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Abstract

We study a 2D nonconvex and nonlocal variational model in micromagnetics. It consists
in a free-energy functional defined over vector fields with values into the unit sphere S2. This
energy depends on two small parameters β and ε penalizing the divergence of the vector field
and its vertical component, respectively. We are interested in the analysis of the asymptotic
regime β ≪ ε ≪ 1 through the method of Γ−convergence. Finite energy configurations tend
to become in-plane in the magnetic sample except in some small regions of length scale ε
(called Bloch walls) where the magnetization varies rapidly between two directions on S2.
The limiting magnetizations are in-plane unit vector fields of vanishing divergence having an
H1−rectifiable jump set. We prove that the Γ−limit energy concentrates on the jump set
of the limiting configurations and the energetic cost of a jump is quadratic in the size of
the jump. The exact charge of the jump is computed by a Γ−convergence analysis for 1D
transition layers. Using the concept of entropies, we find lower bounds for the 2D model that
coincide with the Γ−limit in 1D in some particular cases. Finally, we show that entropies are
not appropriate in general for the 2D model in order to obtain the full Γ−limit.

AMS classification: Primary: 82D40, Secondary: 35J20, 35Q60, 35A15, 35B25.
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1 Introduction

In this paper, we consider a simple model for Bloch walls in micromagnetics. Micro-
magnetics is a variational principle for ferromagnetic samples of small size. The state of a
ferromagnetic sample occupying a region Ω ⊂ R3 is characterized by its magnetization

m : Ω → R
3.

The magnitude of the magnetization is considered to be constant (for a fixed temperature);
therefore, in the nondimensionalized form, m satisfies the nonconvex constraint

|m| = 1 in Ω.

The micromagnetic principle states that the magnetization m corresponds to a (local) mini-
mizer of the following free-energy functional (written here in the absence of external magnetic
field):

E3D(m) := d2

Z

Ω

|∇m|2 +

Z

Ω

ϕ(m) +

Z

R3

|H(m)|2. (1)
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The first term is called the exchange energy and penalizes variations of m. The character-
istic constant d is called the exchange length and is an intrinsic parameter of the material (of
order of nanometers).

The second term represents the anisotropy energy. It favors some easy axes for the mag-
netization corresponding to global minima of ϕ : S2 → R+.

The last term in (1) is the magnetostatic or stray-field energy. The stray-field H(m) :
R3 → R3 is a 3D vector field induced by the magnetization via the static Maxwell equation:

8

<

:

∇×H(m) = 0 in R3,

∇ ·H(m) = −∇ ·
„

m1Ω

«

in R3,

that is, H(m) = ∇(−∆)−1∇ ·
„

m1Ω

«

. Therefore, the stray field is generated both by volume

charges (given by the divergence ∇ ·m of m inside the sample Ω) and surface charges (carried
by the normal component m · n of the magnetization on the boundary ∂Ω). It implies that
a stable state favors flux-closure configurations in order that the stray field energy is avoided
(that is the principle of pole avoidance). For more details, see the books of Brown [7] and
Hubert and Schäfer [13].

The difficulty of the variational principle comes from the nonconvex constraint on the
magnetization and on the nonlocal character of the stray field interaction. Together with the
multi-scale nature of the system, it leads to a rich pattern formation for the magnetization.
Generically, a pattern of a stable state consists in large uniformly magnetized regions (called
magnetic domains) that are separated by narrow transition layers (domain walls) where the
direction of the magnetization varies quickly.

Physical experiments put in evidence these different behaviors of the ferromagnets. The
variety of the transition layers is explained by the competition between the three energy terms
of (1) (and, in some cases, an additional term due to an applied external field). From the
mathematical point of view, it is natural to study various asymptotic regimes accounting for
the differences between the leading order of the energy terms (see e.g. DeSimone, Kohn, Müller
and Otto [10], Rivière and Serfaty [21], Alouges, Rivière and Serfaty [2] and the overview of
DeSimone, Kohn, Müller and Otto [12]). Our goal is to study one of the transition layers of the
magnetization, called the Bloch wall, in a special asymptotic regime through a Γ−convergence
analysis.

1.1 Our model

We consider a ferromagnetic sample corresponding to an infinite cylinder Ω = ω × R where
ω ⊂ R2 is a two-dimensional bounded domain with Lipschitz boundary. Let ℓ = diam (ω) be
the length scale of the domain ω and let n be the unit normal vector at ∂ω. Here, we discuss
the case of a surface anisotropy of the form

ϕ(m) = Qm2
3,

where the easy plane is the horizontal one. The quality factor Q > 0 is an intrinsic and
nondimensionalized parameter of the magnetic material that spans six orders of magnitude
(e.g., from 2, 5×10−4 in Permalloy to 38 in SmCo5). We also assume that m does not depend
on the x3−direction, i.e,

m = m(x1, x2) and m ∈ H1(ω, S2).

We are led to study the following two-dimensional functional corresponding to the energy (1)
per unit length in the x3−direction:

E2D(m) := d2

Z

ω

|∇m|2 +Q

Z

ω

m2
3 +

Z

R2

|h(m′)|2.
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Throughout the paper, we always use the notation m = (m′,m3) with m′ = (m1,m2) and the
differential operator

∇ = (∂1, ∂2).

The two-dimensional stray field h(m′) : R2 → R2 is defined by

8

<

:

∇× h(m′) = 0 in R2,

∇ · h(m′) = −∇ ·
„

m′1ω

«

in R2,

and corresponds to h(m′) = ∇(−∆)−1∇ · (m′1ω); therefore,
Z

R2

|h(m′)|2 = ‖∇ · (m′
1ω)‖2

Ḣ−1(R2) :=

Z

R2

1

|ξ|2 |F(∇ · (m′
1ω))|2 dξ,

where the Fourier transform of a function v : R2 → R is denoted by F(v)(ξ) = 1
2π

R

R2 e
−iξ·xv(x) dx,

∀ξ ∈ R2.
We nondimensionalize all the quantities in order to identify the different scales in the energy

terms. Setting x̃ := x
ℓ
, ω̃ := ω

ℓ
, m̃(x̃) := m(x), h̃(m̃′) = h(m′), ε := d√

Qℓ
and β := 2

√
Q d

ℓ
, we

will focus on the renormalized energy Ẽε,β(m̃) := 1
2
√

Qℓd
E2D(m), i.e.,

Ẽε,β(m̃) :=
ε

2

Z

ω̃

|∇̃m̃|2 dx̃+
1

2ε

Z

ω̃

m̃2
3 dx̃+

1

β

Z

R2

|h̃(m̃′)|2 dx̃. (2)

In the following, we omit the tilde ˜ for our variables.
We are interested in the following asymptotic regime:

ε≪ 1 and β ≪ ε. (3)

We expect the limiting states of the magnetization to satisfy the flux-closure constraint as
ε ↓ 0 (and by (3), β ↓ 0), i.e,

∇ · (m′
1ω) ≡ 0 in D′(R2) (4)

and to be in-plane vector fields (m3 = 0), i.e.,

m′ ∈ S1 a.e. in ω. (5)

(In the sequel, we will always identify the plane R2 with R2 × {0} ⊂ R3; in particular, we
identify the unit circle S1 ⊂ R2 and S1 × {0} ⊂ S2.)

Due to (3), the leading order term in (2) is the magnetostatic energy so that for a minimizer
of Eε,β, the stray-field energy (penalizing the constraint (4)) is asymptotically stronger than
the planar anisotropy (leading to (5)). This regime is different than the one considered in [2, 21]
where ε≪ β, i.e., the anisotropy was more expensive than the stray field energy.

Our aim is to study the asymptotic of the energy (2) in the regime (3) in order to deduce
the limit energy in the spirit of Γ−convergence. More precisely, we consider families of maps
{mε}ε↓0 ⊂ H1(ω,S2) such that the following condition holds true for β = β(ε) ≪ ε :

lim sup
ε↓0

Eε,β(mε) < ∞. (6)

We first analyze the limiting configurations m0 of such families of magnetizations {mε} as
ε ↓ 0. Then we compute a lower bound energy E0 that satisfies the inequality

E0(m0) ≤ lim inf
ε↓0

Eε,β(mε).

Clearly, every strong L1−limit m0 of a family {mε}ε↓0 of uniformly bounded energy
Eε,β(mε) ≤ C in the regime (3) must satisfy (4) & (5). The problem associated to these
two conditions is rather rigid for smooth solutions. Indeed, the condition (4) implies that

∇ ·m0 = 0 in ω and m0 · n = 0 on ∂ω
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and thus, there exists a stream function ψ such that m0 = ∇⊥ψ := (−∂2ψ, ∂1ψ). The
constraint (5) means that ψ satisfies the eikonal equation |∇ψ| = 1 with a constant Dirichlet
boundary condition, i.e., ∂τψ = 0 on ∂ω (because of (4)). The method of characteristics
implies that ∇ψ generates line-singularities. Therefore, we expect that m0 should be smooth
away from an H1−rectifiable set J oriented by a unit normal vector ν. It is important to
observe that the normal component of m0 does not jump across the singular set J because of
(4), i.e.,

m+
0 · ν = m−

0 · ν on J,

where m+
0 and m−

0 are the one-sided traces of m0 on J (see Theorem 1 for a precise definition).
Therefore, each jump singularity is determined by the angle θ = 2arccos(m+

0 · ν). The line-
singularities of m0 have a physical meaning: they represent an idealization of domain walls
of the magnetization at the mesoscopic level. At the microscopic level, these one-dimensional
singularities are replaced by narrow two-dimensional regions (called Bloch walls) where the
magnetization behaves like a smooth transition layer that quickly varies in S2 between two
given states m±

0 of angle θ (called wall angle).

/2

m0

m0
+

J

Figure 1: Jump set of a limit magnetization m0.

For such limiting configurations m0, it is expected that the asymptotic energy E0(m0) of
the family {Eε,β(mε)}ε↓0 concentrates on the singular set J . Assuming that the transition
layers have a 1D structure across a wall, an appropriate candidate for E0 can be deduced by
analyzing the one-dimensional problem associated to our model. Indeed, we prove that the
Γ-limit of {Eε,β}ε↓0 in the one-dimensional case is the following functional (see Section 3):

E0(m0) :=
1

2

Z

J

|m+
0 (x) −m−

0 (x)|2 dH1(x). (7)

The main issue of this paper is to study whether this asymptotic lower bound stands true in
the two-dimensional case.

A special context for our model is given by smooth divergence free magnetizations corre-
sponding to the limit case β ↓ 0. Then we are led to consider the family of energies

Eε(m) :=
ε

2

Z

ω

|∇m|2 +
1

2ε

Z

ω

m2
3, (8)

defined for magnetizations m ∈ H1(ω,S2) satisfying the constraint (4). As before, we study
the asymptotic behavior of families of magnetizations {mε} ⊂ H1(ω, S2) such that

∇ · (m′
ε1ω) ≡ 0 and lim sup

ε↓0
Eε(mε) < ∞. (9)

We emphasize that (9) is a particular case of (6). On the other hand, in the regime (3),
the situation (6) is a small perturbation of situation (9). Thus, we expect that the limiting
behavior of the family of magnetizations {mε} and of the energies {Eε(mε)} in (9) when ε ↓ 0
is the same as in the situation (6).
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We conjecture that the transition layers are essentially one-dimensional. This conjecture
is supported by the partial results of Section 2 and also by numerical simulations which are
briefly detailed at the end of the same section.

1.2 A related model

The study of the energy Eε over divergence-free configurations is rather similar to the Aviles-
Giga model that arises in several physical applications such as smectic liquid crystals, film
blisters or convective pattern formation (see e.g. Aviles and Giga [5], Jin and Kohn [18]). It
consists in associating to a function ψ ∈ H1

0 (ω) ∩H2(ω) the following energy functional:

AGε(∇ψ) :=
ε

2

Z

ω

|∇∇ψ|2 +
1

2ε

Z

ω

(1 − |∇ψ|2)2.

Writing m′ := ∇⊥ψ : ω → R2, the constraint ∇ ·m′ = 0 is satisfied and we have

AGε(m
′) :=

ε

2

Z

ω

|∇m′|2 +
1

2ε

Z

ω

(1 − |m′|2)2. (10)

Notice that our functional Eε dominates the Aviles-Giga energy AGε; indeed, ifm ∈ H1(ω,S2)
satisfies (4) then the inequalities |∇m′| ≤ |∇m| and (1 − |m′|2)2 = m4

3 ≤ m2
3 yield

AGε(m
′) ≤ Eε(m). (11)

The question of Γ−convergence of {AGε}ε↓0 was intensively studied. The compactness of
configurations {m′

ε}ε↓0 of uniformly bounded energy AGε(m
′
ε) ≤ C was proved by Ambrosio,

De Lellis and Mantegazza [3] and DeSimone, Kohn, Müller and Otto [11]. The limiting con-
figurations m0 satisfy (4) & (5). Moreover, De Lellis and Otto [9] proved the H1−rectifiability
of the jump set J of m0 (see Theorem 1), even if m0 is in general not BV (see [3]). It is
expected that the Γ−limit energy AG0(m0) of the family {AGε(m

′
ε)}ε↓0 concentrates on the

jump set J and has the following form (first stated by Aviles and Giga [5]):

AG0(m0) :=
1

6

Z

J

|m+
0 (x) −m−

0 (x)|3 dH1.

In fact, AG0 is a lower-bound of {AGε}ε↓0 (see Aviles and Giga [6], Jin and Kohn [18]). The
difficulty consists in the upper bound construction for admissible configurations m0: recovery
sequences have been constructed only for BV configurations m0 (see Conti and De Lellis [8]
and Poliakovsky [20]).

We emphasize that the difference between the line-energy density associated to jumps
of m0 in E0 and AG0 comes from the two different anisotropy terms: 1

2ε
m2

3 for Eε,β and
1
2ε
m4

3 = 1
2ε

(1−|m′|2)2 for AGε, respectively. In particular, the energetic cost of a jump in the
Aviles-Giga model is cubic so that small jumps are less penalized than in our setting where
this cost is expected to be a quadratic function of the size of the jump.

1.3 Entropies

The use of the concept of entropies from scalar conservation laws is suggested by the structure
of the limiting configurations m0 satisfying (4) & (5). Indeed, (5) implies that one can write
m0 = (cos θ0, sin θ0) in terms of the phase θ0 so that (4) reads as a conservation law:

∂1 cos θ0 + ∂2 sin θ0 = 0.

Then, following De Simone, Kohn, Müller and Otto [11] and De Lellis and Otto [9], entropies
are introduced as:
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Definition 1. (De Lellis and Otto [9]) A smooth compactly supported map Φ : R2 → R2 is
called entropy if for every smooth map m′ : ω → R2 we have

`

∇ ·m′ = 0 and |m′| = 1
´

=⇒ ∇ ·
˘

Φ(m′)
¯

= 0.

In other words, Φ is an entropy if the following relation is satisfied on the unit circle:

z ·DΦ(z) · z⊥ = 0, ∀z ∈ S1, (12)

where DΦ denotes the matrix (∂jΦi)1≤i,j≤2 and z⊥ := (−z2, z1) for z ∈ R2.

The relation (12) suggests a suitable continuation of the entropy in the whole space R2.
That gives the following definition of a particular class of entropies introduced by DeSimone,
Kohn, Müller and Otto [11]:

Definition 2. (DeSimone, Kohn, Müller and Otto [11]) A smooth compactly supported map
Φ : R2 → R2 is called DKMO − entropy if

Φ(0) = 0, DΦ(0) = 0 and z ·DΦ(z) · z⊥ = 0, ∀ z ∈ R
2. (13)

The DKMO−entropies were used in [11] for proving the relative compactness of a family
{m′

ε} with uniformly bounded energy AGε(m
′
ε) ≤ C as ε ↓ 0. The method ofDKMO−entropies

may lead to similar compactness results for more general energies with the nonlocal term
R

R2 |h(m′)|2 (e.g., see Jabin, Otto and Perthame [17]). More precisely, the following energy
functional is considered

Fε(m
′
ε) :=

Z

ω

ε|∇m′
ε|2 +

1

ε

Z

ω

(1 − |m′
ε|2)2 +

1

ε

Z

R2

|h(m′
ε)|2, (14)

for vector fields m′
ε ∈ H1(ω,R2). As stated in [9], one can adapt the technique of [11] for

proving compactness of a families {m′
ε} satisfying Fε(m

′
ε) ≤ C as ε ↓ 0. The main ingredient

is the inequality:

˛

˛

˛

˛

Z

ω

∇ ·
˘

Φ(m′
ε)
¯

ζ

˛

˛

˛

˛

≤ C̃Φ

“

Fε(m
′
ε)‖ζ‖∞ + ε1/2Fε(m

′
ε)

1/2‖∇ζ‖L2(ω)

”

, (15)

where C̃Φ > 0 is a positive constant depending on the C1,1-norm of a DKMO−entropy Φ and
ζ is an arbitrary test function.

If m0 is a limiting configuration of the family {m′
ε} of uniformly bounded energy Fε(m

′
ε) ≤

C, then inequality (15) implies that the entropy production ∇·{Φ(m0)} is a measure for every
DKMO−entropy Φ. De Lellis and Otto [9] characterized this class of vector fields where the
entropy production is a measure for every entropy. Essentially, every limiting configuration
m0 shares some structure properties of maps of bounded variation BV (ω), in particular it is
possible to give a rigorous definition of the jump set J . (A similar result was independently
obtained by Ambrosio, Kirchheim, Lecumberry and Rivière [4] using the characterization of
m0 in terms of its phase θ0.)

Theorem 1. (De Lellis and Otto [9])
(I) For every strong L1−limit m0 of a family {m′

ε}ε↓0 satisfying lim supε↓0 Fε(m
′
ε) < ∞,

the distribution

µΦ := ∇ · {Φ(m0)} (16)

is a measure of finite total mass for every entropy Φ.
(II) Let A(ω) be the set of maps m0 : ω → R2 such that (4) & (5) hold and µΦ be defined

by (16) is a measure of locally finite total variation for every entropy Φ. If m0 ∈ A(ω), there
exists a set J ⊂ ω (called jump set) such that

(a) J is H1 σ–finite and rectifiable;
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(b) for H1– a.e. x 6∈ J, m0 is of vanishing mean oscillation at x, i.e.,

lim
r↓0

1

r2

Z

Br(x)

˛

˛

˛

˛

m0(y) −
Z

Br(x)

− m0

˛

˛

˛

˛

dy = 0;

(c) for H1– a.e. x ∈ J, there exist the traces m+
0 (x),m−

0 (x) ∈ S1 with

lim
r↓0

1

r2

(

Z

B+
r (x)

|m0(y) −m+
0 (x)|dy +

Z

B−

r (x)

|m0(y) −m−
0 (x)|dy

)

= 0,

where B±
r (x) := {y ∈ Br(x) | ± y ·ν(x) > 0} and ν(x) is a unit normal vector on J at x;

(d) for every entropy Φ,

µΦxJ =
ˆ

ν · (Φ(m+) − Φ(m−))
˜

xJ,

µΦxK = 0 for any K ⊂ ω \ J with H1(K) <∞.

Observe that the limiting configurations in our model satisfy the same properties since the
energy Eε,β dominates Fε. Indeed, in the regime (3), we have for ε small enough,

Fε(m
′
ε) ≤ 2Eε,β(mε). (17)

Therefore, the jump set J of m0 and the limit energy E0 are well defined in (7).
Another particular class of entropies was used by Jin and Kohn [18] in order to obtain lower

bounds for the Aviles-Giga model. The idea also comes from scalar conservation laws where
the entropy production through shocks is asymptotically cubic in the limit of small jumps.
Therefore, smooth entropies seem to be adapted for the energy AGε. Indeed, let Φ : R2 → R2

be the following smooth entropy:

Φ(m′) = (m2(1 −m2
1) −

1

3
m3

2 , m1(1 −m2
2) −

1

3
m3

1),∀m′ ∈ R
2. (18)

(Notice that Φ is not a DKMO−entropy.) Then the entropy production is estimate by the
Aviles-Giga energy density (up to a small perturbation), i.e., for smooth maps m′ : R2 → R2

with ∇ ·m′ = 0 in R2, one has

∇ · {Φ(m′)} = (1 − |m′|2)(∂1m2 + ∂2m1)

≤ (1 − |m′|2)2
2ε

+
ε

2
|∇m′|2 + ε∇ ·

„

m2∂2m1

−m2∂1m1

«

.

Moreover, the entropy production is the limit energy density associated to AG0:

{Φ(m+) − Φ(m−)} · e1 =
|m+ −m−|3

6
,

for every jump configuration m0 : R2 → R2 defined by

m0(x) =

(

m− if x1 < 0

m+ if x1 > 0
with m± := (m1,±m2, 0), m1

2 +m2
2 = 1. (19)

In our model, the energetic cost of a jump configuration is expected to be quadratic in
the size of the jump. Therefore, smooth entropies are no longer adapted here. The idea is
to use entropies with discontinuous gradients. More precisely, we show that a special class
of Lipschitz continuous entropies can detect the quadratic charges over the singular set of
limiting configurations. It comes via an improvement of inequality (15) where the constant
C̃Φ > 0 will depend only on the Lipschitz norm of a DKMO−entropy Φ (see (51)). The main
ingredient consists in the control of total variation ‖m2

3‖BV by the energy Eε,β through the
Young inequality:

|∇(m2
3)| ≤ ε|∇m3|2 +

m2
3

ε
.
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2 Main results

We start our analysis with the one-dimensional case associated to our model. It corresponds
to the blow-up problem around a jump point for 1D transition layers. We discuss the optimal
profile of a Bloch wall and we prove Γ−convergence of the 1D−energy Eε,β to the limit energy
E0.

Then we study the two-dimensional case. First we prove relative compactness of families of
magnetizations of uniformly bounded energy (6). Then we find a lower bound corresponding
to the limit energy E0 (up to a multiplicative constant) for the family of energies {Eε,β}. Even
if the constant is not the optimal one, this lower bound proves that the energetic cost of jumps
in 2D is quadratic as indicated in the 1D case. The proof is based on the construction of a
DKMO−entropy that has a jump in the gradient.

We also have optimal results for the lower bound E0. More precisely, we localize the
problem by considering periodic configurations in the x2− direction in the domain ω := R ×
R/Z with a transition imposed by boundary conditions at x1 = ±∞. We search for appropriate
maps that are generalizations of the special entropy (18) used by Jin and Kohn [18]. We find
such a map Φ that is adapted to Bloch walls of 180◦; in other words, the optimal 2D transition
layer for 180◦ Bloch walls has asymptotically the same energy per unit length as the optimal
one-dimensional structure. We also define suitable maps Φ for general wall angles; then the
optimal lower bound is proved for energies Eε,β(mε) if the configurations mε take values on
a certain spherical cap defined by the wall angle. However, we prove that in general there is
no map Φ suitable for a wall angle when the configurations mε are allowed to take values into
the whole sphere S2.

2.1 One dimensional analysis

Let us present the Γ−convergence result in the one-dimensional case. For that, letm1 ∈ (−1, 1)
and m2 ∈ [0, 1] be such that m1

2 +m2
2 = 1. As in (19), we denote by

m± := (m1,±m2, 0)

two possible mesoscopic states of the magnetization across a wall of normal direction e1.
(m1 and m2 represent the normal and the tangential component of the mesoscopic transition,
respectively.)

x1
m−

m+

Figure 2: Element of M1D

We consider the set of one-dimensional transition layers:

M1D :=



m ∈ H1
loc(R, S

2) : lim
x1→±∞

m1(x1) = m1

ff

and the following one-dimensional energy corresponding to Eε,β per unit length in the tan-
gential direction of the wall:

E1D
ε,β(m) :=

ε

2

Z

R

˛

˛

˛

˛

˛

dm

dx1

˛

˛

˛

˛

˛

2

+
1

2ε

Z

R

m2
3 +

1

β

Z

R

(m1 −m1)
2.

We have the following compactness result that also gives the structure of the limiting one-
dimensional configurations. They are piecewise constant maps with a finite number of jumps
of the same wall angle.
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Theorem 2. Consider a family of maps {mε}ε ⊂M1D such that

lim sup
ε↓0

E1D
ε,β(mε) <∞, (20)

where β = β(ε) satisfies (3). Then the family {mε}ε↓0 is relatively compact in L1(ω). More-
over, any accumulation point m0 : R → S1 is of bounded total variation, takes exactly two
values {m±} and can be written as:

m0 =
N+1
X

n=1

0

B

B

@

m1

(−1)n+pm2

0

1

C

C

A

1(tn−1,tn), (21)

where N ≥ 0 is an integer, p ∈ {0, 1} and −∞ = t0 < t1 < · · · < tN < tN+1 = +∞.

Notice that the limit configurations remain in M1D. However, in general, boundary con-
straints of type m± at ±∞ are not conserved in the limit; for example, one could imagine a
transition layer whose center moves to ∞ so that the limit map is a constant.

Let us denote by A1D the set of all limiting configurations given by (21). For such a
configuration m0 ∈ A1D, we define the following one-dimensional energy corresponding to E0:

E1D
0 (m0) :=

1

2
|m+ −m−|2 ·

„

number of jumps of m0

«

, (22)

where the number N of jumps of m0 in (21) corresponds to the number of limiting walls. We
show that E1D

0 represents the Γ−limit of energies E1D
ε,β :

Theorem 3. Let β = β(ε) satisfies (3). Then

E1D
ε,β

Γ→ E1D
0 under the L1

loc(R, S
2)−topology as ε ↓ 0, i.e.,

(i) If {mε}ε ⊂M1D satisfies (20) and mε
ε↓0→ m0 in L1

loc(R, S
2), then m0 ∈ A1D and

lim inf
ε↓0

E1D
ε,β(mε) ≥ E1D

0 (m0); (23)

(ii) For every m0 ∈ A1D, there exist smooth maps {mε}ε ⊂ M1D such that mε − m0 has

compact support in R for all ε, mε
ε↓0→ m0 in L1

loc(R, S
2) and

lim
ε↓0

E1D
ε,β(mε) = E1D

0 (m0).

Obviously, the same Γ−convergence result stands true for the corresponding 1D energy Eε

(defined in (8)) over configurations {mε} ⊂ M1D of vanishing divergence (when the normal
component of mε is a constant function equal to m1). In the case of in-plane transition layers
(called Néel walls), a similar result was obtained by Ignat [14] where the energetic cost of a
transition is quartic in the size of the jump.

2.2 Compactness

We now turn our attention to the two-dimensional case. First we prove a compactness result
for a family of magnetizations of uniformly bounded energy Eε,β. It is a generalization of the
compactness result for the Aviles-Giga model.

Theorem 4. Let ω ⊂ R2 be a bounded domain. We consider a family of maps {mε}ε ⊂
H1(ω,S2) such that

lim sup
ε↓0

Eε,β(mε) < ∞,

where β = β(ε) satisfies (3). Then the family {mε}ε↓0 is relatively compact in L1(ω). Every
L1−strong limit m0 of {mε}ε↓0 satisfies (4) & (5) and belongs to A(ω).
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The proof of this theorem adapts the technique of [11] where the planar configurations {m′
ε}

were of vanishing divergence. The method is based on the theory of Young measures and the
application of the div-curl lemma of Murat and Tartar (see e.g. [22, 19]) to families {Φ(m′

ε)∧
Φ̃(m′

ε)}ε↓0 where Φ, Φ̃ ∈ C∞(R2,R2) are two arbitrary DKMO−entropies. Incidentally we
establish an improved version of inequality (15) for Lipschitz DKMO−entropies as well as for
general Lipschitz entropies (see Remark 4.2).

2.3 A lower bound for {Eε,β}ε↓0

We show the following lower bound for (6):

Theorem 5. Let ω ⊂ R2 be a bounded open set. Assume that the family of maps {mε}ε↓0 ⊂
H1(ω,S2) converges to m0 in L1(ω). If β = β(ε) satisfies (3), then

E0(m0) ≤ C lim inf
ε↓0

Eε,β(mε),

for some universal constant C > 1.

Actually, we prove the result for the non-optimal constant C = 2
√

4 + π2. The proof is
based on the construction of a Lipschitz DKMO−entropy Φ0 that is adapted to the quadratic
cost of a jump, i.e., the entropy production through a jump configuration m0 : R2 → R2

defined by (19) is given by the expected limit density of energy E0:

∇ · {Φ0(m0)} =
1

2
|m+

0 −m−
0 |2 H1

x{x1 = 0} in D′(R2).

Even if we do not obtain the optimal constant C = 1 in Theorem 5, the role of this result is to
show that the energetic cost of the jumps of limiting configurations has a quadratic behavior
in our model (as indicated by the one-dimensional analysis).

2.4 Partial results for the optimal lower bound

We prove the optimal limit behavior of the family of energies {Eε,β(mε)} in some particular
cases. More precisely, we focus on the periodic situation

ω = R × R/Z

and we consider periodic magnetizations which are periodic in the tangential direction to the
wall with transitions imposed by the limit condition at infinity:

M :=
n

m ∈ H1
loc(ω,S

2) : m(λ·, ·) λ↑∞−→ m∞ in L1
loc(ω)

o

,

where m∞ is the map defined by m∞(x1, x2) := m± for ±x1 > 0 with m± given by (19).1

The associated two-dimensional stray field h(m′) is considered to be x2−periodic and the stray
field energy per-unit length in x2−direction is given by:

Z

ω

|h(m′)|2 = ‖∇ ·m′‖2
Ḣ−1(ω). (24)

Here, we will always use the periodic stray field energy (24) as the last term in the energy
Eε,β:

Eε,β(m) =
ε

2

Z

ω

|∇m|2 dx+
1

2ε

Z

ω

m2
3 dx+

1

β

Z

ω

|h(m′)|2 dx.

In order to show that the optimal constant for the lower bound in Theorem 5 is C = 1,
one should prove in the periodic case that for any family {mε} ⊂M , we have

1

2
|m+ −m−|2 = 2m2

2 ≤ lim inf
ε↓0

Eε,β(mε) (25)

1This limit condition is more general than asking lim
x1→±∞

m(x1, ·) = m± in L2(R/Z).
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in the regime (3).
We introduce a class of maps Φ that are a generalization of the entropies (18) used by Jin

and Kohn [18] for the Aviles-Giga model. More precisely, we define the Lipschitz continuous
maps Φ = (ϕ,ψ) ∈ Lip(S2,R2) and α ∈ Lip(S2) such that

ϕ(m+) − ϕ(m−) = [Φ(m+) − Φ(m−)] · e1 =
1

2
|m+ −m−|2 (26)

and for every smooth m ∈ C∞(ω, S2), the following inequality holds:

∇ · {Φ(m)} + α(m)∇ ·m′ ≤ ε

2
|∇m|2 +

1

2ε
m2

3 + ∇ · {aε(m)∇m} a.e. in ω, (27)

where ε > 0 is a small parameter and for every x ∈ S2, aε(x) ∈ L
`

(TxS
2)2,R2

´

is a linear
operator of two variables in the tangent plane TxS

2. In the language of differential geometry,
x 7→ aε(x) is a section of the vector bundle

B := {(x, a) : x ∈ S2, a ∈ L((TxS
2)2,R2)}

based on S2 with fiber L(R4,R2). Using the natural differential structure, B is locally dif-
feomorphic to R2 × L(R4,R2). With the induced topology, we will always assume that the
section x 7→ aε(x) is Lipschitz (in order that (27) makes sense). Moreover, the inequality (27)
holds true for every point x ∈ ω such that m(x) is a Lebesgue point of DΦ and Daε.

This class of generalized maps Φ are in fact Lipschitz entropies. Indeed, the following
Proposition describes the link between (12) and inequality (27).

Proposition 1. Let Φ ∈ Lip(S2,R2), α ∈ Lip(S2) and aε be a Lipschitz section of B such
that (27) holds for every m ∈ C∞(ω,S2). Then (12) holds in the sense that

z ·DΦ(z) · z⊥ = 0, for almost every z ∈ S1. (28)

(Notice that since Φ is Lipschitz the tangential derivative DΦ(z) · z⊥ exists for a.e. z ∈ S1 =
S1 × {0}.)

Conversely, let Φ ∈ C∞(S2,R2) satisfying (12) and ∂m3
Φ ≡ 0 on S1 (m3−symmetric

entropies Φ(m′,m3) = Φ(m′,−m3) do satisfy this condition). Then there exist c > 0 and
α ∈ C∞(S2) such that cΦ satisfies (27) with aε ≡ 0 for every m ∈ C∞(ω,S2) and every ε > 0.

Therefore we are still looking for maps Φ in the class of entropies as in the previous section.
The main difference is that here we want an estimate of

R

∇· {Φ(m)} by the energy (with the
optimal multiplicative constant C = 1) and allowing a perturbation ∇ · {aε(m)∇m} in the
RHS of (27).

The existence of a triplet (Φ = (ϕ,ψ), α) satisfying (27) would solve (25). Indeed, let
m ∈M . First, notice that

˛

˛

˛

˛

Z

ω

α(m)∇ ·m′
˛

˛

˛

˛

≤ ‖∇ ·m′‖Ḣ−1(ω)‖∇[α(m)]‖L2(ω) ≤ ‖∇α‖L∞

„

2β

ε

«1/2

Eε,β(m).

Then integrating (27) on ω and taking into account the boundary conditions (26), we would
deduce (25) in the regime (3) (see details in the proof of Proposition 2). This justifies the
following definition:

Definition 3. For 0 < m2 ≤ 1 and m1 =
p

1 −m2
2, let m± be given by (19). We will say

that a triplet (Φ = (ϕ,ψ), α) ∈ Lip(S2,R2)×Lip(S2) is adapted to the jump (m−,m+) if (26)
holds and there exists ε0 > 0 such that for every 0 < ε ≤ ε0 one can construct a Lipschitz
section aε of B for which (27) holds for every map m ∈ C∞(ω,S2).

For the 180◦ Bloch wall (i.e., the biggest possible jump), we have a positive answer.

Proposition 2. There exists a smooth triplet (Φ = (ϕ,ψ), α) adapted to the jump (−e2, e2).
Consequently, (25) holds for m2 = 1.
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For smaller jumps, we only have a partial result. For 0 < m2 < 1, we define the spherical
cap

Sm2
:=

n

m ∈ S2 : m1 ≥ m1 =
p

1 −m2
2
o

and the set of magnetizations taking values in this cap:

Mm2
:= {m ∈M : m(x) ∈ Sm2

for a.e. x ∈ ω} .

We show that one can find a triplet (Φ = (ϕ,ψ), α) that is adapted to a jump (m−,m+) if we
restrict to configurations of Mm2

.

Proposition 3. For every 0 < m2 < 1 and every ε > 0, there exists Φm2
= (ϕm2

, ψm2
) ∈

C∞(Sm2
,R2), αm2

∈ C∞(Sm2
) and a smooth section aε of B such that (26) and (27) hold

for every m ∈ C∞(ω,Sm2
). Consequently if {mε} ⊂Mm2

, then (25) stands true.

In the proofs of Propositions 1, 2 and 3 below, we exhibit adapted triplets (ϕ,ψ, α). The
construction of an adapted triplet is derived by some necessary conditions. Indeed, in the
following lemma we state that condition (27) yields some necessary pointwise bounds for an
admissible triplet.

Lemma 1. Let ε > 0, (Φ = (ϕ,ψ), α) ∈ Lip(S2,R2) × Lip(S2) and aε be a Lipschitz section
of B satisfying (27) for every map m ∈ C∞(ω, S2). Then for almost every m ∈ S2, we have

|∇ϕ(m) + α(m)Πme1| ≤ |m3|, (29)

|∇ψ(m) + α(m)Πme2| ≤ |m3|, (30)

where Πm denotes the orthogonal projection on TmS
2, for m ∈ S2.

Despite Propositions 2 & 3, we will prove that for small jumps, inequalities (29) & (30) are
not compatible with condition (26). Consequently, there is no triplet (Φ = (ϕ,ψ), α) adapted
to a fixed jump for general configurations (when the magnetizations cover the entire sphere
S2):

Theorem 6. There exists η > 0 such that for 0 < m2 < η, there is no triplet (Φ = (ϕ,ψ), α)
adapted to the jump (m−,m+).

However, we strongly believe that the optimal constant in Theorem 5 is indeed C = 1,
in particular (25) holds for every wall angle. We have performed numerical simulations in
the periodic two-dimensional context indicating that the microscopic transition layers are one-
dimensional.

Let us briefly describe the numerical method we have used. Let θ ∈ (0, 2π) be a wall
angle and let m± = (m1,±m2, 0) with m1 = cos θ/2, m2 = sin θ/2. We want to observe the
transition between the left and right mesoscopic states m− and m+ (the transition must be
in the direction ν = e1 since the divergence free condition on the limit magnetization implies
(m+ − m−) · ν = 0). For this, we set ω := R × R/Z and we minimize the energy (8) for
m ∈ H1

loc(ω, S
2) satisfying the constraint ∇ ·m′ = 0 in D′(ω) and the boundary conditions

m(x1, ·) = m± for ±x1 > 1. After rescaling we are led to minimize the energy

1

2

Z

ωε

|∇m|2 +
1

2

Z

ωε

m2
3,

where ωε := R × R/ε−1Z. The rescaled magnetizations must satisfy m ∈ H1
loc(ωε, S

2),
∇ ·m′ = 0 in D′(ωε) and m(x1, ·) = m± for ±x1 > ε−1.
Next for numerical purpose, we relax the constraint on ∇ ·m′ and replace it by a penalizing
term; leading to the functional

J(m) :=
1

2

Z

ωε

|∇m|2 +
1

2

Z

ωε

m2
3 +

λ

2

Z

ωε

|∇ ·m′|2,
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for some large parameter λ≫ 1. Then this energy is discretized by standard Finite Difference
approximation. Finally, the discretized energy is optimized by applying the method of [1] to
our functional.
We have performed several numerical simulations for various values of θ and ε. We always
observe purely one-dimensional transition layers mh = mh(x1) which are close (for small
ε and large λ) to the exact transition layer computed in Section 3 (namely m1D(x1) =
`

m1,m2 tanh x1,m2 (sinh x1)
−1
´

). An example of these computations is given Figure 3.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 

 

mh
2 mh

3

Figure 3: 1D profile of the numerical minimizer for θ = π/6, ε = 10−2, λ = 106. The step of
the two dimensional grid is hx1

= hx2
= 5 · 10−2. We have ‖mh − m1D‖∞ ≈ 9.4 · 10−5 and

‖mh(x1, x2) − mh(x1, x̃2)‖L∞

x1,x2,x̃2

≈ 1.6 · 10−10.

The paper is organized as follows. In Section 3, we solve the Γ−convergence problem in
the one-dimensional case. In Section 4 we prove the compactness result stated in Theorem 4.
In Section 5, we prove a lower bound of the energy Eε,β in the two-dimensional case that is
given in Theorem 5. Proposition 1, Propositions 2 and 3, Lemma 1 and Theorem 6 are proved
in Sections 6.1— 6.4, respectively.

3 Γ−convergence in the one-dimensional case

We start with some remarks about the one-dimensional case. Let m = m(x1) ∈ M1D where
x1 is the normal direction to the wall. Then the stray field h only depends on the x1−axis
and satisfies the equations:

dh1

dx1
= −dm1

dx1
and

dh2

dx1
= 0 in R.

The unique solution of this system vanishing as |x1| → ∞ is given by

h = (m1 −m1, 0).

That explains the form of the stray field energy in E1D
ε,β(m).
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Suppose that m ∈ M1D is a configuration of finite energy, i.e., E1D
ε,β(m) < ∞. Then

m1 − m1,m3 ∈ H1(R). Therefore, m1 and m3 are continuous functions with the following
behavior at infinity:

lim
|x1|→∞

m1 = m1 and lim
|x1|→∞

m3 = 0.

Moreover, m2 is a continuous function with
dm2

dx1
∈ L2(R) and since m takes values in S2, we

have

lim
|x1|→∞

|m2| = m2 :=
p

1 −m1
2.

Now we prove that the limiting 1D configurations correspond to a finite number of Bloch
walls of the same angle that are transversal to the x1-axis:

Proof of Theorem 2. Let m ∈ M1D with E1D
ε,β(m) < ∞. We start with some estimates on m

needed for the compactness result. Let us denote

u =
q

1 −m2
1.

Then u is a continuous nonnegative function and the set {u > 0} is a countable union of
disjoint open intervals. If I ⊂ {u > 0} is an interval, then

1

u
(m2,m3) ∈ C0(I, S1).

Hence, there exists a continuous phase θ ∈ C0(I,R) such that

m2 = u cos θ and m3 = u sin θ in I (31)

and one computes that
˛

˛

˛

˛

dm2

dx1

˛

˛

˛

˛

2

+

˛

˛

˛

˛

dm3

dx1

˛

˛

˛

˛

2

=

˛

˛

˛

˛

du

dx1

˛

˛

˛

˛

2

+ u2

˛

˛

˛

˛

dθ

dx1

˛

˛

˛

˛

2

a.e. in I. (32)

On the set where u vanishes, one can set θ ≡ 0 in {u = 0}. Then (31) and (32) stand true
a.e. in R. Indeed, since m,u ∈ H1

loc(R) and {u = 0} = {m2 = 0} ∩ {m3 = 0}, it follows that
dm2

dx1
= dm3

dx1
= du

dx1
= 0 a.e. in {u = 0}. Therefore, we have

˛

˛

˛

˛

dm

dx1

˛

˛

˛

˛

2

=
1

m2
1

˛

˛

˛

˛

du

dx1

˛

˛

˛

˛

2

+ u2

˛

˛

˛

˛

dθ

dx1

˛

˛

˛

˛

2

a.e. in R.

By Young inequality, we have the following estimates on m:
Z

R

(m1 −m1)
2 ≤ βE1D

ε,β(m), (33)

Z

R

˛

˛

˛

˛

d(m1 −m1)
2

dx1

˛

˛

˛

˛

≤
p

βε

Z

R

˛

˛

˛

˛

dm1

dx1

˛

˛

˛

˛

2

+
1√
βε

Z

R

(m1 −m1)
2 ≤ 2

s

β

ε
E1D

ε,β(m),

Z

R

m2
3 ≤ 2εE1D

ε,β(m), (34)

Z

R

˛

˛

˛

˛

d(m2
3)

dx1

˛

˛

˛

˛

≤ ε

Z

R

˛

˛

˛

˛

˛

dm3

dx1

˛

˛

˛

˛

˛

2

+
1

ε

Z

R

m2
3 ≤ 2E1D

ε,β(m).

Using the inequality m2

2

˛

˛u−m2

˛

˛ ≤ |m1 −m1|, we also obtain via Young’s inequality that

m2

2

Z

R

˛

˛

˛

˛

d(u−m2)
2

dx1

˛

˛

˛

˛

≤
√
βε

2

Z

R

˛

˛

˛

˛

du

dx1

˛

˛

˛

˛

2

+
1

2
√
βε

Z

R

(m1 −m1)
2 ≤

r

β

ε
E1D

ε,β(m), (35)

Z

R

u2

˛

˛

˛

˛

d cos θ

dx1

˛

˛

˛

˛

≤ ε

2

Z

R

u2

˛

˛

˛

˛

˛

dθ

dx1

˛

˛

˛

˛

˛

2

+
1

2ε

Z

R

m2
3 ≤ E1D

ε,β(m). (36)
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Let {mε = (mε,1,mε,2,mε,3)}ε ⊂ M1D be such that (20) holds. By (3), (33) and (34), it
follows that

mε,1 −m1 → 0 and mε,3 → 0 in L2(R). (37)

Since |mε| = 1, we have
|mε,2| → m2 in L1

loc(R).

If m2 = 0, i.e. m1 = ±1, then we conclude that mε,2 → 0 in L1
loc(R), that means

mε → (m1, 0, 0) in L1
loc(R).

Otherwise, m2 > 0 and it remains to prove that {mε,2}ε↓0 is relatively compact in L1
loc(R).

Using notations (31), it results that

uε =
q

1 −m2
ε,1 → m2 and | cos θε| → 1 in L1

loc(R). (38)

Since lim|x1|→∞ uε = m2, combining (3), (20) and (35), we obtain

uε(x1) ≥ m2 −
˛

˛uε(x1) −m2

˛

˛ = m2 −
„Z x1

−∞

d(uε −m2)
2

dx1

«1/2

≥ m2 −
„

2

m2

`4β

ε

´1/2
E1D

ε,β(mε)

«1/2

= m2 + o(1), ∀x1 ∈ R.

Then (36) leads to

E1D
ε,β(mε) ≥

Z

R

`

m2
2 + o(1)

´

˛

˛

˛

˛

d cos θε

dx1

˛

˛

˛

˛

. (39)

Sincem2 > 0, (20) implies that {cos θε}ε<ε0
has uniformly bounded variation in R. Combining

with (38), we deduce that any limit function of {cos θε}ε↓0 in L1
loc is of bounded variation and

takes the values ±1. Therefore, {mε,2 = uε cos θε} is relatively compact in L1
loc and any

accumulation point in L1
loc has the form

N+1
X

n=1

(−1)n+pm21(tn−1,tn),

where N ≥ 0 is an integer, p ∈ {0, 1} and −∞ = t0 < t1 < · · · < tN < tN+1 = +∞. The
constraint that mε,2 has the limits ±m2 at ±∞ for every ε is not conserved in general in the
limit ε ↓ 0. Therefore, N can vanish as well as p can take both values 0 or 1.

We prove the first assertion in Theorem 3 for the lower bound of the energy E1D
ε,β:

Proof of (i) in Theorem 3. By Theorem 2, we know that m0 ∈ A1D, i.e.,

m0 =

0

@

m1

m2

0

1

A =

N+1
X

n=1

0

B

B

@

m1

(−1)n+pm2

0

1

C

C

A

1(tn−1,tn),

where N ≥ 0 is an integer, p ∈ {0, 1} and −∞ = t0 < t1 < · · · < tN < tN+1 = +∞. Notice
that if m2 = 0 or N = 0, then E1D

0 (m0) = 0 and inequality (23) is trivial. Therefore, we
assume that N ≥ 1 and m2 > 0. Since mε → m0 in L1

loc, using notations (31), we deduce

mε,2 → m2, uε =
q

1 −m2
ε,1 → m2 and cos θε → m2

m2
in L1

loc(R).

Therefore,

lim inf
ε↓0

Z

R

˛

˛

˛

˛

d cos θε

dx1

˛

˛

˛

˛

≥ 1

m2

Z

R

˛

˛

˛

˛

dm2

dx1

˛

˛

˛

˛

= 2N.
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Together with (39), the conclusion follows:

lim inf
ε↓0

E1D
ε,β(mε) ≥ lim inf

ε↓0

Z

R

(m2
2 + o(1))

˛

˛

˛

˛

d cos θε

dx1

˛

˛

˛

˛

≥ 2Nm2
2 = N

|m+ −m−|2
2

.

Before showing the second issue (ii) in Theorem 3, let us now discuss about the optimal
profile of a transition layer, the so called Bloch wall. It corresponds to the minimizer mε of
E1D

ε,β over the configurations of M1D that are of vanishing divergence, i.e.,

E1D
ε,β(mε) = min

m∈M1D

m1≡m1

E1D
ε,β(m). (40)

In this case, if m ∈ M1D and m1 ≡ m1, there exists θ ∈ H1
loc(R) (the transition angle) such

that
m(t) = (m1,m2 cos θ(t),m2 sin θ(t)), (41)

with limt→±∞ cos θ(t) = ±1. Then (40) turns into the following Cahn-Hilliard type problem:

E1D
ε,β(mε) = m2

2 min
θ∈H1

loc
(R)

cos θ(t)→±1, t→±∞

(

ε

2

Z

R

˛

˛

˛

˛

˛

dθ

dt

˛

˛

˛

˛

˛

2

+
1

2ε

Z

R

sin2 θ

)

. (42)

One can solve the Euler-Lagrange equation corresponding to mε in terms of its transition
angle θε which is the Cauchy problem associated to the first order ODE:

dθε

dt
=

1

ε
sin θε, with cos θε(t) → ±1, t→ ±∞.

It follows that the unique one-dimensional transition layer between m± centered in the origin
is given by (41) with the transition angle:

θε(t) = 2 arctan e−t/ε. (43)

We denote by v the following smooth increasing odd function:

v(t) = cos θ1(t) = tanh(t), ∀t ∈ R. (44)

Then one can check that

E1D
ε,β(mε) =

m2
2

2

(

Z

R

1

1 − v2

˛

˛

˛

˛

˛

dv

dt

˛

˛

˛

˛

˛

2

+

Z

R

(1 − v2)

)

= 2m2
2. (45)

Now we construct recovery families for every limiting configuration:

Proof of (ii) in Theorem 3. Let m0 ∈ A1D, i.e.,

m0 =

N+1
X

n=1

0

B

B

@

m1

(−1)n+pm2

0

1

C

C

A

1(tn−1,tn),

where N ≥ 0 is an integer, p ∈ {0, 1} and −∞ = t0 < t1 < · · · < tN < tN+1 = +∞. We
want to construct smooth transition layers mε such that mε −m0 has compact support in R,
mε → m0 in L1

loc(R, S
2) and

lim sup
ε↓0

E1D
ε,β(mε) ≤ E1D

0 (m0). (46)
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In the case where m2 = 0 or N = 0, i.e., m0 is a constant map, then E1D
0 (m0) = E1D

ε,β(m0) = 0
and hence, we may consider the recovery family mε := m0 for every ε > 0.

Otherwise, N ≥ 1 and m2 > 0. Let

γ :=
1

5

(

min
2≤n≤N

{|tn − tn−1|, 1} if N ≥ 2,

1 if N = 1.

We approximate the Bloch wall profile (m1,m2 cos θε,m2 sin θε) with θε given in (43) by a
localized transition layer around the origin on the interval [−γ, γ]. More precisely, we consider
the following transition layer

m̃ε = (m1,m2vε,m2wε) : R → S2

where

vε(t) :=

8

>

<

>

:

v

 

2γ

πε
tan

 

πt

2γ

!!

if t ∈ [−γ, γ],

±1 if ± t ≥ γ

and wε :=
p

1 − v2
ε ,

and v is defined by (44). Then vε is an increasing continuous odd function in R. Using the

change of variable s = 2γ
πε

tan
“

πt
2γ

”

and the fact that 1 − v2(s) = 1
1−v2

˛

˛

dv
ds

(s)
˛

˛

2
= 1

cosh2(s)
, we

compute:

E1D
ε,β(m̃ε) =

m2
2

2

(

Z γ

−γ

ε

1 − v2
ε

˛

˛

˛

˛

dvε

dt

˛

˛

˛

˛

2

dt +

Z γ

−γ

(1 − v2
ε)

ε
dt

)

=
m2

2

2

Z +∞

−∞

1

1 − v2

˛

˛

˛

˛

dv

ds

˛

˛

˛

˛

2„

1 +
`πε

2γ

´2
s2
«

ds +

Z +∞

−∞
(1 − v2)

ds

1 +
`

πε
2γ

´2
s2

ff

=
m2

2

2

(

Z

R

1

1 − v2

˛

˛

˛

˛

dv

ds

˛

˛

˛

˛

2

+

Z

R

(1 − v2)

)

+ o(1)
(45)
= 2m2

2 + o(1). (47)

We adapt the transition layer m̃ε for the walls of the limit magnetization m0. For every
ε > 0, we consider the following C1(R, S2)−maps

mε(t) = (m1, (−1)n+p−1m2vε(t−tn),m2wε(t−tn)) if t ∈
` tn−1 + tn

2
,
tn + tn+1

2

´

, n = 1, . . . , N.

Then mε −m0 has compact support in (t1 − 1, tN + 1) and

mε −m0 → 0 in L1(R) as ε ↓ 0.

Moreover,

E1D
ε,β(mε) = NE1D

ε,β(m̃ε)
(47)
= 2Nm2

2 + o(1).

4 Compactness

In this section we prove Theorem 4. Our proof is based on the compensated compactness
method described in [11] where entropies are used jointly with the theory of Young measures
and the div-curl lemma of Murat and Tartar. In order to use this program, it is sufficient to
prove that for every DKMO−entropy Φ,

{∇ ·
˘

Φ(m′
ε)
¯

}ε↓0 is relatively compact in H−1(ω). (48)

Let us first recall the following property of DKMO−entropies:
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Lemma 2. (DeSimone, Kohn, Müller and Otto [11]) For every DKMO−entropy Φ, there
exist Ψ ∈ C∞

0 (R2,R2) and Ξ ∈ C∞
0 (R2,R) such that

DΦ(z) = −2Ψ(z) ⊗ z + Ξ(z)Id for every z ∈ R
2. (49)

Consequently, for every m′ ∈ H1(ω,R2), we have

∇ ·
˘

Φ(m′)
¯

= Ψ(m′) · ∇(1 − |m′|2) + Ξ(m′)∇ ·m′ a.e. in ω. (50)

An important ingredient for (48) is the following estimate:

Lemma 3. Let m ∈ H1(ω,S2), ζ ∈ H1
0 ∩ L∞(ω) and Φ be a DKMO−entropy. With the

notations in Lemma 2, we have
˛

˛

˛

˛

Z

ω

∇ ·
˘

Φ(m′)
¯

ζ

˛

˛

˛

˛

≤ ‖Ψ‖∞
Z

ω

|∇(1 − |m′|2)||ζ| (51)

+ CΦ

 

β

ε
Eε,β(m)

!1/2
“

Eε,β(m)1/2‖ζ‖∞ + ε1/2‖∇ζ‖L2(ω)

”

,

where CΦ =
√

2max{‖Ξ‖∞, ‖∇Ξ‖∞}.
Remark 4.1. The inequality (51) is an improvement of the estimate (15). In the regime (3),
one can get (15) from (51) by observing that:
Z

ω

|∇(1 − |m′|2)| |ζ| ≤ ‖ζ‖∞
Z

ω

|∇(m2
3)| ≤ ‖ζ‖∞

Z

ω

„

ε|∇m3|2 +
1

ε
m2

3

«

≤ 2‖ζ‖∞Eε,β(m).

(52)

The advantage of (51) consists in having the leading order term only dependent on the L∞-
norm of Ψ (controlled by the Lipschitz norm of the entropy Φ) whereas in (15) the constant
C̃Φ depends on the C1,1-norm of Φ. For this reason, if Φ0 is a Lipschitz continuous map
satisfying (13) and if m0 is a strong limit of {mε} satisfying lim supε↓0 Eε,β(mε) < ∞ in the
regime (3), then µΦ0

defined by (16) is a measure of finite total mass. The choice of a suitable
Lipschitz entropy Φ0 and the inequality (51) are essential in the proof of Theorem 5.

Remark 4.2. Notice that (51) (as well as (15)) are not restricted to DKMO−entropies.
Indeed if Φ is an entropy and ρ ∈ C∞

0 ((0,∞)) is a cut-off function such that ρ(1) = 1 then Φ̃
defined by

Φ̃(m′) := ρ(|m′|)Φ(
m′

|m′| ) for every m′ ∈ R
2 \ {0}

is a DKMO−entropy and thus satisfies (51). Now the difference Φ̄ := Φ−Φ̃ satisfies |Φ̄(m′)| ≤
C|1 − |m′||; then integrating by parts, the Cauchy-Schwarz inequality leads to
˛

˛

˛

˛

Z

ω

∇ ·
˘

Φ̄(m′)
¯

ζ

˛

˛

˛

˛

≤ Cε1/2Eε,β(m)1/2‖∇ζ‖L2(ω), ∀m ∈ H1(ω,S2), ∀ζ ∈ H1
0 (ω).

Thus Φ satisfies (51).

Proof of Lemma 3. Using the duality < ·, · >H−1(ω),H1
0
(ω), (50) yields

˛

˛

˛

˛

Z

ω

∇ ·
˘

Φ(m′)
¯

ζ

˛

˛

˛

˛

≤
Z

ω

|∇(1 − |m′|2)||Ψ(m′)||ζ| +
˛

˛

˛

˛

Z

ω

∇ ·m′Ξ(m′)ζ

˛

˛

˛

˛

≤ ‖Ψ‖∞
Z

ω

|∇(1 − |m′|2)||ζ| + ‖∇ ·m′‖H−1(ω)‖∇[Ξ(m′)ζ]‖L2(ω)

≤ ‖Ψ‖∞
Z

ω

|∇(1 − |m′|2)||ζ|

+ ‖∇ · (m′
1ω)‖Ḣ−1(R2)

`

‖Ξ‖∞‖∇ζ‖L2(ω) + ‖∇Ξ‖∞‖ζ‖L∞(ω)‖∇m′‖L2(ω)

´

and (51) follows.

18



We then prove that {∇ · [Φ(m′
ε)]} is relatively compact in H−1(ω) whenever Φ is a

DKMO−entropy Φ:

Proof of (48). It is sufficient to show that for every family of test functions {ζε} ⊂ H1
0 (ω)

such that ζε ⇀ 0 in H1
0 (ω), we have

Z

ω

∇ ·
˘

Φ(m′
ε)
¯

ζε
ε↓0−→ 0. (53)

Let {ζε} be such a family of test functions. For δ > 0, we define the truncated functions (as
in [11]):

ζ1
ε (x) :=

8

>

>

<

>

>

:

−δ, if ζε(x) ≤ −δ,
ζε(x) if |ζε(x)| < δ,

δ if ζε(x) ≥ δ,

and ζ2
ε := ζε − ζ1

ε .

Using this decomposition of ζε and integrating by parts, we compute

˛

˛

˛

˛

Z

ω

∇ ·
˘

Φ(m′
ε)
¯

ζε

˛

˛

˛

˛

≤
˛

˛

˛

˛

Z

ω

Φ(m′
ε) · ∇ζ2

ε

˛

˛

˛

˛

+

˛

˛

˛

˛

Z

ω

∇ ·
˘

Φ(m′
ε)
¯

ζ1
ε

˛

˛

˛

˛

. (54)

For the first term of the RHS of (54), the Cauchy-Schwarz inequality yields that

lim sup
ε↓0

˛

˛

˛

˛

Z

ω

Φ(m′
ε) · ∇ζ2

ε

˛

˛

˛

˛

≤ lim sup
ε↓0

„Z

ω

|∇ζε|2
«1/2

 

Z

{|ζǫ|>δ}
|
˘

Φ(m′
ε)
¯

|2
!1/2

= 0, (55)

since {∇ζε} is bounded in L2(ω), ζǫ → 0 in L2(ω) and {‖Φ(m′
ε)‖∞}ε↓0 is uniformly bounded.

For the second term of the RHS of (54), we apply (51) and (52) in the regime (3):

lim sup
ε↓0

˛

˛

˛

˛

Z

ω

∇ ·
˘

Φ(m′
ε)
¯

ζ1
ε

˛

˛

˛

˛

(50),(52)

≤ lim sup
ε↓0

2δ‖Ψ‖∞ Eε,β(mε)

+ lim sup
ε↓0

CΦ

 

β

ε
Eε,β(m)

!1/2
“

δEε,β(m)1/2 + ε1/2‖∇ζε‖L2(ω)

”

≤ Cδ. (56)

Finally, since δ > 0 is arbitrary, (54), (55) and (56) yield (53) which implies (48).

Now we complete the proof of Theorem 4:

Proof of Theorem 4. First of all, for configurations {mε = (mε,1,mε,2,mε,3) : ω → S2} of
uniformly bounded energy Eε,β(mε) ≤ C, their vertical components vanish asymptotically,
i.e., mε,3 → 0 in L2(ω). Then (48) and the compensated compactness program presented in
[11] enables us to prove that {m′

ε} is relatively compact in L1(ω). Obviously, every strong
limit m0 satisfies (4) & (5). It remains to prove that the limit m0 belongs to A(ω). For
every fixed DKMO−entropy Φ, using (51) and (52) for Φ and mε and passing to the limit
as ε → 0 we obtain that µΦ is a measure. For a general smooth entropy Φ, we associate a
DKMO−entropy Φ̃ to Φ as in Remark 4.2; since Φ(m0) = Φ̃(m0) for |m0| = 1, we conclude
that µΦ = µΦ̃ is a measure, i.e., m0 ∈ A(ω).

Remark 4.3. The use of entropies seems to be appropriate for proving compactness of mag-
netizations in asymptotic regimes of thick thin-films micromagnetics. However, for ultrathin-
films, other techniques based on the topology of the flow of magnetization are to be used (see
Ignat & Otto [15, 16]).
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5 A lower bound

The aim of this section is to prove a lower bound for the energy Eε,β. The idea is to define a
Lipschitz continuous entropy that is appropriate for the expected quadratic cost of a jump.

5.1 The ”DKMO−entropy” Φ0

We introduce a map Φ0 : R2 → R2 that plays the role of a DKMO−entropy and is well
suited to catch the square of the size of a jump of a limiting configuration. More precisely, we
ask for Φ0 to be (only) a Lipschitz continuous map satisfying (13) a.e. in R2 and to satisfy

∇ · {Φ0(m0)} = 2 sin2 θH1
x{x1 = 0} =

1

2
|m+

0 −m−
0 |2 H1

x{x1 = 0} in D′(R2), (57)

for every jump configuration m0 : R2 → S1 of the form

m0(x1, x2) = m±
0 := (cos θ,± sin θ) if ± x1 > 0, θ ∈ (0, π).

The first ansatz is to search Φ0 of the following form in polar coordinates:

Φ0(r, θ) = r2g(θ),

where g = (g1, g2) : R → R2 is Lipschitz continuous and 2π-periodic. With these assump-
tions, (13) turns into

cos θ ∂θg1 + sin θ ∂θg2 = 0 for a.e. θ ∈ [−π, π], (58)

while (57) gives
g1(θ) − g1(−θ) = 2 sin2 θ, ∀θ ∈ (0, π).

The second ansatz is to consider g1 as an odd function (i.e., g1(θ) = −g1(−θ) for θ ∈ (0, π)).
We find

g1(θ) = sign(θ) sin2 θ.

The condition (58) suggests that g2 is even (i.e., g2(θ) = g2(−θ) for θ ∈ (0, π)) and ∂θg2 =
−2 cos2 θ for θ ∈ (0, π). Since g2 needs to be continuous and periodic, we choose

g2(θ) =
π

2
− sign(θ)

„

θ +
sin(2θ)

2

«

.

(The constant π/2 is chosen in order to minimize ‖Ψ0‖L∞ where Ψ0 is associated to Φ0 via
(49), see below.) That justifies the following choice of our ”DKMO−entropy”: for r > 0 and
−π ≤ θ < π, we set

Φ0(re
iθ) := r2

0

B

@

sign(θ) sin2 θ

π

2
− sign(θ)

 

θ +
sin(2θ)

2

!

1

C

A
. (59)

In fact Φ0 is not a proper DKMO−entropy since it is not compactly supported and only
Lipschitz continuous. But the identity (13) holds for a.e. z ∈ R2 and in D′(R2). We compute

DΦ0(z) =
2

r2
Φ0(z) ⊗ z − 2

r
sign(θ) cos θ z⊥ ⊗ z⊥.

That yields the decomposition

DΦ0(z) = −2Ψ0(z) ⊗ z + Ξ0(z)Id,

where Ψ0 and Ξ0 are given in the following: for z = reiθ, r > 0, −π ≤ θ < π,

Ψ0(z) =

 

− sign(θ),−π
2

+ |θ|
!

, Ξ0(z) = −2 sign(θ)r cos θ.

Moreover, the following equality holds in L1(ω) for m′ ∈ H1(ω,R2):

∇ ·
˘

Φ0(m
′)
¯

= Ψ0(m
′) · ∇(1 − |m′|2) + Ξ0(m

′)∇ ·m′. (60)

We also have ‖Ψ0‖L∞ =
p

1 + π2/4.

20



5.2 Smooth approximation of Φ0

We can not apply (51) to Φ0 because of its lack of regularity (recall that (51) is valid only
for C1,1−entropies while Φ0 ∈ C0,1). To overcome this difficulty we introduce smooth and
compactly supported approximations of Φ0. First, let {φf}f∈S1 be the family of elementary
DKMO−entropies (see [11]):

φf (z) =



|z|2f for z · f > 0,
0 for z · f ≤ 0.

The maps φf are not entropies since there are not continuous, but the formula

Φ(z) := χ(|z|)
Z

S1

w(f)φf (z) df (61)

defines a DKMO−entropy for any smooth weight w : S1 → R and any smooth cut-off
function χ.

Notice that Φ0 (defined in (59)) may be obtained by (61) with χ ≡ 1 and the BV -weight:

w0(e
iθ) :=

(

sin(θ) if − π
2
≤ θ < π

2
,

− sin(θ) if π
2
≤ θ < 3π

2
.

This formula comes as follows: taking z = r eiθ and differentiating (61) with respect to θ (for
χ ≡ 1), one gets

1

r2
∂θΦ0 =

„

w0(ie
iθ) +w0(−ieiθ)

«

ieiθ .

Then choosing w0 to be π−periodic (i.e., w0(e
iθ) = w0(−eiθ) for θ ∈ (−π, π)), we deduce the

above formula for w0 via definition (59).
Here the behavior of the DKMO−entropy Φ(m) does not count for |m| > 2 since our

families of maps {mε} satisfy |m′
ε| ≤ 1. Therefore, in the sequel, we fix a cut-off function

χ ∈ C∞
0 (R,R+) such that χ(r) = 1 for |r| ≤ 2. By mollifying the weight w0, we can obtain

smooth approximations of Φ0 in the disk B2(0) ⊂ R2. More precisely, let ρ ∈ C∞
0 (R,R+) be

a mollifier with support in (−π, π) satisfying
R

ρ = 1. For 1 ≥ η > 0, identifying R2 with the
complex plane C, we set

ρη(z) := η−1ρ(θ/η), for z = eiθ ∈ S1, −π ≤ θ < π

and

wη(z) :=

Z

S1

w0(z/y)ρη(y) dy.

Applying (61) with the weight wη, we define a smooth DKMO−entropy Φη . Since w0 is a
BV -function, there exists a positive constant C > 0 only depending on ρ, such that

‖Φη − Φ0‖L∞(B2(0)) ≤ Cη. (62)

The decomposition of DΦη is given by

DΦη(z) = −2Ψη(z) ⊗ z + Ξη(z)Id for |z| < 2 (63)

with

Ψη(z) =

Z

S1

Ψ0(z/y)ρη(y) dy and Ξη(z) =

Z

S1

Ξ0(z/y)ρη(y) dy.
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5.3 Local results

We prove local lower bounds for the limiting energy density. Let {mε}ε↓0 be a family
of uniformly bounded energy and assume that mε → m0 in L1(ω). With the notations of
Theorem 1, we set ζx0,r the following cut-off function around a jump point x0 ∈ J of m0:

ζx0,r(x) =

8

>

<

>

:

1

r

 

1 − |x− x0|
r

!

if |x− x0| < r,

0 if |x− x0| ≥ r,

for any r > 0 such that d(x0, ∂ω) > r. Let Rx0
be the rotation in the plane such that

Rx0
e1 = ν(x0). We consider the following quantity:

qr(x0) := −
Z

ω

˘

Rx0
Φ0(R

−1
x0
m0(x))

¯

· ∇ζx0,r(x) dx.

The quantity qr(x0) is relevant for the concentration of the flow ∇ · Φ0(m0) around the jump
point x0 of m0 and provides information about the limiting energy density in the disk Br(x0).
More precisely, we have:

Lemma 4. For every x0 ∈ J and for every r < d(x0, ∂ω), we have

|qr(x0)| ≤ C

r
lim inf

ε↓0

Z

Br(x0)

|∇(1 − |m′
ε|2)|,

where C > 0 is some universal positive constant (C =
p

1 + π2/4).

Proof. Let x0 ∈ J . Up to a rotation, we may assume that e1 = ν(x0) (and then Rx0
= Id).

By our assumption, m′
ε → m0 in L1(ω). Let η > 0. By the dominated convergence theorem,

we have
Z

ω

Φη(m0(x)) · ∇ζx0,r(x) = lim
ε↓0

Z

ω

Φη(m′
ε(x)) · ∇ζx0,r(x). (64)

Now, we use (51) to get

˛

˛

˛

˛

Z

ω

Φη(m′
ε(x)) · ∇ζx0,r(x) dx

˛

˛

˛

˛

≤ ‖Ψη‖∞
Z

ω

|∇(1 − |m′
ε|2)||ζx0,r|

+ CΦη

„

β

ε
Eε,β(mε)

«1/2
“

Eε,β(mε)
1/2‖ζx0,r‖∞ + ε1/2‖∇ζx0,r‖L2(ω)

”

,

where CΦη =
√

2max{‖Ξη‖∞, ‖∇Ξη‖∞}. Letting ε ↓ 0, the second term in the RHS asymp-

totically vanishes. By (64), inequality ‖Ψη‖∞ ≤ ‖Ψ0‖∞ ≤ C :=
p

1 + π2/4, identity
‖ζx0,r‖∞ = r−1 and supp ζx0,r ⊂ Br(x0), we are led to

˛

˛

˛

˛

Z

ω

Φη(m0(x)) · ∇ζx0,r(x) dx

˛

˛

˛

˛

≤
C

r
lim inf

ε↓0

Z

Br(x0)

|∇(1 − |m′
ε|2)|.

Finally, letting η ↓ 0, the conclusion follows by the dominated convergence theorem.

We then check that the normal component of m0 does not jump through J for H1–a.e.
x0 ∈ J .

Lemma 5. With the notations of Theorem 1, we have

m+
0 (x0) · ν(x0) = m−

0 (x0) · ν(x0) for H1–a.e. x0 ∈ J.
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Proof. Let x0 ∈ J be such that point (c) of Theorem 1 holds. Up to a rotation, we may
assume that e1 = ν(x0). Since ∇ ·m0 = 0, we have for every d(x0, ∂ω) > r > 0:

0 =

Z

ω

m0 · ∇ζx0,r =

Z

B+
r (x0)

m0 · ∇ζx0,r +

Z

B−

r (x0)

m0 · ∇ζx0,r. (65)

Writing m0(x) = m+
0 (x0) + (m0(x) −m+

0 (x0)), we compute

Z

B+
r (x0)

m0 · ∇ζx0,r = m+
0 (x0) ·

Z

B+
r (x0)

∇ζx0,r +

Z

B+
r (x0)

(m0 −m+
0 (x0)) · ∇ζx0,r.

A direct computation shows that
Z

B
+
r (x0)

∇ζx0,r = −ν(x0). (66)

Since |∇ζx0,r| ≤ r−2, we get by point (c) of Theorem 1:

Z

B
+
r (x0)

(m0 −m+
0 (x0)) · ∇ζx0,r = O

 

r−2

Z

B
+
r (x0)

|m0 −m+
0 (x0)|

!

r↓0−→ 0.

Thus

lim
r↓0

Z

B+
r (x0)

m0 · ∇ζx0,r = −m+
0 (x0) · ν(x0).

Similarly,

lim
r↓0

Z

B−

r (x0)

m0 · ∇ζx0,r = m−
0 (x0) · ν(x0)

and the conclusion follows from (65).

Finally, we study the limit of qr(x0) as r ↓ 0.

Lemma 6. For H1–a.e. x0 ∈ J, we have

(a) |qr(x0)| ≤ π‖Φ0‖L∞(S1), for 0 < r < d(x0, ∂ω);

(b) lim
r↓0

|qr(x0)| =
1

2
|m+

0 (x0) −m−
0 (x0)|2.

Proof. The point (a) is a consequence of the definition of qr(x0) since |m0| = 1, |∇ζx0,r| ≤ r−2

and supp ζx0,r ⊂ Br(x0).
To prove (b), we proceed as in Lemma 5. Up to a rotation, we may assume that ν(x0) = e1

and that point (c) of Theorem 1 holds for x0 ∈ J . We write

−qr(x0) =

Z

B+
r (x0)

Φ0(m0(x)) · ∇ζx0,r(x) dx+

Z

B−

r (x0)

Φ0(m0(x)) · ∇ζx0,r(x) dx, (67)

for 0 < r < d(x0, ∂ω). Since Φ0 is Lipschitz and ‖∇ζx0,r‖∞ ≤ r−2, we have

Z

B+
r (x0)

Φ0(m0(x)) · ∇ζx0,r(x) dx = Φ0(m
+
0 (x0)) ·

Z

B+
r (x0)

∇ζx0,r(x) dx

+O

 

r−2

Z

B+
r (x0)

|m0 −m+
0 (x0)|

!

.
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Letting r ↓ 0, Theorem 1 (c) and (66) lead to:

lim
r↓0

Z

B+
r (x0)

Φ0(m0(x)) · ∇ζx0,r(x) dx = −Φ0(m
+
0 (x0)) · e1.

From Theorem 1 and Lemma 5, we may assume that m+
0 (x0) = (cos θ, sin θ) and m−

0 (x0) =
(cos θ,− sin θ) for some θ ∈ [−π, π). We then have

lim
r↓0

Z

B+
r (x0)

Φ0(m0(x)) · ∇ζx0,r(x) dx
(59)
= − sign(θ)| sin θ|2.

Similarly,

lim
r↓0

Z

B−

r (x0)

Φ0(m0(x)) · ∇ζx0,r(x) dx = Φ0(m
−
0 (x0)) · e1 = − sign(θ)| sin θ|2.

Letting r → 0 in (67), we get

lim
r↓0

|qr(x0)| = 2 | sin θ|2 =
1

2
|m+

0 (x0) −m−
0 (x0)|2.

5.4 End of the proof of Theorem 5

Since J is H1 σ–finite and rectifiable, there exists an increasing sequence of graphs {Σk}k∈N

such that Σk is a finite union of disjoint embedded C1 curves (of finite length) and J ⊂
∪kΣk ∪ P for some H1-negligible set P . Theorem 5 is then the consequence of the monotone
convergence theorem, inequality (52) and the following result:

Proposition 4. Let Σ ⊂⊂ ω be a finite union of closed disjoint embedded C1-curves (of finite
length). Then we have

1

2

Z

|m+
0 −m−

0 |2dH1
x(J ∩ Σ) ≤ C lim inf

ε↓0

Z

ω

|∇(1 − |m′
ε|2)|,

for some universal constant C > 0 (C =
√

4 + π2).

Proof. Using Lemma 6 and the dominated convergence theorem, we have

1

2

Z

|m+
0 (x0) −m−

0 (x0)|2dH1
x(J ∩ Σ)(x0) = lim

r↓0

Z

Σ∩J

|qr(x0)| dx0.

Then Lemma 4 yields

1

2

Z

|m+
0 (x0)−m−

0 (x0)|2dH1
x(J ∩ Σ)(x0)

≤
p

1 + π2/4 lim
r↓0

lim inf
ε↓0

r−1

Z

Σ

Z

Br(x0)

|∇(1 − |m′
ε(x)|2)| dx dH1(x0).

Since Σ is a finite union of disjoint embedded C1 curves, for every δ > 0 there exists r0 =
r0(δ) > 0 such that for 0 < r < r0, we have for every x ∈ Σ,

H1(Br(x) ∩ Σ) ≤ 2(1 + δ)r.

Thus, from Fubini’s Theorem, we have for every r < min{r0(δ), d(Σ, ∂ω)},
1

2

Z

|m+
0 (x0) −m−

0 (x0)|2dH1
x(J ∩ Σ)(x0)

≤ (1 + δ)
p

4 + π2 lim inf
ε↓0

Z

Σ+Br(0)

|∇(1 − |m′
ε(x)|2)| dx.

The conclusion follows by letting δ ↓ 0.
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6 Is the entropy method efficient for the optimal con-

stant problem ?

In this section, we focus on the issue of finding the optimal constant. For simplicity we work
in the periodic domain ω = R × R/Z and we fix the limit magnetization at x1 = ±∞. We
believe that the optimal constant is the same as in the one-dimensional case although we are
only able to prove partial results in this direction. These results are obtained through the
construction of maps Φ such that inequality (27) hold. As stated in Propostion 1, such maps
are in fact entropies. This proposition is proved in subsection 6.1 and the partial results in
subsection 6.2. In the last subsections we establish that the entropy method can not lead to
the general result. The question of the optimal constant is still open.

6.1 Proof of Proposition 1

Assume that Φ ∈ Lip(S2,R2) satisfies (27) for every m ∈ C∞(ω,S2). We will prove that
Φ satisfies (28). Let z ∈ S1. There exists an open ball B ⊂ ω centered at 0 and a map
m′ ∈ C∞(B, S1) such that

m′(0) = z, Dm′(0) = (∂jm
′
i)(0) = z⊥ ⊗ z and ∇ ·m′ ≡ 0 on B.

For example, m′ may be the vortex map centered at z⊥ defined on B = B(0, |z|/2) by

m′(x) :=

 

x− z⊥

|x− z⊥|

!⊥

.

Next for every λ ∈ R, |λ| > 1, there exists a map mλ ∈ C∞(ω, S2) such that mλ(x) = m′(x/λ)
for x in some small neighborhood ω′

λ of 0. Applying (27) to mλ at x = 0 yields

∇ · {Φ(mλ)} ≤
ε

2
|∇mλ|2 +

1

2ε
m2

λ,3 + ∇ · {aε(mλ)∇mλ} a.e. in ω′
λ. (68)

Now assume that z is a Lebesgue point of the tangential derivatives z 7→ DΦ(z) · z⊥ and
z 7→ Daε(z) ·z⊥ on S1, respectively. Then inequality (68) holds at x = 0 and by the definition
of mλ, it reads

λ−1z ·DΦ(z) · z⊥ ≤ λ−2

 

ε

2
+ ∇ · (aε(m

′).∇m′)(0)

!

.

Letting λ tend to ±∞, we obtain (28).
Conversely, assume that Φ satisfies (12) and ∂m3

Φ vanishes on S1. As in Remark 4.2, set
Φ̃(m′) := |m′|2Φ(m′/|m′|) for m′ ∈ R2. The map Φ̃ is a DKMO−entropy and by (50) we
have the decomposition

∇ · {Φ̃(m′)} − Ξ(m′)∇ ·m′ = Ψ(m′) · ∇(1 − |m′|2) in ω,

for every m ∈ C∞(ω,S2) where Ψ and Ξ are smooth in R2. Since 1 − |m′|2 = m2
3, we write

Ψ(m′) · ∇(1 − |m′|2) = Ψ(m′) · ∇(m2
3) = O(|∇m3||m3|) = O

 

ε

2
|∇m3|2 +

1

2ε
m2

3

!

.

Now the assumption ∂m3
Φ ≡ 0 on S1 implies that the difference m 7→ Φ(m) − Φ̃(m′) may be

written on the form m2
3Θ(m), with Θ ∈ C∞(S2,R2). So we have

∇ · {Φ(m) − Φ̃(m′)} = O(|∇m||m3|) = O

 

ε

2
|∇m|2 +

1

2ε
m2

3

!

.

Finally for c > 0 small enough, cΦ satisfies (27) for every ε > 0 with α = −cΞ and aε ≡ 0.
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6.2 Optimal lower bound for the local model. Proof of Propo-

sitions 2 and 3

To prove Propositions 2 and 3, we adapt the method of Jin and Kohn [18] developed for
the family of energies {AGε} to our setting. An important difference with respect to [18] is
that here the generalized entropies Φm2

must depend on the size of the jump. Indeed, for the
Aviles-Giga model in [18], once the direction of the jump is fixed (here e1), there exists an
entropy leading to the optimal lower bound for every possible jumps (see (18)).

The construction of our map Φm2
= (ϕ,ψ) for a fixed angle (defined via m2) is based on

Lemma 1 (that we prove in the next section). For that, let us define f(θ) := ϕ(m1,m2 cos θ,m2 sin θ).
Inequality (29) yields

|f ′(θ)| ≤ m2
2| sin θ|.

On the other hand, (26) yields

0 = 2m2
2 + f(π) − f(0) =

Z π

0

˘

f ′(θ) +m2
2 sin θ

¯

dθ.

So the integrand vanishes and we have f ′(θ) = −m2
2 sin θ. Consequently, the function ϕ is

known up to an additive constant on the circle {m1 = m1} ∩ S2:

ϕ(m1,m2,m3) = m2m2 + c, if m2
2 +m2

3 = m2
2. (69)

Thus we will look for adapted triplets among triplets satisfying (69).
We now prove Propositions 2 and 3.

Proof of Propositions 2 and 3. We first assume that m2 = 1. Condition (69) implies that
ϕ(m) is the projection of m on e2 (up to a constant) when m turns on the circle {m1 = 0}∩S2.
The way to extend Φ to S2 is the following: for any m ∈ S2, we set

Φ(m) = (ϕ(m), ψ(m)) :=
`

m2(1 −m2
1) , m1(1 −m2

2)
´

and α(m) := 3m1m2.

Condition (26) is checked since (69) is satisfied. Recall that for m ∈ S2, the projection Πmf
of f ∈ R3 on the tangent plane TmS

2 is given by the formula

Πmf = f − (f ·m)m,

we compute for every m ∈ S2,

Πm {∇ϕ(m) + α(m)e1} = m3(0, m3,−m2)

and Πm {∇ψ(m) + α(m)e2} = m3(m3, 0,−m1).

Combining these identities with the fact that ∂im ∈ TmS
2 ⇒ (e; ∂im) = (Πm(e); ∂im) for

e ∈ R3 and i = 1, 2, we have for m ∈M ,

∇ · {Φ(m)} + α(m)∇ ·m′ = Πm {∇ϕ(m) + α(m)e1} · ∂1m+ Πm {∇ψ(m) + α(m)e2} · ∂2m

= m3

0

@

−m1

−m2

m3

1

A ·

0

@

∂2m3

∂1m3

∂2m1 + ∂1m2

1

A . (70)

By Young’s inequality, we obtain

∇ · {Φ(m)} + α(m)∇ ·m′ ≤ 1

2ε
m2

3 +
ε

2

`

(∂1m3)
2 + (∂2m3)

2 + (∂2m1 + ∂1m2)
2
´

=
1

2ε
m2

3 +
ε

2

˘

(∂1m3)
2 + (∂2m3)

2 + (∂2m1)
2 + (∂1m2)

2¯+ ε∂2m1∂1m2

≤ 1

2ε
m2

3 +
ε

2
|∇m|2 + ε(∂2m1∂1m2 − ∂1m1∂2m2)

=
1

2ε
m2

3 +
ε

2
|∇m|2 + ε∇ ·

„

m2∂2m1

−m2∂1m1

«

.
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So (27) holds for every ε > 0 where the smooth section aε of B is given by

aε(m)(v, ṽ) = εm2(ṽ · e1,−v · e2) for every m ∈ S2, v, ṽ ∈ TS2.

It remains to prove that (25) holds for m2 = 1, i.e., for any family {mε} ⊂M ,

2 ≤ lim inf
ε↓0

Eε,β(mε)

in the regime (3). For that, let χ : R → R+ be a smooth positive cut-off function such that
χ(x1) = 1 for |x1| < 1 and χ(x1) = 0 for |x1| > 2. Set χk(x1) = χ(x1

k
) for every x1 ∈ R and

k ∈ N. Then (27) implies

Z

ω

„

∇· {Φ(mε)}χk(x1) + α(mε)∇ ·m′
εχk(x1)

«

dx

≤
Z

ω

(

ε

2
|∇mε|2 +

1

2ε
m2

ε,3

)

χk(x1) −
Z

ω

dχk

dx1
(x1)aε(mε)(∇mε) · e1 dx. (71)

First, we pass to the limit as k → ∞. For the first term of the RHS in (71), the dominated
convergence theorem yields

lim
k→∞

Z

ω

(

ε

2
|∇mε|2 +

1

2ε
m2

ε,3

)

χk(x1) dx = Eε,β(mε)

For the second term of the RHS in (71), Cauchy-Schwarz’s inequality leads to:

˛

˛

˛

˛

Z

ω

dχk

dx1
(x1)aε(mε)(∇mε) · e1 dx

˛

˛

˛

˛

≤
sup
z∈S2

‖aε(z)‖L
`

(TzS2)2,R2

´

√
k

 

Z

R

˛

˛

˛

˛

dχ

dx1

˛

˛

˛

˛

2
!1/2

„Z

ω

|∇mε|2
«1/2

→ 0 as k → ∞.

For the first term of the LHS in (71), integration by parts implies that
Z

ω

∇ · {Φ(mε)}χk(x1) dx = −
Z

ω

Φ(mε(kx1, x2)) · e1
dχ

dx1
dx

→
„

Φ(m+) − Φ(m−)

«

· e1
(26)
= 2 as k → ∞,

since mε ∈M . For the second term of the LHS in (71), we have that
˛

˛

˛

˛

Z

ω

α(mε)∇ ·m′
εχk(x1) dx

˛

˛

˛

˛

≤ ‖∇ ·m′
ε‖Ḣ−1(ω)‖∇[α(mε)χk]‖L2(ω)

≤ ‖∇ · (m′
ε1ω)‖Ḣ−1(R2)

„

‖∇α‖L∞‖∇mε‖L2(ω) + ‖α‖L∞‖∇χk‖L2(ω)

«

≤ ‖∇α‖L∞

„

2β

ε

«1/2

Eε,β(mε) + ‖α‖L∞

„

2β

k
Eε,β(mε)

«1/2

,

which means

lim sup
k→∞

˛

˛

˛

˛

Z

ω

α(mε)∇ ·m′
εχk(x1) dx

˛

˛

˛

˛

≤ ‖∇α‖L∞

„

2β

ε

«1/2

Eε,β(mε).

Finally, summing the above relations and passing to lim inf as ε ↓ 0, (71) leads to (25) in the
regime (3) and Proposition 2 is proved.

Finally we prove Proposition 3. We assume 0 < m2 < 1 and for m ∈ Sm2
, we set

Φm2
(m) = (ϕm2

(m), ψm2
(m)) :=

1

m2
Φ(m) +

m1

2m2
(0,m2

3) and αm2
(m) :=

α(m)

m2
.
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Again (26) holds. From (70), we have that for every m ∈M ,

∇ · {Φm2
(m)} + αm2

(m)∇ ·m′ = m3

1

m2

0

@

m1 −m1

−m2

m3

1

A ·

0

@

∂2m3

∂1m3

∂2m1 + ∂1m2

1

A .

Now observe that for m ∈ Sm2
, we have

˛

˛

˛

˛

˛

˛

1

m2

0

@

m1 −m1

−m2

m3

1

A

˛

˛

˛

˛

˛

˛

2

=
1 − 2m1m1 +m1

2

m2
2

≤ 1 −m1
2

m2
2

= 1.

We deduce again by Young’s inequality, that for m ∈M

∇ · {Φm2
(m)} + αm2

(m)∇ ·m′ ≤ ε

2
|∇m|2 +

1

2ε
m2

3 + ε∇ ·
„

m2∂2m1

−m2∂1m1

«

.

So (27) holds for every ε > 0 and the same smooth aε as in Proposition 2. As above, the same
argument yields (25) which concludes Proposition 3.

6.3 Proof of Lemma 1

In this section we prove the pointwise bounds of Lemma 1. These bounds are the key
ingredients leading to the contradiction establishing Theorem 6

Proof of Lemma 1. We define the following operator L = (L1, L2): for every m ∈ S2 and
(v1, v2) ∈ (TmS

2)2,

〈L(m) ; (v1, v2)〉 :=

„

(∇ϕ(m) + α(m)Πme1,∇ψ(m) + α(m)Πme2) ; (v1, v2)

«

,

where (·, ·) denotes the scalar product in the Euclidian space R3 ×R3. Then for every smooth
map m ∈ C∞(ω, S2), (27) writes as in (70):

〈L(m) ; (∂x1
m,∂x2

m)〉 = ∇ · {Φ(m)} + α(m)∇ ·m′

≤
ε

2
|∇m|2 +

1

2ε
m2

3 + ∇ · {aε(m)∇m} , for a.e. x ∈ ω. (72)

Now let x̃ ∈ ω be fixed and m̃ ∈ S2 be a Lebesgue point of ∇Φ and ∇aε.
For simplicity, we transpose our problem from S2 to R2. Let R be an isomorphism between

R2 and the tangent plane Tm̃S
2. We consider the following parameterization of S2 in the

neighborhood of m̃ :

Λ : R
2 −→ S2, n 7−→ m̃+Rn

|m̃+Rn|.

Through the map Λ, we will associate to every map n ∈ C∞(ω,R2) the following map m :=
Λ ◦ n ∈ C∞(ω,S2). Moreover, the operator aε can be written via the following Lipschitz
operator ãε : R2 → L(R2 × R2,R2) defined by

ãε(n)∇n = aε(m)∇m, for a.e. x ∈ ω.

We prove that the operator aε has the following property:

Claim: Provided that m(x̃) = m̃, there exists bε ∈ R such that

∇ · {aε(m)∇m} (x̃) = bε [∂1m(x̃) ; ∂2m(x̃) ; m̃] ,

where [ · ; · ; · ] stands for the scalar triple product.
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Proof of Claim. We compute

∇ · {aε(m)∇m} =
X

i,j,k=1,2

∂i(ã
i
ε j,k(n) ∂jnk)

=
X

i,j,k,l=1,2

∂lã
i
ε j,k(n)∂inl ∂jnk +

X

i,j,k=1,2

ãi
ε j,k(n)∂i∂jnk a.e. in ω. (73)

(Here, we identified the linear operator ãε(n) ∈ L(R2 × R2,R2) by the corresponding tensor
(ãi

ε j,k(n))i,j,k ∈ R8.) Let y ∈ R2 be such that Λ(y) is a Lebesgue point of ∇Φ and ∇aε. For
every vector (vi,j,k)i,j,k=1,2 ∈ R8 satisfying vi,j,k = vj,i,k, we choose n ∈ C∞(ω,R2) such that
n(x̃) = y, ∇n(x̃) = 0 and ∂i∂jnk(x̃) = vi,j,k, for i, j, k = 1, 2. Then m(x̃) = Λ(y), ∇m(x̃) = 0
and we deduce via (72) and (73) applied at x̃:

0 ≤ 1

2ε
Λ3(y)

2 +
X

i,j,k=1,2

ãi
ε j,k(y)vi,j,k.

Since (vi,j,k) was arbitrarily chosen such that vi,j,k = vj,i,k, we easily deduce that

ãi
ε i,k(y) = 0 and ã1

ε 2,k(y) + ã2
ε 1,k(y) = 0, for i, k = 1, 2. (74)

Since y is an arbitrary point in a dense set of ω and ãε is continuous, it implies that the above
identities hold true in R2.

Now we consider maps n such that n(x̃) = 0. Since m̃ = Λ(0) is a Lebesgue point of ∇Φ
and ∇aε, by (73) applied at x̃ and (74), we conclude:

∇ · {aε(m)∇m} (x̃) =
X

i,j,k,l=1,2

∂lã
i
ε j,k(0)∂inl ∂jnk

=
X

k,l=1,2

∂lã
1
ε 2,k(0)(∂1nl∂2nk − ∂1nk∂2nl)

=

„

∂1ã
1
ε 2,2(0) − ∂2ã

1
ε 2,1(0)

«

(∂1n1∂2n2 − ∂1n2∂2n1)

=: bε det
`

∂1n(x̃) , ∂2n(x̃)
´

= bε [∂1m(x̃) ; ∂2m(x̃) ; m̃] .

(Here, we used that ∂jm(x̃) = R∂jn(x̃), j=1,2.)

Applying our claim for a smooth map m such that m(x̃) = m̃, (72) at x̃ reads

〈(L1, L2)(m̃) ; (∂1m,∂2m)〉 ≤ ε

2
|∇m|2 +

1

2ε
m̃2

3 + bε [∂1m ; ∂2m ; m̃] .

Finally, for every vector v ∈ Tm̃S
2 such that |v| = |m̃3|/ε we choose succesively two maps

m such that (∂1m,∂2m)(m̃) := (v, 0) and (∂1m,∂2m)(m̃) := (0, v), respectively. We get that
D

Lj(m̃) ; v
|v|

E

≤ |m̃3| for j = 1, 2 and since m̃ is an arbitrary point in a dense set of S2, we

conclude with (29) and (30).

6.4 Proof of Theorem 6

We now prove Theorem 6. In fact we prove the following stronger result which together
with Lemma 1 yields the Theorem.

Proposition 5. There exists ε > 0 such that for 0 < m2 < ε, m1 :=
p

1 −m2
2, m±

1 :=
(m1,±m2, 0) there is no triplet (ϕ, ψ,α) ∈ Lip(S2,R2) such that (26), (29) and (30) hold.
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Proof of Proposition 5. Assume by contradiction that there exists a sequence {ρk} ⊂ (0, 1)
converging to 0 and a sequence of triplets (ϕk, ψk, αk) ⊂ Lip(S2,R3) adapted to the jumps
(m−

k ,m
+
k ) with m±

k := (m1k,±m2k), m2k := ρk and m1k :=
p

1 − ρ2
k. Then for k ≥ 0, we

have

ϕk(m+
k ) − ϕk(m−

k ) = 2ρ2
k (75)

and from Lemma 1, we have for k ≥ 0 and for almost every m ∈ S2 :

|∇ϕk(m) + αk(m)Πme1| ≤ |m3| and |∇ψk(m) + αk(m)Πme2| ≤ |m3|. (76)

Let us denote by I the symmetry transform with respect to the plane {m2 = 0}. Replacing if
necessary (ϕk, ψk, αk) by

 

ϕk − ϕk◦I
2

,
ψk + ψk◦I

2
,
αk − αk◦I

2

!

,

we may assume whitout loss of generality that the following properties

ϕk = −ϕk◦I, ψk = ψk◦I, αk = −αk◦I, for every k ≥ 0, (77)

hold and that (75) & (76) are still true.
We want to perform a blow up around m = (1, 0, 0) as k tends to infinity. For this reason

let us transport the problem from S2 to R2 (similarly as in Lemma 1). We introduce the map

P : R
2 → S2, n = (n2, n3) 7−→ m = (m1,m2,m3) =

1

1 + |n|2/4(1 − |n|2/4, n2, n3),

Notice that the inverse P−1 of this map is the stereographic projection of vertex (−1, 0, 0) on
the tangent plane to the sphere at (1, 0, 0).

For k ≥ 0, we set ϕ̃k = ϕk ◦P, ψ̃k = ψk ◦P and α̃k = αk ◦P . With these notations, (75)
reads

ϕ̃k

 

2ρk

1 +
p

1 − ρ2
k

, 0

!

− ϕ̃k

 

− 2ρk

1 +
p

1 − ρ2
k

, 0

!

= 2ρ2
k (78)

In order to translate the pointwise bounds (76) in stereographic coordinates, we write ∇Pi(n) =
ΠP (n)ei ·DP (n) for i = 1, 2 where DP (n) is the differential of P at n. Since the stereographic
projection is a conformal map, DP (n) is the product of a rotation and a dilation of factor

q(n), i.e., DP (n) · tDP (n) = q2(n)Id with q(n) =
`

1 + |n|2/4
´−1

. Then (76) reads: for almost
every n = (n2, n3) ∈ R2,

|∇ϕ̃k + α̃k∇P1|(n) ≤ q(n)|P3(n)| and
˛

˛

˛∇ψ̃k + α̃k∇P2

˛

˛

˛ (n) ≤ q(n)|P3(n)|.

A straightforward computation leads to: for almost every (n2, n3) ∈ R2,
˛

˛

˛

˛

˛

∇ϕ̃k − |n|α̃k

(1 + |n|2/4)2er

˛

˛

˛

˛

˛

≤ |n3| ,
˛

˛

˛

˛

˛

∇ψ̃k +

p

(1 + |n|2/4)2 − n2
2 α̃k

(1 + |n|2/4)2 f2

˛

˛

˛

˛

˛

≤ |n3|, (79)

where we have introduced the unit vectors er := n/|n| and

f2 :=
∇P2

|∇P2|
=

1
p

(1 + |n|2/4)2 − n2
2

„

1 +
n2

3 − n2
2

4
,−n2n3

2

«

.

Now we rescale the problem in order to pass to the limit as k goes to ∞ and reach the
desired contradiction. Namely we set

ϕk(n) :=
1

ρ2
k

ϕ̃k(ρkn), ψk(n) :=
1

ρk
ψ̃k(ρkn) and αk(n) := α̃k(ρkn).
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The conditions (78) & (79) imply that there exist a sequence of positive real numbers {δ0,k},
two sequences of positive functions {δ1,k} and {δ2,k} and a sequence of maps {f2,k} such that

δ0,k
k↑∞−→ 1, δ1,k, δ2,k

k↑∞−→ 1 in C1
loc(R

2), |f2,k| = 1, f2,k
k↑∞−→ e2 in C2

loc(R
2, S1) (80)

and

ϕk (δ0,k, 0) − ϕk (−δ0,k, 0) = 2, (81)

|∇ϕk(n) − δ1,k(n)|n|αk(n)er| ≤ |n3| for a.e. n = (n2, n3) ∈ R
2, (82)

˛

˛∇ψk(n) + δ2,k(n)αk(n)f2,k(n)
˛

˛ ≤ ρk|n3| for a.e. n = (n2, n3) ∈ R
2. (83)

Moreover, from (77), we have

ϕk(0, n3) = 0, for every k ≥ 0 and n3 ∈ R. (84)

In order to pass to the limit k ↑ ∞, we prove the following Lemma.

Lemma 7. The sequence of Lipschitz maps {(ϕk, ψk)}k∈N is locally uniformly equicontinuous.

Proof. We will use several families of local orthonormal basis in the vertical plane (n2, n3) ∈
R2: (e2, e3), (er(n), eθ(n)) and {(f2,k(n), f3,k(n))}k∈N with eθ = e⊥

r and f3,k = f⊥2,k for every
k ∈ N.

Let B be an arbitrary closed ball in R2. Along the proof C denotes a (possibly changing)
positive constant only depending on B. In the sequel, {a1,k}, {a2,k}, · · · will denote bounded
sequences in L∞(B) and {b1,k}, {b2,k}, · · · will denote bounded sequences in C1(B) such that
|bi,k| ≥ 1/C holds uniformly.

We set

a1,k := (eθ · ∇)ϕk and a2,k := (f3,k · ∇)ψk, for every k ≥ 0. (85)

Then inequalities (82) and (83) imply that the sequences {a1,k} and {a2,k} are uniformly
bounded in L∞(B) (as requested above). Together with (84), it leads in particular to:

‖ϕk‖L∞(B) ≤ C. (86)

Now combining (82) and (83) in order to eliminate αk, we obtain two sequences {a3,k} and
{b1,k} defined by

a3,k := (er · ∇)ϕk(n) + |n|b1,k(f2,k · ∇)ψk(n) for k ≥ 0, (87)

that satisfy the required conditions.
Now our goal is to establish that ϕk solves a uniformly elliptic second order PDE on B with

a sufficiently integrable RHS in order to deduce some uniform regularity on {ϕk}. For this, we
now assume that the closed ball B is away from the n2−axis, i.e., B∩{(n2, 0) : n2 ∈ R} = ∅.
Since {f3,k} converges uniformly to e3 on B, this assumption implies that for k large enough,
we have

1 ≥ |er · f3,k|(n) = |eθ · f2,k|(n) ≥ 1/C for every n ∈ B. (88)

In particular, there exists a sequence of angle functions {xk} bounded in C1(B) such that for
k large enough, we have f3,k = (cos xk)er +(sin xk)eθ with | cos xk| ≥ 1/C in B. Plugging this
identity in (87), we get for k large enough,

(f3,k · ∇)ϕk = (cos xk)a3,k + (sin xk)(eθ · ∇)ϕk − (cosxk)|n|b2,k(f2,k · ∇)ψk, on B.

The first term in the right hand side is uniformly bounded and by (85), the second term is also
uniformly bounded. For the last term, we notice that the coefficient (− cos xk)|n|b2,k required
the desired properties so that we may rewrite the last equation as

(f3,k · ∇)ϕk = a4,k + b3,k(f2,k · ∇)ψk. (89)
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We now prove

∇ · {(f3,k ⊗ f3,k)∇ϕk} = a5,k + ∂n2
a6,k + ∂n3

a7,k. (90)

Multiplying (89) by f3,k and applying the divergence operator, we obtain

∇ · {(f3,k ⊗ f3,k)∇ϕk} = ∂n2
a8,k + ∂n3

a9,k + ∇ · {b3,kf3,k}
˘

(f2,k · ∇)ψk

¯

+ b3,k{(f3,k · ∇)f2,k} · ∇ψk + b3,kD
2ψk(f3,k, f2,k). (91)

Since {b3,k} and {f3,k} are bounded in C1(B), we obtain that the third term in the right hand
side has the form a10,k(f2,k · ∇)ψk. Now since |b3,k| is uniformly bounded from below, we
deduce from (89) that (f2,k · ∇)ψk = a11,k + b4,k(f3,k · ∇)ϕk. Finally by (86) we obtain that
the third term in the RHS of (91) has the form

∇ · {b3,kf3,k}
˘

(f2,k · ∇)ψk

¯

= a12,k + ∂n2
a13,k + ∂n3

a14,k.

For the fourth term in the RHS of (91), since f2,k is a unit C1 vector field (f3,k · ∇)f2,k, has
the form a14,kf3,k and from (85), we deduce

b3,k{(f3,k · ∇)f2,k} · ∇ψk = a15,k.

For the last term, we write D2ψk(f3,k, f2,k) = (f2,k · ∇){(f3,k · ∇)ψk}− {(f2,k · ∇)f3,k} · ∇ψk.
Using (85) and the fact that f3,k is a unit C1 vector field, we have (f2,k · ∇)f3,k = ãkf2,k with
ãk uniformly bounded in C1(B). Therefore

b2,kD
2ψk(f3,k, f2,k) = b2,k(f2,k · ∇)a2,k + b2,kãk(f2,k · ∇)ψk.

As above, using (89) and (86), we deduce that the last term in the RHS of (91) has the desired
form. We conclude that (90) holds.

Similarly, multiplying the first part of (85) by eθ and taking the divergence, we obtain
that ∇·{(eθ ⊗ eθ)∇ϕk} has the same form. Adding this result and (90), we conclude that ϕk

solves a second order PDE on divergence form:

∇ · {(f3,k ⊗ f3,k + eθ ⊗ eθ)∇ϕk} = a16,k + ∂n2
a17,k + ∂n3

a18,k. (92)

By (88) the family of matrices

{f3,k ⊗ f3,k + eθ ⊗ eθ}

is uniformly elliptic on B, uniformly in k. Using (86) and (92), classical elliptic theory implies
that {ϕk} is bounded in H1(B′) for every closed ball B′ in the interior of B. By (85) and (87)
we deduce that {∇ψk} is also bounded in L2(B′). By Lemma 9 (seeAppendix), these L2-
bounds on the gradients together with the one-direction L∞-bounds (85) imply that {ϕk} and
{ψk} are uniformly 1/3-Hölder continuous on B′.

Finally we deduce from (85) and the fact that {f3,k} tends to e3 = (0, 1) in L∞
loc that {ϕk}

and {ψk} are also equicontinuous on bounded sets intersecting R × {0}.

By Lemma 7 and (84), Ascoli’s theorem implies the existence of (ϕ,ψ) ∈ C(R2,R2) and
constants {pk}k ⊂ R such that (up to a subsequence) {(ϕk, ψk − pk)}k converges to (ϕ,ψ)
uniformly on every compact of R2. In the sequel, we identify R2 with the complex plane
C and we use both cartesian and polar coordinates (n2, n3) = reiθ with r ≥ 0 and θ ∈ R.
Passing to the limit k ↑ ∞ in (81), we obtain

ϕ(1, 0) − ϕ(−1, 0) = 2. (93)

From (80), we have (f⊥2,k ·∇)ψk → (e3 ·∇)ψ in D′(R2). So (83) imply (e3 ·∇)ψ = 0 and ψ only
depends on n2 as well as the distribution defined by α := −(e2 · ∇)ψ. Next using again (80)
and (83), we obtain αk → α in D′(R2). Finally, passing to the limit in (82), we obtain that

∇ϕ− |n|α(n2)er ∈ L∞
loc(R

2,R2) and |∇ϕ− |n|α(n2)er| ≤ |n3| for a.e. n ∈ R
2. (94)
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The couple (ϕ,α) inherits the symmetries (77) of the sequence (ϕk, αk), so we have

ϕ = −ϕ◦I, α = −α ◦ I (95)

where we recall that I is the symmetry with respect to {m2 = 0} on S2 that turns through the
stereographic projection into the symmetry with respect to the axis {n2 = 0}. In particular
ϕ vanishes on the axis {n2 = 0}.

It turns out that the conditions (93), (94) and (95) are not compatible so we will obtain a
contradiction, which proves Proposition 5. Namely:

Lemma 8. There is no couple (ϕ, α) ∈ C(R2) ×D′(R) satisfying (93),(94) and (95).

The end of the paper is dedicated to the proof of Lemma 8.
A simple case: For convenience of the reader, we first prove Lemma 8 in the simple

case of a C2 function ϕ. The idea of the proof in the general case will be the same but some
technical issues are to be detailed. Assume that ϕ is of class C2 and denote the angular
derivative by 1

r
∂θϕ(reiθ) = eθ · ∇ϕ(reiθ). By (94), α ∈ L∞

loc(R
2). First, applying (94) on the

unit circle r = 1, we obtain that

|∂θϕ(eiθ)| ≤ sin θ, 0 < θ < π.

Now from (93), we have

Z π

0

−∂θϕ(eiθ) dθ =

Z π

0

sin θ dθ,

thus we have ∂θϕ(eiθ) = − sin θ for 0 < θ < π. Then (95) leads to ϕ(eiθ) = cos θ for 0 < θ < π.
Therefore, (94) (where the equality holds for r = 1) yields

α(cos θ) = ∂rϕ(eiθ), 0 < θ < π. (96)

Moreover, using again (94), it results that

„

1

r
∂θϕ(reiθ)

«2

≤ r2 sin2 θ for 0 < θ < π and r > 0. (97)

This inequality is an equality for r = 1, so the derivatives with respect to r of the left and
right hand sides of (97) must be equal in r = 1. That means:

∂r∂θϕ(eiθ) = −2 sin θ, 0 < θ < π.

Combining with the symmetry (95) of α and (96), we obtain

α(n2) = 2n2, −1 < n2 < 1. (98)

To end the proof, we write (94) at n3 = 0 and using (98), it implies ∂n2
ϕ(n2, 0) = n2α(n2) =

2n2
2. This is not compatible with (93) since

2
(93)
=

Z 1

−1

∂n2
ϕ(n2) dn2 =

Z 1

−1

2n2
2 dn2 =

4

3
.

The general case: Here we only assume ϕ ∈ C(R2). We begin by improving the regu-
larity of ϕ.

Claim 1. The function ϕ is locally Lipschitz and α is locally bounded.
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Proof. Using the polar coordinates, we write e3 = cos θeθ + sin θer and

(e3 · ∇)ϕ = cos θ(eθ · ∇)ϕ+ sin θ(er · ∇)ϕ

= cos θ(eθ · ∇)ϕ+ sin θ {(er · ∇)ϕ− 2α(n2)|n|} + 2α(n2)n3.

Denoting f := 2α(n2)n3 − (e3 · ∇)ϕ, by (94), we know that f ∈ L∞
loc(R

2), |f | ≤ |n3|.
Regularizing with symmetric mollifiers in n2 and n3 the following distribution

2α(n2)n3 = (e3 · ∇)ϕ+ f,

then integrating in n3 on [0, 1] and letting the mollifiers to converge to Dirac masses, one
proves that α ∈ L∞

loc(R
2) and satisfies

|α(n2)| ≤ |ϕ(n2, 1) − ϕ(n2, 0)| +
1

2
for a.e. n2 ∈ R.

Combining with (94), we deduce that ϕ is locally Lipschitz.

Claim 2. For every 0 < θ < π, we have ϕ(eiθ) = cos θ. Moreover the map

(0,+∞) −→ L1(0, π), r 7−→ 1

r
∂θϕ(r exp(i·))

is continuous at r = 1.

Proof. Since ϕ is Lipschitz, for every r > 0 the function ϕr : θ 7→ ϕ(reiθ) is absolutely
continuous with derivative 1

r
∂θϕ (defined for H1−almost every θ). From (94), we have that

for almost every r > 0:

r sin θ +
1

r
∂θϕ(reiθ) ≥ 0 for a.e. θ ∈ (0, π). (99)

Since the map r 7→ ϕr with values in D′(R/2πZ) is continuous, (99) holds for every r > 0. In
particular, if r = 1, integrating for θ ∈ (0, π), one has by (93):

Z π

0

„

sin θ + ∂θϕ(eiθ)

«

dθ = 0,

which implies by (99) that ∂θϕ(eiθ) = − sin θ a.e. in (0, π) and using (95) we obtain ϕ(eiθ) =
cos θ for θ ∈ (0, π). Finally, by (93) and the continuity of ϕ, we get

Z π

−π

„

r sin θ +
1

r
∂θϕ(reiθ)

«

dθ
r→1−→ 0,

which means that the map θ 7→ 1
r
∂θϕ converges to θ 7→ − sin θ in L1(0, π) as r tends to 1

which establishes Claim 2.

Remark 6.1. In general if F : [0, 1]2 → R is Lipschitz, then the map [0, 1] → L1(0, 1), y 7→
∂xF (x, y) is not continuous. As a counterexample, let us set F (x, 1

n
) := 1

2n sin(2nx) for n ≥ 1
and x ∈ [0, 1]. Then we extend F (x, ·) as an affine function on

ˆ

1
2n+1 ,

1
2n

˜

. It is easy to check
that ∂xF (·, y) converges only weakly to 0 as y tends to 0.

Claim 3. We have α(n2) = 2n2 for a.e. −1 < n2 < 1.

Proof. By (94), for almost every r > 0 and θ ∈ (0, π),

|∂rϕ(reiθ) − α(r cos θ)r|2 ≤ r2 sin2 θ −
˛

˛

˛

˛

˛

1

r
∂θϕ(reiθ)

˛

˛

˛

˛

˛

2

,
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By Claim 2, the above RHS (as a function of θ) tends to 0 in L1(0, π) as r → 1. Hence,
Z π

0

|∂rϕ(reiθ) − α(r cos θ)|2 dθ r→1−→ 0.

(Here, we used that (r−1)α(r cos θ)
r→1−→ 0 in L2(0, π) because α is locally bounded.) Averaging

for radii s between 1 and r (r can be less than 1 or larger than 1) and using the identity
ϕ(eiθ) = cos θ, we obtain

ϕ(reiθ) = cos θ + (r − 1) −
Z r

1

α(s cos θ) ds+ (r − 1)R(reiθ) for a.e. θ ∈ (0, π), (100)

with
R π

0
|R(reiθ)|2 dθ r→1−→ 0. On the other hand, by (95), we have for all θ0 ∈ (0, π) that

ϕ(reiθ0) = r

Z θ0

π/2

1

r
∂θϕ(reiθ) dθ = r2 cos θ0 + r

Z θ0

π/2



1

r
∂θϕ(reiθ) + r sin θ

ff

dθ.

Plugging this equality in (100), we obtain

r

Z θ0

π/2

n

∂θϕ(reiθ) + r sin θ
o

dθ = (r − 1)



−
Z r

1

α(s cos θ0) ds− (r + 1) cos θ0 −R(reiθ0)

ff

.

Finally, by (99), the integrand in the above LHS is non-negative which implies (dividing by
r − 1 and letting r ↓ 1 and r ↑ 1, respectively):

α(cos θ0) = 2 cos θ0 for a.e 0 < θ0 < π,

which proves Claim 3. (Here, we used that for a.e. θ0, cos θ0 is a Lebesgue point of α, i.e.,
limr→1 −

R r

1
α(s cos θ0) ds = α(cos θ0).)

Finally, we prove that (93),(94) and (95) lead to a contradiction. For that, we use (94) in
the neighborhood of {n3 = 0}. For almost every θ ∈ (0, π), we have

−r sin θ ≤ ∂rϕ− 2r2 cos θ ≤ r sin θ for a.e. r > 0.

The continuity of ϕ implies that the above expression holds true for every θ ∈ (0, π). Inte-
grating in r on (0, 1) and letting θ ↓ 0 and θ ↑ π, since ϕ(0, 0) = 0 by (95), we obtain

ϕ(1, 0) − ϕ(−1, 0) =
4

3
,

which contradicts (93). That concludes the proof of Proposition 5.
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7 Appendix

We used the following embedding theorem:

Lemma 9. Let B2 ⊂ R2 be the disk of radius 2. Every function ϕ ∈ H1(B2) satisfying

∂1ϕ ∈ L∞(B2) is 1
3
−Hölder continuous on the unit disk, i.e., ϕ ∈ C0, 1

3 (B1) and

|ϕ|
C

0, 1
3 (B1)

≤ 2

„

‖∂1ϕ‖L∞(B2) + ‖∂2ϕ‖L2(B2)

«

. (101)
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Proof. We first show that (101) holds for ϕ ∈ C1(B2). For that, let (x, y) ∈ B1 and we will
estimate ϕ(x, y) − ϕ(0, 0). First, we have that

|ϕ(x, y) − ϕ(0, y)| ≤ ‖∂1ϕ‖L∞(B2)|x| ≤ ‖∂1ϕ‖L∞(B2)|x|1/3.

For δ :=

„

|y|
2

«1/3

∈ (0, 1), we compute

|ϕ(0, y) − ϕ(0, 0)| ≤
˛

˛

˛

˛

ϕ(0, y) −−
Z δ

−δ

ϕ(x′, y) dx′
˛

˛

˛

˛

+ −
Z δ

−δ

|ϕ(x′, y) − ϕ(x′, 0)| dx′

+

˛

˛

˛

˛

ϕ(0, 0) −−
Z δ

−δ

ϕ(x′, 0) dx′
˛

˛

˛

˛

≤ δ‖∂1ϕ‖L∞(B2) + −
Z δ

−δ

˛

˛

˛

˛

Z y

0

∂2ϕ(x′, y′) dy′
˛

˛

˛

˛

dx′

≤ δ‖∂1ϕ‖L∞(B2) +

„ |y|
2ε

«1/2

‖∂2ϕ‖L2(B2)

≤ |y|1/3

„

‖∂1ϕ‖L∞(B2) + ‖∂2ϕ‖L2(B2)

«

.

Therefore,

|ϕ(x, y) − ϕ(0, 0)| ≤ 2|(x, y)|1/3

„

‖∂1ϕ‖L∞(B2) + ‖∂2ϕ‖L2(B2)

«

and (101) holds. For a general function ϕ, one can use a density argument (by regularizing ϕ
with mollifiers in direction x and y) and conclude by passing to the limit in (101).
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[14] Radu Ignat. A Γ-convergence result for Néel walls in micromagnetics. Calc. Var. Partial
Differential Equations, to appear.

[15] Radu Ignat and Felix Otto. A compactness result in thin-film micromagnetics and the
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