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Introduction

Ce mémoire porte sur une partie de mes travaux effectués depuis mon arrivée a I’Université Paris-
Sud 11 en 2007. Il comporte deux parties:

e Une premiere partie concerne I’étude des champs de vecteurs 2D ou 3D a divergence nulle et
4 valeurs dans S' ou S2. Le but consiste & analyser la rigidité de ces champs de vecteurs par la
structure de leurs singularités, ainsi qu’a caractériser les énergies concentrées sur les singularités
de co-dimension un en utilisant le concept d’entropie. Il s’agit d’un sujet a la frontiéere de plusieurs
domaines: l'analyse fonctionnelle, les lois de conservation scalaires, le calcul des variations, les
EDP elliptiques et la théorie géométrique de la mesure. Les résultats présentés dans ce chapitre
font lobjet des travaux suivants [37, 33, 40, 41, 42].

e Une deuxiéme partie porte sur 'analyse des structures singuliéres de 'aimantation en mi-
cromagnétisme. Ces phénomenes de singularités correspondent & des couches limites (parois
unidimensionnelles ou microstructures 2D ou 3D) ou bien & des défauts topologiques de type
vortex (placés & lintérieur ou au bord de Iéchantillon magnétique). Il s’agit des travaux suiv-
ants [27, 28, 35, 36, 38, 39, 44] qui utilisent des outils de plusieurs domaines: la modélisation
mathématique, la physique des solides, le calcul des variations, les EDP elliptiques, la théorie
géométrique de la mesure, la théorie d’interpolation, la théorie des bifurcations et les systemes
dynamiques.

Il y a un lien étroit entre les deux chapitres: le fil conducteur est donné par la structure des
champs de vecteurs a divergence nulle et de longueur un. D’un co6té, la problématique traitée
dans le premier chapitre est souvent inspirée par des questions liées au micromagnétisme. D’un
autre coté, I'analyse asymptotique portée sur I'aimantation dans le deuxieme chapitre est décrite
au niveau mésoscopique par des champs 3D de vecteurs m a divergence nulle et a valeurs dans
S2. Selon le régime asymptotique ou I’ansatz utilisé, le champ vectoriel m peut étre invariant dans
une direction de sorte que la contrainte de divergence joue seulement sur deux variables. De plus,
certaines contraintes du régime asymptotique imposent une restriction des valeurs de m & S'. Ceci
justifie I’étude faite dans la premiere partie concernant les champs de vecteurs a divergence nulle
et & valeurs dans S' ou S2.

Ce mémoire s’inscrit d’un c6té dans la continuité (au sens large) des sujets abordés en these
de doctorat (2003-2006) sous la direction de Haim Brezis: ’étude des fonctions & valeurs dans
St (le probleme du relévement optimal pour des fonctions BV et I’étude de leurs singularités
topologiques), ainsi que l'analyse des singularités présentes dans quelques problémes variationnels:
I’étude asymptotique des vortex dans les condensats de Bose-Einstein en rotation et 'optimalité
des parois de Néel dans les films ferromagnétiques minces. D’un autre co6té, de nouveaux sujets
sont abordés ainsi que de nouvelles techniques qui permettent d’approfondir la compréhension des



défauts pour des champs de vecteurs portant une certaine rigidité et les applications en micro-

magnétisme.

Présentation du Chapitre 1'. Nous commencons par étudier les champs de vecteurs m :  — !
& divergence nulle pour des domaines planaires ) C R?. Ceci revient & analyser la rigidité de
I’équation eikonale 2D, qui se transpose sous la forme d’une loi de conservation scalaire. Cependant,
'objet fondamental utilisé dans ce chapitre est constitué par les entropies ® € C>°(S*, R?).

1. La premiére partie du chapitre (Section 1.1) est consacrée a 1’étude de la notion d’entropie
associée & m. Elle correspond & la paire (entropie, flux d’entropie) des lois de conservation
scalaires habituelles, mais définie sur S' qui est le contexte géométrique adapté & nos champs
de vecteurs. La propriété essentielle d’une entropie ® consiste a générer une production
d’entropie V - [®(m)] nulle pour tout champ de vecteurs régulier m € C55 (2, S'). De
maniere équivalente, cette propriété correspond a l'interprétation géométrique suivante: la
dérivée angulaire de ® en z € S! est orthogonale & z. C’est pourquoi les entropies sont
déterminées par leur composante normale ®(z) - z selon la décomposition de ® dans le repere
(z,2%); cette correspondance biunivoque fournit une méthode de construction des entropies
dont nous nous servirons par la suite. Comme 'on s’y attend, la production d’entropie est
une mesure concentrée sur des lignes de sauts (les ”chocs”) de m pour des champs de vecteurs

m € BVdiU(Q, Sl)

2. Dans la Section 1.2, nous montrons des résultats de régularité et densité pour les champs de
vecteurs m € W;i/f’p(ﬂ, S1). Ici hypothese de régularité W/PP est critique afin d’éviter
les lignes de singularités. Dans ce cas, nous nous attendons a la formation des singularités
de type vortex. Effectivement, nous démontrons que m est localement Lipschitz en dehors
d’un nombre localement fini de points vortex si p € [1,2]. Ce résultat repose sur le con-
cept d’entropie introduit auparavant. D’abord, la production d’entropie d’un tel champ de
vecteurs est nulle pour toute entropie ® € C*°(S1, R?). De plus, cette propriété s’étend & des
entropies non lisses qui est transcrite sous la formulation cinétique suivante: pour toute car-
actéristique x(-, €) associée & m (au sens faible) dans la direction ¢ € S*, on a £-Vx(+,£) =0
dans D'(Q). La régularité Lipschitz est optimale et la géométrie du domaine €2 influence le
nombre de singularités vortex d’un champ de vecteurs m. Le second objectif est d’établir
des résultats de densité dans le cas des domaines Lipschitz 2. Premiérement, tout champ
de vecteurs m € W;i/f’p(ﬂ, S1) (ot p € [1,2]) peut étre approché dans la topologie VVllocq
(pour g € [1,2)) par des champs de vecteurs my, réguliers sauf en un nombre fini de points.
Deuxiemement, on cherche a approcher m par des champs de vecteurs partout réguliers
my € C(Q, S') (pas nécessairement & divergence nulle) dans une topologie plus faible. En
effet, une configuration ”"vortex” (par exemple, z*/|z|) ne peut pas étre approchée dans la
topologie L! (forte) par des champs de vecteurs my, € C5, (2, S'). Par contre, le résultat
d’approximation dans L' est vrai si on relaxe la condition de divergence nulle pour la suite
régularisante dans la topologie H~/2  i.e., (V -my)lq — 0 dans H~/2(R?2).

3. La Section 1.3 porte sur les champs de vecteurs m € BVy;,(Q,S1) qui présentent des sin-
gularités lignes. Le but consiste a étudier les ”énergies de lignes”, i.e., les fonctionnelles

1Les références aux résultats cités sont données dans le texte du chapitre.



d’énergie concentrées sur les lignes de saut J(m) de m:
Ii(m) = / F(lm™ = m~|) dH.
J(m)

Remarquons que la densité d’énergie dépend seulement de la taille du saut |m*™ — m™| via
une fonction coit f : [0,2] — R4. Nous nous proposons de caractériser les fonctions cotit
f qui engendrent une énergie de lignes 7y semi-continue inférieure (s.c.i.) par rapport a la
topologie L'. Cette caractérisation utilise les entropies. Plus précisément, nous associons
a chaque sous-ensemble S d’entropies une fonction coit cg qui représente la production
d’entropie maximale engendrée par S:
cs(t) = suI:S) {[GT) = @) v |zt —27 =t (Y —27) - v=0,2",2",ve S},
e

pour tout ¢ € [0,2]. Nous démontrons que les fonctions colt ¢g correspondent bien & des
énergies de lignes s.c.i. si ensemble S est symétrique et equivariant par les rotations SO(2).
Cette propriété nous permet de construire une grande famille de fonctions coiit appropriées,
en particulier, certaines fonctions puissance ¢t — tP pour p € [1,3]. Ensuite, nous traitons
le probleme de minimisation de Z¢ sous la condition aux limites m - n = 0 au bord de 9€.
L’existence des minimiseurs de la fonctionnelle relaxée Tf dans L' est montrée par un résultat
de compacité relatif aux sous-ensembles de niveau de Z ¢. Sous I'hypothese plus restrictive
m = nt sur 99, nous étudions les situations ot la solution de viscosité m., = V= dist (z, 9Q)
est un minimiseur de Zy selon des criteres de convexité du domaine 2 et du type de fonction
cout f.

. Le but de la Section 1.4 est de généraliser la notion d’entropie afin d’étudier la I'-convergence
des fonctionnelles de perturbation singuliere G (lorsque £ — 0):

Getme) =< [ (Vmef+ 2 [ glf1 = lmeP)),
Q €Ja
définie pour m. € H}, (2, R?) et pour un potentiel g : Ry — R (ou bien, m. € Hj, (2, 5?)
et I’énergie G, pénalise g(m%ﬁg)). En effet, nous nous attendons & ce que m, converge dans
L' vers un champ mg € L5, (2, S!) et & ce que G- soit asymptotiquement concentrée sur
une énergie de ligne Z¢; la dépendance entre f et g est en général établie par une analyse
asymptotique 1D. Afin de montrer la compacité de G., les entropies sont prolongées a
des applications ® : R? — R? en gardant la dérivée angulaire 2 ®(z) orthogonale & z €
R?\ {0}. Ces applications ® sont adaptées aux champs m. de G. puisque la contrainte de
module 1 est relaxée. La propriété essentielle de ces entropies généralisées consiste a générer
une production d’entropie V - [®(m,)] asymptotiquement contrdlée (en mesure) par I’énergie
G:(m:). Dun coté, cette caractéristique permet d’exclure & la limite les oscillations des
configurations m. d’énergie uniformément bornée, donc de conclure a leur compacité dans
L'. D’un autre coté, elle fournit la structure des configurations limites mg qui présentent
des lignes de saut (méme si en général mg ¢ BVy;,, (2, S1)). Malheureusement, ces entropies
ne conduisent pas en général a des bornes inférieures optimales pour G.. A cette fin, nous
étudions une autre classe d’entropies généralisées ® : S? — R? adaptées aux champs de

vecteurs m. & valeurs dans S2. Nous montrons que 'énergie de ligne 7 est la borne inférieure



10

optimale de G, dans certains cas de potentiel g (linéaire ou quadratique) ot les couches limites
de G, sont unidimensionnelles. Nous traitons aussi un cas d’énergie G. modifiée (qui pénalise
g(m%ys) au lieu de g(mgﬁg)) ou la méthode d’entropie permet de montrer la I'-convergence

meéme si les couches limites comportent une microstructure 2D en forme de zigzag.

Présentation du Chapitre 22. Le micromagnétisme est un principe variationnel multi-échelle
non convexe et non local dont ’objet principal est donné par ’aimantation correspondant aux min-
imiseurs (locaux) de I’énergie micromagnétique. Dans certains régimes asymptotiques, 'aimantation
est caractérisée au niveau mésoscopique par un champ de vecteurs 3D a divergence nulle et a valeurs
dans S2. C’est pourquoi le chapitre présente un lien étroit avec le chapitre précédent, le but con-
sistant a caractériser la formation des singularités pour I'aimantation. Notre stratégie utilise deux
approches. Une premiere dont 'objectif est d’identifier ’échelle de 1’énergie minimale, ainsi que la
structure de l'aimantation qui réalise ce minimum; une deuxiéme approche qui consiste a identi-
fier des modeles plus simples, valides dans des régimes asymptotiques appropriés, qui facilitent la

compréhension du comportement de I’aimantation.

1. Nous commengons dans la Section 2.1 par introduire le contexte général du micromagnétisme,
une théorie largement étudiée de nos jours qui modélise les matériaux ferromagnétiques. Dans
cette théorie, les matériaux sont décrits par une distribution d’'un champ de vecteurs, appelé
aimantation, dont les états stables comportent de vastes régions uniformément magnétisées
séparées par des couches limites, les parois, ou 'aimantation varie tres vite. Plusieurs types
de paroi sont prédits par les expériences physiques: paroi de Néel et Bloch (symétrique), paroi
de Néel et Bloch asymétrique, ou des défauts de type vortex (ligne de Bloch), vortex au bord,
ou bien des défauts de type mixte paroi-vortex (par exemple, paroi “en noeud de cravate”).
Nous nous proposons d’analyser qualitativement et quantitativement ces singularités dans
les films ferromagnétiques minces. A cette fin, nous identifions des régimes asymptotiques
qui correspondent a une certaine ordre de ’énergie des défauts de ’aimantation; le choix
de léchelle d’énergie minimale détermine les contraintes du modele réduit (imposées par les
défauts d’énergie supérieure), ainsi que les parois d’énergie inférieure qui seront négligées.
Avec ces choix, 'approche mathématique est basée sur I'analyse asymptotique, le but étant
d’établir des bornes inférieures et supérieures appropriées de Iénergie (dans l'esprit de la
I-convergence).

2. Dans la Section 2.2, nous décrivons la paroi de Néel qui est la couche limite prédominante
dans les films treés minces. Elle est caractérisée par une rotation unidimensionnelle dans
S qui connecte deux directions d’angle — et 6 de 'aimantation. C’est un objet & deux
échelles: un petit coeur ou I’aimantation varie rapidement et deux queues a décroissance log-
arithmique. Nous décrivons trois modeles ou les parois de Néel apparaissent et correspondent
a des mécanismes différents de confinement des queues de Néel. Pour chaque modele, nous
démontrons le comportement asymptotique de ces parois par un résultat de I'-convergence.
Puisque le cotit énergétique de cette paroi est quartique en 6, la méthode d’entropie n’est pas
adaptée a cette étude. La difficulté est porté par le terme non local qui contribue au premier
ordre de I’énergie de la paroi. Dans cette étude, les techniques utilisées sont basées sur un

2Les références aux résultats cités sont données dans le texte du chapitre.
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argument de dualité et des inégalités d’interpolation de type Gagliardo-Nirenberg avec un
taux logarithmique.

. Le but de la Section 2.3 consiste a étudier la structure particuliere d'un défaut vortex induit
par une paroi de Néel d’angle 360°. En fait, une telle paroi de Néel comporte une rotation
complete de 'aimantation autour d’un mur mésoscopique, portant un degré topologique non
nul. Les parois de Néel a 360° sont caractérisées par ’angle « entre la direction mésoscopique
de 'aimantation et la direction normale du mur. Nous montrons que ’angle « contribue au
terme d’énergie principal d’une paroi de Néel de 360°. En effet, la structure interne d’une
telle paroi consiste en deux transitions a charge magnétique nulle: une premieére paroi de
Néel d’angle 260 = 2(7m — ) et une deuxieme transition d’angle 2«. Ensuite, nous analysons
le comportement asymptotique d’un vortex dans une section circulaire B2 d’un film mince:

le choix du régime asymptotique est donné par I'ordre suivant de I’énergie des défauts
E(vortex au bord) <« E(paroi de Néel) < E(ligne de Bloch),

avec ’échelle d’énergie minimale imposée au niveau de la paroi de Néel. Au niveau micro-
scopique, cette structure de 'aimantation correspond & un champ de vecteurs dans H! (B2, S!)
créée par une paroi de Néel de 360° (d’angle initial o = 0) autour d'un rayon du disque B2.
La particularité de ce vortex est de porter un degré total nul, qui le différencie des autres
structures de vortex, e.g., ligne de Bloch ou les vortex de type Ginzburg-Landau de degré
topologique non nul. Ceci présente un lien étroit avec la Section 1.2 du Chapitre 1, ce modele

1/2

fournissant la topologie optimale H~"/2 d’un des résultats d’approximation pour les champs

de vecteurs & valeurs dans S! et & divergence nulle.

. Nous étudions dans la Section 2.4 la structure optimale de l'aimantation, appelée état de
Landau, qui correspond au minimiseur global de I’énergie micromagnétique. Ici, le régime
asymptotique est choisi de sorte que la ligne de Bloch soit énergétiquement plus chere que la
paroi de Néel et les vortex au bord soient fortement pénalisés, I’échelle d’énergie étant choisie
au niveau de la ligne de Bloch. Par rapport a la section précédente, 'aimantation prend
ses valeurs dans S? car on s’attend & la formation de défauts vortex a degré non nul pour
I’état de Landau. Effectivement, nous montrons qu’asymptotiquement ’énergie de 1’état de
Landau est portée par des lignes de Néel et un défaut vortex intérieur (ligne de Bloch) ou
bien deux défauts vortex au bord. De plus, nous prouvons la compacité des aimantations
d’énergie proche de I’état de Landau, la difficulté consistant & garder la contrainte |m| = 1 ala
limite. Ceci constitue une justification rigoureuse de la prédiction physique: les aimantations
mésoscopiques dans les films minces correspondent a des champs de vecteurs 2D de module
un et a divergence nulle; en effet, asymptotiquement ’état de Landau représente la solution de
viscosité analysée dans la Section 1.3 du Chapitre 1. Les techniques utilisées reposent d’abord
sur un argument d’approximation des champs de vecteurs & valeurs S? par des champs de
vecteurs & valeurs S en dehors d’une petite région créée par les défauts topologiques. La
localisation des vortex est basée sur des techniques topologiques développées pour les énergies
de type Ginzburg-Landau.

. La Section 2.5 concerne le comportement asymptotique des vortex au bord ainsi que leurs

énergie d’interaction. Le régime asymptotique correspond & un film mince ou I’énergie de la
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ligne de Bloch est prépondérante par rapport a 1’énergie des vortex au bord et la paroi de
Néel n’est pas confinée (donc, elle sera négligée); ’échelle de 1’énergie minimale est choisie au
niveau du colt des vortex au bord. L’objet fondamental réside dans la notion de ”jacobien
au bord” qui détecte les défauts vortex. La concentration de I’énergie autour des vortex au
bord est démontrée par un résultat de type I'-convergence comme pour les énergies de type
Ginzburg-Landau; la différence ici consiste a avoir la mesure de vorticité concentrée au bord.
Nous déterminons aussi I’énergie renormalisée qui représente I'interaction entre les vortex au
bord et qui gouverne la position optimale de ces défauts. La difficulté majeure consiste a
estimer la partie non locale de I’énergie générée par ’équation de Maxwell stationnaire afin
de détecter les termes exactes correspondant aux défauts topologiques.

. Dans la Section 2.6, nous analysons un échantillon sphérique ferromagnétique ou l'effet de

I’anisotropie et le champ magnétique induit la formation d’une ligne de Bloch. Ceci revient a
un probléme similaire aux modeles 3D de type Ginzburg-Landau pour la supraconductivité
ou les lignes de vortex sont générées par des conditions de Dirichlet au bord portant des
défauts topologiques. Le but est de déterminer le comportement asymptotique de 1’énergie
micromagnétique portée par la ligne de Bloch.

. Dans la derniere section, nous nous intéressons au régime critique de film mince ou une

bifurcation se produit entre les couches limites symétriques et asymétriques. Il s’agit de
comprendre la dépendance de l’énergie micromagnétique de I'angle # de la transition de
I’aimantation, ainsi que de décrire les propriétés qualitatives de la couche limite optimale.
Nous démontrons la prédiction physique suivante: pour un petit angle de transition 6, la
couche limite optimale est portée par la paroi de Néel (symétrique) présentée dans le Section
2.2, donc son énergie réside dans les queues de Néel a décroissance logarithmique. Ensuite, il
existe un angle critique 8* olt une brisure de symétrie se produit: une paroi asymétrique tente
a se former au coeur de la transition. En effet, pour des angles § > 6%, la couche limite op-
timale présente un coeur ot 'aimantation est & charge magnétique nulle (paroi asymétrique
d’angle 0;,,) et en dehors du coeur, elle préserve les queues de la paroi symétrique (unidi-
mensionnelle, d’angle 6 — 6;,,). Nous montrons cette séparation de 1’énergie entre la partie
asymeétrique et la partie symétrique de la couche limite dans l’esprit de la I'-convergence au
niveau des minimiseurs. Afin de trouver I'angle critique 6* de la bifurcation, nous réalisons
un développement asymptotique de I’énergie de la paroi asymétrique & I’ordre 0* qui corre-
spond au colit énergétique de la paroi symétrique. Ceci revient a étudier ’énergie de Dirichlet
pour des champs de vecteurs & divergence nulle et & valeurs dans S2 soumis & une transition
d’angle 6;,,. En fonction de 6;,,, une deuxieme brisure de symétrie et un changement de degré
topologique se produisent, de sorte que nous distinguons la paroi de Néel asymétrique pour
des angles petits 6;,, respectivement la paroi de Bloch asymétrique pour 6;, grand.
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Chapter 1

Divergence-free unit-length vector
fields and Entropies

Let ¢ R? be an open bounded set. We will focus on measurable vector fields m : Q — R? that
satisfy

Im|=1ae.inQ and V-m=0 in D'(Q). (1.1)
One can equivalently consider measurable vector fields v : Q@ — R? such that

lo|]=1lae. inQ and Vxov=0 in D(Q). (1.2)

(The passage from (1.1) to (1.2) is done via v = m* = (—mg, m;). The notation m comes from
micromagnetics and stands for the magnetization.) Locally, m (resp. v) can be written in terms
of a stream function 1, i.e., m = V+o (resp. v = —V) so that we get to the eikonal equation
through :

V| = 1. (1.3)

Typically, one can construct such vector fields by considering stream functions of the form ¢ =
dist (-, K) for some closed set K C R?; these vector fields are called Landau states in micromagnetic
jargon (see Figure 1.1). However, not every stream function can be written as a distance function

Figure 1.1: Landau states in a rectangle and a disc.

(up to a sign +1 and an additive constant); for example, if ¥(x) = max{dist (z, P), dist (z, P»)}
for two different points Py, P, € R?, then (1.3) holds even if 4 is not a distance function.
We denote
C3, (92, 8") = {m € C*(Q,R?) : m satisfies (1.1)}.
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Figure 1.2: Configuration m in BV, (92, S1).

Idem, W;P(Q, S 1) stands for Sobolev spaces of order s > 0 and p > 1 of divergence-free unit-length
vector fields, as well as BVy;,, (2, S 1) for vector fields of bounded total variation. For a vector field
m € BVqgin(Q,S1), we denote the jump set of m by J(m) which is a H! —rectifiable set oriented by
a unit vector field v : J(m) — S and m* : J(m) — S* stand for the traces of m on J(m) with
respect to v. Notice that the divergence-free hypothesis on m ensures that the normal component
m-v is continuous across the jump set J(m). So, for H'-almost every x € J(m), we can characterize
the jump of m by a so called "wall angle” () such that m*(z) = cosf(z)v(z) + sinf(z)v* ()
(see Figure 1.2).

1.1 Entropies

In the study of vector fields (1.1), the main tool we use in the following is the concept of entropies
coming from scalar conservation laws. The starting point consists in regarding the structure (1.1)
of our vector fields as a scalar conservation law. Indeed, writing m = (u,h(u)) for the flux
h(u) = +£v/1 — u?, the vanishing divergence condition in m turns into

Oru + 9sh(u) =0, (1.4)

where (¢, s) := (x1,22) correspond to (time, space) variables. Let us recall some definitions from

the theory of scalar conservation laws. Since the flux h is nonlinear, there is in general no smooth

solution of the Cauchy problem associated to (1.4). Therefore, the solutions of (1.4) are to be

understood in the sense of distributions and in general, there are infinitely many weak solutions

for the Cauchy problem. The concept of entropy solution has been formulated in order to have

uniqueness (see Kruzkov [50]). To introduce this notion, the pair (entropy, entropy-flux) is defined
_ dhdn

as a couple of scalar functions (7, ¢) such that % = O+ 74 Which entails that every smooth solution

u of (1.4) has vanishing entropy production, i.e.,

On(w)] + 9slg(u)] = 0.

A solution u of (1.4) (in the sense of distributions) is called entropy solution if for every convex
entropy 7, the entropy production 9¢[n(u)] + 9s[¢(u)] < 0 is a nonpositive measure. Moreover,
such solutions u have the property that for every pair (7, ¢), the entropy production is a (signed)
measure that concentrates on lines (corresponding to ”shocks” of u). It suggests the interest
of using "global” quantities (1, q) to detect ”local” line-singularities of u. This idea has been
used when dealing with reduced models in micromagnetics by Jin-Kohn [48], Aviles-Giga [6],
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DeSimone-Kohn-Miiller-Otto [25], Ambrosio-DeLellis-Mantegazza [2], Alouges-Riviere-Serfaty [1],
Ignat-Merlet [41, 40], Ignat-Moser [42].

In the sequel we will always use the following notion of entropy introduced in [25] (see also [48],
[19], [40]). It corresponds to the pair (entropy, entropy-flux) from the scalar conservation laws, but
here the pair is defined in terms of the couple (u, h(w)) and not only on w.

Definition 1 (DKMO [25]) We will say that ® € C*°(S',R?) is an entropy if

d .
@q)(z) 2z = 0, forevery z=e" = (cosf,sinf) € S*. (1.5)
Here, £&(z) := L[®(e")] stands for the angular derivative of ®. The set of all entropies is

denoted by ENT.

We will often use a second characterization of entropies that provides a way to construct
entropies:

Proposition 1 (DKMO [25]) Let ® € C*°(S',R?). Then ® € ENT if and only if there exists
a (unique) 2w —periodic ¢ € C=(R) such that for every z = e € S,

D(z) =p(0)z+ j—g(@)zL. (1.6)
In this case, J
@q)(z) = A\0)z, (1.7)

where A € C*°(R) is the 2w —periodic function defined by A = —Ap :== o+ d%cp in R.

Remark 1 There exists a unique extension of A : C*(S' ~ R/27Z) — C*°(S') as a linear
nonbounded operator A : L?(S') — L2(S') with the domain D(A) = H?(S'). Moreover, the
kernel of A is given by ker A = R sin ®R cos, the spectrum of A is o(A) = {k* — 1 : k € N*} and
the range of A is R(A) = (ker A)*. Consequently, for every A € (ker A)L, there exists a unique
¢ € L*(S')/(ker A) such that —Ap = X and the corresponding entropy ® given by (1.6) is uniquely
defined by A up to a constant.

This notion is coherent with the property that a smooth vector field m satisfying (1.1) induces
vanishing entropy production V - [®(m)] = 0. In fact, it is equivalent! to Definition 1 as stated in

the following property:

Proposition 2 (Ignat [33]) Let ® € C>°(S',R?). Then ® is an entropy if and only if for every
m € W;i/vp’p(Q,Sl), p € [1,2] (in particular, for every m € C, (2, SY)), the following identity
holds:

V- [®m)]=0 in D'(Q). (1.8)

As we explain later, the assumption m € W/P? is a critical regularity to avoid line-singularities.
We conjecture that the above Proposition should hold also for p > 2. However, for m € BV, (€2, S1),
the entropy production

pap(m) :=V - [©(m)]

is a measure supported on the jump set of m.

'In fact, (1.5) can be deduced from (1.8) by choosing m to be an appropriate vortex configuration (see [40]).
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Proposition 3 (Ignat-Merlet [40]) Let ® € ENT be an entropy and m € BVg;y(Q, S*). Then
we have
po(m) = {®(m+) — ®(m)} - v HILI(m), (1.9)

where J(m) is the H'-rectifiable jump set of m oriented by v and m™ are the traces of m on J(m).

Observe that for the orientation v = € (8 € R) and traces m* = ¢ (**+9) with § € [—7, 7) be
the ”wall angle” of the jump of m at some point « € J(m), the entropy production density can be
written as a convolution formula via (1.7):

[@(mT) —®(m7)]-v = (Axsing)(B), BeR, (1.10)

where
dng() — | sE(@sing for |8l <ol
o 0 for |8 > |6].

Remark 2 The proof of Propositions 2 and 3 strongly relies on the structure of lifting of vector
fields m € BV (Q,S') (resp. m € W/PP(Q, S')) and an appropriate chain rule. More precisely,
if m € BV(Q,S'), then there exists a lifting © € BV(Q,R) such that m = €© a.e. in Q (see
e.g. [29], [12], [17], [34]). While if m € W/PP(Q,S') with p > 1, then one can find a lifting
O = ©; + 0y of m with ©; € W'/PP 0y € SBV and ¢'©2 ¢ WY/PP q W (see [11], [57], [56]).
Recall that SBV(Q,R%) is the subspace of vector fields m € BV (€2, R%) whose differential Dm
has vanishing Cantor part Dm (i.e., D°m = 0 as a measure in Q).

As shown in [40], these properties can be extended for nonsmooth entropies. Moreover, there
is a special class of BV entropies that play an important role in the following: for each & € S*, we
call ”elementary entropies” the maps ®¢ : S — R? given by

13 for z-£ >0,
PE(2) := 1.11
(=) {0 for z-£<0. ( )

Although ®¢ is not a smooth entropy (in fact, ®¢ has a jump at the points +£+ € S1), the equality
(1.5) trivially holds in D’(S!). Moreover, as shown in [25], there exists a sequence of smooth
entropies {®x} C ENT such that {®,} is uniformly bounded and limy ®(2) = ®¢(z) for every
z € 81 (this approximation result follows via (1.6)).

1.2 The space W,/"?(Q2,5'). Vortices. 2

The aim of this section consists in the study of vector fields (1.1) of critical regularity m € Wwli/pp
that insures avoidance of line-singularities. In this case, we expect that such vector fields m present
vortex singular points. The main feature of these vector fields resides in a kinetic formulation. It
comes via Propositions 2 and 3 when writing the entropy production for the ”elementary entropies”
¢ = Y (see (1.11)). We succeed to prove the following kinetic formulation for W;i/f P(Q, S1) with
p € [1,2] and we conjecture that it still holds for p > 2.

2All the results appearing in this section are part of the articles of the author [37, 33]. Therefore, we don’t specify
in the following these references for each result.
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Proposition 4 (Kinetic formulation) Let m € W;i/f’p(Q, S1) with p € [1,2]. For every direc-
tion £ € S, we define x(+,€) : 2 — {0,1} (resp. x(-,&): St — {0,1}) by

1 for m(x)-& >0,

x(@,§) = x(m(z),§) = {0 for m(ﬂﬂ) £ <0.

Then the following kinetic equation holds for every & € S':

£-Vx(,E) =0 in D(Q). (1.12)

XXk /

%=0

Figure 1.3: Characteristics of m.

Here, x corresponds to the concept of characteristic of a weak solution m satisfying (1.1).
Indeed, if m is smooth around a point 2 € €, then the characteristic of m at x (by means of
the eikonal equation (1.3) with m = V+¢ around ) is given by X (t,2) = m*(X (t,z)) with the
initial condition X (0, x) = x; then the orbit { X (¢, )}, is a straight line (i.e., X (¢,z) = z +tm*(z)
for ¢ in some interval around 0) along which m is perpendicular and constant. Therefore, in the
direction & := m*(z), either Vx(-, ) locally vanishes (if m is constant in a neighborhood of x), or
it concentrates on {X (t,z)}; and is oriented by ¢+ (see Figure 1.3). The knowledge of x(-, &) in
every direction ¢ € S! determines completely the vector field m due to the straightforward formula

m(x) = %/Sl Ex(z,€)dE  forae xe€Q. (1.13)

Remark 3 Classical kinetic averaging lemma (see e.g. Golse-Lions-Perthame-Sentis [31]) shows
that a measurable vector-field m : Q — S1 satisfying (1.12) belongs to Hllo/f (due to (1.13)). This
property can be read as the inverse of Proposition 4 for the case m € H'/2(Q, S1).

1.2.1 Regularity results
The first goal is to prove the following regularity result:

Theorem 1 If m € Wd%p’p(ﬂ, S1) with p € [1,2] then m is locally Lipschitz continuous inside

Q except at a locally finite number of singular points. Moreover, every singular point P of m
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corresponds to a vortex singularity of degree 1 of m, i.e., there exists a sign o = +1 such that

(z —P)*

| P] for every x # P in any convex neighborhood of P in ().
T —

m(z) =«
In particular, if m € H}. (2, S') then m is locally Lipschitz.

Remark 4 The above result was proved by Jabin-Otto-Perthame [45] in the particular case of
zero-energy states of a line-energy Ginzburg-Landau model. More precisely, for € > 0, one defines
the functional E. : H*(,R?) — R, by

1 1
Beme) == [ [Vmefdot 2 [ (= mePRdot 2|V molos), me € HQR?)
Q Q

(we refer to [2, 6, 48, 25, 46, 66, 45] for the analysis of this model). A vector field m :  — R? is
called zero-energy state if there exists a family {m. € H*(Q, R?)}._ satisfying

me —m in L'(Q) and FE.(m.) —0 ase—0.

Then m satisfies (1.1). Moreover, it is proved in [45] that a zero-energy state satisfies the kinetic
formulation (1.12) and furthermore, m shares the structure in Theorem 1. Therefore, the proof of
Theorem 1 strongly relies on [45] and Proposition 4 (via Proposition 2).

As consequence of Theorem 1, one has for p € [1,2]:

{m € Wllép’p(Q,RQ) . m satisfies (1.1)} = {m € H/*(Q,R?) : m satisfies (1.1)}.

o loc

Let us now discuss the optimality of the result in Theorem 1: Firstly, observe that Lipschitz
regularity cannot be improved.

Proposition 5 There exist Lipschitz vector fields m : Q — R? that satisfy (1.1) and are not C!
in Q.

In general, a vector field m € Wd%p P(Q, S1) with p € [1,2] (without interior vortex singularities)

is only locally Lipschitz, and not necessary globally Lipschitz in 2. This is the case of a ”boundary
(z=P)*
|z —P]

the domain 2 has a cusp in P € 02, the "boundary vortex” vector field could belong even to

vortex” vector field, e.g., m(z) = for every x € ) where P is some point on 9. If
H'(Q,R?); moreover, there even exist convex domains 2 and m € H;iv (€2, 81) such that m is not
globally Lipschitz in 2.

The geometry of Q influences the number of vortex singularities of W'/PP-vector fields satisfying
(1.1). For example, if Q is convex, then every vector field m € Wdlzéjp’p(Q, S1) with p € [1,2] is

£
either a ”vortex” vector field (i.e., m(z) = £ (T;f?' for every x € Q where P is some point in ),

or locally Lipschitz (i.e. no interior vortex); therefore, convex domains do not allow for more than
one interior vortex. However, we prove that there are nonconvex domains where configurations

with arbitrary number of vortices do exist.

Proposition 6 There exist an open simply-connected nonconver piecewise Lipschitz domain €2 and
a vector field m € Wdli’g(ﬂ, S1) for every q € [1,2) that has infinitely many vortices { Py, P, .. .}.
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Observe that VVllocq(Q, s c V[/llo/cp’p(Q, S1) for ¢ > 1 and p > 1, and the embedding fails for
q = 1. Also notice that configurations with infinitely many (interior) vortices can occur ounly in a
non-Lipschitz domain ; indeed, if 9Q is Lipschitz, then a configuration m € W;i/vp P(Q, S1) with
p € [1,2] has only a finite number of interior vortex singularities.
We address the following open problem:

Open Problem 1 Does Theorem 1 hold in the case m € W;i/f’p(Q, S1) with p > 27

A positive answer is equivalent to proving Proposition 2 for m € Wd%p P(Q, 81) with p > 2 which
would yield the kinetic formulation (1.12) for such m. However, standard chain rule does not
allow to conclude that for p > 2. A natural question concerns higher dimensions d > 3 in the
same context of the eikonal equation. We mention that the above technics seem to be typical
for the two-dimensional case and do not adapt to the case d > 3. Indeed, if d = 3, the system
of scalar conservation laws associated to (1.3) admits only the trivial entropies. Moreover, the
regularity result in Theorem 1 is based on a certain order relation between the characteristics of

m. Obviously, such an order relation does not exist in higher dimensions. We conjecture the
following for dimension d = 3:

Open Problem 2 Let Q C R? be a bounded open set and v € HY(Q, S?) be a gradient field, i.e.,

v = V¢ with (1.3). Is it true that v is locally Lipschitz continuous inside Q) except at a locally

(‘i:;) in any convex neighborhood of a vortex

finite number of vortex singularities of v and v(z) = «

point P in Q with a sign o = 17

1.2.2 Density results

The second goal of the section is to present approximation results for the class of vector fields
Wd%p P(Q,8) with p € [1,2]: our subsets are formed either by divergence-free vector fields that
are smooth except at a finite number of points and the approximation result holds in the W1/P-»-
topology, or by everywhere smooth S'-valued vector fields (not necessarily divergence-free) and
the approximation result holds in a weaker topology. We start by extending Bethuel-Zheng’s
density result (see [8]) for W11(Q, S1) vector fields, respectively Riviere’s density result (see [65])
for H/2(Q, S') vector fields to the case of divergence-free vector fields:

Theorem 2 Let ) be a Lipschitz bounded simply-connected domain and m € Wd%p’p(ﬂ, S1) with
p €[1,2]. Then m has a finite number N > 0 of vortices {P1, ..., Pn} and m can be approzimated
in W29(Q) (for any q € [1,2)) by divergence-free vector fields my € C°(Q\{Py,..., Py}, S") that

are smooth except at the N wvortex points of m. In particular, if m € H}. (Q,S'), the sequence

{m} can be chosen to be smooth everywhere in Q and the approzimation result holds in H}. ().

In various applications (see e.g. Remark 5 below), we need to approximate vector fields m
(with the structure given in Theorem 1) by H'(, S') vector fields. But H'(Q, S*)-vector fields
cannot allow for vortices. Therefore, an approximation result by everywhere smooth S'-valued
vector fields is needed in some weaker topology than in Theorem 2. What is the optimal weak
topology where such a density result holds? The following result shows that L'—topology is too
strong for having density of smooth vector fields of vanishing divergence and values in S*.
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Proposition 7 Let m : B> — S! be the vortex configuration m(x) = % in the unit disc B.
Then there exists no sequence of vector fields my, € C3, (2, S) such that my — m a.e. in B* as
k — oo.

We now generalize this property: the density result still fails if we relax the divergence-free
constraint on the approximated smooth vector fields, but we impose this restriction in the limit in
L' —topology (or H~* weak topology for some s € [0, %))

Proposition 8 Let m : B> — S be the vortex configuration m(z) = % in B2. Then there exists
no sequence of vector fields my, € C=(Q, S*) such that my — m a.e. in B? as k — oo and one of

the following two conditions holds:
a) V-my—0in LY(B?);

b)  V-my — 0 weakly in H=*(B?) for some s € [0, 3).

Finally, we prove an approximation result in L'—topology by smooth vector fields with values
in S! (not necessary divergence-free), but the divergence-free constraint holds in the limit in the
H~'/2 topology. This topology is optimal (due Proposition 8 b)).

Theorem 3 Let 2 be a Lipschitz bounded simply-connected domain and m € Wd%p’p(ﬂ, S1) with
p € [1,2]. Then there exists a sequence of vector fields my, € C*(2, S) such that my — m a.e. in
Q and (V- mp)lg — 0 in H-/2(R?) as k — oc.

Remark 5 The motivation of Theorem 3 comes from thin-film micromagnetics. The following 2D
energy (see [22]) is considered as an approximation of the 3D micromagnetic model in a thin-film
regime: for & > 0, one defines the functional E. : H*(Q,S') — Ry by

E.(m.) = 5/ |Vm|? dz + ||(V - m8)19|\%71/2(R2), m. € H'(Q,S").
Q

This model was analyzed in [20], [43], [38]. In particular, it is proved in [38] that a vortex configu-

ration m(z) = % in B? is a zero-energy state, i.e., there exists a family {m.} Cc H*(B?,S!) such
that m. — m a.e. in B? and E‘E(ms) — 0 as € — 0. The role of Theorem 3 is to generalize this

approximation result for every vector field m € W/PP (with p € [1,2]) satisfying (1.1).

1.3 The BV case. Line energies. *

The topic of this section concerns vector fields m satisfying (1.1) that present line-singularities.
The context is the following: Let Q C R? be a bounded domain with piecewise Lipschitz boundary
that is oriented by the outer unit normal vector n. We start by addressing the following conjecture
concerning the regularity of vector fields m € BV, (22, S 1): the measure Dm doesn’t concentrate
on sets of Hausdorff dimension d € (1,2).

3All the results appearing in this section are part of the article Ignat-Merlet [40]. Therefore, we don’t specify in
the following this reference for each result.
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Open Problem 3 Is it true that every m € BV, (Q, S1) satisfies m € SBV ?

This question is related with a recent work of Bianchini-DeLellis-Robyr [9]: they show that the
viscosity solution ¥ of a Hamilton-Jacobi equation H(V) = 0 in Q (with a uniformly convex
hamiltonian H) satisfies Vi) € SBV. Open Problem 3 asks whether for the particular case of
the eikonal equation (1.3), the result in [9] still holds when replacing the assumption of viscosity
solution with the hypothesis of a general solution ¥ of (1.3) with Vi € BV.

In the following, we focus on line-energies, i.e., energy functionals that concentrate on the jump
set of m € BVy;, (22, 81):

Ti(m) = /J( =

We only consider energy densities that depend on the jump size |m™ — m™| via a cost function
f:[0,2] — R4 which satisfies f(0) = 0 and is assumed to be lower semicontinuous. Notice that if
6(x) is the ”wall angle” of the jump of m at x € J(m), then |m™(z) — m™(z)| = 2|sinf(x)|. Since
m is of vanishing divergence, the trace of the normal component m - n is well defined on 02 and
we will consider the minimization problem in the subset

So(Q) = {m € BVgiy(,S") : m-n=0on o0}

(see Figure 1.2).

Our problem can be equivalently interpreted in terms of the stream function ¢ : & — R
associated to m = V+¢ € Sy(Q). Then the above variational principle turns in analyzing the
following energy functional

| 1wy = v pare (1.14)
J(V)
over the set of solutions of the Dirichlet problem associated to the eikonal equation

V)| =1in Q and ¢ =0 on 9.

The method of characteristics shows that for a simply-connected bounded domain there is no
smooth solution of the eikonal equation |Vi| = 1 in Q satisfying the constaint ¢y = 0 on 9f).
Typical singularities are jump discontinuities of Vi) (equivalently of m) through line-singularities

or vortices.

1.3.1 Motivation

Line-energy functionals Zy appear as natural candidates for the asymptotic energy of family of
singularly perturbed functionals {G.}¢|o,

1
Getme) = [ 1Vmap+ 2 [ g1 mcP)), (1.15)

defined for m. € H'(Q, R?) satisfying the constraints V- m. = 0 in 2. One can eventually impose
a boundary condition m. - n = 0 on 9. Here, € > 0 is a small parameter and g : Ry — Ry
is some lower semicontinuous function such that g(0) = 0 and g(¢) > 0 for ¢ > 0. Variational
models (1.15) arise in several physical applications such as smectic liquid crystals, film blisters or
convective pattern formation (see e.g. [4], [62], [48], [41]).
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Observe that the vector fields m. in (1.15) are not S'-valued but their distance to S! is penalized
by the second term of G.. As ¢ tends to 0, we expect that families {m.} of uniformly bounded
energies (1.15) will converge (up to extraction and in a certain topology, see below) to some limit
mo satisfying (1.1).

A natural question arises: if Z; is indeed the asymptotic energy of {G.} as ¢ — 0, what is the
relation between the energy density f and the function g? The ansatz consists in reducing the 2D
variational problem to a 1D asymptotic analysis: Assume that mg is of bounded variation and
satisfies (1.1), i.e., mg € BVain(Q,S'). We also assume that at level ¢ > 0 the energy Ge(m.)
concentrates on 1D transition layers of length scale € through the line-singularities of mg. With
the above notation, let xg be a jump point of mg, 6y be the ”wall angle” defining the jump mg(aco)
and vy be the orientation of the jump set at zy (see Figure 1.4). At level € > 0, a 1D transition
layer in the direction vy has the form

me (o + trg) = cosbovg + u(t/e)vy,

where v : R — R is the rescaled profile of the tangential component of the layer satisfying

+ . . .
u(s) 1% 4 gin fo. (Observe that a divergence-free 1D transition layer has a constant normal

component.) Using this ansatz, we obtain that the limit energy is given by Zy with the cost

s my
A0 e = o

1D analysis

Figure 1.4: 1D ansatz : A line-singularity of a limit configuration mo (left picture) is regularized by a
smooth 1D transition layer at the level € > 0 connecting two limit states mZ (middle picture). The full
transition occurs in the normal direction 1 as represented in the right picture.

function computed as follows:

2sinfpy|) = mi
f(]2sin b)) mln{/R<
sin 6
= 4/0 \/g(sin® By — u2) du, 6y € [0, g], (1.16)

which yields the connection between f and g. In particular, every power function f(t) = P

du

2
d—(s) +g(|sin290u2(s)|)> ds : u:R — R, u =1 :I:sin@o}
s

corresponds to g(t) = ct?~! in (1.16) where the constant ¢ = ¢(p) depends only on p.

For g(t) = t?, the above ansatz is known to be relevant. The corresponding functional (1.15) has
been introduced by Aviles and Giga [4] and we will explain in Section 1.4 why Zy with f(¢) = ¢3/3
(given by (1.16)) is indeed the asymptotic energy of {G.} (in the sense of I'—convergence in the
strong L!—topology). However, let us stress that for a general function g, the above 1D ansatz
may be wrong. Indeed, in some cases, it is possible to decrease strictly the energy by substituting
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2D mesoscopic structures for 1D transition layers. In these cases, the 1D asymptotic energy Zy
(with f given by (1.16)) does not match the 2D T-limit energy of (1.15). Such counterexamples are
obtained with non lower semicontinuous functionals Z; (see Definition 2 below). Indeed, a I'-limit
functional over a metric space (which is the space L! in our case) must be lower semicontinuous
with respect to the induced topology. A first counterexample is given in [2]: it is shown that
power functions f(¢t) = t” lead to non lower semicontinuous functional Zy for p > 3. A second
counterexample is described in [1]: the cost function fars(2sinf) = sinf—~0cosf for 0 <0 < /2
(stemmed from the energy of 1D transition layers associated to a particular asymptotics of the
micromagnetic energy). It turns out that Zy, .. is not lower semicontinuous. In both cases it is
possible to build a 2D mesoscopic structure with length-scale n < 1 between two limit states m™
and m™ with an energetic cost strictly smaller than the cost of a direct 1D jump. An example of
such 2D structure is described in [1] (see Figure 1.5) and stands for the cross-tie wall pattern in

micromagnetics.

Figure 1.5: A cross tie wall. As | 0, the 2D microstructure tends to a jump configuration (m~,m") in
direction v and has less energy than the initial cost fars(2) corresponding to the 1D jump m? of angle
0 =90°.

1.3.2 Lower semicontinuity

As explained above, lower semicontinuity implies the optimality of the 1D structure, i.e. it is not
possible to decrease the energy of a (direct) jump by constructing 2D mesoscopic structures. So it
is important to characterize cost functions f such that the line-energy Z; is lower semicontinuous
in a relevant functional space. In general, the weak BV -topology is too strong for this aim; due to
applications (see Section 1.4), it is natural to weaken the regularity by using the topology of L.
Of course, in order for the constraint |mg| = 1 to be stable under convergence, we need to use the
strong L!-topology. Then, let us extend the functional Z; in L'(2, R?) by +o0, i.e.,

Zi(m) =4oo if me LYQ,R?)\ BVain(Q,Sh),
and let us introduce the relaxed functional I_f , i.e., the lower semicontinuous envelope of 7 with

respect to the strong L'-topology: Z; : L'(2, R?) — R U {400} is defined as

Z;(m) = inf { liminf Z¢(my) : mi — m strongly in Ll}, vm € L', R?).

k—oo
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Obviously, Z; < Z; and all configurations of finite relaxed energy Z;(m) < +oo belong to
L) ={mec L' (QR?* :|m=1and V-m=0 in Q}

which is a closed set in L'. Recall that the normal component of m € £(2) at the boundary 9
is well defined. In particular,

Lo(Q)={meL(Q) :m-n=0 on 00} (1.17)
is a closed subset of L(€2).

Definition 2 We say that the line-energy Iy : L*(Q, R?) — R U {400} is lower semicontinuous
(l.s.c.) if Tr(m) = I_f(m) for every m € BVy;, (2, S1).

Remark 6 The above definition is weaker than asking for Z; to be lower semicontinuous in L!
(ie. Z; = Zy in L'(Q, R?)). Indeed, for the Aviles-Giga model with cubic jump costs, it is proved
in [2] that Z, s (m) = Ty (m) for every m € BV, (2, S') (so, Ty is lower semicontinuous
after Definition 2), but one can construct a limit configuration mg € L'\ BV with finite relaxed
energy Z; .;3(mg) < +00 = I;,_43(mg). The crucial point in the construction of mg relies on the
cubic cost of small jumps of mg in Z; ;s that cannot control the linear cost of the jump part of
Dmy. Therefore, finite limit energy configurations mgy do not belong in general to BV'; however,
mg always shares the structure of BV functions, in particular, an equivalent notion of jump set
can be defined for mg (see [19]).

A first result states the following necessary condition: in order for the line-energy functional
Z¢ to be lower semicontinuous, the cost function f should be also lower semicontinuous.

Proposition 9 Let f:[0,2] — Ry be a measurable function. If Iy is lower semicontinuous, then

[ is lower semicontinuous on [0, 2].

Recall that Aviles and Giga [6] proved that Z;, . is lower semicontinuous and afterwards,
Ambrosio, De Lellis and Mantegazza [2] established that Z; is not lower semicontinuous for power
cost functions f(t) =t with p > 3. We address the following question raised in [2].

Conjecture 1 Z; is lower semicontinuous for power cost functions f(t) =" if 1 <p < 3.

First of all, we give a partial positive answer to this question: the behavior as a power function
tP for 1 < p < 3 at the origin ¢ = 0 is natural for appropriate cost function.

Theorem 4 For every p € [1,3], there exists an appropriate cost function f : [0,2] — Ry such
that f(t) = t? for t € [0,/2] and Iy is lower semicontinuous.

We mention that our method doesn’t work for p < 1, therefore we don’t know if the condition
p > 1 is a necessary condition in Conjecture 1.

Next, we will establish a positive answer to Conjecture 1 for p = 2. Our interest for this case
has a physical motivation, associated with the study of the energetic behavior of Bloch walls in

micromagnetics as we will explain in Section 1.4.
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Theorem 5 If f(t) = t2, then Iy is lower semicontinuous.

In fact the quadratic cost function stated in Theorem 5 is a particular case of a large family
of cost functions that we will introduce via entropies in Section 1.3.3 and which induce lower

semicontinuous line-energies.

1.3.3 Cost functions

The concept of entropies introduced in Section 1.1 reveals to be fundamental for cost functions f
leading to l.s.c. functionals Zy. More precisely, we will associate an appropriate cost function to
every subset of entropies S C ENT:

Definition 3 For a subset S C ENT, we define the cost function cg : [0,2] — Ry by
cs(t) == sup{[®(zT)—®(z7)]-v: €S, (27,2 ,v)eT, 27 —27|=t},
where T defines the set of admissible jump discontinuities:

T = {(z",z",v)e (8" : (z"—27)-v=0}.

Remark 7 The set 7 is motivated by the structure of jump discontinuities of divergence-free
vector fields m € BV, (2, S1). Indeed, one has (m* —m™) - v = 0 H'-a.e. on the jump set J(m)
oriented by the normal v with the traces m* € L>(J(m), S'). The cost function cg is nonnegative
since one can switch from v to —v so that [®(21) — ®(27)] - v > 0.

Observe that these cost functions depend only on the jump size. To be consistent with this isotropic
property, we will impose the following geometric constraints on our sets of entropies.

Definition 4 A subset S C ENT is symmetric if S = —5S and it is said to be equivariant if
R™I1SR =S for every rotation R € SO(2). For any subset of entropies S C ENT, we will denote
by

(S) == {£+R'®R: ® € S, R€ SO(2)},

the smallest symmetric and equivariant subset of entropies which contains S.

In terms of the bijective correspondence ¢ — @ given by(1.6), the notion of equivariance of S
is equivalent to having the set {p € Cp¢,.(R) : ® € S} invariant by translations. For proving that
7z

s 1s lower semicontinuous for nonempty symmetric equivariant subsets S C ENT, we introduce

the following functionals (inspired by (1.9)) which generalize Theorem 2.1 in [6].

Definition 5 Let S C ENT. We define £s : L'(Q,R?) — R by

n

Es(m) = sup {Z(;L(pi(m),ozi} :n >0, (P5,0;) TS xCF(Q,RY), Zai < 1} if m e L(Q);

i=1 i=1

otherwise, we set Es(m) = +oo for m € L1 (Q,R?) \ L().
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As a supremum of continuous functionals over L', this new energy &g is lower semicontinuous with
respect to the strong L' topology. In the above definition we use a partition of unity to localize
the entropy production. In particular, in the neighborhood of a jump discontinuity = € J(m) of
m € BV, (Q,S1), we can choose a sequence of entropies maximizing the local entropy production
as in the definition of cg(|m™ (x) —m™(z)]). Using this property, we prove that £g coincides with
T.s on BVy;, (92, 81):

Theorem 6 Let S C ENT be nonempty, symmetric and equivariant. For everym € BV, (22, S1),
we have

Es(m) = Too(m) = Tox(m).

In particular, I, is lower semicontinuous and Es < I, in L'(Q, R?).

We deduce that the class of cost functions in Definition 3 leads to lower semicontinuous line-
energy functionals. Finally, for proving Theorems 4 and 5 we will construct a subset S C ENT so
that f = cg. Let us give some examples. The simplest case is given by sets S = (®) generated by
a single entropy ® € ENT. If A(0) = £ ®(2)- 2" (as in (1.7)), then the combination of (1.10) and
Definition 3 leads to

cpy(2sin3) = sup [Axsingl(z), B€[0,7/2]. (1.18)
z€[0,27]

We obtained a criteria depending on A that computes the supremum in (1.18): if X is an odd

m-periodic function and its restriction to (0,7/2) is convex and even with respect to 7, then the

supremum in (1.18) is achieved at x = 0 so that

B
cay(2sinf) = —2 /0 () sin(6) do.

In particular, this criteria leads to the cost functions mentioned in Examples 1 and 2 below,
corresponding to the Aviles-Giga and ”cross-tie wall” models.

Example 1 (Aviles-Giga cost function) There exists a subset S; = ({®1}) C ENT generated by
one entropy ®1(z) = 3(23, 2}) for z € St (i.e., A1 (f) = —65sin(20) in (1.7)) such that cg, () = ¢3/3
for t € [0, 2].

Example 2 (“Cross-tie wall” cost function) There exists a subset So = ({®2}) C ENT generated
by one entropy ®; € C11(S1 R?) (i.e., A2 in (1.7) is a m—periodic odd function given by A2(6) =
|0 —Z| — % on (0,7/2)) such that

sinf — 6 cos if0<6<m/4,

cs,(2sinf) = T

1 \/_—<§—9> cosf —sinf ifr/4<0<7/2

For these examples, the corresponding entropies have been introduced in [48] and [1] respectively.
Obviously, not all appropriate cost functions can be associated to subsets of entropies generated
by only one entropy. For example, if cg(t) = t? for every t € [0,2], we are compelled to construct
a subset S generated by an infinite family of entropies.
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Conjecture 2 Is it true that every lower semicontinuous line-energy 7 has the form Z., for some
subset of entropies S C ENT?

Remark 8 One can address problem (1.14) for higher dimensions N > 3. In this case, DeLellis
proved in [18] that the power function f(¢) = ¢ (in the Aviles-Giga model) does not lead anymore
to a lower semicontinuous hypersurface-energy as in the two-dimensional case. The microscopic
structure breaking the one-dimensional ansatz considered in [18] can be adapted to other power
functions f(t) = tP. Also we highlight the fact that our approach for treating lower semicontinuous
line-energies via entropy method cannot be extended to hypersurface-energy functionals if N > 3.
Indeed, for N = 3, standard computations show that the only entropies associated to the system
of conservation laws generated by

v:QCR*—-R? |of=1 and Vxv=0 inQ

are the trivial entropies.

1.3.4 Existence of minimizers for relaxed line-energies

Now we deal with a second issue: the existence of minimizers of the relaxed energy functional Z
under certain boundary conditions. (Without imposed boundary conditions, the problem is trivial,
I_f has vanishing minimal value and every constant unit vector field is a minimizer.) We impose
the following boundary condition m - n = 0 on 0f2 to our configurations m, so we are looking
for minimizers in L£o(2) (see (1.17)). Suppose that the cost function f is equal to cg for some
subset S C ENT. Then the relative compactness in L' of the sublevel sets of I_f would imply the
existence of minimizers of the relaxed functional Zy in £o(£2). For that, one should be able to rule
out oscillations for configurations of uniformly bounded energy. It turns out that this statement
holds true if the symmetric and equivariant set,

Sy :={®€ ENT : [®(z")—@(=")]-v < f(lzt —27|), V(z7,2T,v) € T},

composed of the admissible entropies associated with f, is large enough. More precisely, we will
obtain compactness if
t*<f@t) in o [0,2] (1.19)

(see Theorem 7 below) which means in fact that up to multiplicative constants, Sy coincides with
ENT,ie., RSy =ENT.

Remark 9 Note that cs, < f in [0,2] and Sy is the maximal subset of ENT such that this
inequality holds.

Theorem 7 Let f be a cost function such that i%lf | % >0 andcs, = f. Then Iy (respectively,
te(0,2

Es;) admits at least one minimizer over Lo(S2).
It means that a minimizer m € Lo(2) of Z; can be written as a limit of a sequence {my} in Sp(2)

such that Zy(m) = limg Zy(my). However, we do not know whether these minimizers m belong to
So(€2), in other words, we do not know if Z; admits a minimizer over Sy(12).
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Remark 10 The existence result in Theorem 7 is still valid if we replace Lo (£2) by any closed subset
of £(£2). But this does not cover the case of general Dirichlet boundary conditions. However, the
following strategy can be adopted for Dirichlet boundary condition m = wupg on 092. If we can
extend upg : O — S! as a divergence-free vector field u € BV (0, S!) for some smooth open
set O D , then the argument in Theorem 7 shows the existence of minimizers of the functional
F(m) :=Z;(m;0) —Z;(u; 0\ Q) in the closed set

{me L(O) : m=wuae in O\ Q}.

Observe that finite energy configurations F(m) < oo satisfy m € BV(0,SY), m-n = upg - n
Hl—a.e. on 9N (since m is of vanishing divergence) and the jump of the tangential component
]

[m - n+] on 99 is penalized through F(m) by the boundary term:

f(m* —m~]) dr’,
o0
where m™ denote the inner and outer traces of m on 9§ with respect to n (here, m* = upq on
09). The minimizing problem does not depend on the extended domain O or on the extension
vector field u.

1.3.5 Viscosity solution

We are also interested in the minimization problem under the more restrictive boundary condition
m = n+ on Q. This condition makes sense for m € BV and defines a new subset of Sy({2):

S1(Q) = {meSQ) : m =n’ on 00} .

For configurations in this set, no change of orientation is allowed along the boundary. The moti-
vation comes from micromagnetics where the boundary vortices are strongly penalized in certain
asymptotic regimes (see Section 2.1.2).

The natural question in this context is whether the minimizer of Z; over 1 () exists and is
associated to the viscosity solution of the Dirichlet problem for the eikonal equation, i.e., letting
1. be the distance function to the boundary

. = dist (x, 09),
we will always denote the corresponding map in S, (Q2) by
my = V>,

We will still call m, the viscosity solution on © (or Landau state in micromagnetic jargon). In
relation with (1.14), this amounts to considering stream functions 1 satisfying m = V+i €
BV (€, S1) and the boundary conditions ¢ = 0 and g—i = —1 H'—a.e on 0.

In [48], Jin and Kohn suggested that when the domain €2 is convex, the viscosity solution
minimizes Ty in S, (Q) for f(t) = t?, 1 < p < 3. The result is proved for p = 3 when 2 is an
ellipse in [48]. For p =1 and if Q a convex polygon, it is proved in [5] that m, minimizes Zy over
the set {m € §,(Q) : Vm is piecewise constant}. We first give a positive answer in the case of a
stadium domain €2 and general appropriate cost functions:
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Figure 1.6: Stadium shaped domain and the corresponding viscosity solution.

Theorem 8 Let S C ENT be nonempty, symmetric and equivariant. We consider the stadium-
shaped domain Q (see Figure 1.6)

= (7La L) X (715 1) U B((va 0)5 1) U B((La 0)7 1)5
for some L > 0. Then the viscosity solution m, minimizes L., over S1 ().

We also prove positive results for some other special domains non necessarily convex (in par-
ticular, ellipse and union of two discs) and some special appropriate cost functions.

For nonconvex domains, it is proved in [5] that for power cost functions f(t) = t? with p < 4/3,
there exists a nonconvex polygonal domain € such that m. does not minimize Z; over S ().
Moreover, the same counterexamples indicate that for every power cost function with p > 0, m.
does not minimize Zy in Sy(£2). In [48], the authors exhibit a nonconvex Lipschitz domain (a union
of two intersecting discs) such that m, is not a minimizer of Zy in S, () for every f(t) = t” with
p # 3 ; in the case f(t) = t3, m, is a minimizer of Z¢, but it is not unique. It was conjectured
in [48] that for some other nonconvex domains, m, is not a minimizer of Z;_,;s. In the following,
we prove this conjecture. In fact, we show a more general fact: there exists a nonconvex domain

such that for any fixed positive cost function f, the viscosity solution is not optimal in S, (Q2).

Theorem 9 There exists a nonconver piecewise Lipschitz domain Q such that the viscosity solution

is not a minimizer of Iy over S1 () for every lower semicontinuous function f : [0,2] — R such

that [ f(t)dt > 0.

Figure 1.7: The configuration m (left) is given by ”vortex” vector fields centered at Py, k =1...4. It has
less energy Ty than the viscosity solution m. (right).
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The above domain € (a union of four discs and a square) is non smooth, but universal for every
positive cost function f. Moreover, by slightly modifying the boundary of 2, we can show that the
result is not restricted to nonsmooth domains. However, the modified smooth domain is no longer
universal with respect to the cost function.

Theorem 10 For every bounded lower semicontinuous function f : [0,2] — R4 such that f\2/§ f@t)dt >
0, there exists a nonconvex C11 domain ) such that the viscosity solution is not a minimizer of
Iy over §1(Q).

1.4 Generalized entropies

In the previous section we characterized lower-semicontinuous line-energies Zy. For such a line-
energy, one may wonder whether Z; is indeed the I'-limit of functionals (1.15) (or of some per-
turbation functional of (1.15)). If this is the case, how entropies can be used in proving the
I'—convergence program (in order to have compactness and lower bounds)?

1.4.1 Compactness

We focus here on the first step in the method of I'—convergence, i.e. the compactness issue for
functionals G in (1.15):

Claim 1 Any family {m.}.j0 C H}, (Q,R?) of uniformly bounded energy G.(m.) < C is rela-
tively compact in L!() and any limit configuration mg satisfies (1.1).

We will assume here the following hypothesis:
g(t) > Ct?,  for every t >0, (1.20)

where C' > 0 denotes a generic constant. This assumption is motivated by the following. We want
that the energy G. asymptotically concentrates on line-energies Z; as ¢ — 0; as discussed in the
previous section (see (1.19)), the lower semicontinuity of Z; is related to the condition f(t) > Ct?
(so that RSy = ENT') and in this case, the 1D ansatz (1.16) suggests (1.20).

Under the assumption (1.20), the compactness issue reduces to the case g(t) = t? in (1.15),
known as the Aviles-Giga model. It is in fact a Ginzburg-Landau model for gradient fields and
appears either in solid mechanics, liquid crystals or in micromagnetics (see [13, 32]). It gave rise
to a series of articles [48, 6, 2, 25, 16, 64] that justify that Z; with f(¢) = t*/3 (given by (1.16)) is
indeed the asymptotic energy of {G.} in the sense of I'—convergence under the strong L!—topology.

In particular, Claim 1 was proved by Ambrosio, De Lellis and Mantegazza [2] and DeSimone,
Kohn, Miiller and Otto [25]. The entropy method comes out to be fruitful in this matter, too. We
explain here the ideas in [25]. Since the vector fields m. are no longer of values in S*, the strategy
used in [25] consists in firstly extending the notion of entropies to maps defined in the whole space
R2:

Definition 6 (DKMO [25]) We will say that ® € C*°(R? R?) is a DK MO—entropy if

®(0) =0, DP(0) =0 and (1.5) holds for all z € R
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Let us discuss some properties of this extension: First of all, any entropy ® € ENT can be extended
at a DK M O-entropy by considering

B(2) = p(|z|)q>(i|) for every z € R2\ {0} (1.21)
z
where p € C2°(R4). A second property concerns the entropy production: For every DK M O—entropy
®, there exist ¥ € C°(R?, R?) and o € C§°(R? R) such that

D®(z) = —2U(2) ® z + az)Id for every z € R?;
consequently, for every m € H'(£2, R?), the entropy production is given by:
V- A{®(m)} —a(m)V-m=¥(m)-V(1 - |m|*) ae in Q (1.22)

(see [25]).

The main feature of DK M O-entropies with respect to Claim 1 is the following: For every
DK MO-—entropies ®, the family of entropy productions {V - ®(m.)}. o is asymptotically bounded
as measure for every family {m.}. 0 C Hj;, (€, R?) of uniformly bounded energy. In fact, integra-
tion of (1.22) yields (due to (1.20)):

e—0

lim sup ‘/ V- {@(ms)}g‘ < C9|[¢]loo limsup Ge(me), for every ¢ € C°(Q), (1.23)
Q e—0

where Cp = 2|V || .

On the one hand, this property yields Claim 1 by a nice combination of the theory of Young
measures and the div-curl lemma of Murat and Tartar (see e.g. [71, 60]) applied to families {®(m<)A
®(me)}ejo where @, @ € C°(R?,R?) are two arbitrary DK MO—entropies (see in [25]).

On the other hand, the entropy method also yields the structure of the limiting configurations
mo (that obviously satisfy (1.1)). First, observe that (1.23) implies that the entropy production
V - ®(myg) is a measure for every DK M O-entropy ®. Moreover, this property holds true for every
entropy ® € ENT (by (1.21)). De Lellis and Otto [19] characterized this class of vector fields mg
where the entropy production is a measure for every entropy. Essentially, every limiting configu-
ration mg shares some structure properties of maps of bounded variation BV (Q); in particular it
is possible to give a rigorous definition of the jump set J(mg) as a H!—rectifiable set so that Z¢
makes sense. (A similar result was independently obtained by Ambrosio, Kirchheim, Lecumberry
and Riviere [3] using the characterization of mg in terms of its phase 6y.) The main obstacle is
that limiting finite-energy configurations mg are not in BV as we already mentioned in Remark 6.
However, the situation is better if we focus on either zero-energy configurations (see Remark 4) or
dilation invariant configurations (see [30]).

1.4.2 Entropies for S2—valued vector fields *

In this section we will introduce a different extension of entropies ENT (than the DK M O—entropy)
that is adapted for solving the second issue in the I'—convergence program, i.e., to show that Iy
is a lower bound of (1.15). We treat this issue for slightly more general functionals E. g defined

4All the results appearing in this subsection are part of the article Ignat-Merlet [41]. Therefore, we don’t specify
in the following this reference for each result.
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for S%-vector fields m = (m/,m3) € HY(Q,S?) (with m’ = (m1,m2)) that are not necessarily
divergence-free, but the divergence V -m = V - m/ is penalized by the energy E. s:

1 1
E. g(m) :/ €|Vm|2+—g(m§)+—}|V|71V.m}2 dx,
Q £ B
where € > 0 and § > 0 are small parameters. We will always assume the following regime

B=p0cE)<xex1

and that (1.20) holds. (The opposite regime, i.e., ¢ < 8 < 1, entails different asymptotic behavior:
the energy E. s enforces m to take values into S' much stronger than satisfying the flux closure
condition. This situation is adapted for ” cross-tie” walls, see [1, 66, 67].) Notice that E. g controls
the functional G, in (1.15) (for divergence-free configurations): indeed, the second term coincides
for both functionals (since m3 . = 1 — [m.|?), while the first term in E. 3 controls the one in G,
since |Vm.| > |Vm.|. Moreover, the compactness issue discussed in the previous section is still
valid for uniformly bounded energy configurations E, g(m.) < C.

In order to obtain sharp lower bounds for E. g we introduce a class of generalized entropies @
for which the entropy production is controlled by the energy (with constant 1 comparing to (1.23))
up to a perturbation taking the form of a boundary term. More precisely, we systematically study
the particular class of Lipschitz continuous maps ® = (®1,®3) € Lip(S?, R?) and a € Lip(S?)
such that for every smooth m € C>(, 5?), the following holds:

1
V -A{®(m)} +a(m)V-m' < e|Vm|* + Eg(m%) + V- {a.(m)Vm} a.e. in , (1.24)

where £ > 0 is a small parameter and a.(x) is a linear operator mapping the tangent plane (7,52)?
into R?, for every x € S2. In the language of differential geometry, = — a.(z) is a section of the

vector bundle
B:={(z,a) : v€S5% ac L((T,5%)?*R?}

based on S? with fiber £(R* R?2). Using the natural differential structure, B is locally diffeo-
morphic to R? x £(R*, R?). With the induced topology, we will always assume that the section
x +— ac(x) is Lipschitz (in order that (1.24) makes sense). This notion of generalized entropy is
inspired by the work of Jin and Kohn [48] on the Aviles-Giga model. The choice of Lipschitz maps
is justified below by the study of Bloch walls where the limit line-energies have a quadratic cost in
the angle.

Let us first give the connection between generalized entropies for S2-valued vector fields and
the set of entropies ENT'. (The assumption (1.20) on g is essential here.)

Proposition 10 Let ® € Lip(S%,R?), a € Lip(S?) and a. be a Lipschitz section of B such
that (1.24) holds for every m € C>=(Q,S%). Then (1.5) holds in the sense that

d 1
@@(z) -z = 0, for almost every z € S*, (1.25)
where d%@(z) denotes the tangential derivative of the restriction (I)‘Sl on the horizontal circle
St = St x {0} c S%. Conversely, let ® € C*°(S?,R?) satisfying (1.5) and O, ® = 0 on S*
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(ms—symmetric entropies ®(m’,ms3) = ®(m’, —ms) do satisfy this condition). Then there exist a
constant C > 0 and o € C*°(S?) such that C® satisfies (1.24) with a. = 0 for everym € C>(Q, S?)
and every € > 0.

The above proposition justifies the name of generalized entropies. The differences with respect
to Definition 1 consist in defining our entropies on S? (which is the target manifold of our vector
fields m in this subsection) and in asking for ® to be only Lipschitz continuous. Observe that the
inequality (1.24) implies the following necessary pointwise bounds on generalized entropies (that
hold for every potential ¢ > 0 on R, so that (1.20) is not necessary here).

Lemma 1 Lete >0, (& = (®1,P2),a) € Lip(5?, R?) x Lip(S?) and a. be a Lipschitz section of
B such that (1.24) holds for every m € C*(2, S?). For every T € [—m, ), we set

v, = (—sinT,cos7,0) € S and U, :=v, &= —sinT P, +cosT Py € Lip(S?).

Then for almost every point m € S2, we have

|IDW,(m) + a(m)L,v,| < 24/g(m3), (1.26)

where DV ..(m) € T,,S? is the gradient of ¥, at m and I1,, denotes the orthogonal projection onto
T,,S2.

Let us now explain how the generalized entropies are used for proving lower bound for E; g
(under the condition (1.20)). Assume that E. g(m.) < C. As explained before, Claim 1 holds,
so we may assume that m. — mg in L'(Q) and mg satisfies (1.1). Moreover, using the DK MO-
entropies, we know that all entropy productions of mg are measures so that by [19] we can speak
about the jump set J(mg) of mg. The question is whether Z; is a lower bound (in the sense of
I'-convergence) of E. 3 where f and g are related by (1.16). To simplify the presentation, we focus
on the following periodic setting corresponding to a zoom around a jump point x € J(my) of wall
angle 6. More precisely, we consider the periodic strip

Q=R xR/Z
and we consider m € H} (2, 5%) with transitions imposed by the limit condition at infinity
lim m(x,) = m* = (cosf,+sinh,0) in L*(R/Z). (1.27)

The aim is to obtain the following lower bound: If § = ((¢) < ¢ <« 1, then

f(lmT™ —m™|) < limi%nfEe,ﬁ(ma). (1.28)
g
For that, we introduce the following notion of adapted triplet:

Definition 7 For 0 € (0,7), we will say that a triplet (® = (®1,®2),a) € Lip(S?*, R?) x Lip(S?)
is adapted to the jump (m~,m™) if
Oy (m") = @y (m7) = [2(mT) — @(m7)] - e1 = f(ImT —m7) (1.29)

and there exists eg > 0 such that for every 0 < e < g one can construct a Lipschitz section ae of
B for which (1.24) holds for every map m € C>(, S?).
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The existence of a triplet (& = (®1, ®2), ) satisfying (1.24) and (1.29) would solve (1.28). Indeed,
notice first that

Then integrating (1.24) on © and taking into account the boundary conditions (1.29), we would
deduce (1.28).

g
<Vl g o IVIam)]ll2 ) < IVale\/;Es,ﬁ(m)- (1.30)

Aviles-Giga model. Let us apply this theory to the case of the quadratic potential g(t) = t?
in the Aviles-Giga model. The following generalized entropy was used by Jin and Kohn [48].
The idea comes from the scalar conservation laws where the entropy production through shocks is
asymptotically cubic in the limit of small jumps. Therefore, smooth entropies seem to be adapted
for the energy G.. For that, let ® : R? — R? be the following smooth extension of the entropy
given in Example 1:

®(2) = (220(1 — 23) — §z§ L 221(1 — 23) — %zf),Vz € R2. (1.31)

(Notice that @ is not a DK MO—entropy.) Then setting a(z) = 42129 for z = (21, 22) € R?, one
checks that (1.24) holds for the triplet (®, ) (as maps defined on R?) and the section a.(2)(U, V) =
2e20(Vi,—Uy) with U = (Uy,Us) € R?, V = (V4,V2) € R% Moreover, (1.29) is satisfied for
f(t) = t3/3. Therefore, one obtains (1.28) for G. and also, for E. g; one can extend it to a general
domain 2 so that Z; is a lower bound of G and E. g. We recall that the I'—convergence program
is not completely solved for the Aviles-Giga model: The difficulty consists in the upper bound
construction for admissible configurations mg since the recovery sequences have been constructed
only for BV configurations mg (see Conti and De Lellis [16] and Poliakovsky [64]). For general
(non BV) limiting finite-energy configurations mg, the problem is still open.

The model for the Bloch wall. A second application is given by the linear potential g(¢) = ¢ and
is coming from micromagnetics in the study of Bloch walls. The expected line-energy corresponds
to a quadratic cost f(t) = t2. This case is more delicate than the Aviles-Giga model, since
smooth entropies are no longer suited to quadratic jumps. This motivates our choice of considering
generalized entropies with discontinuous gradients.

First, let us explain why Lipschitz DK M O-entropies can detect the quadratic costs over the
singular set of limiting configurations. It is due to controlling the entropy production by the energy
through an improvement of inequality (1.23) via the control of [Vms3|? by the energy density of
E.p. If <e <1, ®is a DKMO-entropy and m. € H'(Q,5?), by (1.22) and (1.30) one gets

1ims(1)1p ’/ V- {tl)(mg)}§’ < C~’¢|\§|\oolims(1)1pE€7g(m€) for every ¢ € C°(Q),
£— Q e—

where Cp = ||¥|l. The advantage of the above inequality consists in having the RHS only
dependent on the L°-norm of ¥ (controlled by the Lipschitz norm of the DK M O-entropy )
whereas in (1.23) the constant Cg depends on the C*'-norm of ®. For this reason, if ® is a Lipschitz
continuous map satisfying (1.5) and my is a strong limit of {m.} satisfying limsup, o E: g(m.) <
00, then V - {®(mg)} is a measure of finite total mass. In [41], we construct a Lipschitz entropy
® = (P, Do) that satisfies (1.29) and leads to (1.28) up to a constant. Moreover, we proved that
Ty is a lower bound of E. s (up to a constant):
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Theorem 11 Let Q C R? be a bounded domain. Assume that the family {m.}cj0 C H'(£,5?)
converges to mq in L'(Q) and 3 = B(s) < e < 1. Then

Z¢(mo) < C’liml%)nf E. g(me),
g

with some C > 1 (in fact, one can choose C = /4 + 7?).

In order to get the desired inequality (1.28) (with C' = 1), we analyze the existence of adapted
triplets. For the 180° Bloch wall (i.e., the biggest possible jump 6 = %), we have a positive answer.

Proposition 11 There exists a smooth triplet (& = (®1,P2), ) adapted to the jump (—eq, e2).
Consequently, (1.28) holds for 6 = 7.

For smaller jumps, we only have a partial result. If m* is the jump of angle 6 € (0,7/2) in
(1.27), we define the spherical cap

Sy = {mE 5% omy Zcose}
and the set of vector fields taking values into the cap Sy and adapted to the jump (m~, m™):
Co = {meH.(25% : (1.27) holds and m(z) € Sp for a.e. z € Q}.

Then one can find a triplet (® = (@1, P2), ) that is adapted to a jump (m~,m™) if we restrict
our study to configurations of Cy.

Proposition 12 For every 0 € (0,7/2) and every € > 0, there exists a smooth triplet (g, ag) €
C>(Sp, R3) and a smooth section a. of B such that (1.29) and (1.24) hold for every m € C*(1, Sp).
Consequently, if {m:} C Cy, then (1.28) stands true.

We remark that there is no general recipe for constructing adapted triplets. However, Lemma 1
gives a very useful tool in this context.

Despite Propositions 11 and 12, we prove in [41] that for small jumps, the necessary conditions
in Lemma 1 are not compatible with condition (1.29). Consequently, there is no triplet (& =
(D1, P2), ) adapted to a fixed small jump for general configurations (when the vector fields cover
the entire sphere S?):

Theorem 12 There exists n > 0 such that for 0 < 8 < ), there is no triplet (» = (P1,P2), @)
adapted to the jump (m~,m™).

However, we strongly believe that (1.28) holds for every angle #. The conjecture that Zy is
indeed the I'—limit energy of our 2D model is supported by Theorem 5. It means that there it
is not possible to asymptotically decrease the energy by substituting a 1D transition layer by a
2D mesoscopic structure obtained by assembling together 1D transition layers. (This does not
rule out the possibility of having 2D microscopic structures at smaller scale than ¢ inside the
transition layers). Moreover, numerical simulations performed in the periodic two-dimensional

context indicates that the microscopic transition layers are indeed one-dimensional.
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1.4.3 A zigzag pattern °

We analyze here a modified Aviles-Giga model that arises in micromagnetics where the optimal
transitions are no longer one-dimensional, but involve two-dimensional microstructure. Even if the
limit energy is not of the form Z¢, the method of generalized entropies is also fruitful in this case.
The model is the following: we define the functional:

1 1
F.(m) = /Q (5|Vm|2 + Em% + E—S‘|V|_1V : m’2) dx,

for ¢ > 0 small, m € H'(Q,5?) defined on a domain 2 C R? and s € (1,2) (this is a technical
assumption). Remark that F. penalizes the mo component comparing to G (or E. g) penalizing
the ms component.

Limiting energy. Suppose that we have a family of maps m. € H'(Q; 5?) with

lim sup F.(me) < 0. (1.32)
€l0
What can we say about the asymptotic behavior of m. and the energy F.(m.) as ¢ | 07
As before, it is natural to study this question in the framework of I'-convergence. To this end,
we first need to fix a topology on the space of admissible magnetizations. The strong L!(Q, R?)-
topology was used for the previous models, but it turns out that F; is not coercive enough to deduce
compactness from (1.32) in this space. Another possibility is the weak* topology in L>(Q, R?).
Clearly, the limit m = (m’,m3) (as € | 0) must have a vanishing second component ms and a
vanishing distributional divergence V-m = V-m’ = 0 in Q. However, we obtain more information
about the limit if we first apply a nonlinear transformation to m. In order to do so, we use spherical
coordinates (¢, %) so that
m = (cos p cos ¥, sin p, cos p sin ).

The quantity that we need to study is
1 = sind — Y cos ¥,

at least if we work in the hemisphere where [}] < 7. We will show that as long as ¥ remains

sufficiently small, the functional
ov 1 .
Fy(¢) = 2sup —pdx v € Cy(R) with sup |v| <1 (1.33)
Q 81'1 Q
can be identified as the limiting energy. For a sufficiently regular v, this is of course

Fo(v) = 2/Q o0

—| dz.
81'1
The lack of a penalization of gTw means that we can have very rough limiting configurations.
2

On the other hand, almost every restriction to a horizontal line QN (R x {z2}) will be a function of
bounded variation. There can be jumps, but these jumps contribute to the energy proportionally

5All the results appearing in this subsection are part of the article Ignat-Moser [42]. Therefore, we don’t specify
in the following this reference for each result.
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to the jump height. It is convenient to imagine here that the magnetization depends only on z,
and then we can think of a jump as a domain wall. It is worth noting that in general, the wall
energy given by Fy is not achieved by a 1-dimensional transition between the two states on either
side of the wall (as in the Aviles-Giga model). Instead, in order to obtain the optimal limiting
energy given by Fp, a transition with an additional zigzag structure is required.

Adapted triplet. In order to obtain that Fy is an optimal lower bound we will use the same
strategy based on generalized entropies. More precisely, we study the particular class of Lipschitz
continuous maps ® = (®1,®3) € Lip(S%,R?) and o € Lip(S?) such that for every smooth m €
C> (9, 5?), there holds

1
V{Mm»+Mman§€WmF+?@ a.e. in Q, (1.34)

where € > 0 is a small parameter. In (1.34), we skip the last term in the RHS of (1.24) since it
is not important in the sequel. The condition (1.34) yields the corresponding necessary pointwise
bounds for an admissible triplet (® = (®1,®3), ) as in Lemma 1 where g(m3) is to be replaced
by m2. As explained above, the expected limit energy for a jump of angle 6 € (0,7/2], i.e.,

m* = (cos 6,0, £sinf) € S* (1.35)
is given by
F9) = 2(1/1(9) - 1/1(—9)) = 4(sin9 — 0 cos 9) .
The periodic case. For simplicity, we first focus as before on the periodic situation

Q=R xR/Z

For a fixed transition angle 6 € (0,7/2), we set the jump directions m* given by (1.35) and we
consider vector fields (periodic in the tangential direction x5 to the wall) with the desired transition
imposed at the boundary:

M) = {m € H. (9,57 : lini m(z1,-) =mT in LQ(R/Z)} .
Similar to (1.29), we will say that a triplet (® = (®1,®3), o) € Lip(S?, R?) is adapted to the jump
(m=,m*)if

®1(m*) — 1 (m”) = F(6) (1.36)

and there exists g > 0 such that for any 0 < & < g, inequality (1.34) holds for every map
m € C>(Q, 5?%).

We shall see that surprisingly this context is opposite to the Bloch wall model where we could
find an adapted triplet for the largest angle, but not for small angles. Here, we prove existence
result for walls of small transition angles and non-existence for the biggest angle.

Proposition 13 There exist an angle 0 € (0,%5) and a Lipschitz triplet (® = (®1, P2), ) that is
adapted to the jump m* for every 0 € (0,6o).
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For the biggest jump +es, we prove a nonexistence result. This result suggests that the zigzag
pattern may not be optimal for large angles.

Proposition 14 There is no smooth triplet (® = (®1, ®3), a) adapted to the jump m™ for§ = 7 /2.

As we have already seen in Section 1.4.2, existence of adapted triplets are useful for proving
the optimal lower bound for F.. Indeed, we prove the desired asymptotic minimal value of F. on
the set M (0) for small transition angles 0:

Theorem 13 There exists an angle 0y € (0, %) such that the following holds: for every 6 € (0, 0],

i F, = F(0)+ o(1 0.
,min F(me) = F(6) +o(1) as <

The idea of the proof is to match an upper bound coming from the zigzag wall construction
with the lower bound based on adapted triplets in Proposition 13. Let us explain the heuristics of

ms

Figure 1.8: The zigzag pattern

deducing the upper bound in Theorem 13. Let 3 € [0, 5) and consider in R? the plane containing
the two points m* € S? so that v = (cos3, —sin3,0) is the normal vector to the plane (see
Figure 1.8). The construction will involve a transition path from m™ to m™ along the geodesic
on S? within this plane. More precisely, we define

sin 6
b=cosflcosf and o = arcsin——;
1—02
the smallest arc v connecting m® on the circle of radius v/1 — b2 whose plane is perpendicular to
v is given by

~¥(t) = bv + /1 — b2(sin B cost, cos B cost, sint) (1.37)

for —o <t < 0. For a transition along v = (71, 7y2,73), the expected energy per unit wall length is

K®) =2 [ k0]
In order to keep the magnetostatic energy small, we will have to use this transition across pieces
of a zigzag wall that are tilted with respect to {0} x (0,1) by the angle 8 (see Figure 1.8). This

increases the length of the wall by the factor and in the limit we expect the energy density

1
cos 37

K(B)

MB) = os5 (1.38)
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One can check that h is a decreasing function and concludes that

inf h(B) = lim h(B) = F(0).
(9 = T A(3) = F(6)
Observe that the energy cost of a transition of small angle 6 is cubic, so that it is asymptotically
cheaper than the quadratic energy cost of a Bloch wall transition of the same angle.

I'—convergence for small transition angles. We now concentrate on families of uniformly
bounded energy configurations {m. € H*(£;S?)} in a smooth bounded simply-connected domain
Q C R?, ie., (1.32) holds. The aim is to establish the structure of limiting configurations of such
families and to justify that Fp is their limit energy (according to the I'—convergence method). The
first issue is to find out the appropriate topology for the desired I'—convergence result. Obviously,
(1.32) entails m. 2 — 0 strongly in L?(Q). However, families {m.} satisfying (1.32) are in general
not relatively compact in the strong L' topology and the limiting configurations m are not neces-
sarily taking values into S? (in general, one only has |m| < 1 a.e. in 2). Therefore, one alternative
would be to choose the weak* L>—topology for {(m. 1, m. 3)}. Rather than studying the limiting
behavior of (me1,me 3), we focus on the quantity

Ve = f(me), (1.39)

where f: 82 — R is the function defined by

1 F (arctan(mgz/mq)) it my >0,
f(m) = § 2+ 1 F(arctan(ms/m1))  if my <0 and mz > 0,
—2+ 1 F(arctan(mz/m1)) if my <0 and mz <0,

extended continuously where m; = 0 and mgo # £1 (here, arctan : R — (=%, 5)). This function
has a discontinuity along the semicircle {m € S? : m3 = 0, m; < 0}, and from a geometric point
of view, it would be more appropriate to regard f as a function from S? into R/4Z. Since we
work mostly in a hemisphere below, we keep R as the target anyway. The discontinuities at the
poles tes, of course, are unavoidable. Since |1).| < 2 a.e. in Q, we choose the weak* L*°-topology
for {1} as appropriate for the I'—convergence result. Extending (1.33) to the limiting functional
Fy : L*°(Q) — [0, 00], we prove the following I'—convergence result for small transition angles:
Theorem 14 There exists an angle Oy € (0, %) such that the following holds true:

1) (Compactness and Lower bound) Let {m.} C H*(;S?) with (1.32). Consider the family

{e} associated to {m.} via (1.39). Then for subsequences,
Ve b in L®(Q) and meo — 0 in L*(Q). (1.40)
If || < iF(@O) a.e. in Q for every small € > 0, then

Fo(¢) < liminf F.(m.).
€]l0

2) (Upper bound) For every 1 € L*(Q) with [¢| < 1F(6y) a.e. in Q, there ewists a family
{m.} € HY(Q; S?) such that (1.40) holds and

Fo(y) = EF&Fs(ms>
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We are aware of only one other situation where the I'-limit is explicitly known for a problem
involving similar microstructures: the problem leading to cross-tie walls in thin ferromagnetic films
(see [1, 66, 67]). As shown in Figure 1.5, the cross-tie wall consists in a mixture of vortices and
Néel walls (1-dimensional transition layers similar to Bloch walls, but taking values only in S?!).
Remarkably, the function sin § — 6 cos§ plays an important role in that context as well, although

this may be a mere coincidence.



Chapter 2

Singular patterns in thin-film

micromagnetics

2.1 Micromagnetics '

Ferromagnetic materials are widely used in nowadays as technological tools, especially for magnetic
data storage. The modelling of very small ferromagnetic particles is based on the micromagnetic
theory. The micromagnetic model states that ferromagnetic materials can be described by a 3D
vector-field distribution, called magnetization, where the stable configurations correspond to (local)
minimizers of the micromagnetic energy. The associated variational problem is nonconvex and
nonlocal. Moreover, it is a multi-scale system involving both intrinsic parameters (depending on
the nature of the ferromagnetic material) and extrinsic parameters (coming from the geometry of
the sample). According to the relative smallness of these parameters, different asymptotic regimes
appear and lead to formation of various magnetization patterns.

The qualitative and quantitative analysis of magnetization patterns is an extensively explored
topic. Generically, a pattern (stable state) consists in large uniformly magnetized 3D regions (mag-
netic domains) separated by narrow transition layers (magnetic walls) where the magnetization
varies very rapidly. Depending on the length scales of the system, the experiments predict dif-
ferent type of magnetic walls: 2D wall defects (Néel walls, Bloch walls, asymmetric Néel walls,
asymmetric Bloch walls etc.), 1D vortex-lines (Bloch lines), boundary vortices or different type of
microstructures: cross-tie walls, zigzag walls etc. The main goal is to give a mathematical justifi-
cation of the physical prediction on the formation and characterization of these defects. Classical
methods of functional analysis are often insufficient to detect these phenomena of loss of regularity.
New approaches need to be developed in order to implement geometric measure theory contributing
to the analysis of partial differential equations and calculus of variations.

2.1.1 The general three-dimensional model

The magnetization of a ferromagnetic sample 0 C R3 is created by the spontaneous alignment of
electron spins and can be described in the non-dimensionalized form by a 3D unit-length vector

IThis section is part of the article of the author [36]
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field
m:Q — S2.

Let us assume that the sample is a cylinder, i.e.,
Q=0 x(0,t)

where Q' is the cross section of the sample of diameter £ and t is the thickness of the cylinder
(see Figure 2.1). According to micromagnetics, stable magnetizations in {2 are described by (local)

X3 I
t
P
X1
1)

Figure 2.1: A ferromagnetic sample.

minimizers of the energy functional defined as:
E3P(m) = d2/ |Vm|? dx + Q/ o(m) dz +/ |VU|* dx — 2/ Hext - mda. (2.1)
Q Q R3 Q

In the following we explain the four components of the micromagnetic energy E3P.

e The first term, called exchange energy is due to short range interactions of spins and favors
parallel alignment of neighboring spins. The constant d is the exchange length and corresponds to

an intrinsic parameter of the material of the order of nanometers.

e The second term in (2.1) represents the anisotropy energy that penalizes certain magnetization
axes. The anisotropy energy density ¢ is a nonnegative function with symmetry properties inherited
from the crystalline lattice. The preferred directions of magnetization are the zeros of ¢. Typically,
we have uniaxial or multi-axial anisotropy (e.g., ¢(m) = 1 —m? that favors the direction (£1,0,0))
and surface anisotropy (e.g., ¢(m) = m3 where the easy plane is the horizontal one). The quality
factor @ is a second intrinsic parameter of the material that measures the strength of the anisotropy
energy relative to the stray-field. According to the values of @), we distinguish two classes of
materials: soft materials if @Q < 1 and hard materials if Q) > 1.

o The third term of E3P is the stray-field energy and is created by long range interactions between
electron spins modelled by the static Maxwell equation. More precisely, the stray-field potential
U :R? — R is determined by

AU =V-(mlg) in R? (2.2)
ie., VU -V(dz = / m-V¢dx, V¢e CP(R3).
R3 Q
By the electrostatic analogy, two types of charges generate the potential U: volume charges with
density given by the divergence of m in the interior of the sample 2 and surface charges represented

by the normal component of the magnetization on the boundary of 2. Therefore, this nonlocal
term favors domain patterns that achieve flux closure.
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e The last term in (2.1) denotes the external field energy generated by an applied external field
H.. : R? = R3. Tt favors alignment of the magnetization with Heys.

More details about the mathematical modelling of micromagnetics can be found in the book of
Hubert and Schéfer [32] or in the overview of DeSimone, Kohn, Miiller and Otto [26].

We will concentrate on the analysis of global minimizers of energy (2.1). In fact, physically
accessible local minima share the same features as the ground state (see DeSimone, Kohn, Miiller,
Otto and Schéfer [24]). It is a variational problem relying on the nonconvex constraint |m| = 1
and the nonlocality of the stray-field energy due to (2.2). On the other side, four length scales
are involved in the system: two intrinsic parameters (d and Q) and two extrinsic scales (¢ and £).
Our approach is based on asymptotic analysis, taking advantage of the presence of small ratios
involving these parameters. The combination of nonlocality and nonconvexity with the multiscale
nature of the variational problem leads to a rich pattern formation of the magnetization.

2.1.2 A reduced thin-film model

In the following, we are interested in thin ferromagnetic films where we expect the nucleation of
several singular patterns of the magnetization (like Néel walls, Bloch lines and boundary vortices).
The main issue is to identify the scaling law of the minimum energy and the pattern of the
magnetization that achieves this minimum.

Heuristics and scaling. We will heuristically explain in the following the separation of energy
scales in the regime of thin films. The balance between the energy terms is responsible for the

formation of certain type of walls in function of certain regimes. The ansatz is the following: We

assume that the magnetic film = Q' x (0,¢) with ¢ = diam (') has a small aspect ratio
t

h:= z < 1 (23)

so that the variations of m in the vertical variable z3 are strongly penalized by the energy. There-

fore, we assume that m is invariant in x3 and depends only on the in-plane variables ' = (z1, z2):
m = (m',m3)(z'): Q' — S? and m varies on length scales > % (2.4)
It is also assumed that the external field is in-plane and invariant in x3, i.e.,
Hext = (H{y (2),0).
Here and below, the dash * always indicates a 2D quantity. We always denote a < b if ¢ — 0;

also, a S b if a < Cb for some universal constant C' > 0.

Rescaling in the length £ of €, ie., & = a//¢, O = Q' /¢, m(Z) = m(2’) and H, (Z) =

H!_ .(z'), the exchange energy, anisotropy and external field energy can be written as

ext

/ (®|Vm]> + Qp(m) — 2Hexy - m) dz = tdQ[ \V'm|? di’ + 02 / <Q¢(m) —2H!, .m’) dz’.
Q ol o

(2.5)
What is the appropriate scaling law of the stray-field energy? For configurations (2.4), the static
Maxwell equation (2.2) turns into:

AU =V'"-m' lg+m-vlpg in R? (2.6)
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where v is the unit outer normal vector on 9f2. Therefore, the volume charges are given by the
in-plane flux V/ - m’ and the surface charges on the top and the bottom side of the cylinder
(x3 € {0,t}) are represented by the out-of-plane component ms of the magnetization. Equation
(2.6) is a transmission problem that can be solved explicitly using the Fourier transform F(-) in
the horizontal variables (see e.g. [49], [36]) and one computes:

t & 2 t 2
VU|* dx = €)= - F(m'1g)|” de’ —[&'D|F(msla)| d¢’
| vk =t [ fGieler Aol ag +t [ aGeDlFmaa)
where
1—e %
g(s):T and  f(s)=1-—g(s) forevery s> 0.

Approximating g(s) = 1 and f(s) = s if s = o(1) and as above, rescaling in the length scale ¢ of
', we obtain the following estimate of the stray-field energy:

20, ~, 20 14 - N
[ IVUP o s SR 0l oy + Gelow gl [ o e [, ()

oy Q

(see e.g. [22], [49]). This is due to the assumption (2.4), so that indeed the stray-field energy
asymptotically decomposes into three terms in the thin-film regime: the first one is penalizing the
volume charges

(V' )ge = V' 101,

as an homogeneous H~'/2_seminorm and induces the leading order of the energy of Néel walls, a
second term penalizing the lateral charges /-7 in the L2 —norm and responsible for the nucleation
of boundary vortices, as well as the third term that counts the surface charges ms on the top and
bottom of the cylinder and leading to formation of Bloch lines.

Summing up (2.5) and (2.7), we deduce the following reduced 2D thin-film energy:

- - 12 P ? 20, ¢
B0 =t [ (VP + [ ) d s gy [ ) ane
QO 2 R?2 27 t o

+ t£? / (mg + Qp(m) — 2H! -m’) di’. (2.8)
Q/

We will often refer in the following to the above thin-film energy approximation and we will drop
" in the sequel.

According to the specific thin-film regime, three types of singular pattern of the magnetization
occur: Néel walls, Bloch lines and boundary vortices. In fact, the formation of one of these patterns
depends on the scale ordering of the three terms in the RHS of (2.7). Let us now discuss briefly
these patterns (and we will present them in more details in the next sections).

Néel walls. The (symmetric) Néel wall is a transition layer describing a one-dimensional in-plane
rotation connecting two (opposite) directions of the magnetization. It is generated by the volume
charges (V' -m’),. that give the leading order of the energy of a Néel wall. Observe that this term
in (2.7) is related at order of t2¢ with the limiting stray-field energy generated by the in-plane
charges as h — 0:

Atge = (V' -m)ae H* {23 =0} in R
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More precisely, the homogeneous H~1/2_geminorm of the in-plane divergence of m' is given by
the Dirichlet integral of u.:

1 . ?
/R3 |Vge|? doe = 3 /R2 ’|V'|_5(V' “m)ae| dx’. (2.9)

Since a Néel wall is a one-dimensional transition layer in the normal direction x; to the wall
(i.e., m = m(z1)), the RHS in (2.9) becomes the homogeneous H'/?—seminorm of the normal
component my (on the wall). The Néel wall has two length scales: a core of size

d2
5‘_ﬁ

and two tails of length scale depending on the confining mechanism. In order that a Néel wall is
relevant in a certain regime, one should assume that § < 1. The reduced stray-field energy (2.7)
per unit length of a Néel wall is of order of

E*P(Néel wall) = O(t%¢/|logd|).

A detailed description of the Néel wall is done in Section 2.2.

Bloch line. A Bloch line is a regularization of a vortex at the microscopic level of the magnetization
that becomes out-of-plane at the center. The prototype of a Bloch line is given by a vector field

m: B? — §2
defined in a circular cross-section ' = B? of a thin film and satisfying the flux-closure condition:
V'-m'=0 in B? and m'(z') = (') on B2 (2.10)

(The magnetization is assumed to be invariant in the thickness direction of the film and the word

AN

L. L.

Figure 2.2: Bloch line.

“line” of the Bloch-line pattern refers to the vertical direction.) Since the magnetization turns
in-plane at the boundary of the disc B2 (so, deg(m’,99) = 1), a localized region is created, that
is the core of the Bloch line of size

n = d/L,

where the magnetization becomes perpendicular to the horizontal plane (see Figure 2.2). In order
that a Bloch line is relevant in a certain regime, one should assume that 7 < 1. The reduced energy
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(2.8) of a configuration (2.10) (in the absence of anisotropy and applied external field) is given by
the exchange energy and the surface charges in mg:

1
E*P(m) = td? |V'm|[*da’ + = [ m3da’ ).
B2 n? Jpe °

The Bloch line represents the minimizer of this energy under the constraint (2.10). Due to the
similarity to the Ginzburg-Landau type functional, the Bloch line corresponds to the Ginzburg-
Landau vortex and the energetic cost of a Bloch line (per unit-length) resides in the exchange
energy outside the vortex core:

E*P(Bloch line) = O(td?|logn))

with the exact prefactor 27 (see e.g. [36]). We will discuss more precisely this singular pattern in
Sections 2.4 and 2.6.

Boundary vortex. Next we address boundary vortices. A boundary vortex corresponds to an
in-plane transition of the magnetization along the boundary from v+ to —v+, see Figure 2.3. The
corresponding minimization problem resides in the competition between the exchange energy and
the lateral surface charges m’ - v:

log h|
E2D — td2 / / 2 d / |
(m) N [Vim[” da’ + ==

(m' - v)? dHl)

o

within the set of in-plane magnetizations m : €' — S'. The minimizer of this energy is an
harmonic vector field with values in S* driven by a pair of boundary vortices. These have been
analyzed in [49, 52, 51, 58, 59]. The transition is regularized on the length scale of the exchange
part of the energy, i.e., the core of the boundary vortex has length of size

d2
B tllog % '

In order that a boundary vortex is relevant in a certain regime, one should assume that £ < 1.
The cost of such a transition has the energy of leading order of

E*P(Boundary vortex) = O(td?|log x|)

with exact prefactor m. Even if they generate the same amount of energy, a boundary vortex is
different than a “half” vortex (i.e., regularization of z/|z| in the "half” disc B}): the "half” vortex
is tangent at the boundary, i.e., m’-v = 0 on B N{zz = 0} (while the boundary vortex isn’t),
and the boundary vortex is of values into S! (while the ”half” vortex isn’t). We will describe in

E\\\//=5

Figure 2.3: A micromagnetic boundary vortex

more details boundary vortices in Section 2.5.

Mesoscopic Landau-state in thin films. At the mesoscopic level in a thin-film, we expect
that the magnetization satisfies the flux-closure constraint. It consists in assuming that there
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are no charges in the sample which would imply that (2.7) vanishes. This type of limit charge-
free configurations were predicted in the physics literature (see van den Berg [72]): they are 2D
unit-length vector fields of vanishing divergence, i.e.,

(2.11)

m3=0,/m'|=1and V'-m'=0 in &,
m -v=0 on 0.

This structure reveals the connection with Chapter 1 and explains the formation of line singularities
or vortices at the mesoscopic level of the magnetization in thin films (known in physics as the
principle of pole avoidance). We already discussed in Chapter 1 that the method of characteristics
yields the nonexistence of continuous solutions of (2.11) in bounded simply connected domains.
One of the solution of (2.11) (in the sense of distributions) is the “viscosity solution” given via the
distance function

m=V=1y, with (') = dist (2, 9Q)

that corresponds to the so-called Landau state for the magnetization m/. The line-singularities
for solutions m’ are an idealization of domain walls at the mesoscopic level. At the microscopic
level, they are replaced by smooth transition layers (as Néel walls, Bloch walls etc.) where the
magnetization varies very quickly on a small length scale. Note that the normal component of m/
does not jump across these discontinuity lines (because of (2.11)); therefore, the normal vector of
the mesoscopic wall is determined by the angle between the mesoscopic levels of the magnetization
in the adjacent domains (called wall angle).

Regimes. An important step in our analysis consists in identifying reduced models valid in appro-
priate regimes where the behavior of the singular patterns described above is easier to understand.
The choice of the asymptotic regimes will correspond to the energy ordering of the three patterns
(Néel walls, Bloch lines and boundary vortices); the choice of the scaling law of the minimal energy
determines the constraints of the model (imposed by the patterns of higher energy order) and the
singular patterns that are to be neglected (of lower energy order). With these choices, the math-
ematical approach is based on asymptotic analysis by proving the matching of upper and lower
bounds for the energy (in the spirit of I'-convergence).

Let us now discuss the possible choices of ordering. First of all, we are interested in thin-film
regimes (i.e. h = t/¢ < 1) where all three singular patterns are relevant, meaning that they are
contained by the sample:

Ikl k1, kK1,

leading to t < £ and d < £. (In fact, if the Néel wall is relevant, i.e., § < 1, then also the Bloch
line and the boundary vortex are contained, i.e., n < 1 and k¥ < 1.) Second, one can check that

E?P (Boundary vortex) < E?P (Néel wall)
or  E?P(Boundary vortex) < E?P(Bloch line),

meaning that a boundary vortex never induces the leading order of the total energy (see [44]).
Therefore, one has the following three choices of ordering:

(i)
max {EQD (Boundary vortex), E?” (Bloch hne)} < E?P(Néel wall),
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(iii)
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equivalent with |logh| < m. A slightly more general regime was treated in [22], where
|logh| < 1/§ and the scaling law of the minimum energy in (2.8) is of order t2/. In this
case, the 3D stray-field energy (2.7) reduces to (2.9) (at order t2¢) and the reduced model is
rigorously justified via the I'—convergence method (see [22]): the limiting configurations are
invariant in the vertical direction x3 (justifying the assumption (2.4)), but they are not in-
plane since Bloch lines may appear in the reduced model. The regime in [22] is appropriate
for permalloy films of diameter of tens of microns and thickness of the order of tens of
nanometers. So, it can be achieved experimentally, though not by numerical simulation
which is generally restricted to a thickness of the order of sub-microns.

E*P(Boundary vortex) < E?P (Néel wall) < E?P(Bloch line),

equivalent with

log | log h| < m < |loghl. (2.12)
It means that the aspect ratio h = h(d) is exponentially small with respect to the Néel wall
core 0; in particular, ¢ < d < £. This regime is treated in [38] where the choice of the scaling
law of the minimal energy is of order of Néel walls, i.e., t2¢/|logd|. Therefore, due to (2.12),
Bloch lines are avoided (since they are too expensive), so that the limiting configurations as
h — 0 are z3-invariant and they are in-plane, i.e., m € S'. The boundary vortices do not
contribute to the leading order of minimal energy (since they are lower order). In Section
2.3, we discuss this reduced model: the goal is to prove that the optimal pattern of the
magnetization on circular cross-section €2’ is a peculiar vortex structure, driven by a 360°
Néel wall accompanied by a pair of boundary vortices at 99'.

E?P(Néel wall) < E*P (Boundary vortex) < E*” (Bloch line), (2.13)

equivalent with

m < log |log h|.

In Section 2.4, we discuss this reduced model. This is part of [44] where the scaling law
of the minimal energy is of order of Bloch lines O(td?|logn|). However, in [44], we did not
focus on the level of minimal energy, but rather on metastable configurations where boundary
vortices are strongly penalized, so that the limiting configurations as h — 0 are assumed to
be charges-free on the lateral surface, i.e., m’-v = 0 on 9. Indeed, vanishing lateral surface
charges would be physical relevant for a global minimizer only if boundary vortices were more
expensive than both the Néel walls and Bloch line contribution. As explained above, this
assumption never happens in the regime h < 1 and § < 1. Therefore, the stray-field energy
(2.7) (in the absence of the middle term in RHS) is not adapted for studying global minimizers
in the regime (2.13), but rather for metastable states with vanishing normal component at
the lateral surface.
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2.2 Néel wall 2

The Néel wall is a dominant transition layer in thin ferromagnetic films (in the regime presented
in Subsection 2.1.2). It is characterized by a one-dimensional in-plane rotation connecting two
(opposite) directions of the magnetization. It has two length scales: a small core with fast varying
rotation and two logarithmically decaying tails. In order for the Néel wall to exist, the tails are
to be contained. There are three confining mechanisms for the Néel wall tails: the anisotropy of
the material, the steric interaction with the sample edges and the steric interaction with the tails
of neighboring Néel walls. In the following, we describe these models that correspond to three

nonconvex and nonlocal variational problems depending on a small parameter:

Model 1. Confinement of Néel wall tails by anisotropy. The model is derived from (2.8) as
follows (we skip ~ in (2.8)): we assume the quality factor ) to be of order of the aspect ratio h (for
simplicity, set @ = % < 1), i.e., the material is soft; we also assume that the material anisotropy
density is given by ¢(1m) = m? and we impose an applied field H,, = (cos 6,0). Renormalizing the
energy (2.8) at order t*¢, we may assume in the regime h = £ < 1 that the section ' = R x R/Z
is a periodic strip and the admissible configurations are in-plane magnetizations depending on
one variable (normal to the wall) and satisfy the following boundary conditions (that enforce a
transition as in (1.27)):

m=m(x1), mz3 =0, and m(£oo) =m* := (cosh,£sinb,0), (2.14)

where 6 € (0,7) is the wall angle (see Figure 2.4). Therefore, by (2.8), we derive the following
functional whose behavior is to be studied asymptotically as ¢ | 0:

1
m +— (5||m|\%,1 + §Hm1||§-11/2 + ||my — cos 8|2, (2.15)
where we recall that § = d?/(tf) plays the role of the core of the transition.

my

m /'//6' ”
A "

Sl

Figure 2.4: Néel wall of angle 26.

Observe that the energy (2.15) is invariant under translation. Since configurations m of finite
energy are continuous, the boundary conditions in (2.14) enforce a transition (wall domain) for the
magnetization. One can fix the center of the wall at the origin by setting

m(0) = (1,0).

Under these restrictions, a Néel wall corresponds to a minimizer of the energy (2.15).

2All the results appearing in this section are part of the article of the author [35]. Therefore, we don’t specify in
the following this reference for each result.
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The variational problem is nonconvex because of the saturation constraint |m| = 1 and nonlocal
due to the stray-field interaction. It is a nondegenerate problem since the anisotropy term prevents
a Néel wall to spread over the complete domain R; therefore, the Néel wall tails are forced to be
limited and the energy cannot reach arbitrary small levels. Observe that energy (2.15) only yields
a uniform bound of m; in H'/2(R) that barely fails to control the L>(R)-norm |m||p(r) = 1.
This suggests a logarithmic decay of the energy. Indeed, we prove the following result (see also
[20], [38)):

Lemma 2 Let I C R be a bounded interval and 6 < 1. For every function my € C.(I), the
following estimate holds:

2 T+ o(1)

T 2o 510.
HY/2 = 2|10g6| ||m1HL as l

1
Sllma G + S lmall
The idea of this estimate resides in a duality argument combined with a failing Gagliardo-Nirenberg

interpolation embedding
BV N L=®RN) ¢ HY?RMN).

This failing embedding can be corrected by regularizing the homogeneous H'/2—seminorm. This
perturbation yields a weaker seminorm that is controlled with a logarithmically slow rate having
the optimal prefactor 2 (see [20]):

For § < w and for any x : RN — R, we have that

L 202 ge < 2 w
[ mintG e uléP i s £ 2 (o5 F) = [ 191 (2.16)

The exact leading order term of the minimal energy in (2.15) was deduced by DeSimone, Kohn,
Miiller and Otto [21, 23] by matching upper and lower bounds in the case of a 180° Néel wall (i.e.,
0=m/2):

T+ o(1)

—_— . 2.1
3log | as 4010 (2.17)

(2.14)
0=m/2

. 1
min (5|m||§-1,1 + §||m1|\§-{1/2 + |m1||%2) =

The analysis of the structure of a minimizer of (2.17) is rather subtle due to the different
scaling behavior of the energy terms in (2.15). Remark that omitting the H'/?2—seminorm, the
formulation of (2.17) in terms of v := mg corresponds to a variational problem associated to the
Cahn-Hilliard model (see Cahn and Hilliard [14]):

. 0 dv |2 5
— | 1-— dt. 2.18
'U:RIB%I—ll,l] /R (1 — 2 ’ dl‘l ’ + v ) ( )
v(0)=0,v(£o0)==%1

The minimizer is a transition layer with a single length scale V3, i.e., v(z1) = tanh(z1/v/9).
The first component of the magnetization m; would correspond in (2.18) to sech(z;/v/d) and the
minimal energy is equal to 4/3.

Coming back to our variational problem (2.17), the presence of the nonlocal term as a homo-
geneous HY/? (R)—seminorm in competition with the energy (2.18) creates a second length scale
of the transition layer. The Néel wall is divided in two regions: a core (Jz1]| < Weore) and two
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tails (Weore S 21| < wWieair). This particular structure enables the magnetization to decrease the
energy by a logarithmic factor (2.17). Melcher [54, 55] rigorously established the optimal profile
of the Néel wall, i.e., the unique minimizer m of (2.17) with m(0) = 1 exhibits two uniformly
logarithmic tails beyond a core region of order § close to the origin (see Figure 2.5):

|log ]|

mq(t) Moz | for § < |x1] < 1/e, i.e. Weore = O(9), wiair = O(1).

Figure 2.5: First and second component of a 180° Néel wall.

We are interested in the asymptotics of the energy (2.15) as § | 0. Due to the logarithmic
decay (2.17), we consider a new length scale £ > 0 such that

0 =c¢/|loge|

and we renormalize the energy (2.15) by a factor |loge| in order that the minimal energy become
of order O(1):
1
() = ellmlFy, + oge] (Gl + I — cosol3:). (2.19)
Our goal is to study the I'—convergence of energies {F.} as € | 0 and to characterize the limiting

configurations of the magnetization. We will prove that the limiting configurations are piecewise
constant functions of bounded total variation that can take two values {m* = (cosf,+sin6,0)},

A{mo:RH{mi}:/R‘% <oo}.

d$1
The I'-limit energy is proportional to the number of jumps of these configurations and the energetic

i.e., they belong to

cost of each jump is (1 —| cos 0])?/2; therefore, we define the following energy for any configuration
mo € A:
Ey(mg) = g(l — | cos6])? - < number of jumps of m0>. (2.20)
Theorem 15 Let § € (0,7). Then
E. L FEo under the L}, (R, S*)—topology as € | 0, i.e.,
(i) (Compactness and lower bound) If {m. : R — S'}. satisfies

lim sup E.(m.) < 400,
€l0
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then for subsequences e, there exists mg € A such that me — mq in L}, (R, S') ase | 0 and

liminf E.(m¢) > Eo(mo);
€l0

(ii) (Upper bound) For every mo € A, there exists a family of smooth functions {m. : R — S'}. o
such that m. — mg has compact support in R for all €, me — myg =W 0 in L'(R,R?) and

lim E.(m.) = Ey(my).
€l0

Remark 11 Observe that the energy of a Néel wall of angle 26 is quartic in 6 for small angles 6:

elo T

1-— 25T gt .
in, 2( cosf) 3 0* as 610

We mention that the compactness result fails in general under the strict convergence in BV}, even
if the limiting configurations are of bounded variation in R. In fact, it is constructed in [43] a

sequence of magnetizations {m,.} satisfying (2.14) and of uniformly bounded energies E.(m.) < C
dmlyg
dzl

such that the sequence of total variations { [ ’ } blows-up.

Remark 12 One could compare Model 1 with the Aviles-Giga model presented in Subsection 1.4.2.

We emphasize that Model 1 is more pertinent to micromagnetics by considering a non-local term
i]l/z
(which are here 1D). That will infer a delicate multi-scale structure of the transition layer in

[loge||lma|| for the energy E.(m) that penalizes non-vanishing divergence configurations m

Model 1 comparing to the one-scale transition layers in the Aviles-Giga model. Since the behavior
of E. is quartic in the wall angle, the entropy method (used for the Aviles-Giga) doesn’t apply
here. However, we succeed to show that limiting configurations in Model 1 are BV and to deduce
the complete I'—convergence result for our non-local functionals.

Model 2. Confinement of Néel wall tails by the finite size of the sample. The constraints
are given by:
m:R — S and m(£x,) = m* for +a; > 1, (2.21)

with 6 € (0, 7) (see Figure 2.6), whereas the energy functional is:

(2.22)

1
m = dmll + S lmall .

with § > 0 a small parameter. It models a one-dimensional magnetization in a thin-ferromagnetic

N

Figure 2.6: Néel wall of angle 26 confined in [—1,1].

film of finite width where the effect of crystalline anisotropy and external field is neglected (i.e.,
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Q = 0and H.y¢ = 0in (2.8) and the energy rescales as for Model 1). The corresponding variational
problem was analyzed in [22], [20], [43]. The main difference with respect to Model 1 consists in
the confinement of Néel wall tails by the interaction with the sample edges placed in —1 and 1
in our framework. However, the properties of the transition layer in Model 1 naturally transfer
to the structure of the minimizer of (2.22) that satisfies m(0) = (1,0). It is a two length scale
object with a small core of order ¢ and two logarithmically decaying tails contained in [—1,1] and
it attains the same level of minimal energy 2|J’I_Tg(?| as § | 0. The stability of 180° Néel walls under
arbitrary 2D modulation was proved by DeSimone, Kniipfer and Otto [20]. Moreover, we proved
in [43] the optimality of the one-dimensional minimizer, i.e., asymptotically, the Néel wall is the
unique minimizer of the associated two-dimensional variational problem in the strip €2’. As before,
by rescaling (2.22), the corresponding energy writes:

|log5|
Fe(m) = e[ml3,

[ma][%a 2 (2.23)

for a small parameter £ > 0. We proved in [35] the similar asymptotic of F. by the I'—convergence
method as € | 0 as in Model 1. The difference will consist in having all the walls confined in the
interval [—1,1].

Model 3. Confinement of Néel wall tails by the neighboring Néel walls. The magneti-
zations are periodic functions such that:

m= e, ¢:R — R with p(z; +2) = p(z1) and p(z1 + 1) = ¢(21) + 7 (2.24)
(see Figure 2.7). The energy is given by:
1
m= dmllE, 4 5 lmalge, (2.25)

for a small parameter ¢ > 0.

Figure 2.7: Periodic array of winding walls.

This model was investigated by DeSimone, Kohn, Miiller and Otto [23] in order to quantify the
repulsive interaction of Néel walls. It consists in considering a periodic array of winding walls at a
renormalized distance w = 2 in the absence of anisotropy and external field. A transition of 180°
is enforced in the middle of each period by the constraint (2.24). Therefore, the tails of a Néel wall
are limited by the tails of the neighboring walls at a distance O(1) and we expect that this model
generates only 180° Néel walls. As before, the following rescaled energy associated to (2.25):

loge
Gelm) = clm|3, -+ %8

2
[[m1 “H;éf

has the same limiting behavior when ¢ | 0 as in Model 1.
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2.3 360° Néel walls and vortex energy?®

360° Néel wall. The aim of the section concerns the special case of 360° Néel walls. For these
walls, the magnetization performs a complete rotation across the mesoscopic wall so that it carries a
nonzero topological degree. They are characterized by the angle « € [0, 27) between the mesoscopic
direction of the magnetization and the normal direction to the wall (see Figure 2.8). We call these
transition layers “360° Néel walls of initial angle o”. Note that for any mesoscopic Néel wall (with a

//GT% BTGNS o457 o4
-1 l\a 1

Figure 2.8: 360° Néel wall of initial angle .

wall angle smaller than 360°), the condition to be charge free uniquely determines the initial angle
a. For 360° Néel walls, the situation is different: In this case, the condition of being charge-free
can be achieved for any initial angle . Our analysis shows that the initial angle « contributes to
the leading order energy of the 360° Néel wall. Another peculiarity of 360° Néel walls (of initial
angle o > 0) with respect to general Néel walls resides in their internal structure. It consists of
two parts with zero magnetic net charge: a first Néel wall of angle 2 — 2« and a second Néel wall
of angle 2« (see Figure 2.8). This means that these two parts only interact by weak dipole-dipole
interaction. For this reason the thickness of the 360° Néel wall is much larger than the thickness
of the 180° Néel wall. A detailed numerical analysis of the 360° Néel wall, also including the effect
of anisotropy and external field, can be found in [61].

The 360° Néel walls we consider in the following are confined by the boundary of the sample
(as in Model 2 in Section 2.2). We will assume that the magnetization

m = (m1,mg) : R — S*

only depends on a single variable 1y € R. In this case, the specific one-dimensional energy
associated to m in our model reduces to the following expression (see (2.23)):

1 d |1og€|/ d
F. = —| — 2d —|"2mq|? day. 2.26
) = e [ gl g o+ SB[ e (2.26)

For our analysis of 360° Néel walls, we assume that the initial direction of the magnetization is
given by the angle « € [0,27) and a complete rotation is imposed by the following condition:

m(zy) = e for |z1] >1 and deg(m)=1.
In other words, using the lifting m = e'®, the above condition is equivalent to
¢(x1) =a for z; < —1, ¢(r1) =2+ for x; > 1. (2.27)

We finally mention that 360° Néel walls are a commonly observed structure in thin magnetic films,
see [32, p. 457]. They typically arise from (global) topological constraints: These can be related

3All the results appearing in this section are part of the article Ignat-Kniipfer [38]. Therefore, we don’t specify
in the following this reference for each result.
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to the geometry of the magnetic sample. As we will show in the second part of this section, the

360° Néel wall is a global minimizing structure for magnetic samples with circular cross-section in

a certain regime. Note however that commonly 360° Néel walls occur as metastable states [32].
Our first result concerns the exact leading order energy of a 360° Néel wall with initial angle a.

Theorem 16 Let m. : R — S* be a minimizer of (2.26) satisfying (2.27). Then m. is a smooth
map inside (—1,1) and its energetic cost is given by

F.(me) =m (1 +cos®a) +o(1) as € — 0. (2.28)

The result shows that even within the class of 360° Néel walls there is a dependence of the energy
with respect to the initial angle a. This result agrees well with a numerical simulation in [61,
Fig. 2] where the energetic difference between the two extreme cases & = 0 and o = 7/2 by a
factor 2 is predicted. Note that we have smoothness in the interior for any critical point of the
energy functional (2.26). The main idea for the proof of Theorem 16 is the following: Consider
any admissible configuration m. = (m1 ¢, ma ) satisfying (2.27) for some given initial angle a. We
first prove an optimal lower bound separately for the regions where m; . is larger than cos o and
less than cos a, respectively. These regions correspond to a Néel wall transition of angle 27 — 2«
and 2q, respectively. Then we use the fact that the “interaction” of the nonlocal magnetostatic
component of the energy is positive between these two regions.

Vortex induced by 360° Néel wall. Our second goal is to analyze the behavior of a vortex
configuration in ultra-thin films of circular cross-section. As we shall explain in the following,
a vortex in our model is a very peculiar structure driven by a 360° Néel wall along a radius
of a disc, so that the topological degree around the center of the disc is zero. Therefore, it is a
completely different configuration than the Bloch line (a structure characteristic of moderately thick
ferromagnetic films) or the so called Ginzburg-Landau vortices (characteristic to superconductors)
that carry a non-zero topological degree.

Figure 2.9: Microscopic vortex structure at level ¢.

Let us fix the setting: We use the thin-film reduction (2.8) where we will skip ~. We shall
for simplicity ignore the anisotropy and the applied external field (i.e., @ = 0 and Hepr = 0). It
is trivial, however, to include a small anisotropy and an appropriately-scaled applied field energy,
since I'-convergence is insensitive to compact perturbations of the functional. We are interested
here in ferromagnetic samples of a thin circular film, i.e. Q' = By is the disc of radius £. We use the
two dimensionless parameters § = d?/(t() as the size of the core of a Néel wall and h =t/ as the
aspect ratio of the micromagnetic sample. We focus on the regime of ultra thin-films where h = h(9)
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satisfies (2.12) and the energy scaling is chosen at the level of Néel walls. Rescaling the energy
(2.8) by t2¢, we get the following functional energy over the set of configurations m : B> — S*:

. 1 1

Eis(m) = 6 /B 9 o ST Ml s + g oghl [ mew)?art (229
In this section, we denote the in-plane differential operator by V = (9,,,0,,) and since m € S,
we have m’ = m (with mg = 0). We conjecture that the vortex is asymptotically the minimizer of
the above variational problem.

Open Problem 4 Let 6 < 1 and let h = h(6) satisfying (2.12). If ms is a minimizer of (2.29)
for § >0, then

i . ok
= in L*(B%*) and laiﬁ)l |log 8| Es(ms) = Eo(—
L

where Eo(ﬁ) = 27 is the energetic cost (2.28) of a 360° Néel wall with vanishing initial angle
a=0.

);

ms — mo(x) :=
]

For the moment, let us simplify the problem by omitting the last term that penalizes the
surface charges in (2.29). (We will discuss later the general context of Open Problem 4.) The anal-
ysis is based on the following renormalization of two—dimensional micromagnetic energy (already
mentioned at Remark 5 in Chapter 1):

1 2
Ea(m)zs/ Vi dm+%/ ’|V|1/2(V-m)ac iz, (2.30)
B2 R2

where € is a rescaled small parameter corresponding to the Néel core given by
§d =¢/|loge| > 0.

Our viewpoint is based on the method of I'—convergence: We enforce the formation of a vortex in
the limit € — 0 by considering families {m.}.>0 of magnetizations that satisfy
ol
me — — in  L*(B?) ase—0 (2.31)

||
and we define the energy of the vortex by the following relaxed problem:
1L

T
||

Eo(—) = inf { lil;n_}gf E.(m.) : {m.} satisfies (2.31)}. (2.32)

Indeed, the infimum in (2.32) is achieved (and non-trivial). We call a minimizing family, every
family {m.} that satisfies (2.31) and achieves the minimum (2.32), i.e. lim._,o E.(m.) = Eo(ﬁ).

T

The L?—compactness of uniformly bounded energy configurations has been proved in [43]. "
Note that the minimal level of energy E. is trivial and all minima are constant since (2.30) does
not penalize surface charges m - v # 0 on dB? (which is the case of (2.29)). In fact, every finite
energy configuration E.(m) < oo does have surface charges on 9B? and zero winding number on
each closed curve in B2. For this reason, the two constraints of having a degree 1 and the absence
of surface charges can only be imposed in the limit ¢ — 0 (as in (2.31)). Our analysis shows that
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asymptotically the vortex state represents the minimum energy E. under the constraint (2.31).
We conjecture that the vortex is still a minimizer if constraint (2.31) is relaxed and convergence
is only assumed on the boundary 0B? (i.e., me — x in L?(0B?) as € — 0); this is of course a
weaker conjecture than Open Problem 4.

The main result characterizes asymptotically the energy of the vortex:

Theorem 17 Let {m.} be a minimizing family in (2.32). Then we have
E.(m:) =27+ o(1) as € — 0,
so that Eo(z*/|z|) = 2.

Note that this result includes the precise leading constant of the minimal energy. Our construction
for the upper bound of the energy is based on the inclusion of a 360° Néel wall of initial angle 0 along
a radius of the disc (see Figure 2.9). On the other hand, we prove the lower bound of a vortex
in a slightly more general context. More precisely, as in [43], we consider localized stray-fields
H : B3 — R3 determined by static Maxwell’s equation in the weak sense: For all ( € C°(B?),

H-(V, %)g drdz = / V.-m ( dz, (2.33)

B3 B2

where B2 C R3 is the unit ball in R? and we define the localized micromagnetic energy
E¢(m,H) = 5/ |Vm|? dx + |1og€|/ |H|? dxdz.
B2 B3

Obviously, by (2.9), El°¢(m, Vu,.) < E.(m) (since E'°¢ counts the stray-field energy only inside
the ball B3). We prove the following estimate for the localized energy:

Theorem 18 Let {m.} be a family satisfying (2.31) and let H. : B3> — R3 be localized stray-fields
associated to me by (2.33). Then we have

El°°(m., H.) > 27+ o(1) as e — 0.

Crucial for the estimate of the lower bound is the control of the localized stray-field energy. The
main idea resides in a dynamical system argument combined with localized interpolation inequal-
ities similar to (2.16). Since the stray-field energy is created by V - m., by Stokes theorem this
implies a control for the net flow of m. across the boundary of any subdomain of B2. The first step
of the proof consists in finding such a domain with maximal net flow; as in [20, 43], we consider the
flow generated by the vector field mZ. Using Stokes theorem, this yields the optimal lower bound
for the energy in some particular cases. To get to the general result, a careful analysis is carried
out on a partition in small annuli of the domain B? by balancing two effects: rotation versus the
length of orbits of the flow.

Discussion on Open Problem 4. While we cannot rigorously prove Open Problem 4, we would
like to compare the vortex with the typical counter-candidate observed in thin ferromagnetic discs,
the so called S—state (see [32]). We show that the vortex has asymptotically lower energy than the
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=
&

Figure 2.10: S-state.

S—state (see Figure 2.10), thus indicating that the vortex might be indeed global minimizer of the
energy. Recall that the vortex corresponds to the viscosity solution of the domain B2, i.e.

mo(x) = V* dist (z,0B?).
In our regime, the asymptotic cost of a vortex follows by Theorem 17:
Ey(mg) = 2.
The limit configuration of the S—state is represented at the mesoscopic level by
S(@) = {VL dist (z,0B%)  ifx € B2,
—~V+tdist (z,0B%) ifxe€ B2,

where B3 = {x € B? : x5 > 0} are the upper (resp. lower) half-discs (see Figure 2.10). Let v
be the jump set of the S—state, i.e.

1— 2
y=~7TU~y" and AF(21) = (21, =+ 2~T1) with 1 € (—1,1).

In fact, if we denote by ST the traces of S on v, one has S~™(z) = (1,0) and S*(x) = ig‘”—:‘ for
x € v+, So, the angle of the jump 6 (given by ST = €?S™) increases on ¥+ from 90° to 270°.
Furthermore, we denote the corresponding asymptotic energy density of a Néel wall connecting

the directions S* and S~ by e(S*,57) = Z(1 — cos §)2. Then
Eo(9) = /e(S*,S’) dH*.
o
Therefore, one computes:

/e(s+,s—)dH1 = 2/ e(ST,57)dH' = 2v/21 > Ey(my).
¥ vt

The above computation shows that the S-—state is asymptotically less favorable than the vortex
state in the regime (2.12). It is an open question to rigorously prove that the vortex state indeed
is the global minimizer over all planar configurations of (2.29).

2.4 Landau state *

In this section, we investigate a common pattern of the magnetization in thin ferromagnetic films

(the Landau state), that corresponds to the global minimizer of the micromagnetic energy in the

4All the results appearing in this section are part of the article Ignat-Otto [44]. Therefore, we don’t specify in
the following this reference for each result.
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regime (2.13). For that, we focus on a toy problem rather than on the full physical model: We use
the thin-film reduction (2.8) and for simplicity, we ignore the anisotropy and the applied external
field (i.e., @ = 0 and Heyr = 0). So, let Q C R? be a bounded simply-connected domain with a C'*+!
boundary corresponding to the horizontal section of a ferromagnetic cylinder of small thickness.
We consider magnetizations that are invariant in the out-of-plane variable, i.e.,

m = (my,ma,m3) :  — 52
and they are tangent to the boundary 012, i.e.,
m'-v=0 on 99, (2.34)

where m’ = (my, mg) is the in-plane component of the magnetization and v is the normal outer
unit vector to J€Q. The assumption (2.34) is not compatible with our regime (2.13) when analyzing
the minimal energy since metastable states of the magnetization under the restriction (2.34) are
not minimizers of (2.8). Scaling the energy at order of td?, the reduced energy (2.8) can be written
as the following functional:

1 1
Em(;(m):/ |Vm|2d$+—2/m§dx+—/ IV|~Y2(V - m")|? du,
Q = Ja 20 Jre

where n = d/¢ and § = d?/(t¢) are two small positive parameters (standing for the size of the
Bloch line core and the Néel wall core, respectively). Here, = (21, x2) are the in-plane variables
with the differential operator V = (94, , 0s,). In this section, we will always think of

m =m'lq

as being extended by 0 outside Q2. Observe that the boundary condition (2.34) is necessary so that
the homogeneous H ~'/2-seminorm of V - m/ is finite since

V-m' =(V-m)lg+ (m -v)lsq in R2
We are interested in the asymptotic behavior of minimizers of the energy F, s in the regime
n<«l and §<1.

The characteristic singular patterns expected in this context are the Néel walls together with
topological defects (due to (2.34)) standing for interior vortices (the Bloch lines) or "half” Bloch
lines at the boundary. Recall that the energy E, s per unit length of a Néel wall of angle 26 (with
6 € (0,5]) is given by:
7(1 —cosf)? + o(1)
20| log ¢

as 0 — 0, (2.35)

(see (2.20)). The formation of interior or boundary vortices is explained by the competition between
the exchange energy and the penalization of the ms—component for configurations tangent at the
boundary. Indeed, there is no S*'—configuration that is of finite exchange energy and satisfies
(2.34). There are only two possible situations:

e If m’ does not vanish on 0F2, then (2.34) implies that m’ carries a nonzero topological degree,
deg(m’,0Q) = £1. In this case, we expect the nucleation of an interior vortex of core-scale 7 (i.e.,
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Bloch line in the micromagnetic jargon). The scaling of the vortex energy is related to the minimal
Ginzburg-Landau (GL) energy (see Bethuel, Brezis & Helein [7]):

m’eg}i(?z,m) /Q gn(m')dz = (27 + o(1))|logn| asn — 0, (2.36)

m/=vL on 89

where the GL density energy is given in the following:
1
gy(m') = |Vm/|? + P (1- |m'|2)2. (2.37)

e The second situation consists in having zeros of m’ on the boundary. Therefore, we expect that
GL boundary vortices do appear. Roughly speaking, they correspond to ”half” of an interior vortex
where the vector field m’ is tangent at the boundary and vanishes at the core; therefore they are
different from the micromagnetic boundary vortices that take values into S!, so they never vanish.
Remark the importance of the regularity of 99 in estimate (2.36). In fact, if 9 has a corner
and the boundary condition m’ = v+ on 9 in (2.36) is relaxed to (2.34), then estimate (2.36)
does not hold anymore, it depends on the angle of the corner. Therefore, at the microscopic level,
topological point defects do appear in the Landau state pattern and are induced by (2.34).

The aim of the section is to show compactness of magnetizations energetically F,, 5 close to the
Landau state in order to rigorously justify the limit behavior (2.11): the delicate issue consists in
having the constraint |m| = 1 conserved in the limit. For that, we have to evaluate the energetic
cost of the Landau state. We expect that the leading order energy of a Landau state is given by
the topological point defects and Néel walls. The Landau state configuration consists in several
Néel walls and either one interior Bloch line or two ”half” Bloch lines placed at the boundary of
the sample Q. Therefore, by (2.35) and (2.36), we expect that the energy of the Landau state has
the following order:

A
271 = 2.
7| logn| + Slogo] (2.38)

for some positive A > 0 depending on the length and angle of Néel walls.

Main results. First of all, we want to rigorously prove the upper bound (2.38) for the Landau
state. Our result gives the exact leading order energy of the Landau state in the case of a stadium
domain Q (see Figure 1.6). Note that the Landau state of a stadium consists in a single Néel wall
of 180° around the jump set of the viscosity solution (in our example, the length of the wall is
equal to 2L, so that by (2.35), A = 7L in (2.38)).

Theorem 19 Let Q be a stadium domain (as in Figure 1.6). In the regime n < § < 1, there
ezists a C* vector field my 5 : Q — S? that satisfies (2.34) and
wL + o(1)

E77=5(m77-,5) < 27T| 1og77| + W as 1) l, 0. (2,39)

Observe that the vortex energy in the above estimate is relevant only if its energy costs at least
as much as a Néel wall, i.e., m < |logn| (otherwise, the vortex energy would be absorbed by
the term 0(@) ). This regimes leads to a size n of the vortex core exponentially smaller than
the size ¢ of the Néel wall core (see Remark 13).
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Now we state our main result on the compactness of the S2—valued magnetizations that have
energies near the Landau state. The issue consists in rigorously justifying that the constraint
|m| = 1 is conserved by the limit configurations as 1,6 — 0. The regime where we prove our result
corresponds to the case where a topological defect is energetically more expensive than the Néel

wall:

Theorem 20 Let o € (0, %) be an arbitrary constant. We consider the following regime between
the small parameters n,6 < 1:

n'/? 56, (2.40)
1

For each n and &, we consider C* vector fields my s : 0 — S? that satisfy (2.34) and

< 2wa|logn| (2.42)

E’r],é(m’r],é) - 27T| lOg 77| < 1
—_— 2.43
~ §llogd| (243)

Then the family {my s}ty.s10 s relatively compact in L?(Q,8?) and any accumulation point m :
Q — S? satisfies

m3 =0, |m'|=1ae inQ and V-m' =0 distributionally in R?. (2.44)

The proof of compactness is based on an argument of approximating S2—valued vector fields
by S-valued vector fields away from a small defect region. This small region consists in either one
interior vortex or two boundary vortices. The detection of this region is done in Theorem 21 below
and uses some topological methods due to Jerrard [47] and Sandier [68] for the concentration of the
Ginzburg-Landau energy around vortices (see also Lin [53], Sandier & Serfaty [70] ). Away from
this small region, the energy level only allows for line singularities. Therefore, the compactness
result for S'—valued vector fields in [43] applies.

Let us discuss the assumptions (2.40), (2.41), (2.42) & (2.43). Inequality (2.43) assures that
cutting out the topological defect (one vortex or two boundary vortices), the remaining energy
rescaled at the energetic level of Néel walls is uniformly bounded. Inequality (2.42) together with
the choice of a < % mean that the energy cannot support three ”"half” vortices and is precisely
explained in Theorem 21 below. Inequality (2.41) is imposed due to our method to detect a
boundary vortex: it leads to a loss of energy of order O(log|logn|) with respect to the expected
half energy m|logn| of an interior vortex (see Theorem 21 and Proposition 15). This amount
of energy could leave room for configurations of Néel walls that may destroy the compactness of
|m’| = 1. Therefore, to avoid this scenario, (2.41) is imposed. The regime (2.40) is rather technical:
it is needed in the approximation argument of S?—valued vector fields by S'—valued vector fields
away from the vortex balls. In fact, starting from the values of m’ on a square grid of size n°,
the S'-approximation argument requires zero degree of m’ on each cell, leading to the condition
B < 1—q; furthermore, the condition 7” < § is needed in order that the approximating S*—valued
vector fields induce a stray-field energy of the same order of m’. Therefore, (2.40) can be improved
to a larger regime

<6 forany B<l—a
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(Theorem 20 is stated for the value 8 = 1/2 which is the universal choice for every o < 1/2).
However, this slightly improved condition is weaker than the complete regime implied by (2.42) as
explained in the following remark.

Remark 13 Any limit configuration m' satisfies (2.44). If Q is a bounded simply-connected
domain different than discs, m’ has at least one ridge (line-singularity) that corresponds to a Néel
wall. Therefore, the minimal energy verifies min s 34y £y 5 — 27| logn| 2

=~ M- Combining with
(2.42), it follows that

<11 .
5TTogd] < |lognl;

in particular, n < 6_5“335‘, i.e., the core of the vortex is exponentially smaller than the core of
the Néel wall. However, in the proof of Theorem 20, this much stronger constraint with respect to
(2.40) is not needed.

We prove the following result of the concentration of Ginzburg-Landau energy around one
interior vortex or two boundary vortices for vector fields tangent at the boundary:
Theorem 21 Let o € (0, %) and Q C R? be a bounded simply-connected domain with a C*!
boundary. Then there exists ng = no(c, 9Q) > 0 such that for every 0 < n < ng, if m’' : Q@ — B2 is
a C* wvector field that satisfies (2.34) and

/ gn(m’) dz < 27 (1 + )| log 7|, (2.45)
Q

then there exists either a ball B(x},r*) C Q (called vortex ball) with r* = m and

/ gn(m’) dz > 27| log r_| - C, (2.46)
B(xy,r*) n
or two balls B(a3,m*) and B(x%,r*) (called boundary vortex balls) with x%,x% € 0Q and

/ gn(m’) dz > 27| log r_| -G, (2.47)
(B(z5,r*)UB(z3,7*))NQ n

where C' = C(a, Q) > 0 is a constant depending only on « and on the geometry of 0.

The condition « < 1/2 is essential in our proof. In fact, if no topological defect exists in the
interior (in which case, condition (2.34) induces boundary vortices), we perform a mirror-reflection
extension of m’ outside the domain. Roughly speaking, the GL energy in the extended domain
doubles, i.e., it is of order 27(2 + 2«)|logn| and the topological degree at the new boundary is
equal to two; in order to avoid the formation of three interior vortices in the extended region, we
should impose 2 +2a < 3, i.e.,, a < 1/2.

Observe that the Ginzburg-Landau energy concentration for a boundary vortex in (2.47) has a
cost of order | log n| — C'log | log n| provided that the boundary has regularity C**. We conjecture
that the same energetic cost for a boundary vortex holds true if the boundary has regularity C1#,
B € (0,1). However, if the boundary regularity is only C!, then the energetic cost of a boundary

vortex may decrease to (7 |log n| where C' > 0 is a universal constant. This indicates

c
~ log[log 77\)
that the loss of energy of order log|logn| in (2.47) could occur for boundary vortices in C*4-
domains and the order of this energy loss increases to % for C' boundaries as 3 — 0. This
claim is supported by the following example for a C'' boundary domain:
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Proposition 15 We consider in polar coordinates the following C* domain Q = {(r,0) : r €

0,55), 18] < y(r) = 3 — loglogl} For every 0 < 1 < 1, there exists a C'—function mj, :
QN Byjz00 — R? that satisfies (2.34) on QN By /200 and

C
i
gn(m)dr < (r — —————)|logn|,
/mBl/Q(,(, (i ( logllogn|)| |

where C > 0 is some universal positive constant (independent of n).

2.5 Boundary vortices °

In this section, we analyze a special thin-film regime where boundary vortices appear. We will
assume small aspect ration, i.e. h = /¢ < 1 and that the Néel walls have a large core § = d*/(t(),
ie.,

0>1 or 0=0(1),
which is the opposite context with respect to the ordering presented in Subsection 2.1.2.

a) The regime of very small films, characterized by
d > |logh|

was considered by Kohn-Slastikov [49] with the scaling law of minimal energy chosen at the order
of t2¢|logh|. (In this regime, Néel walls and boundary vortices are not contained by the sample).
Then the exchange term in the energy dominates completely (since rescaling by t2¢|loghl, its
coefficient in (2.8) is equal to §/|logh| > 1) and the magnetization becomes an in-plane constant
vector field. The corresponding reduced energy (in the sense of I'-convergence) was derived in
[49] and is related to earlier work of Carbou [15]. Their result shows that the nonlocal stray-field
energy (2.7) reduces to a local contribution of the boundary [, (m’ - v)*dH*.

b) Slightly larger films, where
d = allogh|

with 0 < o < oo and the minimal energy scales as t2/|log h| were also studied by Kohn-Slastikov
[49]. In this context, Néel walls are not contained by the sample, while boundary vortices have a
core size of order O(1). Since in this regime Bloch lines have higher cost than boundary vortices,
the limiting magnetizations are still required to be in-plane

m Q' cR?— St
but no longer need to be constant. Instead, the exchange energy and the boundary contribution
compete, and the rescaled energy E3P (at the order of t2/|log h|) I'-converges to
1
E*P(my=a [ |Vn/|Pde + — (m' - v)2dH* .
QO 21 ek

A second limit, describing the behavior of éEQD when a — 0, was examined by Kurzke [52, 51].
As there is no m’ € H(€,S') that satisfies m’ - v = 0 on 9’ for simply-connected bounded

5All the results appearing in this section are part of the article Ignat-Kurzke [39]. Therefore, we don’t specify in
the following this reference for each result.
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domains ', the limit is characterized by boundary vortices, whose interaction is governed by a
(local) renormalized energy.

c¢) The case where 6 = O(1) was studied by Moser [58, 59] when the minimal energy scaling is
at order of log|logh|. Here, all three patterns (Néel walls, boundary vortices, Bloch lines) are
contained by the sample and the ordering is given by

E*P(Néel wall) < E*P (Boundary vortex) < E*P (Bloch line),

as in regime (#4¢) in Subsection 2.1.2. Due to the scaling law of the energy of O(log | log k), both the
stray-field (represented by the lateral surface charges) and exchange terms survive in the limit. The
balance between these terms produces boundary vortices. The corresponding vortex interaction is
nonlocal here, in contrast to the local renormalized energy in [51].

Model. The aim of this section is to show the existence of a boundary vortex regime with purely
exchange-driven and local vortex interaction. To do so, we show that the double limit in [49] and
[51] can be replaced by a direct approach. The context is the following: our regime is given by

1< < |logh.

Here, the Néel wall is not contained by the sample, but boundary vortices and Bloch lines may
nucleate knowing that a boundary vortex energetically costs less than a Bloch line. The scaling
law of the minimal energy is chosen at the level of a boundary vortex, i.e., O(d?*t|log x|) where we
recall that x = d?/(tflog(f/t)). Therefore, our regime is equivalent with the assumption h < 1
and Ho—1gf1| < k= Kk(h) < 1. The full energy E3P (in the absence of anisotropy and external field)
will be rescaled as

1 1
E =— Vmp|? do + ———— VU, |* d 2.48
n(ma) h|log k| Qh| | z+772h|1ogl<a| /Rs| nl” dz, ( )
where
QO = Q' x (0,h)
is the rescaled sample and ' C R? is a O1® domain with diam €’ = 1. (Here, the core of the

Block line i can be written in function of the aspect ratio h and the boundary vortex core x as
n? = kh|logh|.) We highlight the fact that here we consider the full model, i.e., we don’t assume
invariance of magnetization in the vertical direction z3. The rescaled configurations mp(z) = m(¢x)
and the stray-field potential Uy (z) = U (¢x) satisfy

mp : Q, — S%, AU, =V -(mplg,) in R3 (2.49)

Our goal is to derive the reduced model as h — 0 (in the sense of I'-convergence). Let us
first discuss the compactness issue for uniformly bounded energy configurations my that yields
the correct topology of I'-convergence. It consists in regarding for averaged magnetization (in
x3-component):

1 h
mp(x') = E/ mp (2, x3) drs, ' = (v1,12) € Q.
0

Then my, € H' (9, B*) and the trace of my, on 99 belongs to H'/2(€Y', B*). We will prove relative
compactness of {my, }, at the boundary 99 in L?(9’) where the limiting configurations mq belong
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to BV (99, S1). Moreover, the boundary Jacobians associated to the in-plane vector field m/) on
the boundary 9’ are uniformly bounded measures.

Boundary Jacobian. This notion is defined as follows: for every m) € H' (€, R?), we denote
the (usual) jacobian of mj}, by

1
jac (m},) = 3V x (1), ANNVmy) = Opy )y, A Oy, € LM Q).

We call boundary jacobian, the operator D : H (€', R?) — (C%1)*(Q) defined as

D)o’ = [

<2jac (my)¢ +my, AV, - VL() da', for every (e CYH(Y).
( ’

944

It is a continuous operator and

D(my,)¢da' = [ mj, AOymj, (dH'  if my € CH(Q,R?). (2.50)
o o
Note that D(m},) acts only on the boundary 0€)' (which has a natural meaning whenever mj, €
CH(Q)). Indeed, by density of C*(Q) in H(Q',R?) and the continuity of the operator D over
H'(Q,R?), it means that D can be seen as an operator on the boundary acting on H'/2(9€, R?)
which gives a meaning of the RHS of (2.50) if m), € H'/2(9Q/, R?).

Vorticity and renormalized energy. We expect that the limiting measure of {D(m},)}njo is
the vorticity measure

N
Jo=mY_ diba,, (2.51)
Jj=1

carried by the boundary vortices a; € 9 of "degree” d; € Z satisfying Zjvzl d; = 2. A boundary
vortex a; of "degree” d; € Z corresponds to a jump of size d;m in the lifting of the limit magne-
tization mg. More precisely, we introduce a lifting 1 : 9 — R of the tangent vector 7 = ™
on 9 such that 1 is continuous on 9§’ except on a jump point with the size of the jump equal
to 27 (after a complete turn on 9€'). This explains the above constraint » j d; = 2. The limit
magnetization mg = €?¥° belongs to BV (9, S!) and has the property that ¢ — ¢q is a piecewise
constant function with values into 7Z, so that the total variation of 1) — g coincides with the mass
of the vorticity measure:

N
JO = 67—(’!/1 — (po) on 8(2’ and ||J0||M(agl) = /aﬂ’ |a7'(w - 900)| = ﬂ-z |dj|
j=1

This result is very similar to the Ginzburg-Landau type functionals, the difference here residing
in the concentration of the jacobian on the boundary rather than at the interior of the domain.
Similar to [7], we define the solution V of the inhomogeneous Neumann problem:

AV =0 in
& =0,p—Jo on O,

and let R € C(') be the continuous harmonic function in Q' given by

N
R(z") =V (a') — Z djlog |z’ —aj|, 2" €.
j=1
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The renormalized energy corresponding to {(a;,d;)} is defined as follows:

N
1 T
W({(aj,dj}) =—r Y didj10g|ai—aj|+§/6‘9/ V@T¢—§Zde(aj).
j=1

1<i<j<N
Main result. We prove the following I'—convergence result:

Theorem 22 Assume that h < 1 and let k = k(h) be such that “o—lgM < k<1

1) (Compactness and lower bound) If my, : Q2 — S? is a sequence of magnetizations such that

lim sup Ep,(mp) < 00,
h—0

then for a subsequence, the xs3-averaged magnetizations my, — mg = e in L2(0Q') where 1 —
wo € BV (0, 7Z) and averaged boundary Jacobians {D(m},)}rjo converge to a vorticity measure
Jo = 0-(¢ — @) of the form (2.51). The energy satisfies the following lower bound:

hg:lélf Eh (mh) Z ||J0HM(BQ’)-

Furthermore, if the "degrees” d; belong to {£1} for every 1 < j < N, then we have the following
optimal lower bound at the second order of the energy:

lim inf |log &[(Ep(mn) — || Jollaonn) = W{ag, dj}) +0llJollwcoer),

where v9 = 1 —log2 and W is the renormalized energy defined above.

2) (Upper bound) Given a configuration of disjoint boundary points a; € OY and d; € Z
with Z;V:1 d;j = 2, there em’st; a family of magnetizations my, : Q, — S? such that the averaged
magnetizations my — mo = e in L2(9Y') where 0.pq = d-1 — Jo and the boundary Jacobians
{D(m},)}nio converge to the vorticity measure Jo and

N
%%Eh(mh):wzwﬂ.

j=1
Furthermore, if |d;| =1 for all j =1,..., N, then m;, can be chosen such that
tim | log x| (B3 (ma) — 7N) = W ({as, di}) + 7.
Our strategy in proving this theorem is as follows. First, we reduce the energy Ej(mp) to a

simplified functional defined for averaged magnetizations my:

Ey(mu) !

1 1
I~ 12 / /12 ! = 2 1
= \Y% dz’ + — 1- dz’ + — . dH" ).
|1ng{| ( o | mh| X ) /Q/( |mh| ) i ) . (mh V) )

In fact, the energy Ej(my,) is close to Ej(mp) up to o(m) (note that o(1) would suffice for
the first leading order of the I'-limit development). This is done by a careful series of estimates
that improve in a more quantitative way results of Carbou [15] and Kohn-Slastikov [49]. Then we
show that the averaged magnetizations mj can be approximated by S Lvector fields with small
energy error, using an argument related to the one explained in Section 2.4. This allows us to
show compactness of the boundary Jacobians based on a new argument that avoids rearrangement
inequalities used initially in [52]. Finally, we show the I'-convergence result. Essentially, the idea
here is to reduce to the pure boundary vortex regime using n-compactness type estimates.
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2.6 Bloch line®

We consider the full micromagnetic model (2.1) in a spherical magnetic domain Q = B, C R? where
the effect of anisotropy and an applied external field generates a Bloch line inside the sample 2.
The mechanism is the following: the material has an uniaxial anisotropy Qy(m) with ¢(m) = m3
that favors the vertical axis x3. Moreover, the external field turns around the axis es, i.e.,

(—22,21,0)

> > zeR3
Ty + 5

Hext = )\Ho, with Ho(l') == 5
with an intensity A. It is expected that a Bloch line is generated along the vertical axis for strong
anisotropy (i.e., the quality factor @ 2 1 is not small) and strong external field intensity .

We first adimensionalize the model: we introduce two nondimensionalized parameters

q d

€E = —— al = —.

a =7

Rescaling in the length scale ¢, i.c., Z = z/f, m(z) = m(z), U(z) = $U(z) and choosing A =
Mon?|loge|/2 with \g a tuning parameter, the rescaled energy at order £d? can be written as (for
simplicity of notation, we skip ~ in the sequel):

1 1
EBD(m):/ |Vm|2dx+—/ m%dw—i——/ |VU|2dx—)\0|1oge|/ Hy-mdx
B3 € Jps n? Jgs B3

where m : B3 — S? and AU = V - (mlp,) in R®. We denote the energy density of E3P(m) by
e3P (m). We are interested in the regime e, = n(c) < 1 with

g2 < n?lloge| < 1,

ie., d < £ and @ 2 1. This problem is very similar to the 3D Ginzburg-Landau type problems
for superconductors where line vortices nucleate inside, typically, by imposing a fixed Dirichlet
boundary condition with topological defects (see e.g. [11], [69]). The difference with respect to
the above model resides in the free-boundary feature of the problem (even if the anisotropy and
external field impose a boundary condition in the limit ¢ — 0).

The aim is to study the asymptotic behavior of the minimal energy E3P as well as the singular
pattern appearing for minimizers m. as € — 0. A Bloch line is asymptotically created between the
two poles Py = (0,0,+1) with a core of order e. The expected result is given below:

Open Problem 5 1) Let m. : B> — S%. Then as € — 0,

E3D .
imint £ S orip py = B,
e—0  |loge]
2) Moreover, if
E3D .
lim £ _orip py B,
e—0 |loge]

then me — % in WH1(B3) and the following measures converge as € — 0,

€3D(

pre = IITWZIE)H3LR3 = 2rH ' {P_Pi} = AH LB

6This subject is part of the PhD thesis of my student Pierre Bochard [10].
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2.7 Cross-over from symmetric to asymmetric walls *

We have already presented the (symmetric) Néel wall in Section 2.2 as an xz-invariant transition
layer that is predominant in thin films. For thicker films, we expect that asymmetric walls (i.e.,
varying in the zs-direction) become favorable as stray-field free transition layers. In this section,
we are interested in the critical regime of the cross-over from symmetric to asymmetric walls in

soft ferromagnetic films.

Easy axis e
' / s - _- -7
— N P
-~ ~
- -~

_-7 _- -
v KT
~ -

O 0 -1® ®

a3

R ——
2 Direction of external field /iox
1

Figure 2.11: A 180° domain wall perpendicular to x;-direction.

Model. We consider a magnetic material Q C R? with the easy axis e; = (g) driven by an
anisotropy density Qg(m) with p(m) = m? + m3. The domain wall is set to be parallel to the
zax3-plane as in Figure 2.11. In order to deal with arbitrary wall angles § € [0, 5] between the
directions

m* = (cosf, +sin#,0),

we apply an external field Hoyy = Q(cos(@), 0, 0) in the normal direction to the wall plane. The
aim consists in studying the specific energy of a domain wall per unit length in xs-direction and to
understand the behavior of the transition layer that achieves the minimal energy. Hence, the admis-

sible magnetizations are considered to be xs-invariant and connect the two mesoscopic directions

m* inside the z;z3-plane:

m =m(x1,x3) € S%, (x1,23) € w:= R x (—t,t), m(£oo, ) = m™, (2.52)
Rescaling in the thickness variable ¢, i.e., & = z/t, @ = w/t, m(z) = m(zx), U(Z) = U(z)/t, the
specific energy (per unit length in x2) is given by

Emmf/ﬁ%ﬁﬁ+ﬂ/|ﬁﬁﬁ+@ﬁ/<%lC%@f+@)ﬁ, (2.53)
@ R? @

where the differential operator V refers to the variables # = (#,43) and U : R> — R is the 2D
stray-field potential given by

AU =V -(mlz) in RZ
Observe that the scaling of the stray-field energy is the same as for the Bloch wall, i.e.,

VOPdz = [V - (715 % g
Rr2

7All the results appearing in this section are part of the articles Doring-Ignat-Otto [28], [27]. Therefore, we don’t
specify in the following these references for each result.
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Throughout the section, we skip ~.

Symmetric walls. As we explained in Section 2.2, in the regime of thin films (corresponding to
small thickness t), the (symmetric) Néel wall m is the favorable transition layer: ‘g—;’; =0inw (ie.,
m = m(z1) is invariant in x3) and m3 = 0 in w (i.e., m € S1). It is a two-length scale object with a
core of size Weore = O(d?/t) and two logarithmically decaying tails weore S |21] S wiaa = O(t/Q).
Even if it doesn’t satisfy the flux-closure constraint, it is invariant with respect to the group of

symmetries generated by the charges V - m in w and mg = 0 on Jw:

T1 — —T1, T3 — —T3, M2 — —My;

The specific energy of a Néel wall is given by

1 1
EQD (symmetrlc Néel Wall) = O(t2 W) = O(Tf2 7152)
g Weore log %

(see e.g. [63], [26]).

Asymmetric walls. The main feature of an asymmetric wall resides in the flux-closure, i.e., it is
a smooth transition layer m that satisfies (2.52) and

m:w—S5V-m=0 inw and mz=0on dw. (2.54)

Observe that m’ = (mi,mz) : dw — S! since m3 vanishes on Ow, so that one can define a
topological degree for m’ on Ow (where dw is the closed ”infinite” curve (R x {£1}) U ({00} x
-1, 1])) The physical experiments predict two type of asymmetric walls related to the breaking
of symmetries and the degree of m’ on dw:

1. For small angles 6, the system prefers the so-called asymmetric Néel wall. The main features
reside in the conservation of symmetry 1) and 4) and in having a vanishing degree of m’ on
Ow (see Figure 2.12). Due to symmetry 1), the asymmetric Néel wall has the mg component
vanishing on a curve symmetric with respect to the center of the wall (by x — —z). Moreover,

mo is not monotone at the surface |z3| = 1.

2. For large angles 6, the system prefers the so-called asymmetric Bloch wall. In fact, as the
angle 6 grows, there is a breaking of symmetry with respect to the asymmetric Néel wall, so
that the asymmetric Bloch wall conserves only the trivial symmetry 4). Another difference
resides in the nonvanishing topological degree on dw carried by asymmetric Bloch wall (i.e.,
deg(m’,0w) = 1). Therefore, a vortex is nucleated at the center of the wall, and the curve
of zeros of ms is no longer symmetric with respect the center of the wall (see Figure 2.12).
Moreover, the ma-component is expected to be monotone at the surface |z3| = 1.

The asymmetric wall has a single length scale weore ~ t and the specific energy resides in the
exchange energy of order (see e.g. [63], [26])

Fsyp(asymmetric wall) = O(d?).
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magnetization: m_2 _ magnetization: m_2
-0.50 -2.1e-05 0.50 1.00 £ -1.00  -0.500  0.00 0.500 1.00
| . - & = |

Figure 2.12: Asymmetric Néel wall (on the left) and asymmetric Bloch wall (on the right). Nu-
merics (made by L. Déring).

Regime. We focus on the challenging regime of soft materials and thickness ¢ close to the exchange
length d where we expect the cross-over in the scaling energy of symmetric walls (Néel wall) and
asymmetric walls:

t
Q<1 and |log@Q|~ (E)2
Rescaling the energy (2.53) by d? and setting

t2 t2
=05 K1 d Ni=—=———>0,
F " d?|log p|
then A = O(1) is a tuning parameter in the system and the rescaled energy, which is to be
minimized, can be written as:

E,(m) = / |Vm|2d:17 + Al log p|/ |VU|2dx + p/ ((ml - cos(@))2 + m%) dx
w R2 w
under the constraint
m:w=Rx[-1,1 — 82, m(+oo,) =m*, U:R* =R, AU =V - (ml,) in R%

To fix the center of the transition we set

1
ma(0) :2][ ma (0, z3) drs = 0.
1

Main result. We are interested in understanding the dependance in the wall angle 8 of the asymp-
totic behavior of the minimal energy E, and to describe the qualitative properties of minimizing
transition layers as p — 0.

We expect the following scenario (for p <« 1): for small angles 0 < 6 < 6* = 6*(\), the
transition layer is symmetric, i.e., driven by the (symmetric) Néel wall, so that the minimal energy
resides in the logarithmic decaying tails of the Néel wall. In fact, if X is very small, then the system
will always prefer the symmetric transition layer. However, for larger A, theres exists a critical
angle 0* where a bifurcation occurs: an asymmetric wall becomes favorable to nucleate into the
core of the transition. In fact, for large wall angles 8 > 6*, the optimal transition layer has a core
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stable // unstable
9*

Figure 2.13: Bifurcation diagram for the angle 6;, of the asymmetric core part, depending on the

ein

global wall angle 6.

driven by the exchange energy where the transition layer is charge-free, while outside the core, it
preserves the tails of the symmetric wall (driven by the stray-field energy). The splitting into the
core and the tails is determined by an angle 6;,, of the asymmetric part of the wall. In fact, the
angle #;, optimizes the balance between the energy of asymmetric part of the transition in the
core (turning from —6;, to 6;,) and the energy of the symmetric part of the wall inside the tails
(where the transition completes the rotation by an angle 0,,: = 6 — 6;,).

This separation of the minimal energy is justified by the following I'-convergence result at the
level of minimizers:

Theorem 23 Let 0 € (0,%]. As p— 0 we have the following splitting of the minimal energy:

(r2né121) E, — min {Easym(Gm) + AEsym (0 — 0in) @ 0in € [0, 7r/2]} (2.55)

where the asymmetric wall energy is given by

Eqsym(0in) = min {/ |Vm|2dz | m2(0) = 0, m(£o0,-) = (cos(ﬁm),:lzsin(&n),())} (2.56)

(2.54)

while the symmetric wall energy can be written for Opyy = 0 — 0, as:

Egym(Oout) == 2w (cos(é’m) — cos(@))Q.

Observe now that the symmetric part of the energy is quartic for small angles 6 (as the Néel
wall), i.e., Esym < 0% Therefore, in order to understand the bifurcation at the critical angle 6*
(when both symmetric and asymmetric walls are favorable), by (2.55) we need to compute the
asymptotic expansion of the asymmetric energy at order % as § — 0. For that, we will prove

Basym (0) = Eo 02 + E1 0* + 0(6*),

with some positive constants Ey > 0 and F; > 0 that we compute explicitly. This allows us to
heuristically determine a critical angle 6%, at which the symmetric Néel wall loses stability and an
asymmetric core is generated. Moreover, a new path of stable critical points with increasing inner
wall angle 6, branches off of 6;, = 0 (see Figure 2.13).
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Leading order of Eqsym: We will determine the first leading order term Ey6? of the asymmetric
wall energy when the transition angle § — 0. Moreover, we prove the asymptotic behavior of an

asymmetric transition layer mg:
mg = (cos @, (sin@)ms3,0) + O(6?), as — 0,

where mj is a minimizing transition layer of the following problem

Ey = min{/|Vf}2dz

The asymptotic analysis is done by matching upper and lower bound in the spirit of the I'-

1
fro— R f(to0,) =21 Pl doa =1, J0) = o} @)

convergence at the level of minimizers:

Theorem 24 The leading order coefficient of Eqsym s given by:
Eosym(0)
B = 1i asym
07T g2
where Ey is the minimal energy value (2.57). There are only two minimizers of Eg corresponding

to o € {£1} that we explicitly determine:

my(x) = tanh(Fx1) + ax/isin(%xg) 1 —tanh*(Zz1), 2= (z1,73) € w.
Moreover, one computes Fy = 4.

The above theorem already justifies the physical prediction on the asymmetric Néel wall: First
of all, observe that mj is a non-monotone function on the surface {|x3| = 1}, so that the same
behavior is conserved by the second component of the asymmetric Néel wall. Second, observe that
the curve where m3 vanishes is symmetric with respect to the origin, so that the zeros of the second
component of an asymmetric Néel wall conserves the same symmetry (as predicted by numerical
simulations in Figure 2.12).

Second leading order of Eqsym: We will now determine the second leading order term E16* of the
asymmetric wall energy in the asymptotic of the transition angle §# — 0. Moreover, the behavior
of the asymmetric transition layer my is expected to have the following second order expansion in
0:

mg = (cos, (sin@)m3,0) + (sin? ) m + O(0*), asf — 0, (2.58)
where m} is a minimizing transition layer of Ey (given by Theorem 24) and i has the following
components:

- 1-(m3)® o _ 0 d 8.7~ =0 (m3)?
1= ) , Moy = an 313 = Oy 2 m w

where g is uniquely determined by the boundary condition s = 0 on Jw. Using this heuristic
expansion (2.58), one computes that

/ |Vmg|? dx = 0*Eq + 0 E1 + 0(0%)

with some exact constant

— 304
E1 = 1057‘(‘.

The following result rigorously proves the above second order term of Eygym by matching upper
and lower bound:
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Theorem 25 We have the following second-leading order coefficient

: (Easym(o) — 92E0)
By = o, 7z

Now we can rigorously justify the supercritical bifurcation in the wall angle from symmetric to
asymmetric optimal profile (as shown in Figure 2.13). By Theorem 25, we have that

Bosym (0) = 4m0* + %7794 + 0(0%). (2.59)

If 6 is the transition wall angle, it means by Theorem 23 that:

. . 2
(IQI.légl) E, = 0iné?01,171r/2] (Easym(é’in) + 27 A (cos(6in) — cos(0)) ) +o(l) as p—0, (2.60)
where 6;, is the angle of the inner asymmetric core part. For small 6, combining with (2.59), the
RHS of (2.60) as function of ;, € [0, 6] has the unique critical point 6;, = 0 if § < 6* where the
bifurcation angle 6* is given by

Ey
* = 1—- ) +o01 — 0.
0 arccos( 27r/\) o(l), as 6—0

(Observe that 6* is well defined provided that A\ > Ey/(4m); therefore, the bifurcation appears
only if X is large enough.) For 6§ > 6*, the optimal splitting angle 6;,, becomes positive and the
symmetric wall becomes unstable under symmetry-breaking perturbations; hence, the asymmetric
wall becomes favored by the system. Moreover, the second variation of the RHS of (2.60) at 0* is
positive so that the bifurcation from symmetric to asymmetric wall is supercritical.
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