). Then Φ is an entropy if and only if for every m ∈
W

1/p,p

div (Ω,S1) (with p ∈ [1,2]), the following identity holds:

∇ · [Φ(m)
] = 0 in D′(Ω). (10)

Proof. We divide the proof in several steps:
Step 1. If Φ ∈ ENT and m ∈ W

1,1
div (Ω,S1), then (10) holds. Indeed, let us consider an SBV

lifting Θ of m in Ω , i.e., m = eiΘ in Ω (see e.g. [16,8,11,19]). For the SBV-function Θ , the
measure DΘ splits into two terms

DΘ = DaΘ + (
Θ+ − Θ−)

νH1�J (Θ) (11)

where DaΘ = ∇aΘH2 is the absolutely continuous part of the measure DΘ with respect to
two-dimensional Lebesgue measure H2 and the last term stands for the jump part concentrated
on the H1-rectifiable set J (Θ) oriented by the unit normal vector ν and the traces of Θ on J (Θ)

with respect to ν are denoted by Θ±(x) = limε↓0 Θ(x ± εν(x)) in L1
loc(J (Θ)). (Recall that an

SBV function Θ has vanishing Cantor part of the measure DΘ .) Since m ∈ W 1,1, the chain rule
applied to m = eiΘ implies that Θ+ − Θ− ∈ L1(J (Θ),2πZ) and ∇aΘ = m ∧ ∇m ∈ L1(Ω).
Moreover, since ∇ · m = 0, the chain rule also yields m⊥ · ∇aΘ = 0 in L1(Ω). Therefore, there
exists a function λ := m · ∇aΘ ∈ L1(Ω) such that ∇aΘ = λm. Applying now the chain rule for
Φ(eiΘ) ∈ W 1,1, we deduce

∇ · [Φ(m)
] = ∇ · [Φ(

eiΘ
)] = d

dθ
Φ(m) · ∇aΘ = d

dθ
Φ(m) · mλ

(7)= 0 in L1(Ω), (12)

i.e., (10) holds.
Step 2. If Φ ∈ ENT and m ∈ H

1/2
div (Ω,S1), then (10) holds. Indeed, let B ⊂ Ω be an arbitrary

ball and let us consider a lifting Θ = Θ1 + Θ2 of m in B with Θ1 ∈ H 1/2(B), Θ2 ∈ SBV(B)

and h = eiΘ2 ∈ W 1,1 ∩ H 1/2(B,S1) (see Brezis, Bourgain, and Mironescu [7, Theorem 5]).
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Therefore, the corresponding decomposition (11) of Θ2 satisfies Θ+
2 − Θ−

2 ∈ L1(J (Θ2),2πZ)

and ∇aΘ2 = h ∧ ∇h ∈ L1(B).

Claim. For every Ψ ∈ C2(S1,R2), then Ψ (m) ∈ H 1/2(B) and

∇ · [Ψ (m)
] = d

dθ
Ψ (m) · (∇Θ1 + ∇aΘ2

)
in H−1/2(B). (13)

Here, H−1/2(B) is the dual space of H
1/2
00 (B) (see Appendix A for more details).

Proof of Claim. The fact that if m ∈ H 1/2(B) then Ψ (m) ∈ H 1/2(B) is standard and follows
from

∫
B

∫
B

|Ψ (m(x)) − Ψ (m(y))|2
|x − y|3 dx dy � ‖∇Ψ ‖2

L∞

∫
B

∫
B

|m(x) − m(y)|2
|x − y|3 dx dy < ∞.

Therefore, ∇ ·[Ψ (m)] ∈ H−1/2(B) (since the differential operator is continuous from H 1/2(B) to
H−1/2(B), see e.g. [18]). Before proving (13), let us observe that the RHS of (13) is a distribution
(a-priori, it doesn’t belong to H−1/2(B)). Indeed, one has that d

dθ
Ψ (m) ∈ H 1/2 ∩ L∞(B) (here

we use that Ψ ∈ C2(S1) so that d
dθ

Ψ ∈ C1(S1)); therefore, d
dθ

Ψ (m) · ∇aΘ2 ∈ D′(B) as a duality
product between L∞ and L1, while d

dθ
Ψ (m) · ∇Θ1 ∈ D′(B) since for every test function ζ ∈

C∞
c (B), one has

〈
d

dθ
Ψ (m) · ∇Θ1, ζ

〉
(D′(B),C∞

c (B))

=
〈
∇Θ1, ζ

d

dθ
Ψ (m)

〉
(H−1/2(B),H

1/2
00 (B))

. (14)

In order to prove (13), we consider an approximating sequence Θ1,n ∈ C1(B̄) such that
Θ1,n → Θ1 in H 1/2(B). We set mn = ei(Θ1,n+Θ2) ∈ W 1,1 ∩ H 1/2(B,S1). Applying the chain
rule as in (12) for Ψ (mn) ∈ W 1,1, we obtain

∇ · [Ψ (mn)
] = d

dθ
Ψ (mn) · (∇Θ1,n + ∇aΘ2

)
in L1 ∩ H−1/2(B).

We want to pass to the limit n → ∞ in order to get to (13). For that, we have eiΘ1,n → eiΘ1

in H 1/2(B) and we deduce that mn → m in H 1/2(B) by Proposition 10 (see Appendix A) and
also, a.e. in B (up to a subsequence). The continuity of the differential operator from H 1/2 to
H−1/2 combined with Proposition 10 lead to ∇ · [Ψ (mn)] → ∇ · [Ψ (m)] in H−1/2(B). On the
other hand, the same arguments lead to d

dθ
Ψ (mn) → d

dθ
Ψ (m) in H 1/2(B) and a.e. in B (up

to a subsequence); thus, by duality as in (14), one has d
dθ

Ψ (mn) · ∇Θ1,n → d
dθ

Ψ (m) · ∇Θ1

in D′(B) and by dominated convergence theorem, one also deduces that d
dθ

Ψ (mn) · ∇aΘ2 →
d
dθ

Ψ (m) · ∇aΘ2 in L1(B), which yields (13). �
Coming back to Step 2, (13) applied for Ψ (z) = z for z ∈ S1 yields m⊥ · (∇Θ1 + ∇aΘ2) = 0

in H−1/2(Ω) since ∇ · m = 0. Idem, defining Ψ (z) = −z⊥ for z ∈ S1, (13) leads to λ :=
m · (∇Θ1 + ∇aΘ2) = ∇ · [Ψ (m)] = ∇ × m ∈ H−1/2(B). Formally, one writes (as at Step 1)
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∇Θ1 + ∇aΘ2 = mλ which belongs to D′(B) by duality as in (14) and as in (12), we apply (13)
to obtain

∇ · [Φ(m)
] = d

dθ
Φ(m) · mλ = 0 in D′(B).

Let us explain rigorously this argument. Using the same approximation as in the proof of Claim,
we have the following decomposition into the frame (mn,m

⊥
n ):

∇Θ1,n + ∇aΘ2 = ((∇Θ1,n + ∇aΘ2
) · mn

)
mn + ((∇Θ1,n + ∇aΘ2

) · m⊥
n

)
m⊥

n

= ∇ × mnmn + ∇ · mnm
⊥
n in L1,

where we used the chain rule as at Step 1. Therefore, as in (12), we deduce by (7):

∇ · [Φ(mn)
] = d

dθ
Φ(mn) · (∇Θ1,n + ∇aΘ2

)

= ∇ · mn

d

dθ
Φ(mn) · m⊥

n

(9)= γ (mn)∇ · mn in L1. (15)

On the one hand, ∇ · [Φ(mn)] → ∇ · [Φ(m)] in H−1/2(B). On the other hand, ∇ · mn → ∇ ·
m = 0 in H−1/2(B) and γ (mn) → γ (m) in H 1/2(B). By duality (as in (14)), we deduce that
∇ ·[Φ(m)] = 0 in D′(B). Since B is an arbitrary ball in Ω , using a partition of unity, we conclude
that (10) holds in D′(Ω).

Step 3. If Φ ∈ ENT and m ∈ W
1/p,p

div (Ω,S1) with p ∈ (1,2), then (10) holds. Indeed, one uses
the following Gagliardo–Nirenberg embedding: L∞ ∩W 1/p,p ⊂ H 1/2 (see [6, Lemma D.1]) and
concludes by Step 2.

Step 4. Conversely, let Φ ∈ C∞(S1,R2) such that (10) holds for every m ∈ W
1/p,p

div (Ω,S1)

(with p ∈ [1,2]). Set z ∈ S1. We prove that (7) holds for z using the same argument as in [23,22].
Up to translations, we may assume that Ω contains the origin 0. Motivated by (12), we consider
a map m given by the vortex structure centered at z⊥, i.e.,

m(x) :=
(

x − z⊥

|x − z⊥|
)⊥

for x ∈ Ω.

Then m ∈ W
1,q

div (Ω,S1) for every q ∈ [1,2) (in particular, m ∈ W
1/p,p

div (Ω,S1) with p ∈ [1,2])
and m(0) = z. Moreover, since m is smooth around the origin 0, m has a smooth lifting Θ around
0 (unique up to a constant) that satisfies ∇Θ(0) = z. Then by (10) we know that ∇ · [Φ(m)](0) =
0. Therefore, as in (12), we obtain

d

dθ
Φ(z) · z = d

dθ
Φ

(
m(0)

) · ∇Θ(0) = ∇ · [Φ(m)
]
(0) = 0. �

As a consequence, we prove the kinetic formulation (4):
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Proof of Proposition 3. For every ξ ∈ S1, we define “elementary entropies” Φξ : S1 → R2

given by

Φξ(z) := ξ χ̃(z, ξ) =
{

ξ for z · ξ > 0,

0 for z · ξ � 0.

Although Φξ is not a smooth entropy (in fact, Φξ has a jump at the points ±ξ⊥ ∈ S1), the equality
(7) trivially holds in D′(S1). That’s why Φξ is a generalized entropy. Moreover, as shown in [15],
there exists a sequence of smooth entropies {Φk} ⊂ ENT such that {Φk} is uniformly bounded
and limk Φk(z) = Φξ(z) for every z ∈ S1. Indeed, this smoothing result follows by (8): if one
writes ξ = eiθ0 with θ0 ∈ (−π,π], then the unique 2π -periodic function ϕ ∈ C(R) satisfying (8)
for Φξ is given by:

ϕ(θ) = ξ · z1{z·ξ>0} = cos(θ − θ0)1{θ−θ0∈(−π/2,π/2)} for z = eiθ , θ ∈ (−π + θ0,π + θ0).

By (8) for Φξ , the choice of the derivative ϕ′ is fixed at the jump points ±ξ⊥ ∈ S1:

ϕ′(θ) = − sin(θ − θ0)1{θ−θ0∈(−π/2,π/2)} for θ ∈ (−π + θ0,π + θ0).

Now, one regularizes ϕ by 2π -periodic functions ϕk ∈ C∞(R) that are uniformly bounded in
W 1,∞(R) and limk ϕk(θ) = ϕ(θ) as well as limk ϕ′

k(θ) = ϕ′(θ) for every θ ∈ R. Thus, the desired
(smooth) approximating entropies Φk are given by ϕk via (8). Therefore, Proposition 6 implies
that for every m ∈ W

1/p,p

div (Ω,S1) (with p ∈ [1,2]), one has
∫
Ω

Φk(m) · ∇ζ dx = 0 for every
ζ ∈ C∞

c (Ω) and by the dominated convergence theorem, one concludes that

0 = ∇ · [Φξ(m)
] = ∇ · [ξ χ̃(m, ξ)

] = ∇ · [ξχ(·, ξ)
] = ξ · ∇χ(·, ξ). �

Proof of Theorem 1. It is a consequence of Proposition 3 combined with the strategy of Jabin,
Otto, and Perthame (see Theorem 1.3 in [25]). For completeness of the writing, let us recall the
main steps of that argument: let m : Ω → S1 be a measurable function that satisfies (4) for every
ξ ∈ S1. Notice that the divergence-free condition is automatically satisfied (in D′(Ω)) because
of (5). The first step consists in defining an L∞-trace of m on each segment Σ ⊂ Ω . More
precisely, if Σ := {0} × [−1,1] ⊂ Ω , then there exists a trace m̃ ∈ L∞(Σ,S1) such that

lim
r→0

1

r

r∫
−r

1∫
−1

∣∣m(x1, x2) − m̃(x2)
∣∣dx2 dx1 = 0

and for each Lebesgue point (0, x2) ∈ Σ of m, one has m(0, x2) = m̃(x2). Observe that this step
is straightforward in the case of m ∈ W

1,1
div (Ω,S1); however, it is essential for example in the case

of m ∈ H
1/2
div (Ω,S1). The second step is to prove that the trace m̃ of m on Σ is almost everywhere

orthogonal at Σ (which coincides with the classical principle of characteristics for smooth vector
fields m). The key point for that resides in a relation of order of characteristics of m, i.e., for every
two Lebesgue points x, y ∈ Ω of m with the segment [x, y] ⊂ Ω , the following implication
holds:

m(x) · (y − x) > 0 ⇒ m(y) · (y − x) > 0.
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The final step consists is proving that on any open convex subset ω ⊂ Ω with d =
dist(ω, ∂Ω) > 0, only two situations may occur: either two characteristics of m intersect at

P ∈ Ω with dist(P,ω) < d and m(x) = ± (x−P)⊥
|x−P | for x ∈ ω \ {P }, or m is 1/d-Lipschitz in ω,

i.e.,

∣∣m(x) − m(y)
∣∣ � 1

d
|x − y|, for every x, y ∈ ω

(in this case, every two characteristics passing through ω may intersect only at distances � d out-
side ω). Notice that m may have infinitely many vortex points Pk and any vortex point has degree
one, but the orientation αk of the vortex point Pk could change or not in Ω (see Section 4). �
4. Several examples

4.1. Lipschitz vector fields (1) that are not C1

Proof of Proposition 1. Let Θ : (0,1) → (π
4 , π

3 ) be a Lipschitz function that is not in C1(0,1).
On the “space” axis s, we define m as given by

m(s,0) = (
cosΘ(s), sinΘ(s)

) = eiΘ(s) ∈ S1 for every s ∈ (0,1).

Then m has a unique Lipschitz extension satisfying (1): The initial value (at “time” t = 0) of m

determines the characteristics along which m remains constant. More precisely, we define the
flow of characteristics F : Dom(F ) = (0,1) × (− 1

3‖ d
ds

Θ‖L∞ , 1
3‖ d

ds
Θ‖L∞ ) → R2 as

F(s, t) = (s,0) + tm(s,0)⊥ = s + iteiΘ(s) ∈ C for every (s, t) ∈ Dom(F ).

The choice of “time” range is done in order that F is a bi-Lipschitz homeomorphism onto its
open range, denoted Ω (which implies that characteristics of m do not intersect in the domain Ω).
Indeed, one computes that

∇F(s, t) =
(

∂

∂s
F

∂

∂t
F

)
=

(
1 − t cosΘ(s) d

ds
Θ(s) − sinΘ(s)

−t sinΘ(s) d
ds

Θ(s) cosΘ(s)

)

with

det∇F(s, t) = cosΘ(s) − t
d

ds
Θ(s) � 1

2
−

∣∣∣∣t d

ds
Θ(s)

∣∣∣∣ � 1

6
in Dom(F ).

Here, we used that

|t | � 1

3‖ d
ds

Θ‖L∞
and cosΘ(s) � 1/2. (16)

Therefore, in order that F is a bi-Lipschitz homeomorphism, we show that F is injective on
Dom(F ). Assume by contradiction that there exist two points (s, t) �= (s̃, t̃ ) in Dom(F ) so that
F(s, t) = F(s̃, t̃). Then t, t̃ �= 0 and t̃ = cosΘ(s) . It follows that
t cosΘ(s̃)
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|s − s̃| =
∣∣∣∣t

(
sinΘ(s) − t̃

t
sinΘ(s̃)

)∣∣∣∣ =
∣∣∣∣ t

cosΘ(s̃)
sin

(
Θ(s) − Θ(s̃)

)∣∣∣∣
� 2

3‖ d
ds

Θ‖L∞

∣∣Θ(s) − Θ(s̃)
∣∣ � 2

3
|s − s̃|

which would mean that s = s̃ and then, t = t̃ which is a contradiction. (In the above inequalities,
we used again (16).) Denoting by G = (G1,G2) : Ω → Dom(F ) the inverse of F , we have that

∇G
(
F(s, t)

) = 1

cosΘ(s) − t d
ds

Θ(s)

(
cosΘ(s) sinΘ(s)

t sinΘ(s) d
ds

Θ(s) 1 − t cosΘ(s) d
ds

Θ(s)

)
. (17)

We now define m : Ω → S1 by

m
(
F(s, t)

) = m(s,0) for every (s, t) ∈ Dom(F ).

Obviously, m is a Lipschitz function in Ω with values in S1. Since the open segment (0,1) ×
{0} ⊂ Ω and Θ is not C1 in (0,1), then m is not a C1 map in Ω . Finally, we check that ∇ ·m = 0
in Ω . Indeed, if (x1, x2) = F(s, t) ∈ Ω , then m(x) = m(G1(x),0) = eiΘ(G1(x)) and

∇ · m(x) = ∂

∂x1

[
cosΘ

(
G1(x)

)] + ∂

∂x2

[
sinΘ

(
G1(x)

)]

=
(

− sinΘ(s)
∂

∂x1
G1

(
F(s, t)

) + cosΘ(s)
∂

∂x2
G1

(
F(s, t)

)) d

ds
Θ(s)

(17)= 0. �
4.2. H 1 vector fields (1) that are not globally Lipschitz

The case of nonconvex domains Ω . We consider the kink domain

Ω = {
reiθ : r ∈ (0,1), |θ | < r

}

and the boundary vortex configuration in the origin: m(x) = x⊥
|x| for x ∈ Ω . Then m ∈ H 1(Ω,S1)

and m is not globally Lipschitz in Ω (but only locally Lipschitz).

The case of convex domains Ω . There exist a convex domain Ω and a vector field m ∈
H 1

div(Ω,S1), such that m is not globally Lipschitz in Ω . Indeed, we use the construction in the
proof of Proposition 1. Let Θ : (0,1/10) → (−∞,0) be given by Θ(s) = −√

s for s ∈ (0,1/10).
On the “space” axis (0,1) × {0}, we define m by

m(s,0) = (
cosΘ(s), sinΘ(s)

) = eiΘ(s) ∈ S1 for every s ∈ (0,1/10).

The flow of characteristics is defined by

F : Dom(F ) = {
(s, t): s ∈ (0,1/10), 0 < t <

√
s/10

} → R2

as

F(s, t) = (s,0) + tm(s,0)⊥ = s + iteiΘ(s) ∈ C for every (s, t) ∈ Dom(F ).
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Then F is locally a C1-diffeomorphism since

det∇F(s, t) = cosΘ(s) − t
d

ds
Θ(s) � cosΘ(1/10) > 0 in Dom(F ).

We show that no characteristics intersect inside Dom(F ) (i.e., F is injective in Dom(F )): Assume
by contradiction that there exist two points (s, t) �= (s̃, t̃ ) in Dom(F ) so that F(s, t) = F(s̃, t̃).
Then t, t̃ �= 0 and t̃

t
= cosΘ(s)

cosΘ(s̃)
which would imply

|s − s̃| =
∣∣∣∣t

(
sinΘ(s) − t̃

t
sinΘ(s̃)

)∣∣∣∣ =
∣∣∣∣ t

cos
√

s̃
sin(

√
s − √

s̃)

∣∣∣∣ �
√

s

5

|s − s̃|√
s + √

s̃
� 1

5
|s − s̃|

and would mean that s = s̃ and then t = t̃ which is a contradiction. Here, we used that 0 < t <
√

s
10

and cosΘ(s) � 1/2 if s ∈ (0,1/10). Let Ω be any convex domain included in F(Dom(F )) such
that Ω̄ contains the segment [0,1/10] × {0} and G : Ω → F−1(Ω) be the inverse of F . Then
(17) holds and we set

m
(
F(s, t)

) = m(s,0) for every (s, t) ∈ G(Ω).

We compute that

∇m
(
F(s, t)

) =
(

dm

ds
(s,0) 0R2

)
· ∇G

(
F(s, t)

)

so that (17) implies

|∇m|(F(s, t)
) = 1

det∇F(s, t)

∣∣∣∣dm

ds
(s)

∣∣∣∣ = 1

cos(
√

s) + t
2
√

s

∣∣∣∣dΘ

ds
(s)

∣∣∣∣.

Then

∫
Ω

∣∣∇m(x)
∣∣2

dx =
∫

G(Ω)

|∇m|2(F(s, t)
)

det∇F(s, t) ds dt

�
1/10∫
0

∣∣∣∣dΘ

ds
(s)

∣∣∣∣ds

√
s/10∫

0

1

cos(
√

s) − t dΘ
ds

(s)

∣∣∣∣dΘ

ds
(s)

∣∣∣∣dt

�
1/10∫
0

ds

2
√

s

(
ln

(
cos(

√
s) + 1/20

) − ln
(
cos(

√
s)

))
< ∞.

Therefore, m ∈ H 1 (Ω,S1) and m is not globally Lipschitz in Ω since dΘ blows up at s = 0. �
div ds



R. Ignat / Journal of Functional Analysis 262 (2012) 3465–3494 3479
Fig. 3. Two vortex-point singularities of different orientation.

4.3. Vector fields (1) with arbitrary many vortex-point singularities

The geometry of the domain Ω determines the number of vortex-point singularities of a vector
field (1).

Remark 6. (i) If Ω is a convex domain and m ∈ W
1/p,p

div (Ω,S1) (with p ∈ [1,2]), then m has
either no (interior) vortex-point singularities, or one interior vortex singularity in Ω . It is a con-
sequence of the final step in the proof of Theorem 1 (see [25] for more details).

(ii) If Ω �= R2 is a smooth simply connected domain and additionally we impose the boundary
condition m · n = 0 on ∂Ω , then either Ω is a disk and m has a vortex singularity placed in the
center of the disk, or Ω is a strip and m is constant (see [25]).

Proof of Proposition 2. First of all, we construct domains Ωn and W 1,q vector fields (1) defined
on Ωn with n vortex-point singularities for every n � 1. For n = 1, we choose Ω1 := B(0,2) to

be the ball centered at the origin of radius 2 and m1(x) = x⊥
|x| in Ω1. Then m1 ∈ W

1,q

div (Ω1, S
1)

and ‖∇m1‖q

Lq(Ω1)
= 2π 22−q

2−q
, for any q ∈ [1,2). For n = 2, the construction is the following: Set

f,g : R → R with f (t) = |t | and

g(t) =
{

2(t + 1) for t � −1,

− 1
2 (t + 1) for t � −1

and define the curves

γ + = {(
x1, f (x1)

)
: x1 ∈ [−2,1]} and γ − = {(

x1, g(x1)
)
: x1 ∈ [−2,1]}.

Fixing the vortex points P1 := (−2,0) and P2 = (1,0), we define the domain

Ω2 := (
B(P1,2) ∩ {x1 � −2}) ∪ {

(x1, x2): x1 ∈ [−2,1], g(x1) < x2 < f (x1)
}

∪ (
B(P2,1) ∩ {x1 � 1})

(see Fig. 3). We define m2 : Ω2 → S1 as follows:

m2(x) =
⎧⎨
⎩

(x−P1)
⊥

|x−P1| in {x ∈ Ω2: x1 � −1 or (x1 ∈ (−1,0) and x2 > 0)},
− (x−P2)

⊥
in {x ∈ Ω2: x1 � 0 or (x1 ∈ (−1,0) and x2 < 0)}.
|x−P2|
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Then m2 ∈ W
1,q

div (Ω,S1) has two vortex-point singularities P1 and P2 of degree 1, but with

different orientation. One easily checks that ‖∇m2‖q

Lq(Ω1)
� 1+22−q

2−q
, q ∈ [1,2).

For arbitrary n, the above construction is to be repeated by an inductive argument: for every
positive integer n, we construct a nonconvex Lipschitz simply-connected domain Ωn and a vector
field mn ∈ W

1,q

div (Ωn,S
1) having n vortex singularities and such that there exists a vortex point

Pn ∈ Ωn where (Pn +R+ ×R)∩Ωn is a half disk of radius 2−n+2 and mn(x) = (−1)n−1 (x−Pn)⊥
|x−Pn|

for every x ∈ (Pn + R+ × R) ∩ Ωn and

‖∇mn‖q

Lq(Ω1)
� 22−q + ∑n−2

k=0 2−k(2−q)

2 − q
� C(q), q ∈ [1,2),

where the constant C(q) > 0 is independent of n.
Letting n → ∞, one gets

Ω = {
x ∈ R2: ∃n(x) � 1, ∀n � n(x), x ∈ Ωn

}
(18)

which is a nonconvex piecewise Lipschitz simply-connected domain. We define m : Ω → S1 as
follows: for every x ∈ Ω , set m(x) = mn(x), for n � n(x) (given in (18)). Then m ∈ W

1,q

div (Ω,S1)

for every q ∈ [1,2) and has infinitely many vortex-point singularities {P1,P2, . . .}. (Here, the
sequence of points {Pk} accumulates on some point P ∈ ∂Ω , therefore ∂Ω \ {P } is a Lipschitz
curve, but not ∂Ω .) �
Remark 7. In the above construction, the vortex singularities have alternative orientations. How-
ever, one can construct domains where the vortex singularities have the same orientation. Here
is the example of two vortex configuration in P1 = (−3,0) and P2 = (1,0): ω = ω1 ∪ ω2 ∪ ω3
with ω1 be a union of a square and a rectangle

ω1 := (
(−5,−1) × (−2,2)

) ∪ (
(−5,−3) × (−4,−2)

)

and ω2 := ((0,2) × (−1,1)) ∪ ((1,2) × (−4,−1)) and ω3 = (−3,1) × (−4,−3). Then choose

m(x) =

⎧⎪⎨
⎪⎩

(x−P1)
⊥

|x−P1| in ω1,

(x−P2)
⊥

|x−P2| in ω2,

(1,0) in ω3.

Then m ∈ W
1,q

div (ω,S1) for every q ∈ [1,2) (see Fig. 4).

Let us explain why in general a domain Ω satisfying the properties in Proposition 2 (i.e.
admitting configurations with infinitely many vortex-point singularities) is not Lipschitz.

Proposition 7. If Ω is a Lipschitz domain and m ∈ W
1/p,p

div (Ω,S1) (with p ∈ [1,2]), then m has
only a finite number of interior vortex singularities.

Proof. Assume by contradiction that m has infinitely many interior vortex singularities
{P1,P2, . . .}. Obviously, discarding a subsequence, we can assume that the points Pk converge
to a point P ∈ Ω̄ .
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Fig. 4. Two vortex-point singularities with the same orientation.

Claim. There exist two cones Ck1 ⊂ Ω and Ck2 ⊂ Ω centered in Pk1 and Pk2 (of some positive
height and positive angle) such that Ck1 ∩ Ck2 has nonempty interior.

Proof of Claim. The case of a limit point P belonging to the interior of Ω is obvious. Let us
suppose that P ∈ ∂Ω . Since ∂Ω is Lipschitz, we may assume that there exists a ball B centered
at P such that ∂Ω ∩ B is the Lipschitz graph {(x1, γ (x1)): x1 ∈ (−δ, δ)} with γ (0) = δ, P =
(0, γ (0)) and

U = {
(x1, x2): 0 � x2 < γ (x1), x1 ∈ (−δ, δ)

} ⊂ Ω ∩ B.

Therefore, for every Pk = (x1,k, x2,k) ∈ U , the vertical segment Sk between (x1,k,0) and Pk

belongs to U . Since γ is a Lipschitz function, there exists an angle

α = α(γ ) := π/2 − arctan

(∥∥∥∥ dγ

dx1

∥∥∥∥
L∞(−δ,δ)

)
> 0

such that the cone Ck centered at Pk of angle α and having Sk as height is included in Ω . Due
to the fact that Pk converges to P , it follows that there exists k0 � 1 such that two cones Ck1 and
Ck2 have nonempty interior intersection for any k1, k2 � k0. This finishes the proof of Claim.

The contradiction comes from the structure proved in Theorem 1 since m(x) = ± (x−Pkj
)⊥

|x−Pkj
| in

Ck1 ∩ Ck2 for both j = 1,2 which is absurd. �
Remark 8. For a Lipschitz domain Ω , we say that a point P ∈ ∂Ω is a boundary vortex sin-
gularity of m if there exists a cone C ⊂ Ω̄ (of some height > 0 and angle β > 0) centered at P

such that m(x) = ± (x−P)⊥
|x−P | for x ∈ C \ {P }. By Jabin–Otto–Perthame strategy, a boundary vortex

point P of m is always assigned to a maximal cone C, in the sense that for every point x ∈ Ω \ C
outside the maximal cone, the characteristic of m passing through x stays outside the cone C.
For q < 2, one can construct W 1,q vector fields (1) in a Lipschitz simply connected domain with
infinitely many boundary vortex-point singularities (that accumulate on the boundary).
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5. Non-density results. Proof of Propositions 4 and 5

Proof of Proposition 5. Assume by contradiction that such a sequence exists. By dominated
convergence theorem, it would mean in particular that mn → m in L1(B2), i.e.,

1∫
0

∫
∂Br

|mn − m|dH1 dr → 0 as n → ∞.

Up to a subsequence, there exists 0 < r < 1 such that

∫
∂Br

|mn − m|dH1 → 0 as n → ∞. (19)

The key point of the proof consists in a dynamical system argument related to the topology of
the flow of m⊥

n : Using the technique in [13,24,21], we will consider the autonomous system

Ẋ = m⊥
n (X). (20)

First of all, (20) has no critical point and no cycle (i.e., no closed loop): Since |m⊥
n | = 1 in B2

and m⊥
n is smooth, the degree of m⊥

n on a closed curve in B2 is zero and therefore, an orbit of
(20) cannot be closed in B2. Now set Xn be the orbit of (20) passing by 0 (see Fig. 5), i.e.,

{
Ẋn(t) = m⊥

n (Xn(t)),

Xn(0) = 0.

Then either the orbit Xn reaches the boundary ∂B2 in finite time, or the limit points of Xn (see
[10, Chapter 16]) belong to the boundary ∂B2: Suppose that this is not the case, i.e., there is a
limit point inside the ball B2. Since (20) has no critical point, Poincaré–Bendixson’s theorem
(see [10, Theorem 2.1]) implies that the limit set of Xn should contain a periodic orbit which is a
contradiction with the nonexistence of cycles for (20). Hence, the orbit Xn separates the ball Br

into a right side Gn (where mn is the inner normal vector to ∂Gn) and a left side Br \ Gn (see
Fig. 5). We define

χn =

⎧⎪⎨
⎪⎩

1
2 in Gn,

− 1
2 in Br \ Gn,

0 in B2 \ Br.

Then χn ∈ BV(B2) with

Dχn = mnH1�
({Xn} ∩ Br

) + χ−
n m⊥H1�∂Br

= mn|Dχn|�Br + χ−
n m⊥H1�∂Br in D′(B2), (21)
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Fig. 5. The orbit Xn of the vector field m⊥
n passing by 0 in the ball B2.

where χ−
n is the interior trace of χn on ∂Br with respect to the normal outer vector x

|x| =
−m⊥(x). Notice that |χ−

n | = 1
2 on ∂Br . Moreover, we have that

∫
Br

|Dχn| = H1({Xn ∈ Br}
)
� 2r and

∫

B2

|Dχn| =
∫
Br

|Dχn| + πr. (22)

Integration by parts leads to

2r
(22)

�
∫
Br

|Dχn| (21)=
∫
Br

mn · Dχn

= −
∫

∂Br

mn · m⊥χ−
n dH1 −

∫
Br

∇ · mnχn dx

(19)= o(1) −
∫
Br

∇ · mnχn dx as n → ∞. (23)

If (a) holds, then the contradiction follows immediately from (23): since |χn| = 1/2 in Br , then∫
Br

∇ ·mnχn dx = o(1) which would mean that o(1) � r > 0 that is absurd. If (b) holds, we prove

first that {χn} is uniformly bounded in BV(B2). Indeed, since {∇ · mn} is bounded in H−s(B2)

(here s ∈ [0,1/2)), by Gagliardo–Nirenberg’s inequality (see Proposition 8 in Appendix A) we
have

∣∣∣∣
∫
Br

∇ · mnχn dx

∣∣∣∣ =
∣∣∣∣
∫

B2

∇ · mnχn dx

∣∣∣∣ � ‖∇ · mn‖H−s (B2)‖χn‖Hs(B2)

Proposition 8
� C‖∇ · mn‖H−s (B2)

(‖χn‖1/2
L∞(B2)

‖χn‖1/2
BV(B2)

+ ‖χn‖L∞(B2)

)
(22)

� C

(
1 +

( ∫
|Dχn|

)1/2)
.

Br
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By (23), we deduce that {χn} is uniformly bounded in BV(Br) and also in BV(B2) due to (22).
Therefore, {χn} is relatively compact in Hs(B2) (since s ∈ [0,1/2), see Proposition 8 in Ap-
pendix A) and we conclude by assumption (b) that

∫
Br

∇ · mnχn dx =
∫

B2

∇ · mnχn dx = o(1)

which is a contradiction with (23). �
Proof of Proposition 4. Obviously, the statement of Proposition 4 is a direct consequence
of Proposition 5(a). However, there is an easier proof in this particular case. More precisely,
we assume by contradiction that there exists a sequence of divergence-free vector fields mn ∈
C∞(Ω,S1) satisfying mn → m a.e. in B2. In particular, dominated convergence theorem leads
to mn → m in L3(B2). First of all, Poincaré’s lemma yields the existence of smooth stream func-
tions ϕn ∈ C∞(Ω) such that mn = ∇⊥ϕn in B2. Since |mn| = 1, ϕn is a 1-Lipschitz function.
Observe that m = ∇⊥ϕ with ϕ(x) = |x| in B2. Subtracting eventually a constant, we can assume
that

∫
B2 ϕn dx = ∫

B2 ϕ dx so that ϕn → ϕ uniformly in B2: indeed, for every x ∈ B2, one has

∣∣ϕn(x) − ϕ(x)
∣∣ =

∣∣∣∣
∫
–

B2

[
(ϕn − ϕ)(x) − (ϕn − ϕ)(y)

]
dy

∣∣∣∣

�
∫
–

B2

1∫
0

|x − y| ∣∣∇(ϕn − ϕ)
∣∣(x + t (y − x)

)
dydt

� C

1∫
0

( ∫

B2

∣∣∇(ϕn − ϕ)
∣∣3(

x + t (y − x)
)
dy

)1/3

dt

� C‖mn − m‖L3(B2)

1∫
0

dt

t2/3
→ 0 uniformly in x, as n → ∞.

Since 0 is a strict minimum of ϕ, it would imply that ϕn has a minimum inside B2, i.e., ∇ϕn

vanishes somewhere inside B2 which is a contradiction with the fact that |∇ϕn| = 1 in B2. �
6. Dense subsets: Proof of Theorems 2 and 3

We start by proving Theorem 2:

Proof of Theorem 2. By Proposition 7, we know that m has only a finite number of (interior)
vortex singularities in Ω (call this set A).

Case 1. There are no interior vortex-point singularities, i.e., A = ∅. By Theorem 1 we know that
m is locally Lipschitz in Ω . For d > 0 small, we choose a smooth simply connected subdomain
Ωd of Ω that is close to Ω in the sense that dist(x, ∂Ω) ∈ (d,3d/2) for every x ∈ ∂Ωd . Then,
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by Theorem 1, we have that m is globally Lipschitz in Ωd . For each characteristic of m passing
through a point x ∈ Ωd we call extremal points in Ω̄d the two intersection points P(x) and
Q(x) of the characteristic with ∂Ωd . By the Jabin–Otto–Perthame procedure (as recalled in the
proof of Theorem 1), any two characteristics of m passing through two points x, y ∈ Ωd intersect
outside Ωd at a distance larger than d with respect to their extremal points. As a consequence,
|m(x) − m(y)| � 1

d
|x − y| for every x, y ∈ Ωd , i.e., m is globally Lipschitz in Ωd with the

Lipschitz constant � 1/d (see [25]).
A standard geometry argument shows the existence of a (at most) countable set of segments

γj : [0,1] → Ω̄d , j ∈ J ⊂ N such that
(1) every two (open) segments γj ((0,1)) and γk((0,1)) are disjoint, j �= k;
(2) the characteristics of m passing through γj (t) for every t ∈ [0,1] and j ∈ J cover the

whole domain Ω̄d , i.e., Ω̄d = ⋃
j∈J,t∈[0,1][P(t)Q(t)] where P(t) ∈ ∂Ωd and Q(t) ∈ ∂Ωd are

the extremal points in Ω̄d of the characteristic passing through the point γj (t).
(3) for every t ∈ (0,1) and j ∈ J , the characteristic [P(t)Q(t)] passing through γj (t) inter-

sects the set of segments ∪k∈J {γk([0,1])} only at {γj (t)}.
One could have two end points Pj and Pk of segments γj and γk that coincide, or the char-

acteristic passing through Pj may intersect γk at the end point Pk . (There exist smooth vector
fields m with (1) on C2 simply connected domain such that any set of curves {γj } satisfying (1),
(2), (3) are necessary infinitely countable, i.e., J is not finite; one could think of a local boundary
given by the graph {(x1, γ (x1))} with γ : x1 �→ x4

1 sin 1
x1

around 0 and m be a small perturbation
of the constant vector field e2.)

We consider the lifting Θ (unique up to a constant) of m in Ωd , so Θ ∈ W 1,∞(Ωd). The
smoothing procedure is the following: for each segment γj ([0,1]), we approximate the lift-
ing Θ|γj

in H 1({γj }) (or any W 1,q with q < ∞) by a sequence of C∞ liftings Θn|γj
such

that Θn|∂γj
= Θ|∂γj

and the Lipschitz constant of eiΘn is less than 1/(d − 1/n). Then we set
mn := eiΘn |γj

on the segment γj ; after that, mn is uniquely smoothly extended along the charac-
teristics starting from any point γj (t) due to the initial value mn(γj (t)) since these characteristics
(passing through points γj (t)) could intersect only outside Ωd at a distance � d − 1

n
with re-

spect to their extremal points in Ωd . The new vector fields mn satisfy (1) in Ωd and approximate
m in H 1(Ωd); they are smooth on the domain covered by the characteristics passing through
γj ((0,1)). However, globally in Ωd , they could be only Lipschitz (and not smooth) at the end
points γj ({0,1}). Let us call these corresponding characteristics as “bad” characteristics of mn.
In order to smooth everywhere mn, we will proceed as follows: we will restrict to a subdomain
Ω̃d of Ωd such that 0 < dist(x, ∂Ωd) < d/2 for every x ∈ ∂Ω̃d . Then any “bad” characteristic
S has the following property: S ∩ Ω̃d splits Ω̃d into two open subdomains ωn and ω̃n so that
mn is locally smooth around S in ωn respectively in ω̃n. Then one considers a small segment
S̃ = [AÃ] orthogonal to S such that the middle point M := (A + Ã)/2 of S̃ belongs to the “bad”
characteristic S and mn is smooth on (AM) ⊂ ωn respectively (ÃM) ⊂ ω̃n. Considering the lift-
ing Θn of mn on S̃, one repeats the same smoothing argument as above, but asking that the new
vector field m̃n coincides with mn in a neighborhood of ∂S̃. Therefore, we conclude that m can
be regularized in H 1(Ω̃d) by smooth vector fields with (1) defined in Ω̃d . Letting d → 0, the
above argument applies (slightly changed when “bad” characteristics appear as in Fig. 3) and the
conclusion follows in Case 1 (the approximation holding in H 1

loc(Ω)).

Case 2. There are interior vortex-point singularities, i.e., A �= ∅. We recall that A is finite.
As before, for d > 0 small, we choose a smooth simply connected subdomain Ωd of Ω that
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is close to Ω in the sense that dist(x, ∂Ω) ∈ (d,3d/2) for every x ∈ ∂Ωd and A ⊂ Ωd and
dist(A, ∂Ωd) � d . Therefore, all the characteristics passing through Ωd intersect either in a vor-
tex point of A, or at a distance larger than d outside Ωd . We decompose the domain in a partition
Ωd := Ω1(m) ∪ Ω2(m) where

Ω1(m) =
{
x ∈ Ωd : there exist r > 0, P ∈A, m(z) = ± (z − P)⊥

|z − P | for all z ∈ B(x, r) ⊂ Ωd

}
.

Then Ω1(m) is an open subset of Ωd , Ω̄1(m) contains all the (interior) vortex singularities of m

(i.e. A ⊂ Ω1(m)) and m ∈ C∞(Ω1(m) \A).
To construct the desired mn in Ωd , the idea is the following: Set first mn := m on Ω1(m) so

that mn has the same (interior) vortex-point singularities A as m and mn ∈ C∞(Ω1(m) \ A). It
remains to smooth m on Ω2(m); since A is not included in Ω2(m) (in fact, A is placed at distance
larger than d outside ∂Ω2(m)), it means that any two characteristics of m passing through Ω2(m)

intersect at a distance larger than d outside Ω2(m), i.e., m is globally Lipschitz on Ω2(m) with
a Lipschitz constant less than 1/d . We will construct mn on Ω2(m) as at Case 1: we find a
countable set of segments γj : [0,1] → Ω̄2(m), j ∈ J ⊂ N such that

(1) every two (open) lines γj ((0,1)) and γk((0,1)) are disjoint, j �= k;
(2) the characteristics of m passing through γj (t) for every t ∈ [0,1] and j ∈ J cover the

whole domain Ω̄2(m), i.e., Ω̄2(m) = ⋃
j∈J,t∈[0,1] P(t)Q(t) where P(t) ∈ ∂Ω2(m) and Q(t) ∈

∂Ω2(m) are the extremal points of the characteristic passing through γ (t) in Ω2(m).
(3) for every t ∈ (0,1) and j ∈ J , the characteristic P(t)Q(t) passing through γj (t) intersects

the set of curves
⋃

k∈J {γk} only at {γj (t)}.
It could happen that some lines γj have their end points in ∂Ω1(m) (i.e., γj ({0,1}) ⊂

∂Ω1(m)). Since Ω1(m) is open, it means that one can extend a little bit γj by the line γj ∪ γ̃j

in the interior of Ω1(m) (i.e., γ̃j ⊂ Ω1(m)); for such lines, the smoothing process of Case 1 is
to be repeated by adding the constraint that the approximation mn coincides with m on γ̃j . On
the other lines γj (not intersecting ∂Ω1(m)), the smoothing process in Case 1 is to be repeated.
As before, mn is not smooth around “bad” characteristics. Eventually by considering a subdo-
main Ω̃d ⊂ Ωd , one can also smooth mn around the “bad” characteristics. Therefore, by letting
d → 0, the above argument applies (with a slight change by approximating A by a set An of
vortices of mn when “bad” characteristics appear as in Fig. 3) and the conclusion follows also in
Case 2 (the approximation holding in W

1,q

loc (Ω) for any q < 2). �
Proof of Theorem 3. Let A = {Pk: k ∈ K} be the set of interior vortex-point singularities of m

with K be a finite set. For each interior vortex point Pk of m, we can find a cone Ck ⊂ Ω (of center
Ak and some small angle) such that Pk ∈ int(Ck) and Ω \ Ck is a Lipschitz simply-connected
domain (see Fig. 6). Set dk = dist(Pk, ∂Ck) > 0 and Ω̃ := Ω \ ⋃

k∈K Ck . The smoothing process
is the following: in a first step, we smooth m inside each cone Ck by nonvanishing divergence
vector fields of unit-length, and in a second step we smooth m by divergence-free vector fields
inside Ω̃ .

Step 1. Smoothing inside the cones. We will use the strategy in [21]. For simplicity of the

writing, we suppose that Pk = O(0,0) is the origin, m(x) = x⊥
|x| in Ck and for every small ε,

denoting

λ = λ(ε) = 1
2
,
| ln ε|
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Fig. 6. Smooth vortex approximation inside a cone using a 360◦-Néel wall transition (described in the right picture).

we will assume that the cone Ck contains the sets

ω1 = ω1(ε) = {
x ∈ R2: λ � |x| :=

√
x2

1 + x2
2 < 1, x2 � 0, |x1| � λ

}
and

ω2 = ω2(ε) = {
x ∈ R2: |x| < λ

}

and ∂Ω ∩ {x2 > 0, |x1| � λ} is contained in ω̄1 (see Fig. 6). We construct a family {mε ∈
H 1(Ck, S

1)} such that mε → m a.e. in Ck and (∇ · mε)1Ck
→ 0 in Ḣ−1/2(R2) as ε → 0.

Definition of mε . We will denote the phase of mε by Θε , i.e. mε = eiΘε . In the region Ck \
(ω1 ∪ ω2), mε will coincide with the vortex vector field m (in particular, mε is a smooth vector
field (1) in Ck \ (ω1 ∪ ω2)). More precisely, in polar coordinates, the phase is given by

Θε(r, θ) = θ + π/2 in Ck \ (ω1 ∪ ω2).

In the region ω1, mε will turn clockwise as a transition layer of degree −1 (known in micromag-
netic jargon as 360◦-Néel wall of initial angle 0, see [21]) and in the region ω2 (standing for the
core of the vortex), we apply some linear cut-off in the radius for the phase of mε .

Transition layer of degree −1. Let

δ = δ(ε) = ε| ln ε|3.

In ω1, we first denote by (ũδ, ṽδ) = eiϕ̃δ : R → S1, the following approximation of the 360◦-Néel
wall of initial angle 0 (magnetization turning clockwise, i.e., of topological degree −1):

ũδ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2
| ln δ| ln 1√

t2+δ2
if |t | �

√
1
4 − δ2,

cos θ̃δ(|t |) if
√

1
4 − δ2 � |t | � 1,

1 if |t | � 1,

and

ṽδ(t) =
⎧⎨
⎩

−
√

1 − ũ2
δ(t) if t < 0,√

1 − ũ2
δ(t) if t > 0,

(24)
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Fig. 7. The components ũδ and ṽδ of a 360◦ Néel wall transition of degree −1.

where θ̃δ : [√1/4 − δ2,1] → [0, π
2 ] is defined by

θ̃δ := linear function with θ̃δ

(√
1/4 − δ2

) = arccos
| ln 4δ|
| ln δ| and θ̃δ(1) = 0 (25)

(see Fig. 7). In view of (24), we may assume that ϕ̃δ(0) = −π . We then have ϕ̃δ(−∞) = 0 and
ϕ̃δ(+∞) = −2π and since ϕ̃δ + π is an odd function, we also get

ϕ̃δ(−t) + ϕ̃δ(t) = −2π for every t ∈ R. (26)

We rescale the transition layer (ũδ, ṽδ) so that it is contained in ω1: In polar coordinates, for
each arc of radius r ∈ [λ,1) fixed in ω1 and where the angle θ varies inside the interval θ ∈
(π

2 ± arcsin λ
r
), we define the rescaled transition layer (uε, vε) with phase ϕε by

(uε, vε)(θ) = eiϕε(θ) := (ũδ, ṽδ)

(
θ − π

2

arcsinλ

)
,

or equivalently, the rescaled phase is given by

ϕε(θ) = ϕ̃δ

(
θ − π

2

arcsinλ

)
. (27)

The profile mε is defined in terms of its components in radial direction �r and angular direction �θ
on arcs with fixed radius in ω1:

mε(r, θ) = eiΘε(r,θ) = uε(θ)�θ − vε(θ)�r in ω1.

Notice that in ω1 (as well as in Ck \ (ω1 ∪ ω2)), the profile mε (together with its phase Θε) are
invariant in r . Also, we have the following relation between ϕε and Θε:

Θε(r, θ) = θ + ϕε(θ) + π

2
in ω1 (28)

and the phase Θε is continuous in Ck \ ω2. Finally, in the core region ω2, we define the profile
mε(r, θ) = eiΘε(r,θ) in polar coordinates by
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Θε(r, θ) = r

λ
Θε(λ, θ) in ω2, (29)

where we recall by (28) that Θε(λ, θ) = θ + π
2 + ϕ̃δ(

θ− π
2

arcsinλ
) for every θ ∈ (0,2π).

Energy estimates. We refer to [21] for the following estimates:

∫
Ck

|∇mε|2 dx = o

(
1

ε| ln ε|
)

and
∥∥(∇ · mε)1Ck

∥∥2
Ḣ−1/2(R2)

= O

(
1

| ln ε|
)

. (30)

Notice that mε is continuous, but not smooth in Ck . Obviously, one can approximate mε by
m̃ε,η ∈ C∞(Ck, S

1) in H 1(Ck) as η → 0, so that by a diagonal argument, m is approximated by
smooth vector fields mn ∈ C∞(Ck, S

1) in L1 such that (∇ · mn)1Ck
→ 0 in Ḣ−1/2(R2).

Step 2. Smoothing outside the cones. Observe that m doesn’t have any interior vortex-point
singularities in Ω̃ that is Lipschitz simply connected. By the proof of Theorem 2 our vector field
m can be approximated in W

1,q

loc (Ω̃) for q < ∞ (in particular, a.e. in Ω̃) by smooth vector fields
mn ∈ C∞(Ω̃, S1) of vanishing divergence. Moreover, mn = m in Ck around ∂Ck ∩ ∂Ω̃ and the
characteristics of m passing through Ω̃ around Ck intersect at a distance larger than dk outside Ω̃

so that the proof of Theorem 2 enables mn to be chosen C∞ around the boundary of ∂Ω̃ ∩ ∂Ck .
Therefore, we have constructed smooth vector fields mn ∈ C∞(Ω,S1) converging to m a.e.

that are divergence-free in Ω̃ . It remains to show that (∇ · mn)1Ω → 0 in Ḣ−1/2(Ω). Observe
that (∇ · mn)1Ω = (∇ · mn)1⋃

k∈K Ck
∈ L2(R2) (since mn ∈ H 1(Ck) for each k ∈ K). Therefore,

by (30), it follows

∥∥(∇ · mn)1Ω

∥∥
Ḣ−1/2(R2)

→ 0.

which concludes our statement. �
Remark 9. Let Ω ⊂ R2 be a Lipschitz bounded simply-connected domain. If m : Ω → S1 satis-
fies (1), m is locally Lipschitz except at the vortex points {P1, . . . ,Pk} and m belongs to H 1 in
a neighborhood of the boundary ∂Ω , then m is a zero-energy state of the line-energy Ginzburg–
Landau Eε (defined at Remark 1). Let us sketch the proof of this statement. For that, we choose
some disjoint disks Dj ⊂ Ω of center Pj and radius Rj > 0 for j = 1, . . . , k. By Theorem 1 we
know that m(x) = αj (x − Pj )

⊥/|x − Pj | with αj ∈ {±1} for every x ∈ Dj \ {Pj } and 1 � j � k

and m is locally Lipschitz outside the disks
⋃

j Dj .

Step 1. First of all, note that the approximating family mε ∈ H 1(Ω,R2) with mε → m in
L1(Ω) and Eε(mε) → 0 as ε → 0 cannot be chosen with values into S1 (as in Theorems 2
and 3). Indeed, if |mε| = 1 in Ω and mε → m in L1(Ω), then Rivière and Serfaty [32] proved
that

lim inf
ε→0

Eε(mε) � 2
k∑

j=1

H1(∂Dj ) > 0.

Step 2. Therefore, the approximating family mε should vanish somewhere inside each disk
Dj . The family mε is chosen in the following: for ε > 0 sufficiently small, we set mε = m in
Ω \ ⋃

Dj,ε where Dj,ε is the disk of center Pj and radius ε and mε(x) = αj (x − Pj )
⊥/ε for
j
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x ∈Dj,ε and 1 � j � k. Observe that mε are divergence-free vector fields in Ω and the constraint
|mε| = 1 fails inside the disks Dj,ε . Obviously mε → m in L1(Ω). To conclude, we need to prove
that Eε(mε) → 0 as ε → 0. For that, let N be a neighborhood of ∂Ω such that m ∈ H 1(N ). Then
one computes:

Eε(mε) = ε

∫
N

|∇m|2 + ε

∫
Ω\(N∪⋃

j Dj )

|∇m|2 +
k∑

j=1

(
ε

∫
Dj

|∇mε|2 + 1

ε

∫
Dj,ε

(
1 − |mε|2

)2
)

� ε

∫
N

|∇m|2 + ε|Ω| sup
x∈Ω\(N∪⋃

j Dj )

∣∣∇m(x)
∣∣2 +2πε

∑
j

(
3+ log

Rj

ε

)
→0 as ε → 0.

Thus, m is a zero-energy state of {Eε}ε↓0 in Ω . This argument also shows that without the
H 1-regularity assumption of m around the boundary ∂Ω , m is still a zero-energy state in any
subdomain Ω̃ ⊂⊂ Ω of the energy Ẽε corresponding to Eε on Ω̃ .
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Appendix A

For s ∈ (0,1), p > 1 and Ω ⊂ Rd a Lipschitz domain, the Sobolev space Ws,p(Ω) is a Banach
space defined as

Ws,p(Ω) =
{
f ∈ Lp(Ω): ‖f ‖p

Ẇ s,p(Ω)
:=

∫
Ω

∫
Ω

|f (x) − f (y)|p
|x − y|d+sp

dx dy < ∞
}

and endowed by the norm ‖f ‖p

Ws,p(Ω) := ‖f ‖p

Lp(Ω) +‖f ‖p

Ẇ s,p(Ω)
for every f ∈ Ws,p(Ω). (Con-

vention: Hs(Ω) := Ws,2(Ω).) It is known that for s ∈ (0, 1
p
],

Ws,p(Ω) = W
s,p

0 (Ω) := D(Ω)W
s,p(Ω)

where D(Ω) = C∞
c (Ω) (see [18]). For p′ = p/(p − 1) the conjugate of p and s ∈ (0, 1

p
], the

dual space W−s,p′
(Ω) of Ws,p(Ω) with respect 〈·,·〉D′(Ω),D(Ω) is defined as

W−s,p′
(Ω) =

{
u ∈ D′(Ω): ‖u‖

W−s,p′
(Ω)

:= sup
f ∈D(Ω)

‖f ‖Ws,p(Ω)�1

〈u,f 〉D′(Ω),D(Ω) < ∞
}
.

We introduce a closed subspace of W 1/p,p(Ω):

W
1/p,p

00 (Ω) =
{
f ∈ W 1/p,p(Ω): |f |p0,p = ‖f ‖p

Ẇ 1/p,p(Ω)
+

∫ |f (x)|p
ρ(x)

dx < ∞
}

Ω
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where ρ(x) = dist(x, ∂Ω). In fact, W
1/p,p

00 (Ω) can be seen as the closure of C∞
c (Ω) in

W 1/p,p(Rd). Recall that the map u �→ ζu is continuous from W 1/p,p(Ω) to W
1/p,p

00 (Ω)

for any ζ ∈ C∞
c (Ω). We denote by W−1/p,p′

(Ω) the dual of (W
1/p,p

00 (Ω), | · |0,p) with re-

spect to 〈·,·〉D′(Ω),D(Ω). So, W−1/p,p′
(Ω) is a closed subspace of W−1/p,p′

(Ω). Recall that
u �→ ∇u is continuous as map between the spaces W 1/p,p(Ω) to W−1/p′,p(Ω) which is the dual

of W
1/p′,p′
00 (Ω) (see details in [18]).

The space BV(Ω) is the set of functions f ∈ L1(Ω) such that the derivative of f (in the sense
of the distributions) is a finite Radon measure, i.e.,

∫
Ω

|∇f | = sup

{ ∫
Ω

f ∇ · ζ dx: ζ ∈ C1
c

(
Ω,Rd

)
,

∣∣ζ(x)
∣∣ � 1, ∀x ∈ Ω

}
< ∞,

where | · | is the Euclidean norm in Rd . We denote the BV-norm as follows:

‖f ‖BV(Ω) := ‖f ‖L1(Ω) +
∫
Ω

|∇f |.

One has that W 1,1(Ω) = C∞(Ω)BV(Ω). It is known that the zero extension operator T :
BV(Ω) → BV(Rd) defined as Tf (x) = f (x) for x ∈ Ω and Tf (x) = 0 for x ∈ Rd \ Ω is a
linear continuous operator and we denote ‖T ‖BV(Ω) the norm of operator T (more details in [2]).

Proposition 8 (Gagliardo–Nirenberg’s inequality). Let Ω ⊂ Rd be a bounded Lipschitz domain,
s ∈ (0,1) and p > 1 with sp < 1. Then the embedding BV ∩L∞(Ω) ⊂ Ws,p(Ω) is compact and
one has

‖f ‖p

Ẇ s,p(Ω)
� C‖T ‖BV(Ω)

diam(Ω)1−sp

1 − sp
‖f ‖p−1

L∞(Ω)

∫
Ω

|∇f | for every f ∈ BV ∩ L∞(Ω),

where C > 0 is some positive constant (depending on p and d).

Proof. If f ∈ C∞(Ω), one has

∫
Ω

∫
Ω

|f (x) − f (y)|p
|x − y|d+sp

dx dy =
∫
Ω

∫
Ω

|Tf (x) − Tf (y)|p
|x − y|d+sp

dx dy

� 2p−1‖f ‖p−1
L∞(Ω)

∫
|h|�diam(Ω)

∫
Rn

|Tf (x + h) − Tf (x)|
|h|d+sp

dhdx

� 2p−1‖f ‖p−1
L∞(Ω)

∫
|h|�diam(Ω)

dh

|h|d+sp−1

∫
Rn

1∫
0

∣∣∇(Tf )(x + th)
∣∣dt dx

� C‖T ‖BV(Ω)

diam(Ω)1−sp

1 − sp
‖f ‖p−1

L∞(Ω)

∫
|∇f |.
Ω
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The inequality holds true for general f ∈ BV ∩ L∞(Ω) due to the density of smooth func-
tions in BV endowed with the topology induced by the strict convergence, i.e., there exists fn ∈
C∞ ∩ BV(Ω) such that |fn| � ‖f ‖L∞ and fn → f a.e. in Ω and ‖fn‖BV(Ω) → ‖f ‖BV(Ω) as
n → ∞ (see Remark 3.22 in [2]). Obviously, ‖f ‖Lp(Ω) � C‖f ‖L∞(Ω). Therefore, one obtains
the embedding BV ∩ L∞(Ω) ⊂ Ws,p(Ω). Moreover, this embedding is compact since for some
s′ ∈ (s, 1

p
), one has BV ∩ L∞(Ω) ⊂ Ws′,p(Ω) and Ws′,p(Ω) ⊂ Ws,p(Ω) is compact (see e.g.

[18]). �
Proposition 9. For every open set Ω ⊂ Rd , d � 1, one has W 1,1(Ω,S1) \⋃

p>1 W 1/p,p(Ω,S1) �= ∅.

Proof. The idea is the following (as explained in [29]): it is known that BV ∩ L∞ �⊂ W 1/p,p

in any dimension and any p > 1 and the counter-example is given by any jump function, e.g.,
ϕ0 = 1(0,1) in Ω = (−1,1). Moreover, if one regularizes ϕ0 by ϕn = ϕ0 in Ω \ (0,1/n) and
ϕn(x) = nx for x ∈ (0,1/n), then we have

∫
Ω

∣∣ϕ′
n

∣∣ = 1, ‖ϕn‖L∞ = 1 and ‖ϕn‖W 1/p,p → ∞.

Based on this idea, one can construct a function ϕ ∈ W 1,1(Ω) \ ⋃
p>1 W 1/p,p(Ω) with Ω =

(−1,1) and set m : Ω → S1 with m = eiϕ . Then m satisfies the desired properties. In higher
dimensions, the same example (depending on a single variable) holds (see [29]). �
Proposition 10. Let s ∈ (0,1), p > 1 and Ω ⊂ Rd be a bounded open set.

(a) (Stability by composition in Ws,p .) Let hn,h ∈ Ws,p(Ω,Rk) (k = 1,2) and Ψ : Rk → R be
a Lipschitz function. If hn → h in Ws,p then Ψ (hn) → Ψ (h) in Ws,p .

(b) (Stability by complex multiplication in Ws,p .) Let h,mn,m ∈ Ws,p(Ω,S1) and mn → m in
Ws,p then hmn → hm in Ws,p (the last terms are to be interpreted as product of complex
numbers).

Proof. (a) Let

R(h,x, y) := h(x) − h(y)

|x − y|(d+sp)/p
, x �= y ∈ Ω.

Observe that hn → h in Ws,p yields hn → h in Lp(Ω) and R(hn, ·,·) → R(h, ·,·) in Lp(Ω ×Ω).
Discarding eventually a subsequence, we may assume that hn → h a.e. in Ω and |R(hn, ·,·)| � T

for a.e. x, y ∈ Ω for some T ∈ Lp(Ω × Ω,R+). Therefore, |R(Ψ (hn), ·,·)| � ‖Ψ ‖LipT and
R(Ψ (hn), ·,·) → R(Ψ (h), ·,·) a.e. in Ω × Ω . By dominated convergence theorem, we get that
R(Ψ (hn), ·,·) → R(Ψ (h), ·,·) in Lp(Ω × Ω). Since |Ψ (hn) − Ψ (h)| � ‖Ψ ‖Lip|hn − h| a.e. in
Ω ×Ω , we conclude that Ψ (hn) → Ψ (h) in Ws,p . (Since the limit is unique, the above argument
holds for the whole sequence n in the metric space Ws,p .)

(b) Discarding eventually a subsequence, we may assume as before that mn → m a.e. in Ω .
Let vn := mnm̄ where m̄ is the complex conjugate of m. Then vn → 1 in Ws,p . Indeed, we first
have that |vn| = 1 and vn → 1 a.e. in Ω . Then R(vn, ·,·) → 0 a.e. in Ω × Ω and |R(vn, ·,·)| �
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|R(mn, ·,·)| + |R(m, ·,·)| ∈ Lp(Ω × Ω). The dominated convergence theorem yields vn → 1 in
Ws,p . Finally, we conclude

‖hmn − hm‖p

Ẇ s,p = ∥∥hm(vn − 1)
∥∥p

Ẇ s,p � 2p−1‖vn‖p

Ẇ s,p

+ 2p−1
∫
Ω

∫
Ω

∣∣vn(y) − 1
∣∣p∣∣R(mh,x, y)

∣∣p dx dy → 0 as n → ∞

by dominated convergence theorem (since mh ∈ Ws,p). �
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