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Abstract
In this paper, we investigate a stochastic Hardy-Littlewood-Sobolev inequality. Due to
the non-homogenous nature of the potential in the inequality, a constant proportional
to the length of the interval appears on the right-hand-side. As a direct application,
we derive local Strichartz estimates for randomly modulated dispersions and solve the
Cauchy problem of the critical nonlinear Schrédinger equation.
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1 Introduction

Let (©,P) be the standard probability space endowed with the Wiener filtration (F)¢>o.
We consider the stochastic process WH | a fractional brownian motion with Hurst pa-
rameter H € (0,1), given by, Vt € R,

Wi = / ((t = )1 — (—s)T)aw,

—00

where W is a standard wiener process. The main objective of this paper is to derive a
stochastic counter-part to the classical Hardy-Littlewood-Sobolev inequality [211 22 28].
To be more specific, we obtain the following result.
Theorem 1.1. Let (WH) >0 be a fractional brownian motion of Hurst index H € (0,1),
Be€(0,1—H), p,ge (1,00) and « € (0,1) such that

1 1

2—a=—-+-.
p q

Then, there exist T > 0 and Grq > 0 such that, P-a.s., Vf € LP([0,T]), Yg € L4([0,T1)
the following inequality holds

T T
/0 /0 FOWH — WH e g(s)dsdt| < G| fllmqory ooy (L1)
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Our motivation to prove such result stems from the Cauchy problem of nonlinear
evolution equations with a randomly modulated dispersion. Such equations are for
instance: the nonlinear Schréodinger equation [13] [14] 8, 3], the Korteweg-de Vries equa-
tion [§] and the Benjamin-Bona-Mahony [7]. They have recently raised an interest due
to the effects of the stochastic modulation. Here, we address the local Cauchy prob-
lem for the following nonlinear Schréodinger equation with noisy dispersion in its mild
formulation

Y*y(s,x)ds, Y(t,z) € [0,T] x RY, (1.2)

t
Y(t, ) = Pogpo(x) + )\/ Py,

0

where A € C and, Vp € CSO(]Rd),
Poip:=F! (e‘“f‘z(WtH—Wf)@) '

For d = 1, H = 1/2 and o = 1, this equation arises in the field of nonlinear
optics as a limit model for the propagation of light pulse in an optical fiber where the
dispersion varies along the fiber [2] [I]. These variations in the dispersion accounts for
the so-called dispersion management which aims to improve the transmission of a light
signal by constructing a zero-mean dispersion fiber in order to avoid the problem of
the chromatic dispersion of the light signal. When the variations are assumed to be
random, a noisy dispersion can be derived (see [26], [I3]) which leads, in the white noise
case, to Equation (|1.2)).

As part of the problems concerning the propagation of waves in random media, there
is a vast literature around random Schrodinger equations. Let us mention in particular
the cases of random potentials [I5] [I6] and noisy potentials [10} 11} 12]. In these works,
the effects of the stochastic potential greatly affect the dynamic of the Schrodinger
equation and are, in a broader context, a motivation to introduce randomness in PDEs.
Specifically, there is a well known effect which attracted a lot of attention: the so-called
reqularization by noise phenomenon (see [I8] for a survey). This phenomenon can be
summarized as an improvement, due to the presence of noise, of the well-posedness of
differential equations and has been studied in the context of SDEs [31], 29, 24|, 27, [5],
transport equation [19, 17, 4], SPDEs [9] and scalar conservation laws [20]. We remark
that obtaining a regularization by noise in the context of nonlinear random PDE is a
challenging task and most of the results are obtained in a linear setting. For instance,
an open problem is to obtain a regularization by noise for the Euler or Navier-Stokes
equations.

As mentioned previously, we are not the first one to investigate the Cauchy problem
of Equation (1.2). It was first studied in [I3] where the global Cauchy problem was
solved for H = 1/2 and ¢ < 2/d (which corresponds to a classical L2-subcritical
nonlinearity). In [I4], the authors proved that, in the L2-critical case, when d = 1,
H = 1/2 and o = 5, the solutions are globally well-posed, which is not the case for
the deterministic nonlinear Schrédinger equation and, thus, hints for a regularization
by noise effect. In [§], the authors study the case for d = 1, 0 = 2, H small enough
and d =2, 0 =1, H € (0,1). By a simple scaling argument on the space and time
variables of and thanks to the scaling invariance of the Wiener process, it was
conjectured in [3] that, in fact, the critical nonlinearity should be o = 4/d for H = 1/2,
a L?-supercritical nonlinearity, which is twice as large as the deterministic L?-critical
nonlinearity. Furthermore, this fact was supported by numerical simulations in 1D and
leads to believe that the white noise dispersion has a strong stabilizing property.

In this paper, we prove the global Cauchy problem for d € N, 0 < 2/d and
H € (0,1). To be more specific, we obtain the following result.



Theorem 1.2. Leto < 2,1 € L*(R?) and a € (2,00) such that2/a = d (1/2 — 1/(20 + 2)).
Then, P-a.s., there exists a unique solution 1 € L*([0, +oc[; L2 2(R%)) to (1.2)).

Remark 1.1. Thus, the modulation by a random noise of the dispersion operator leads
to a reqularizing effect since we are able to prove the global existence and uniqueness of
solutions in the critical case o = 2/d. The other interesting fact of our result is that,
no matter how close to 1 the Hurst parameter is, we still reach the critical case. This
problem was left open in [§] where H needs to be large enough.

The classical approach to investigate the Cauchy problem for nonlinear Schrédinger
equations is to derive local Strichartz estimates [6]. These estimates are a direct conse-
quence of the dispersive property of the linear operator iA. However, as pointed out in
[14], it is much harder to obtain such estimates in the case of a white noise dispersion
because of the presence of the Wiener process. We recall from [26] [13] that the prop-
agator associated to the linear part of is explicitly given by, Vt,s € (0,00) and
Vi € C°(RY),

2
_ 1 i4(vx|/?ﬂ/vH)
PSyt(p(x) - (47T(WtH o Wg}[))d/Q \/I\{d € ¢ Sp(y)dy (13>

Following the classical proof of Strichartz estimates (see for instance [23]), a fun-
damental tool is the Hardy-Littlewood-Sobolev inequality. This is where Theorem [1.1
comes at hand since the classical potential |t — s|™® is replaced by |W; — Wg|~®. As a
direct consequence, we obtain the following stochastic Strichartz estimates.

Definition 1.1. For any (q,p) € (2,00)? , we say that (q,p) is an admissible pair if

2 1 1
i(3-3)
q 2. p

Proposition 1.1. Let (W);>o be a fractional brownian motion of Hurst index H €

(0,1), 8 € (0,1—H) and (q,p) an admissible pair. Then, P-a.s., there exist T > 0 and
Cir, Cory > 0 such that, Vf € L*(R?) and Vg € L7 ([0,T); L¥ (R%)), the following

inequalities holds
1o, 1l oo o (meyy < Crmml N1l e, (1.4)

T
‘ /0 Py .g(s)ds < C2|E|TaﬁHQHLr’([o,T];Ll’(Rd))a (1.5)

La([0,7];LP(R?))
for any (r,1) admissible pair.

These Strichartz estimates are more powerful due to the presence of the term 77,
Indeed, in the fixed-point argument, this term will be necessary to obtain the contrac-
tion of the mapping in the critical case o = 2/d. This will be the main argument to
prove Theorem [I.2] The rest of the paper is devoted to the proof of Theorem in
section [2] and the proofs of Proposition [I.I] and Theorem [I.2] in section [3]

2 Proof of Theorem [1.1]

Before proceeding any further, let us remark that we can, without loss of generality,
assume that f € LP([0,T]) and g € L%([0,T]) are non-negative functions and, further-
more, by a scaling argument, we can assume that || f||z»(jo,77) = ll9llza(o,r7) = 1. Our
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strategy follows the proof of Lieb-Loss |25, Section 4.3]. It is based on the following
layer cake representation

+oo +oo
f(t) :/0 1f@)>ada, g(s) :/0 1y(5)>pdb
+o0
and |[WH - WH|~> = a/o C_l_a1|WtH7VVSH|<CdC.

Then, by Fubini’s theorem, the left-hand-side of (1.1)) can be rewritten as

T T
| e = witieg(s)dsar -
0 0
+o00 +o00 +o00 T T
a/o /0 /0 ¢l (/0 /0 1f(t)>alg(8)>b1|WtH—WSH<cd8dt> dcdbda.  (2.1)

By denoting

T T T
f(a) ::/ 151)>adl, g(b) ::/ 1y(s)>ads and W(e,T) := sup / 1‘WtH_W§{|<Cd57
0 0 tefo0,1] Jo

we have the following result whose proof is postponed.

Lemma 2.1. Let H € (0,1) and 8 € (0,1 — H). There exists T > 0 and Cgg > 0 such
that, P-a.s., Yc € RT*,
Wi(e,T) < GgglPe.

We now set p, ¢ € (2,+00) such that

1 1
-+ -4+a=2
P q

We see that we can bound each characteristic function by 1 in (2.1) and, thus, we
deduce that

T T 400 400 ptoo
/ / FOIWHE —WH|=g(s)dsdt < o / / / ¢ (a,b, ¢)dadbde,
0 0 0 0 0

with
fl@)g(b), if m(a,b,C) h(c),
Ia,b,e) =4 F@W(eT), if mlab,e)=g(b),

a g
W(e,T)g(b), if m(a,b,c)= f(a),
where

m(a, b, ¢) = lim max{f(a), §(b),h(c) + ¢} and h(c) = CggIPe.

t—0
Remark 2.1. In the previous definition of m, we choose to have, in the case where

max{f(a), §(b), h(c)} = f(a) = h(c), m(a,b,c) = h(c) (and similarly for §).

 From here, we essentially follow the arguments from [25]. We first assume that
f(a) > g(b). We deduce that
+oo
/ ¢ H(a,b,c)de <
0

400 1 5 400 1
g(b)/o C_a_ h(c)lil(C)Sf((l)dC+f(a)g(b)/(; C_a_ lf(a)<h(c)dc



We denote kr = Gggil®. Since h(c) < f(a) is equivalent to
c<

f(a)/kr,

the first integral on the right-hand-side is estimated as

+o0 . f@)/wr
/0 c_a_lh(c)lh(c)gf(a)dc < K,T/O ¢ “de

< (1—a) ey (Fa)/rr) ™" = (1 — @) kg fla) .

The second integral is bounded as

+o0 oo £
/ C_a_llf(a)SH(C)dC < / c e < Oé_ll"f% (a)~".
0 fla)/sT

Hence, since by assumption §(b)~% < f(a)™¢, it follows that

+o0o
| e b ode 5o ko) @) = wmin{a(b)f ()" f(@)a0)' ).

By assuming that f(a) < §(b) and following the same arguments, we obtain

+00 f
/0 ¢ H(a,b, c)de So £Fmin{g(b) f(a)' =%, fla)g(b)'~*}.

We then proceed by integrating with respect to b and a. We have

/*"O/Mmm{g )f(a)'=*, f(a)g(b)'~*}dbda =

+o0 ap/q 400
/ / b) = “dbda + / / a)~“dbda.
apP/4a

Thanks to Holder’ inequality, we have, for r = (¢ — 1)(1 — «),

aP/4 aP/a
/ g(b)1=%db = / g(b)1=*b"b"db
0 0

aP/q l1-a aP/4
< < / g(b)bq—ldb> ( / b‘r/adb>
0 0

The norms of f and g are such that

a/Ba

“+00 . —+o00
Wy =» [ a " Fladda =1 and ol =a [ 6 g0 =1

Thus, since

we obtain

+o00 aP/4 +o00
b « 1-a) 11—«
| g [ s e 1oy, [ Fea e = lalis o < 1
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By similar arguments, we deduce that

+oo
/ / a)l=@dbda < 1,
aP/a

which concludes the proof of Theorem
It remains to prove Lemma We have that, Ve > 0 and V¢ € [0, 77,

T
Yy
/0 1|WtHW!f|<cd5:/1lyl<c [OT] / Z[OT] dy,

where £ is the local time of W given as

(g =1im [ Po.(W)du,

e—0 [5,¢]
where (P;);>0 is the heat semigroup. We need the following result from [30].

Theorem 2.1. Let (WH);>¢ be a fractional brownian motion with Hurst parameter
H € (0,1). Then, for any interval I C R, there exists a positive finite constant K such
that, P-a.s.,

SUPzeRr E"thr 7]
lim sup su ’ < K.
o0 ter T log(1/m)H =

We deduce from the previous result that for any g € (0,1 — H) and T" > 0 small
enough, there exists a constant Cgg > 0 such that, P-a.s., we have

sup 6[0 7 < quﬁ
r€R

It follows that, for 7" small enough,

T
/ L _wi|<cds < 20T’
0

which is exactly the desired result.

3 Proof of Proposition and Theorem

3.1 Stochastic Strichartz estimates

Since (Ps¢)o<s<t is an isometry from L? to itself, we deduce by the Hausdorff-Young
inequality and an interpolation argument, that, Vp € [2, o0],

1
IPsilioen S g =iy 191 v sy (3.1)

where p’ is the Holder conjugate of p. We denote (P t)0<5<t the adjoint of (Ps¢)o<s<t,
that is

Plyple) i= F1 (e 8FW0g6)) = B

This leads, in particular, to the fact that

P;t = P, PO*,SPO,t = P; and Psin’t = Py, V1 € [s,1].



The proof of Proposition [I.1|is based on the TT* argument. We set o = d(1/2 — 1/p)
and consider the integral, Vf, g € C([0,T],C5(R%)),

I(f,g) =

ATAZ%ﬁbxmdm»B@ﬁ%:ATAaR;ﬂnggmp@ﬁ'

/OT /0T<Psvtf(8), Q(t»deSdt‘

By Hoélder’s inequality, (3.1)) and Theorem we deduce that

T T
109 < [ [ 1Pt @) s o)l st

T /T
S| W= W0 a6 o s

S TN F o oy, 0 @ 190 0,71, 1 ety

1 1 11 2
2d<>:,+,:2.

since

2 p ¢ q q
This yields, on one hand, that
2

T
H | miosas

— afs 2
LQ(Rd) — I(f7 f) S T HfHLq/([O,T],LP’(]Rd))’ (32)

and, on another hand, by a duality argument,

/OT P, .f(s)ds

S Taﬁ||f||Lq’([o7T]7Lp’(Rd)) (3.3)
La([0,7], L (RY))

We are now in position to prove (T.4) and (1.5)). It follows from ([3.2) that, Vf € L?*(R%)
and Vg € L7 ([0, TT; L (R7)),
2

T T T
[ ratatoni= (5. [ Fia®) <l | [ Fatias

L2(R)

S TN f 1|2 @eyl9ll o o171, 0 (ray)»
we obtain ((1.4)) by a duality argument. We now turn to ((1.5)). We have, by (3.2)),

T
/ P . f(s)ds
0

T
= / 1Ps. f ()| ooy 20y A
La((0,T);Le(RY)  JO

T
< TQB/O 1£ (M2 rayds = TN oo ryecee)-

Thanks to this estimate, by an interpolation argument with (3.3]), we deduce (|1.5]).

3.2 Well-posedness of equation (|1.2))

We can now apply the previous result to solve the local Cauchy problem of (1.2) The
strategy is based on a fixed-point argument of the mapping I' from L4([0, T]; LP(R?))
to itself given by

T
T(4)(t, 2) = Posbo(x) — iA /0 Pudl27(s, x)ds. (3.4)
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We denote a closed ball of LI([0,T]; LP(R%))

Bp,zao.roe(me)) = {1/’ e L9([0, T]; LP(RY)); 191l Za (o, 710 (Ra)) < R} .

Fix R > 0 that will be set later For any v € Bp Lq([o T];Lr(R)), We apply the
L4(]0,T]; LP(R%)) norm to and deduce, thanks to and (L.5)),

IT () o712 (rey) < Chlltboll p2(ray + Col TP kuii’—i(_;m&-l)([O’T];Ll’(Qg—O—l)(Rd)) :
for any (r,l) admissible. By choosing (q,p) = (r,1) = (a, 20 + 2), we have

I’ I 2042
-1 2041

Hence, we obtain, by Holder’s inequality,

20+1 2 1 1—— 20+1
||w||Li/—~(_2o'+1 [0 T] LV (2041) ]Rd ||¢||L(:j(_2o+1>(0:p] L20+2(Rd)) do HwHLZ [OT L2a+2(Rd))

which gives us

I ago, ;0 mey) < CrllvbollL2way + Co|A|TY o0~ s WH%Z%T 2o+2(ray) - (3:D)

By similar computations, we obtain that, V¢1,¢2 € Bp ra(j0,7);1r (R4)):

2 gy
I (1) =T (W2) | oo ;e (rayy < Cal AT~ R* g1 — 4ol Lao 17 120 +2(may) - (3-6)

We remark that, since 2/do < 1 and a8 > 0, we have
2
1+a8——>0.
do

Hence, by setting
R =2C1[[Yol| L2 (re)

and taking 7" > 0 such that
Col T TP~ 45 R20 < 1,

we can see that I' is a contraction from Bp ra([o1];20+2(rd)) to itself. It follows from a
Banach fixed point theorem that there exists a unique solution to (|1.2)). The proof of
Theorem [1.2] then follows by iterating this argument on time intervals of length T since

we have HZ/J(T)”B(RCI) = HwOHL?(Rd)'
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