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Abstract

Given a bounded Lipschitz domain w C R%™! and a lower semicontinuous function W :
RY — Ry U {400} that vanishes on a finite set and that is bounded from below by a positive
constant at infinity, we show that every map v : R x w — RY with

/ (|Vu|2 + W (u)) dz1 dz’ < +o0
RXw

has a limit u* € {W = 0} as &1 — 4oo. The convergence holds in L*(w) and almost

everywhere in w. We also prove a similar result for more general potentials W in the case
where the considered maps u are divergence-free in Q with w being the (d — 1)-torus and
N =d.

Keywords. Nonlinear elliptic PDEs; De Giorgi conjecture; Energy estimates; Geodesic dis-
tance.
1 Introduction

Let N > 1,d > 2 and Q = R xw be an infinite cylinder in R?, where w C R?~! is an open connected
bounded set with Lipschitz boundary. For a lower semicontinuous potential W : RY — R, U{+occ},
we consider the functional

B(u) :/ (IVu?+ W) de, e 1(©QRY), (1.1)
Q
where | - | is the Euclidean norm and
HYQ,RY) = {ue HL (QRY) : Vu=(0ju;)1<i<n1<j<a € L*(Q,RV*4)}.

A natural problem consists in studying optimal transition layers for the functional E between two
wells u® of W (i.e., W(u*) = 0). In particular, motivated by the De Giorgi conjecture, one aim
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is to analyse under which conditions on the potential W and on the dimensions d and N, every
minimizer v of E connecting u* as x; — 4oo is one-dimensional, i.e., depending only on z.
Obviously, such one-dimensional transition layers u coincide with their z’-average 7 : R — R
defined as

u(zy) = ][ u(zy,2’)da’, z1 €R, (1.2)

where 2/ = (22,...,24) denotes the d — 1 variables in w and the a’-average symbol is denoted by
)
]{ wl Jo,’

1.1 Main results

The purpose of this note is to prove a necessary condition for finite energy configurations u provided
that W satisfies the following two conditions:

(H1) W has a finite number of wells, i.e., card({z € RY : W (z) = 0}) < oo;
(H2) liminf W(z) > 0.

|z| =00
More precisely, we prove that under these assumptions, there exist two wells u® of W such that
u(z1,-) converges to u® in L? and a.e. in w as x; — =£oo; in particular, the z’-average @ (as a
continuous map in R) admits the limits %(+o0) = u* as x; — +oo. Here, u(xy,-) stands for the
trace of the Sobolev map u € H' (€, RY) on the section {71} x w for every z; € R.

Theorem 1. Let Q = R x w, where w C R¥™! is an open connected bounded set with Lipschitz
boundary. If W : RN — R, U {+o0} is a lower semicontinuous potential satisfying (H1) and
(H2), then every u € H(Q,RN) with E(u) < oo connects two welld] u* € RN of W at x; = +o0
(i.e., W(ut) =0) in the sense that

wll_i)rgoo llu(zq,-) — uiHLQ(w,RN) =0 and wll_i}nioou(xl, J=ut ae inw. (1.3)

In particular,

lim ][u(:zzl,x/) dz’ = u®.

x1—+oo

Remark 2. i) As a consequence of the Poincaré-Wirtinger inequality@, forue H HQ,RN) with
u(+o00) = ut, there exist two sequences (R, )nen and (R, Jnen such that (RE),eny — Foo and

lu(Ry ) = u™ || (o ) =20 (1.4)

(see [24) Lemma 3.2]).

ii) Theorem [ also holds true if w is a closed (i.e., compact, connected without boundary)
Riemannian manifold.

iii) Theorem [ also applies for maps u taking values into a closed set N' C RY (e.g., N could
be a compact manifold embedded in RY). More precisely, if the potential W : RN — R, U {+o00}
satisfies (H1), (H2) and N := {z € RN : W(2) < +0o0} is a closed set such that Wiy : N'— R
is lower semicontinuous, then Theorem [I] handles the case where the nonlinear constraint v € A
is present.

1w~ and ut could be equal.

2The assumption that w is connected with Lipschitz boundary is needed for the Poincaré-Wirtinger inequality.



The result in Theorem [Il extends to slightly more general potentials W in the following context
of divergence-free maps. For that, let d = N and Q = R x w with w = T~ and T = R/Z being
the flat torus. We consider maps u € H} (2, R?) periodic in 2’ € w and divergence-free, i.e.,

V-u=0 in Q.

Then the z’-average @ : R — R is continuous and its first component is constant, i.e., there is
a € R such that
1(x1) =a for every z; €R

(see 24 Lemma 3.1]). For such maps u, we consider potentials W satisfying the following two
conditions:

(H1), W(a,-) has a finite number of wells, i.e., card({z' € R¥™! : W(a,z') = 0}) < oc;
(H2), liminf W(z1,2’) > 0.

z1—a, |2/ |00

In this context, we have proved in our previous paper [24] that the z’-average map @ admits limits
u* as x; — +oo, where uf = a and they are two wells of W (a, -), see [24, Lemma 3.7]. As in

Theorem [, we will prove that u(z1,-) converges to u* in L? and a.e. in w as x; — %00.

Theorem 3. Let Q = R x w with w = T?"! the (d — 1)-dimensional torus and u € H} (Q,R?)
such that E(u) < oo and 41 = a in R for some a € R. If W : R? — Ry U {+c0} is a lower
semicontinuous potential satisfying (H1), and (H2),, then there exist two wells u* € R of W
such that (L3) holds true and ui = a. In particular, u(+o00) = u*.

Note that we don’t assume that u is divergence-free in Theorem [ only the assumption that
%1 is constant.

1.2 Motivation

Our main result is motivated by the well-known De Giorgi conjecture that consists in investigating
the one-dimensional symmetry of critical points of the functional E, i.e., solutions u : Q2 — R to
the nonlinear elliptic system

(1.5)

%20 on 02 =R x dw,

{Au = VW (u) in €,
where W is assumed to be locally Lipschitz in (5] and v is the unit outer normal vector field at
Ow. Theorem [l states in particular that solutions u of finite energy satisfy the boundary condition
(3) for two wells u™ of W. A natural question related to the De Giorgi conjecture arises in this
context:

Question: Under which assumptions on the potential W and the dimensions d and N, is it true
that every global minimizer v of E connecting two welldl of W is one-dimensional symmetric, i.e.,
u=u(r) ?

Link with the Gibbons and De Giorgi conjectures. i) In the scalar case N =1 (d is arbitrary) and
W (u) = (1 —u?)?, the answer to the above question is positive provided that the limits (L3)
are replaced by uniform convergence (see [12} [I7]); within these uniform boundary conditions, the
problem is called the Gibbons conjecture. We mention that many articles have been written on

3We say that u connects two wells u® of W if ([[3) is satisfied.



Gibbons’ conjecture in the case of the entire space Q = R?: more precisely, if a solutiold v : RY — R

of the PDE
_ladw

2 du
satisfies the convergence limg, 400 u(z1,2’) = 1 uniformly in 2/ € R?~! and |u| < 1 in R?, then
u is one-dimensional (see [5] [0, [11] [18]).

Let us now speak about the long standing De Giorgi conjecture in the scalar case N = 1. It
predicts that any bounded solution u of (L6 that is monotone in the x; variable is one-dimensional
in dimension d < 8, i.e., the level sets {u = A} of u are hyperplanes. The conjecture has been
solved in dimension d = 2 by Ghoussoub-Gui [21], using a Liouville-type theorem and monotonicity
formulas. Using similar techniques, Ambrosio-Cabré [4] extended these results to dimension d = 3,
while Ghoussoub-Gui [22] showed that the conjecture is true for d = 4 and d = 5 under some
antisymmetry condition on u. The conjecture was finally proved by Savin [31] in dimension d < 8
under the additional condition lim,, 4. u(x1,2") = 1 pointwise in 2’ € R4~!, the proof being
based on fine regularity results on the level sets of u. Lately, Del Pino-Kowalczyk-Wei [I3] gave
a counterexample to the De Giorgi conjecture in dimension d > 9, which satisfies the pointwise
limit conditions limg, 4.0 u(z1,2’) = %1 for a.e. 2/ € R?~1. It would be interesting to investigate
whether these results transfer (or not) to the context of the strip Q@ = R x w as stated in Question.
Theorem [ proves that the pointwise convergence as x7 — Zoo is a necessary condition in the
context of a strip R x w and for finite energy configurations.

Au (u) in R? (1.6)

ii) Less results are available for the vector-valued case N > 2. In the case 2 = RY, N = 2 and
W(ui,us) = 4(uf —1)2 + L (ud — 1)? + Audu3 — 1 with A > 1 (so W > 0 and W has exactly four
wells {(0, £1), (£1,0)}, thus, (H1) and (H2) are satisfied), the Gibbons and De Giorgi conjectures
corresponding to the system (L)) are discussed in [I9]. Several other phase separation models (e.g.,
arising in a binary mixture of Bose-Einstein condensates) are studied in the vectorial case where

W has a non-discrete set of zeros (see e.g., [7 8 20]).

We recall that in the study of the De Giorgi conjecture for (L), i.e., N = 1, there is a link
between monotonicity of solutions (e.g., the condition du > 0), stability (i.e., the second variation
of the corresponding energy at u is nonnegative), and local minimality of v (in the sense that the
energy does not decrease under compactly supported perturbations of ). We refer to [2 Section 4]
for a fine study of these properties. In particular, it is shown that the monotonicity condition in
the De Giorgi conjecture implies that u is a local minimizer of the energy (see [2, Theorem 4.4]).
Therefore, it is natural to study Question under the monotonicity condition in z; (instead of the
global minimality condition on u).

Link with micromagnetic models. We have studied Question in the context of divergence-free maps
u:Rxw — RY where d = N and w = T4 ! is the (d — 1)-dimensional torus, see [24]. By
developing a theory of calibrations, we have succeeded to give sufficient conditions on the potential
W in order that the answer to Question is positive, in particular in the case where (H1), and
(H2), are satisfied, see [24] Theorem 2.11]. In that context, Question is related to some reduced
model in micromagnetics in the regime where the so-called stray-field energy is strongly penalized
favoring the divergence constraint V - u = 0 of the magnetization u (the unit-length constraint on
u being relaxed in the system). In the theory of micromagnetics, a challenging question concerns
the symmetry of domain walls. Indeed, much effort has been devoted lately to identifying on the
one hand, the domain walls that have one-dimensional symmetry, such as the so-called symmetric
Néel and symmetric Bloch walls (see e.g. [I4] 26| 23]), and on the other hand, the domain walls
involving microstructures, such as the so-called cross-tie walls (see e.g., [3| [30]), the zigzag walls

4Here, u needs not be a global minimizer of E within the boundary condition (L3)), nor monotone in x1, i.e.,
O1u > 0. Obviously, this result applies also to global minimizers, as |u| <1 in R? by the maximum principle.



(see e.g., [25 29]) or the asymmetric Néel / Bloch walls (see e.g. [I6l [15]). Thus, answering to
Question would give a general approach in identifying the anisotropy potentials W for which the
domain walls are one-dimensional in the elliptic system (LX]).

Link with heteroclinic connections. One dimensional [ solutions u = u(zy) of the system (LH)
are called heteroclinic connections. Given two wells u® of a potential W satisfying (H1) and
(H2), it is known that there exists a heteroclinic connection v : R — R¥ obtained by minimizing
fR|d;;llv|2 + W (v) dzy under the condition v(+o0) = u™ (see [27, 33, [34]). In the vectorial case
N > 2, this connection may not be unique in the sense that there could exist two (minimizing)
heteroclinic connections 71,72 such that ;(+00) = u® for i = 1,2 but v1(-) and (- — 7) are
distinct for every 7 € R. If this is the case, at least in dimension d = 2 and Q = R2?, there also
exists a solution u to Au = %VW(U) which realizes an interpolation between ~; and ~» in the
following sense (see [32] [T}, 28]):

* as 1 — oo uniformly in x,

u(xy, x2) = u
u(x1,x2) = 11 (r1) as xg — —oo uniformly in 1,

u(z1,x2) = Yy2(x1) as xg — +oo uniformly in ;.

Moreover, this solution is energy local minimizing, i.e., the energy cannot decrease by compactly
supported perturbations of u. Solutions to the system Au = 1 VW (u) naturally arise when looking
at the local behavior of a transition layer near a point at the interface between two wells u® ;
solutions satisfying the preceding boundary conditions correspond to the case of an interface point
where the 1D connection passes from 7; to 2. The existence of such stable entire solutions to the
Allen-Cahn system makes a significative difference with the scalar case, i.e. N = 1, where only 1D

solutions are present by the De Giorgi conjecture.

2 Pointwise convergence and convergence of the z’-average

In this section we prove that under the assumptions in Theorem[I] the z’-average u (as a continuous
map in R) has limits @(+00) = u* as x; — F00 corresponding to two wells of . For that, we
will follow the strategy that we developed in our previous paper (see [24, Section 3.1]). The idea
consists in introducing an “averaged” potential V in RY with W >V > 0 and {V = 0} = {W =0}
(see Lemma M), and a new functional Fy associated to the z’-average u of a map wu such that
ﬁE (u) > Ey(@). This can be seen as a dimension reduction technique since the new map @ has

only one variable. We will prove that every transition layer @ connecting two wells u* has the
energy Ey (%) bounded from below by the geodesic pseudo-distance geod, between the wells ut
(see Lemma ). As the Euclidean distance in RY is absolutely continuous with respect to geody,
(see Lemma [Bl), we will conclude that @ admits limits at +oo given by two wells of W (see Lemma
[7). Note that in Section Bl we will give a second proof of the claim @(+o0c) = u® without using
the geodesic pseudo-distance geod,, .

We first introduce the energy functional E (defined in (L)) restricted to appropriate subsets
A C Q (e.g., A can be a subset of the form I x w for an interval I C R, or a section {x1} x w): for
every map u € H'(A,RY), we set

E(u,A) := / |Vu|? + W (u) dz,
A
so that for A = Q, we have E(u) = E(u, A). For any interval I C R, the Jensen inequality yields

E(u,]xw):/I/w(|81u|2+|V’u|2+W(u)) da’ day > |w|/1’d%a(xl)ere(u(xl,.))dxl,

51f u = u(z1), the Neumann condition % = 0 is automatically satisfied.




where V' = (0a,...,04), @ is the a’-average of u given in ([2)) and the 2’-average energy e is
defined by

e(v) := ][ (IV'v]* + W(v))dz’ forall v e H'(w,RM).

Introducing the averaged potential V : RY — R, U {+oo} defined for all z € RY by

V(z) := inf {e(v) s v € HY (w,RY), ]£vd:1:/ = z} >0, (2.1)

we have

d 2
Blu,I x w) > |w|/ (‘—ml)‘ + V(E(zl))> das. (2.2)
r \ldzq
This observation is the starting point in the proof of the following lemmas:

Lemma 4. Let W : RY — R, U{+0c0} be a lower semicontinuous function satisfying (H2). Then
the averaged potential V : RN — Ry U {+o00} defined in 1)) satisfies the following:

1. V is lower semicontinuous in RY,
2. forallz € RN, V(2) < W(z), the infimum in 1)) is achieved andd [V(z) =0< W(z) =0|,

3. Voo :=1liminf V(z) > 0,

|z|—00
4. for every interval I C R and for every u € Hl(I x w,RN), one has

L BT xw) > By@ D), By@I) = /1 ’iﬂ(xl)‘z +V(@(a1)) dzy.

|w] dxq

The new energy Ev (@) := Ey(u,R) associated to the z’-average @ will play an important role
for proving the existence of the two limits @(+00).

Proof of Lemmal[4 The claim 4 follows from (2:2]). We divide the rest of the proof in three steps.

STEP 1: PROOF OF CLAIM 2. Clearly, for all z € RY, one has V(z) < e(z) = W(z). By
the compact embedding H'(w) < L'(w), the lower semicontinuity of W, Fatou’s lemma and
the lower semicontinuity of the L? norm in the weak L?-topology (see [9]), we deduce that e is
lower semicontinuous in the weak H'(w, RY)-topology. Then the direct method in the calculus of
variations implies that the infimum is achieved in 1)) (infimum that could be equal to +o0 as W
can take the value +00).

If W(z) =0, then V(2) =0 (as 0 <V < W in RY). Conversely, if V(z) = 0 with z € R, then
a minimizer v € H'(w, RY) in (&) satisfies V(z) = e(v) = 0 so that v = z and W (z) = 0.

STEP 2: V IS LOWER SEMICONTINUOUS IN R¥. Let (z,)nen be a sequence converging to z in RY.
We need to show that
V(z) < liminf V(z,).
n—oo
Without loss of generality, one can assume that (V(z,,))nen is a bounded sequence that converges
to liminf, . V(2,). By Step 1, for each n € N, there exists v,, € H'(w, R") such that

][ vpdr’ =z, and e(v,) =V(zy).

61n particular, if W satisfies (H1), then V satisfies (H1), too.



Since (z,)nen and (e(vy))nen are bounded, we deduce that (v,,)nen is bounded in H'(w,RY) by
the Poincaré-Wirtinger inequality. Thus, up to extraction, one can assume that (v, )nen converges
weakly in H', strongly in L' and a.e. in w to a limit v € H'(w,R"Y). In particular, £ vdz’ = z.
Since e is lower semicontinuous in weak H'(w,R™)-topology (by Step 1), we conclude

V(z) < e(v) < liminf e(v,) = liminf V(z,).
n—r oo n—oo
STEP 3: PROOF OF CLAIM 3. Assume by contradiction that there exists a sequence (2, )neny C RY
such that |z,| — oo and V(z,) — 0 as n — co. Then, there exists a sequence of maps (wp, )nen in
H'(w,RY) satisfying

n—oo

/ wp(x')dr’ =0 foreachn e N and e(z, +w,) — 0.

By the Poincaré-Wirtinger inequality, we have that (wy)n,en is bounded in H'. Thus, up to
extraction, one can assume that it converges weakly in H', strongly in L' and a.e. to a map
w € H'(w,RY). We claim that w is constant since

][ |V'w|* dz’ < liminf][ |V'w,|? dz’ < liminf e(z, +w,) = 0.
w n— oo w n—o0
We deduce w = 0 since fw w = lim, o0 fw wy, = 0. Thus w, — 0 a.e and (H2) implies that for

a.e. 7' € w,
lim inf W (z,, + wy(z')) > liminf W (2) > 0,

n— o0 |z| =00

which contradicts the fact that e(z, + w,) — 0. O

For every lower semicontinuous function W : RN — Ry U {+oc0} satisfying (H1) and (H2),
we introduce the geodesic pseudo-distance geody, in RY endowed with the singular pseudo-metric
4W go, go being the standard Euclidean metric in RY; this geodesic pseudo-distance (that can take
the value 4+00) is defined for every x,y € RY by

1
geody, (z,y) := inf { /_1 2/ W(a(t)|ol(t)dt : o€ Lipploc([—l, 1,RM), o(=1) =z, o(1) = y},
(2.3)

where Lip,,,.([—1, 1], RY) is the set of continuous and piecewise locally Lipschitz curves [ on
[-1,1]:

Lip,joc([—1, 1],RY) = {a € CO([~1,1],RY) : there is a partition —1=1; < - < tpy1 =1,
with o € Lip;,.((ti, ti+1)) for every 1 <i < k}

By pseudo-distance, we mean that geody, satisfies all the axioms of a distance; the only difference
with respect to the standard definition is that a pseudo-distance can take the value +oo. We will
prove that geody yields a lower bound for the energy E (see Lemma [6); this plays an important
role in the proof of our claim %(+o00) = u*.

We start by proving some elementary facts about the pseudo-metric structure induced by geody

on RV:

“In general, we cannot hope that a minimizing sequence in (Z3) is better than piecewise locally Lipschitz because
W is not assumed locally bounded (¢ is the derivative of o). However, in the case of a locally bounded W, we could
use a regularization procedure in order to restrict to Lipschitz curves o.



Lemma 5. Let W : RN — R, U {400} be a lower semicontinuous function satisfying (H1) and
(H2). Then the function geody, : RN x RN — R, U {+o0} defines a pseudo-distance over RY
and the Euclidean distance is absolutely continuous with respect to geodyy,, i.e., for every § > 0,
there exists € > 0 such that for every x,y € RY with geody, (z,y) < €, we have |z — y| < 6.

Proof of Lemmal[d. In proving that geody, : RY x RY — Ry U {+0o0} defines a pseudo-distance
over RY | the only non-trivial axiom to check is the non-degeneracy, i.e., geody, (z,y) > 0 whenever
x # y. In fact, we prove the stronger property that for every & > 0, there exists € > 0 such that
for every z,y € RN, |z — y| > & implies geody (x,y) > ¢ which also yields the absolute continuity
of the Euclidean distance with respect to geody,. For that, we recall that the set {IW = 0} is finite
(by (H1)); therefore, w.l.o.g. we can assume that § > 0 is small enough so that the open balls
B(p,d/2), for p € {W = 0}, are disjoint. We consider the following disjoint union of balls

1)
26 = |_| B(pu Z)u
pe{W=0}

the distance between each ball being larger than §/2. We now take two points z,y € RY with
|z —y| > 6. In order to obtain a lower bound on geody, (z,y), we take an arbitrary continuous
and piecewise locally Lipschitz curve o : [-1,1] — RY such that o(—1) =  and o(1) = y. As
|z —y| > & (so no ball in ¥s can contain both x and y), by connectedness, the image o([—1,1])
cannot be contained in 5. Thus, there exists to € [—1,1] with o(tg) ¢ ¥s. It implies that
B(o(to),0/8) N ¥s5/2 = 0. Moreover, since |v — y| > 6§, we have either |o(to) — 2| > 6/2 or
lo(to) — y| > 6/2; wlo.g.,, we may assume that |o(t9) — y| > 6/2. Then the (continuous) curve

It0.1] has to get out of the ball B(o(tg),d/8); in particular, it has length larger than ¢/8 and
/1 2/ W(a(t)|o|(t)dt > d inf W(z) > 0 inf W(z)
o(t))|o - - .
-1 ~ 4 zeB(o(t0),6/8) T 4 zerN\T;

Since W is lower semicontinuous and bounded from below at infinity (by (H2)), we deduce that
W is bounded from below by a constant c¢s > 0 on RV \ X s2- Taking the infimum over curves
o € Lip,.([—1,1], RY) connecting = to y, we deduce from the preceding lower bound that

NG
4

> 0.

gGOdW (Ia y) >

This finishes the proof of the result. O
We now use a regularization argument to derive the following lower bound on the energy:

Lemma 6. Let W : RN — R, U {400} be a lower semicontinuous function. Then, for every
interval I C R and every map o € H'(I,RY) having limits o(inf I) and o(supI) at the endpoints
of I, we have

Byw(o,1) = /1 (|d(t)|2 + W(a(t))) dt > geodyy (o(inf I), o (sup I)). (2.4)

Proof of Lemma[@. W.lo.g. we assume that I is an open interval. Since H'(I,RN) c WL (I, RN),
we can define the arc-length s : I — J := s(I) C R by

t
s(t) ::/ |o|(z1) dz, tel,
to



where to € I is fixed. Thus s is a nondecreasing continuous function with § = || a.e. in I. Then
the arc-length reparametrization of o, i.e.

a(s(t)) :=o(t), tel,

is well-defined and provides a Lipschitz curve & : J — R with constant speed on the interval
J, ie. |6| = 1 a.e., and such that &(infJ) = o(inf I) and &(supJ) = o(supI). W.lo.g we
may assume that o is not constant, so J has a nonempty interior. Then we consider an arbitrary
function ¢ € Lip;,.((—1,1),intJ) which is nondecreasing and surjective onto the interior of the
interval J and we set

So 7 is a locally Lipschitz map that is continuous on [—1, 1] as ¢ admits limits at inf J and sup J;
thus, v € Lip,;o.([—1, 1], RY). The changes of variable s := (%), resp. s := s(t), yield

1
/ /WG dt = / 2/ W (5 (3))[5](s) ds = / 2/ W (o (D) [6](t) dt.
Combined with y(—1) = o(inf I) and (1) = o(sup ), the definition of geody, and the Young
inequality imply

Ew(o,1) > /12\/W(a(t)) 16](t) dt = /12\/W(7(t))|7|(t) dt > geodyy (o(inf I), o (sup I)).

This completes the proof. [l

+

The convergence of the z’-average in Theorem [ stating that %(+o00) = u™ is a consequence of

the following lemma:

Lemma 7. Let W : RV — R, U {+oo} be a lower semicontinuous function satisfying (H1) and
(H2). Then for every map o € HY(R,RY) such that Ew (0,R) < +oo with Eyw defined at ([2.4),

there exist two wells u™, ut € {W = 0} such that lim o(t) = u*.
t—+oo

Proof of Lemma[7 We use the fact that the energy bound Fw (0,R) < 400 yields a bound on
the total variation of o : R — R¥ where RY is endowed with the pseudo-metric geody,. More
precisely, for every sequence t1 < --- < t; in R, we have by Lemma [Gt

k k
deodw(a(ti+1),o(ti)) < ZEW(U’ [tiuti-i-l]) < Ew(O', R) < +00.
i=1 i=1

In particular, for every € > 0, there exists R > 0 such that for all {,s € R with ¢{,s > R or
t,s < —R, one has geody,(o(t),o(s)) < e. Since by Lemma [B smallness of geody, (z,y) implies
smallness of |z — y|, we deduce that o has a limit u* € RY at +o0. Since W (o()) is integrable in
R, we have furthermore that W (u®) = 0. O

Now we can prove the convergence of the z’-average @ at +oco as stated in Theorem [Tk

Proof of the convergence in x’-average in Theorem [ By Lemma[dl we have Ey (u,R) < +oo for

the lower semicontinuous function V : RN — R, U{+oo} satisfying (H1) and (H2). By Lemmal/[7]

applied to Ey, we deduce that there exists u* € {V = 0} = {W = 0} such that lim; , 1., u(t) =
+

ur. O



The pointwise convergence of w(z1,-) as 1 — +oo stated in Theorem [ is proved in the
following:

Proof of the pointwise convergence in Theorem[1l We prove that u(z1,-) converges a.e. in w to
ut € {W = 0} as 21 — +o0, where u™ are the limits %(400) of the a’-average @ proved above.
For that, we have by Fubini’s theorem:

E(u) > [ |0wu* + W(u) dz > / Ew (u(-,2"),R) da’
Q w
with the usual notation
Ew(o,R) = /|c'f|2 +W(o) dzy, o€ HY(R,RY).
R

As E(u) < oo, we deduce that Ew (u(-,2'),R) < oo for a.e. 2’ € w. By Lemma/[7l we deduce that
for a.e. ¥’ € w, there exist two wells u™(2") of W such that
. N o ko
mll_l)mioou(:tl,x ) =u"(2). (2.5)
By [L4), as u(+o0) = u*, we know that [[u(RE,-) —u®| 12, ry) — 0 as n — oo for two sequences
R* — +o0. Up to a subsequence, we deduce that u(RF,-) — u* a.e. in w as n — co. By (23,

n

we conclude that u®(z') = u® for a.e. 2’ € w. O

3 The L? convergence

In this section, we prove that u(x1,-) converges in L?(w,RY) to u* as 2y — 4o00. The idea is to go
beyond the averaging procedure in Section 2] and keep the full information given by the z’-average
energy e introduced at Section 2] over the set H'(w, RY). More precisely, we extend e to the space
L?(w,RY) as follows

][ (|v’v|2 + W(v)) da’ if v e H'Y(w,RN),

e(v) = (3.1)
+o0 if ve L?(w,RY)\ HY(w,RY).
In particular, we have for every u € H* (Q,RN),
B(w) = [ (10rudar. Wiomm, + lolelu(or, ) da. (32)

In the sequel, we will also need the following properties of the energy e:

Lemma 8. If W : RY — R, U {+co} is a lower semicontinuous function satisfying (H2), then
1. e is lower semicontinuous in L?(w,RY),
2. the sets of zeros of e and W coincide; moreover ¥ := {e = 0} = {W = 0} C R" is compact,

3. for every € > 0, we have

ke :=inf {e(v) : v e L (w, RN with dp2(v, %) > e} >0.

10



Proof. We divide the proof in several steps:

STEP 1. LOWER SEMICONTINUITY OF e IN L?(w,R™). Indeed, let v, — v in L?(w,RY). W.Lo.g.,
we may assume that (e(v,,)), is bounded, in particular, (v, ), is bounded in H'(w, RY); thus, (v,)n
converges to v weakly in H'(w,R"). By Step 1 in the proof of Lemma @] we know that e‘Hl(w EN)

is lower semicontinuous w.r.t. the weak H! topology and the conclusion follows.

STEP 2. ZEROS OF e. The equality of the zero sets of e and W is straightforward thanks to the
connectedness of w. Thanks to the assumption (H2), the set of zeros 3 of W is bounded and by
the lower semicontinuity and non-negativity of W, the set of zeros ¥ of W is closed; thus, ¥ is
compact in RV,

STEP 3. WE PROVE THAT k. > 0. Assume by contradiction that k. = 0 for some £ > 0. Then
there exists a minimizing sequence v,, € L?(w, RY) such that dp2(v,, %) > ¢ for every n € N and
limy, o0 €(vy) = 0. W.lLo.g., we may assume that v, € H'(w,R"Y) for every n as |[vn| ;5 — 0.
Denoting v,, the (2'-)average of v,,, the Poincaré-Wirtinger inequality implies that the sequence
(wp, := vy, — V) converges in H(w,RY) to 0. Up to extracting a subsequence, we may assume
that w,, — 0 for a.e. 2’ € w.

Claim: The sequence (7y,), is bounded in R¥.

Indeed, assume by contradiction that there exists a subsequence of (7). (still denoted by (Tn)x)
such that [U,| = 0o as n — co. As W is Ls.c. and w, — 0 for a.e. 2/ € w, the assumption (H2)
implies

lim inf W (v, (2)) = lim inf W (w, (z") + 7,) > liminf W(z) >0 for a.e. 2’ € w

n—oo n—oo |z|~>oo

which by integration over 2’ € w contradicts the assumption e(v,,) — 0. This finishes the proof of
the claim.

As a consequence of the claim, we deduce that (v,)nen is bounded in H'(w,RY). In particular,
(vn)nen has a subsequence that converges in L?(w, RY) to a map v € H'(w,RY) and we deduce
dr2(v,¥) > ¢, in particular, v is not a zero of e, i.e., e(v) > 0. As e is Ls.c. in L?(w, RY), we have
0 = lim,, 00 €(vp) > €e(v), which contradicts that e(v) > 0. O

Now we prove the L2-convergence of u(z1,-) to u™ as x1 — Fo00:

Proof of the L?-convergence in Theorem [l Take u € H} (0, RY) such that E(u) < +oc and set
o(t) == u(t,-) € H'(w,RY) for a.e. t € R. We prove that o(t) converges in L*(w,RY) to a limit
that is a zero in ¥ as t — 400 (the proof of the convergence as t — —oo is similar). Moreover,
we will see that these limits are in fact the zeros u* of W given by the 2’-average @ and the a.e.
convergence of u(xy,-) as x1 — +o0.

STEP 1: CONTINUITY. We prove that t € R — o(t) € L?(w,RY) is continuous in R, and moreover,
itis a %—H'dlder map. Indeed, for a.e. t,s € R, we have

s 2
sz(U(t),O'(S))QZ/ ‘/t Oy u(my, 2" dzy| da’ < |t—s||\6w1u||2L2(Q)RN).

STEP 2: CONVERGENCE OF A SUBSEQUENCE (0(ty)), TO SOME u™ € ¥. Since e(o(+)) € LY(R)
by (82), there is a sequence (t,)neny — +00 such that lim, . e(o(t,)) = 0. Exactly like in Step 3
in the proof of Lemma[8 we deduce that (o(¢,,))nen has a subsequence that converges strongly in
L?(w,RY) to some map oo € L?(w,RY) (the assumption (H2) is essential here). Since e is Ls.c.
in L? and e > 0 in L2, we deduce that (0o ) = 0 and so, there exists u™ € ¥ such that oo, = u™.
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STEP 3: CONVERGENCE TO ut IN L? AS t — +00. Assume by contradiction that o(t) does
not converge in L?(w,RY) to ut as t — co. Then there is a sequence (s, )nen — +00 such that
¢ := infrendr2(o(sy),ut) > 0. Now, by Step 1, the curve t € [s,,+o0) — o(t) € L?(w,RY)
is continuous. Moreover, o(s,) doesn’t belong to the L?-ball centered at ut with radius 2. By
Step 2, it has to enter (at some time ¢ > s,,) in the L?-ball centered at u* with radius 7. Therefore,
the curve oy, 4oo) has to cross the ring R := B2 (u™, %) \ Br2(u™, %), so it has L?-length larger

. .
than 3, i.e.,

. g
0t Moy dt = [ 6] dt > 5.

/[te(sn,-i-oo) co(t)ER} {t€(sn,+o0) :0(t)eR}

Moreover, by the third claim in Lemma[§ we know that e(o(t)) > k.4 if o(t) € R (up to lowering
€, we may assume that the other zeros of ¥ are placed at distance larger than 2e from u™, the
assumption (H1) is essential here). We obtain

+oo
ve(u(t, ) |10z ult, )| L2 ry) dt 2/ ve(u(t, ) |0z, ult, ) 2w rv)

Sn {te(sn,+o0):0(t)eER}
(3.3)

> ka/4-

N ™

This is a contradiction with the assumption E(u) < 400 implying by (32):

+o0 +oo
2ot [ Vel ) o ult, sy de < [ (lwlelu(t,)) + [0n,u(t ) B a) )

— 0.

n—r oo

STEP 4: THE L? LIMITS u* COINCIDE WITH THE AVERAGE LIMITS @(400). This is clear as L2

convergence implies convergence in average. [l

Remark 9. i) The above proof does not use (so, it is independent of) the almost everywhere
convergence of u(x1,-) as £1 — +0o or the convergence of the z/-average 4. Therefore, thanks to
this proof, one can obtain as a direct consequence the convergence of the z’-average u as well as
the almost everywhere convergence of u(z1,-) as x; — +o00ff

ii) Also, the above proof applies to Lemma [7]leading to a second method that does not use the
geodesic distance geody; .

iii) Behind the above proof, the notion of geodesic distance over L?(w, RY) with the degenerate
weight /e is hidden (see (83)). Therefore, one could repeat the arguments in the first proof of
Theorem [I] based on this geodesic distance.

The above argument can also be used directly to obtain a second proof for the existence of
limits of @ at +00 without using the geodesic pseudo-distance geody, (as presented in the proof in
Section 2]). For completeness, we redo the proof in the sequel:

Second proof of the convergence in x'-average in Theorem [l Letu € Hl(Q, RY) such that E(u) <
oo. We want to prove that the z’-average 4 admits a limit u™ as z;7 — oo and W (u™) = 0 (the
proof of the convergence as x; — —oo is similar). Let V and Ey given by Lemma [ Recall that
2:={V =0} = {W =0} and Ev(a) < ;;B(u) < 0.

8 As the L2-convergence implies almost everywhere convergence of u(z1,-) only up to a subsequence, one should
repeat the argument in the proof of the a.e. convergence in Theorem [I] at page IO
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STEP 1. WE PROVE THAT FOR EVERY ¢ > 0,
ke :=1nf{V(z) : z€ R, dgn(2,5) > e} > 0.

Assume by contradiction that there exists a sequence (zy,),, such that V(z,) — 0 and dg~ (25, Z) >
. By the third claim in Lemma[4] we deduce that (z,), is bounded, so that, up to a subsequence,
zp — 2 for some 2z € RY yielding dg~ (2,%) > € and V(2) = 0, i.e., z € ¥ (since V is Ls.c. and
V > 0) which is a contradiction.

STEP 2. THERE EXISTS A SEQUENCE (u(t,)), CONVERGING TO A WELL ut € ¥. Indeed, as
V(u) € L*(R), there exists a sequence t, — oo with V (u(t,)) — 0. By (H2), (@(t,))s is bounded,
so that up to a subsequence, @(t,) — u™ as n — oo for some point ut € RY. As V is Ls.c. and
V >0, we deduce that V(u™) =0, i.e., ut € X.

STEP 3: CONVERGENCE OF @ TO ut AS z; — +o00. Assume by contradiction that u(wq)
does not converge to u™ as x; — oo. Then there is a sequence (sp)neny — -+oo such that
¢ = infpendpn (U(sn),ut) > 0. As @ : [s,, +00) — RY is continuous, by Step 2, it has to get out
of the ball B(u(s,),e/4) and it has to enter in the ball B(ut,e/4). Therefore, @ has to cross the
ring R := B(u™,3)\ B(u™, £) ¢ RN. Moreover, by Step 1, we know that V(a(z1)) > kejq if
@(z1) € R (where we assumed w.l.o.g. that £ > 0 is small enough so that the other zeros of ¥ are

placed at distance larger than 2¢ from u™). We obtain

“+o0
V(u(z1)) !d%lﬂ(xl)\ daq >

Sn

— d _ €
/ VV(a(z1)) ’d—u(xl)‘ dzy > 51/#;5/4.
{z1€(sn,+00):u(x1)ER} L1

This is a contradiction with the assumption Ey (4) < 400 implying

+oo +oo
2/ NGUED) |d%a(xl)\dxl g/ (|d%a(xl)\2+wa(xl))) dzy —s 0.

n—oo

4 Proof of Theorem

In this section, we consider d = N, Q@ = R x w with w = T?"! and u € H} (Q,R?) periodic in
x’ € w with 77 = a in R for some constant a € R (recall that @ is the z’-average of u). Note that
|w] = 1. We set

LE(w,RY) := {’U = (v1,...,vq) € L*(w,RY) : /vl da' = a}

and H}(w,R?) := H' N L?(w,RY). Note that for a.e. 71 € R, u(z1,-) € H}(w,R?). We define the
following energy e, on the convex closed subset L2(w,R?) of L?(w,R%):

ea(v) = /w (102 + W) da' i ve Hiw,RY,

(4.1)
+o0 if v € L2(w,RY)\ H(w,RY).
In particular, we have for every u € H'(,RY) with @; = a:
B = [ (10vuor s + ealutar, ) don. (42)
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The aim is to adapt the proof of Theorem[Ilgiven in SectionBlto Theorem[3l We start by transfering
the properties of the energy e in Lemma [ to the energy e, defined in L2 (w,R%). More precisely,
if W :R?Y — Ry U{+o0} is a lower semicontinuous function, then e, is lower semicontinuous in
L?(w,R%) endowed with the strong L2-norm and the sets of zeros of e, and W (a,-) coincide, i.e.,

“={ve L*(w,RY) : eu(v) =0} = {2 = (a,2) €R? : W(a,2') = 0}.
If in addition W satisfies (H2),, then ¥¢ is compact in R? and for every ¢ > 0, we have
k2 :=inf {e,(v) : v € L% (w,RY) with dy2(v,2%) > e} >0
(the proof of these properties follows by the same arguments presented in the proof of Lemma [g]).

Proof of Theorem[d. Let w € H._(,R?) such that E(u) < +oo and 4; = a in R. We set
o(t) == u(t,") € H:(w,R?) for a.e. t € R. We prove that o(t) converges in L%(w,R?) to a limit
that is a zero in X% as ¢ — +oo (the proof of the convergence as t — —oo is similar). As in Steps 1
and 2 in the proof of the L2-convergence in Theorem [I, we have that t € R + o(t) € L2(w,R?)
is a %—H'dlder continuous map in R and there is a sequence (t,)neny — 400 such that o(t,) — u™
in L?(w,R?%) for a well u™ € £¢ (the assumption (H2), is essential here). In order to prove
the convergence of o(t) to u™ in L? as t — +o00, we argue by contradiction. If o(t) does not
converge in L%(w,R%) to ut as t — oo, then there is a sequence (s,)nen — 400 such that
e := infpendr2(o(sy),ut) > 0. We repeat the argument in Step 3 in the proof of the L2-
convergence in Theorem [] by restricting ourselves to L2 (w, R?) endowed by the strong L? topology.
More precisely, the continuous curve ¢t € [s,,+00) = o(t) € L2(w,RY) has to cross the ring
Ra = (Brz2(u™, )\ Brz(u™, £)) N L2(w,R?), so it has L?-length larger than £, i.c.,

10, u(t, )| 2w ray At = 161 2w ray dE >

l\DIﬁ)

/{te(sn,-i-oo) to(t)ERG} /{te(sn,-i-oo) to(t)ERG}

As e(o(t)) = k) if o(t) € Ra (up to lowering €, we may assume that the other zeros of ¥ are
placed at distance larger than 2e from u™, the assumption (H1), is essential here), we obtain

£
ve N 10z ult, ) L2 (0 ray dt = Z 5 k2,

/{te(sn,+oo) ro(t)ERG}

This is a contradiction with (Z2):

—+o0
2 [ ealult ) [0a,ult, )l oy dt < [ (calutto) + 100t )IE=) dt — o

Sn n

Clearly, the L? convergence implies also the convergence in average of o(t) over w as t — 0o as
well as the a.e. convergence o(t) — u™ in w but only up to a subsequence. For the full almost
everywhere convergence of u(z1,-) — u™, we proceed as follows. First, by the Poincaré-Wirtinger
inequality on w = T?"!, we have for a.e. z; € R,

/|V'u1(:101,:v')|2dx’ > 4r? / luy (w1, 2") — @y (21)|* da’ = 47r2/|u1(:61,:v') —al*da’.

w

By Fubini’s theorem, we deduce that

E(u)2/Q(|81u|2+|v/u1|2+W(u))dx2/ Bw. (u(,2'), R) dz’,

Td—1
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where W, (2) := W(z) + 472|21 — a|? and, as usual,

Ew,(0,R) :/ (61 + Wa(0)) dz1, o € HLR,RY).
R

Hence, Ew, (u(-,2'),R) < oo for a.e. 2’ € w. Note that W, is lower semicontinuous and satisfies

assumptions (H1) (the set of zeros of W, coincides with X%, which is finite by (H1),) and the

coercivity condition (H2) (thanks to (H2),). Thus, Lemma [Tl implies that for a.e. 2’ € w, there

exist two wells u®(z') of W, such that

lim  w(zy,2’) =ut(a)). (4.3)

x1—+oo

By [L4), as u(+o0) = u*, we know that [|u(RE, ) —u*| p2(,ry) — 0 as n — oo for two sequences

(RY),en — +oo. Up to a subsequence, we deduce that u(R;F,-) — u* a.e. in w as n — oo. By

(@3), we conclude that u*(z') = u* for a.e. 2’ € w. O
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