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We present several non-local variational models leading to rich pattern formation.
These models arise mainly in micromagnetics and we are interested in developing
an asymptotic analysis based on an entropy method coming from scalar conserva-
tion laws.

1. The Aviles-Giga model. Let Ω ⊂ R2 be an open domain. For vector fields
u ∈ H1

div(Ω,R
2) of vanishing divergence ∇ · u = 0 in Ω, the following energy

functional is defined:

AGε(u) = ε

∫

Ω

|∇u|2 dx+
1

ε

∫

Ω

(1 − |u|2)2 dx,

for a small parameter ε > 0. The question of Γ−convergence of {AGε}ε↓0 was in-
tensively studied. The compactness of configurations {uε}ε↓0 of uniformly bounded
energy AGε(uε) ≤ C was proved (in strong L2-topology) by Ambrosio, De Lel-
lis and Mantegazza [2] and DeSimone, Kohn, Müller and Otto [7]. The limiting
configurations u0 satisfy

(1) |u0| = 1 and ∇ · u0 = 0 in Ω.

Moreover, De Lellis and Otto [6] proved the H1−rectifiability of the jump set J of
u0, even if u0 is in general not BV (see [2]). It is expected that the limit energy
of {AGε(uε)}ε↓0 concentrates on the jump set J and has the following form (first
stated by Aviles and Giga [3]):

AG0(u0) =
1

3

∫

J

|u+
0 (x) − u−0 (x)|3 dH1.

In fact, AG0 is a lower-bound of {AGε}ε↓0 (see Aviles and Giga [4], Jin and
Kohn [11]). The difficulty consists in the upper bound construction for limiting
configurations u0: recovery sequences have been constructed only for BV config-
urations u0 (see Conti and De Lellis [5] and Poliakovsky [12]).

Entropies. One of the main tool of this study consists in the concept of entropies
coming from the scalar conservation law hidden in (1). Indeed, writing u0 =

(v, h(v)) for the flux h(v) = ±
√

1 − v2, the divergence-free condition in u0 turns
into the nonlinear transport equation:

(2) ∂tv + ∂s[h(v)] = 0,

where (t, s) := (x1, x2) correspond to (time, space) variables. The notion of en-
tropy solution is introduced via the pair (entropy, entropy-flux), i.e., a couple

of scalar functions (η, q) such that dq

dv
= dh

dv

dη

dv
which entails that every smooth

solution v of (2) has vanishing entropy production, i.e.,

(3) ∂t[η(v)] + ∂s[q(v)] = 0.

More general, an entropy solution v has the property that for every pair (η, q), the
entropy production is a (signed) measure that concentrates on lines (corresponding
to ”shocks” of v). It suggests the interest of using ”global” quantities Φ(u0) :=

1



(η(v), q(v)) to detect ”local” line-singularities of u0. Indeed, we will say that
Φ ∈ C∞(R2,R2) is a DKMO−entropy (see [7]) if

Φ(0) = 0, DΦ(0) = 0 and z ·DΦ(z)z⊥ = 0 holds for all z ∈ R2.

In particular, if u0 is a smooth vector field satisfying (1), then ∇ · [Φ(u0)] = 0
(similarly to (3)). More general, the family of entropy productions {∇· [Φ(uε)]}ε↓0

is asymptotically bounded as measure for every family {uε}ε↓0 ⊂ H1
div(Ω,R2) of

uniformly bounded energy: there exists a constant CΦ > 0 such that

lim sup
ε→0

∣

∣

∣

∣

∫

Ω

∇ · [Φ(uε)]ζ dx

∣

∣

∣

∣

≤ CΦ‖ζ‖∞ lim sup
ε→0

AGε(uε), for every ζ ∈ C∞
c (Ω).

This is the starting point in proving the L2-compactness result and the fine struc-
ture of the limiting configurations u0 (see [7, 6]).

2. The Bloch wall model. Let us now discuss a rather more “geometric”
and non-convex model coming from micromagnetics: For S2-valued vector fields
m = (u,m3) ∈ H1

div(Ω, S2) with ∇ · u = 0 in Ω ⊂ R2, we define the functional:

Eε(m) = ε

∫

Ω

|∇m|2 dx+
1

ε

∫

Ω

m2
3 dx,

for a small parameter ε > 0. As before, the aim is to analyze the asymptotic
behavior of Eε as ε → 0. First, note that Eε dominates the Aviles-Giga en-
ergy AGε, i.e., AGε(u) ≤ Eε(m), since |∇u| ≤ |∇m| and (1 − |u|2)2 = m4

3 ≤ m2
3.

Therefore, the L2-strong compactness holds for uniformly bounded energy configu-
rations Eε(mε) ≤ C; the limiting configurations m0 are in-plane, i.e., m0 = (u0, 0)
with (1) and a H1−rectifiable jump set J of u0 can be defined. It is conjectured
that the transition layers (at level ε > 0) corresponding to a jump (u−0 , u

+
0 ) are

one-dimensional and that the Γ-limit of {Eε}ε↓0 is given by

E0(m0) =

∫

J

|u+
0 (x) − u−0 (x)|2 dH1.

In a joint work with Merlet (see [9]), we obtained several partial results. In order
to deal with the expected quadratic cost of jumps, we analyze the following class
of Lipschitz entropies: Φ ∈ Lip(S2,R2) such that for ε ↓ 0,

(4) ∇ · [Φ(m)] ≤ ε|∇m|2 +
1

ε
m2

3 + o(1) in Ω, ∀m ∈ C∞
div(Ω, S2)

with the condition that [Φ(u+
0 ) − Φ(u−0 )] · ν = |u+

0 − u−0 |2 for jumps (u−0 , u
+
0 ) of

normal direction ν := e1. We find such an entropy for the biggest jump (0,±1, 0)
proving that the one-dimensional layer is optimal in this case. Even if we find
entropies for each jump (u−0 , u

+
0 ) satisfying (4) but in a restricted class of config-

urations m, we prove that the entropy method doesn’t work in general for small
angles. However, we show in a second paper [8] that E0 is lower semicontinuous
(in L2 topology), enforcing the expectation that no microstructure appears for the
Bloch wall model.
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3. A zigzag wall model. We study now the following energy functional:

Fǫ(m) =

∫

Ω

(

ε|∇m|2 +
1

ε
m2

2

)

dx+
1

εs
‖∇ ·m‖2

Ḣ−1(Ω)

for m = (m1,m2,m3) ∈ H1(Ω, S2) where the constraint ∇ · (m1,m2) 6= 0 is

penalized in Ḣ−1-seminorm by the energy where s ∈ (1, 2). The penalization of
m2 (instead ofm3 as previously) generates loss of coercivity of Fε: configurations of
uniformly bounded energy are in general no longer compact in strong L2-topology
due to possible oscillations in x2-direction. The main idea of a joint work with
Moser [10] is to study the quantity

ψ = sinϑ− ϑ cosϑ,

where ϑ := arctan m3

m1

in the hemisphere where |ϑ| ≤ π
2 . We show that as long as

ϑ remains sufficiently small, the functional

F0(ψ) = 2

∫

Ω

∣

∣

∣

∣

∂ψ

∂x1

∣

∣

∣

∣

dx

is the Γ-limit energy of {Fε}ε↓0. In general, the wall energy given by F0 is
not achieved by a one-dimensional transition between two limiting states m± =
(cos θ, 0,± sin θ) of normal direction ν := e1. Instead, in order to obtain the opti-
mal limiting energy given by F0, a transition with an additional zigzag structure
is required. The matching with the upper bound (coming from the zigzag wall
construction) is fulfilled via a lower bound based on generalized entropies. More
precisely, as in (4), we study the entropies Φ ∈ Lip(S2,R2) such that for ε ↓ 0,

∇ · [Φ(m)] ≤ ε|∇m|2 +
1

ε
m2

2 in Ω, ∀m ∈ C∞
div(Ω, S2)

with the condition that [Φ(m+)−Φ(m−)]·ν = 4ψ(θ) for jumpsm± = (cos θ, 0,± sin θ)
of normal direction ν := e1. In contrast with the Bloch wall model, we succeed
to find such entropies for small angles θ and we prove that no entropy exists for
the biggest jump (0, 0,±1). There is another situation where the Γ-limit is explic-
itly known for a problem involving similar microstructures: the problem leading
to cross-tie walls in thin ferromagnetic films [13, 14, 1]. The cross-tie wall con-
sists in a mixture of vortices and Néel walls (one-dimensional transition layers
similar to Bloch walls, but taking values only in S1). Remarkably, the function
ψ(θ) = sin θ−θ cos θ plays an important role in that context as well, although this
may be a mere coincidence.
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