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Abstract
In this paper, we investigate a stochastic Hardy-Littlewood-Sobolev inequality. Due to
the non-homogenous nature of the potential in the inequality, a constant proportional
to the length of the interval appears on the right-hand-side. As a direct application,
we derive local Strichartz estimates for randomly modulated dispersions and solve the
Cauchy problem of the critical nonlinear Schrödinger equation.

Key words: Stochastic regularization; Stochastic Partial Differential Equations; Non-
linear Schrödinger equation, Hardy-Littlewood-Sobolev inequality.

AMS 2010 subject classification: Primary: 35Q55; Secondary: 60H15.

1 Introduction
Let (Ω,P) be the standard probability space endowed with the Wiener filtration (Ft)t≥0.
We consider the stochastic process WH , a fractional brownian motion with Hurst pa-
rameter H ∈ (0, 1), given by, ∀t ∈ R+,

WH
t =

∫ t

−∞
((t− s)H+ − (−s)H+ )dWs,

where W is a standard wiener process. The main objective of this paper is to derive a
stochastic counter-part to the classical Hardy-Littlewood-Sobolev inequality [21, 22, 28].
To be more specific, we obtain the following result.

Theorem 1.1. Let (WH
t )t≥0 be a fractional brownian motion of Hurst index H ∈ (0, 1),

β ∈ (0, 1−H), p, q ∈ (1,∞) and α ∈ (0, 1) such that

2− α =
1

p
+

1

q
.

Then, there exist T > 0 and C1.1 > 0 such that, P-a.s., ∀f ∈ Lp([0, T ]), ∀g ∈ Lq([0, T ])
the following inequality holds∣∣∣∣∫ T

0

∫ T

0
f(t)|WH

t −WH
s |−αg(s)dsdt

∣∣∣∣ ≤ C1.1T
αβ‖f‖Lp([0,T ])‖g‖Lq([0,T ]). (1.1)
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Our motivation to prove such result stems from the Cauchy problem of nonlinear
evolution equations with a randomly modulated dispersion. Such equations are for
instance: the nonlinear Schrödinger equation [13, 14, 8, 3], the Korteweg-de Vries equa-
tion [8] and the Benjamin-Bona-Mahony [7]. They have recently raised an interest due
to the effects of the stochastic modulation. Here, we address the local Cauchy prob-
lem for the following nonlinear Schrödinger equation with noisy dispersion in its mild
formulation

ψ(t, x) = P0,tψ0(x) + λ

∫ t

0
Ps,t|ψ|2σψ(s, x)ds, ∀(t, x) ∈ [0, T ]× Rd, (1.2)

where λ ∈ C and, ∀ϕ ∈ C∞0 (Rd),

Ps,tϕ := F−1
(
e−i|ξ|

2(WH
t −WH

s )ϕ̂
)
.

For d = 1, H = 1/2 and σ = 1, this equation arises in the field of nonlinear
optics as a limit model for the propagation of light pulse in an optical fiber where the
dispersion varies along the fiber [2, 1]. These variations in the dispersion accounts for
the so-called dispersion management which aims to improve the transmission of a light
signal by constructing a zero-mean dispersion fiber in order to avoid the problem of
the chromatic dispersion of the light signal. When the variations are assumed to be
random, a noisy dispersion can be derived (see [26, 13]) which leads, in the white noise
case, to Equation (1.2).

As part of the problems concerning the propagation of waves in random media, there
is a vast literature around random Schrödinger equations. Let us mention in particular
the cases of random potentials [15, 16] and noisy potentials [10, 11, 12]. In these works,
the effects of the stochastic potential greatly affect the dynamic of the Schrödinger
equation and are, in a broader context, a motivation to introduce randomness in PDEs.
Specifically, there is a well known effect which attracted a lot of attention: the so-called
regularization by noise phenomenon (see [18] for a survey). This phenomenon can be
summarized as an improvement, due to the presence of noise, of the well-posedness of
differential equations and has been studied in the context of SDEs [31, 29, 24, 27, 5],
transport equation [19, 17, 4], SPDEs [9] and scalar conservation laws [20]. We remark
that obtaining a regularization by noise in the context of nonlinear random PDE is a
challenging task and most of the results are obtained in a linear setting. For instance,
an open problem is to obtain a regularization by noise for the Euler or Navier-Stokes
equations.

As mentioned previously, we are not the first one to investigate the Cauchy problem
of Equation (1.2). It was first studied in [13] where the global Cauchy problem was
solved for H = 1/2 and σ < 2/d (which corresponds to a classical L2-subcritical
nonlinearity). In [14], the authors proved that, in the L2-critical case, when d = 1,
H = 1/2 and σ = 5, the solutions are globally well-posed, which is not the case for
the deterministic nonlinear Schrödinger equation and, thus, hints for a regularization
by noise effect. In [8], the authors study the case for d = 1, σ = 2, H small enough
and d = 2, σ = 1, H ∈ (0, 1). By a simple scaling argument on the space and time
variables of (1.2) and thanks to the scaling invariance of the Wiener process, it was
conjectured in [3] that, in fact, the critical nonlinearity should be σ = 4/d for H = 1/2,
a L2-supercritical nonlinearity, which is twice as large as the deterministic L2-critical
nonlinearity. Furthermore, this fact was supported by numerical simulations in 1D and
leads to believe that the white noise dispersion has a strong stabilizing property.

In this paper, we prove the global Cauchy problem (1.2) for d ∈ N, σ ≤ 2/d and
H ∈ (0, 1). To be more specific, we obtain the following result.
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Theorem 1.2. Let σ ≤ 2
d , ψ0 ∈ L2(Rd) and a ∈ (2,∞) such that 2/a = d (1/2− 1/(2σ + 2)).

Then, P-a.s., there exists a unique solution ψ ∈ La([0,+∞[;L2σ+2(Rd)) to (1.2).

Remark 1.1. Thus, the modulation by a random noise of the dispersion operator leads
to a regularizing effect since we are able to prove the global existence and uniqueness of
solutions in the critical case σ = 2/d. The other interesting fact of our result is that,
no matter how close to 1 the Hurst parameter is, we still reach the critical case. This
problem was left open in [8] where H needs to be large enough.

The classical approach to investigate the Cauchy problem for nonlinear Schrödinger
equations is to derive local Strichartz estimates [6]. These estimates are a direct conse-
quence of the dispersive property of the linear operator i∆. However, as pointed out in
[14], it is much harder to obtain such estimates in the case of a white noise dispersion
because of the presence of the Wiener process. We recall from [26, 13] that the prop-
agator associated to the linear part of (1.2) is explicitly given by, ∀t, s ∈ (0,∞) and
∀ϕ ∈ C∞0 (Rd),

Ps,tϕ(x) =
1

(4π(WH
t −WH

s ))d/2

∫
Rd
e
i

|x−y|2

4(WH
t −W

H
s )ϕ(y)dy. (1.3)

Following the classical proof of Strichartz estimates (see for instance [23]), a fun-
damental tool is the Hardy-Littlewood-Sobolev inequality. This is where Theorem 1.1
comes at hand since the classical potential |t− s|−α is replaced by |Wt −Ws|−α. As a
direct consequence, we obtain the following stochastic Strichartz estimates.

Definition 1.1. For any (q, p) ∈ (2,∞)2 , we say that (q, p) is an admissible pair if

2

q
= d

(
1

2
− 1

p

)
.

Proposition 1.1. Let (WH
t )t≥0 be a fractional brownian motion of Hurst index H ∈

(0, 1), β ∈ (0, 1−H) and (q, p) an admissible pair. Then, P-a.s., there exist T > 0 and
C1,1.1, C2,1.1 > 0 such that, ∀f ∈ L2(Rd) and ∀g ∈ Lr

′
([0, T ];Ll

′
(Rd)), the following

inequalities holds

‖P0,·f‖Lq([0,T ];Lp(Rd)) ≤ C1,1.1T
αβ‖f‖L2 , (1.4)∥∥∥∥∫ T

0
Ps,·g(s)ds

∥∥∥∥
Lq([0,T ];Lp(Rd))

≤ C2,1.1T
αβ‖g‖Lr′ ([0,T ];Ll′ (Rd)), (1.5)

for any (r, l) admissible pair.

These Strichartz estimates are more powerful due to the presence of the term Tαβ .
Indeed, in the fixed-point argument, this term will be necessary to obtain the contrac-
tion of the mapping in the critical case σ = 2/d. This will be the main argument to
prove Theorem 1.2. The rest of the paper is devoted to the proof of Theorem 1.1 in
section 2 and the proofs of Proposition 1.1 and Theorem 1.2 in section 3.

2 Proof of Theorem 1.1
Before proceeding any further, let us remark that we can, without loss of generality,
assume that f ∈ Lp([0, T ]) and g ∈ Lq([0, T ]) are non-negative functions and, further-
more, by a scaling argument, we can assume that ‖f‖Lp([0,T ]) = ‖g‖Lq([0,T ]) = 1. Our
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strategy follows the proof of Lieb-Loss [25, Section 4.3]. It is based on the following
layer cake representation

f(t) =

∫ +∞

0
1f(t)>ada, g(s) =

∫ +∞

0
1g(s)>bdb

and |WH
t −WH

s |−α = α

∫ +∞

0
c−1−α1|WH

t −WH
s |<cdc.

Then, by Fubini’s theorem, the left-hand-side of (1.1) can be rewritten as∫ T

0

∫ T

0
f(t)|WH

t −WH
s |−αg(s)dsdt =

α

∫ +∞

0

∫ +∞

0

∫ +∞

0
c−1−α

(∫ T

0

∫ T

0
1f(t)>a1g(s)>b1|WH

t −WH
s |<cdsdt

)
dcdbda. (2.1)

By denoting

f̌(a) :=

∫ T

0
1f(t)>adt, ǧ(b) :=

∫ T

0
1g(s)>ads and W̌ (c, T ) := sup

t∈[0,T ]

∫ T

0
1|WH

t −WH
s |<cds,

we have the following result whose proof is postponed.

Lemma 2.1. Let H ∈ (0, 1) and β ∈ (0, 1−H). There exists T > 0 and C2.1 > 0 such
that, P-a.s., ∀c ∈ R+∗,

W̌ (c, T ) ≤ C2.1T
βc.

We now set p, q ∈ (2,+∞) such that

1

p
+

1

q
+ α = 2.

We see that we can bound each characteristic function by 1 in (2.1) and, thus, we
deduce that∫ T

0

∫ T

0
f(t)|WH

t −WH
s |−αg(s)dsdt ≤ α

∫ +∞

0

∫ +∞

0

∫ +∞

0
c−α−1I(a, b, c)dadbdc,

with

I(a, b, c) :=


f̌(a)ǧ(b), if m(a, b, c) = ȟ(c),

f̌(a)W̌ (c, T ), if m(a, b, c) = ǧ(b),

W̌ (c, T )ǧ(b), if m(a, b, c) = f̌(a),

where
m(a, b, c) = lim

ι→0
max{f̌(a), ǧ(b), ȟ(c) + ι} and ȟ(c) := C2.1T

βc.

Remark 2.1. In the previous definition of m, we choose to have, in the case where
max{f̌(a), ǧ(b), ȟ(c)} = f̌(a) = ȟ(c), m(a, b, c) = ȟ(c) (and similarly for ǧ).

From here, we essentially follow the arguments from [25]. We first assume that
f̌(a) ≥ ǧ(b). We deduce that∫ +∞

0
c−α−1I(a, b, c)dc ≤

ǧ(b)

∫ +∞

0
c−α−1ȟ(c)1ȟ(c)≤f̌(a)dc+ f̌(a)ǧ(b)

∫ +∞

0
c−α−11f̌(a)≤ȟ(c)dc.
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We denote κT = C2.1T
β . Since ȟ(c) ≤ f̌(a) is equivalent to

c ≤ f̌(a)/κT ,

the first integral on the right-hand-side is estimated as∫ +∞

0
c−α−1ȟ(c)1ȟ(c)≤f̌(a)dc ≤ κT

∫ f̌(a)/κT

0
c−αdc

≤ (1− α)−1κT
(
f̌(a)/κT

)1−α
= (1− α)−1καT f̌(a)1−α.

The second integral is bounded as∫ +∞

0
c−α−11f̌(a)≤ȟ(c)dc ≤

∫ +∞

f̌(a)/κT

c−α−1dc ≤ α−1καT f̌(a)−α.

Hence, since by assumption ǧ(b)−α ≤ f̌(a)−α, it follows that∫ +∞

0
c−α−1I(a, b, c)dc .α κ

α
T ǧ(b)f̌(a)1−α = καT min{ǧ(b)f̌(a)1−α, f̌(a)ǧ(b)1−α}.

By assuming that f̌(a) ≤ ǧ(b) and following the same arguments, we obtain∫ +∞

0
c−α−1I(a, b, c)dc .α κ

α
T min{ǧ(b)f̌(a)1−α, f̌(a)ǧ(b)1−α}.

We then proceed by integrating with respect to b and a. We have∫ +∞

0

∫ +∞

0
min{ǧ(b)f̌(a)1−α, f̌(a)ǧ(b)1−α}dbda =∫ +∞

0

∫ ap/q

0
f̌(a)ǧ(b)1−αdbda+

∫ +∞

0

∫ +∞

ap/q
ǧ(b)f̌(a)1−αdbda.

Thanks to Hölder’ inequality, we have, for r = (q − 1)(1− α),∫ ap/q

0
ǧ(b)1−αdb =

∫ ap/q

0
ǧ(b)1−αb−rbrdb

≤

(∫ ap/q

0
ǧ(b)bq−1db

)1−α(∫ ap/q

0
b−r/αdb

)α/β2
.

The norms of f and g are such that

‖f‖pLp([0,T ]) = p

∫ +∞

0
a−p−1f̌(a)da = 1 and ‖g‖qLq([0,T ]) = q

∫ +∞

0
b−q−1ǧ(b)db = 1.

Thus, since

p

q

(
1− r

α

)
α =

p

q
(α− (q − 1) (1− α))

=
p

q
(1− q (1− α)) = p

(
1

q
− 1 + α

)
= p− 1,

we obtain∫ +∞

0
f̌(a)

∫ ap/q

0
ǧ(b)1−αdbda . ‖g‖q(1−α)

Lq([0,T ])

∫ +∞

0
f̌(a)ap−1da = ‖g‖q(1−α)

Lq([0,T ])‖f‖
p
Lp([0,T ]) ≤ 1.
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By similar arguments, we deduce that∫ +∞

0

∫ +∞

ap/q
ǧ(b)f̌(a)1−αdbda . 1,

which concludes the proof of Theorem 1.1.
It remains to prove Lemma 2.1. We have that, ∀c > 0 and ∀t ∈ [0, T ],∫ T

0
1|WH

t −WH
s |<cds =

∫
R
1|y|<c`

WH
t −y

[0,T ] dy =

∫ c

−c
`
WH
t −y

[0,T ] dy,

where ` is the local time of WH given as

`z[s,t] := lim
ε→0

∫
[s,t]

Pεδz(W
H
u )du,

where (Pt)t≥0 is the heat semigroup. We need the following result from [30].

Theorem 2.1. Let (WH
t )t≥0 be a fractional brownian motion with Hurst parameter

H ∈ (0, 1). Then, for any interval I ⊂ R, there exists a positive finite constant K such
that, P-a.s.,

lim sup
r→0

sup
t∈I

supx∈R `
x
[t−r,t+r]

r1−H log(1/r)H
≤ K.

We deduce from the previous result that for any β ∈ (0, 1 − H) and T > 0 small
enough, there exists a constant C2.1 > 0 such that, P-a.s., we have

sup
x∈R

`x[0,T ] ≤ C2.1T
β.

It follows that, for T small enough,∫ T

0
1|WH

t −WH
s |<cds ≤ 2C2.1cT

β,

which is exactly the desired result.

3 Proof of Proposition 1.1 and Theorem 1.2

3.1 Stochastic Strichartz estimates
Since (Ps,t)0≤s≤t is an isometry from L2 to itself, we deduce by the Hausdorff-Young
inequality and an interpolation argument, that, ∀p ∈ [2,∞],

‖Ps,tϕ‖Lp(Rd) .
1

|Wt −Ws|d(1/2−1/p)
‖ϕ‖Lp′ (Rd), (3.1)

where p′ is the Hölder conjugate of p. We denote (P ∗s,t)0≤s≤t the adjoint of (Ps,t)0≤s≤t,
that is

P ∗s,tϕ(x) := F−1
(
e−

i
2
|ξ|2(WH

t −WH
s )ϕ̂(ξ)

)
= Pt,s.

This leads, in particular, to the fact that

P ∗s,t = Pt,s, P ∗0,sP0,t = Ps,t and Ps,tP
∗
r,t = Ps,r, ∀r ∈ [s, t].
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The proof of Proposition 1.1 is based on the TT ∗ argument. We set α = d(1/2− 1/p)
and consider the integral, ∀f, g ∈ C([0, T ], C∞0 (Rd)),

I(f, g) :=

∣∣∣∣∫ T

0

∫ T

0
〈P0,tf(s), P0,sg(t)〉L2dsdt

∣∣∣∣ =

∣∣∣∣∫ T

0

∫ T

0
〈P ∗0,sf(s), P ∗0,tg(t)〉L2dsdt

∣∣∣∣
=

∣∣∣∣∫ T

0

∫ T

0
〈Ps,tf(s), g(t)〉L2dsdt

∣∣∣∣
By Hölder’s inequality, (3.1) and Theorem 1.1, we deduce that

I(f, g) ≤
∫ T

0

∫ T

0
‖Ps,tf(s)‖Lp(Rd)‖g(t)‖Lp′ (Rd)dsdt

.
∫ T

0

∫ T

0
|Wt −Ws|−α‖f(t)‖Lp′ (Rd)‖g(s)‖Lp′ (Rd)dsdt

. Tαβ‖f‖Lq′ ([0,T ],Lp′ (Rd))‖g‖Lq′ ([0,T ],Lp′ (Rd)),

since
2− d

(
1

2
− 1

p

)
=

1

q′
+

1

q′
= 2− 2

q
.

This yields, on one hand, that∥∥∥∥∫ T

0
P ∗0,sf(s)ds

∥∥∥∥2

L2(Rd)

= I(f, f) . Tαβ‖f‖2
Lq′ ([0,T ],Lp′ (Rd))

, (3.2)

and, on another hand, by a duality argument,∥∥∥∥∫ T

0
Ps,·f(s)ds

∥∥∥∥
Lq([0,T ],Lp(Rd))

. Tαβ‖f‖Lq′ ([0,T ],Lp′ (Rd)) (3.3)

We are now in position to prove (1.4) and (1.5). It follows from (3.2) that, ∀f ∈ L2(Rd)
and ∀g ∈ Lq′([0, T ];Lp

′
(Rd)),∫ T

0
〈P0,tf, g(t)〉L2dt =

〈
f,

∫ T

0
P ∗0,tg(t)

〉
L2

≤ ‖f‖L2(Rd)

∥∥∥∥∫ T

0
P ∗0,tg(t)ds

∥∥∥∥2

L2(Rd)

. Tαβ‖f‖L2(Rd)‖g‖Lq′ ([0,T ],Lp′ (Rd)),

we obtain (1.4) by a duality argument. We now turn to (1.5). We have, by (3.2),∥∥∥∥∫ T

0
Ps,·f(s)ds

∥∥∥∥
Lq([0,T ];Lp(Rd))

≤
∫ T

0
‖Ps,·f(s)‖Lq([0,T ];Lp(Rd)) ds

. Tαβ
∫ T

0
‖f(s)‖L2(Rd))ds = Tαβ‖f‖L1([0,T ];L2(Rd)).

Thanks to this estimate, by an interpolation argument with (3.3), we deduce (1.5).

3.2 Well-posedness of equation (1.2)
We can now apply the previous result to solve the local Cauchy problem of (1.2) The
strategy is based on a fixed-point argument of the mapping Γ from Lq([0, T ];Lp(Rd))
to itself given by

Γ(ψ)(t, x) = P0,tψ0(x)− iλ
∫ T

0
Ps,t|ψ|2σψ(s, x)ds. (3.4)
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We denote a closed ball of Lq([0, T ];Lp(Rd))

BR,Lq([0,T ];Lp(Rd)) :=
{
ψ ∈ Lq([0, T ];Lp(Rd)); ‖ψ‖Lq([0,T ];Lp(Rd)) ≤ R

}
.

Fix R > 0 that will be set later. For any ψ ∈ BR,Lq([0,T ];Lp(Rd)), we apply the
Lq([0, T ];Lp(Rd)) norm to (3.4) and deduce, thanks to (1.4) and (1.5),

‖Γ(ψ)‖Lq([0,T ];Lp(Rd)) ≤ C1‖ψ0‖L2(Rd) + C2|λ|Tαβ ‖ψ‖2σ+1

Lr
′(2σ+1)([0,T ];Ll

′(2σ+1)(Rd))
.

for any (r, l) admissible. By choosing (q, p) = (r, l) = (a, 2σ + 2), we have

l′ =
l

l − 1
=

2σ + 2

2σ + 1
.

Hence, we obtain, by Hölder’s inequality,

‖ψ‖2σ+1

Lr
′(2σ+1)([0,T ];Ll

′(2σ+1)(Rd))
= ‖ψ‖2σ+1

Lr
′(2σ+1)([0,T ];L2σ+2(Rd))

≤ T 1− 2
dσ ‖ψ‖2σ+1

La([0,T ];L2σ+2(Rd)) ,

which gives us

‖Γ(ψ)‖Lq([0,T ];Lp(Rd)) ≤ C1‖ψ0‖L2(Rd) + C2|λ|T 1+αβ− 2
dσ ‖ψ‖2σ+1

La([0,T ];L2σ+2(Rd)) . (3.5)

By similar computations, we obtain that, ∀ψ1, ψ2 ∈ BR,Lq([0,T ];Lp(Rd)),

‖Γ(ψ1)−Γ(ψ2)‖Lq([0,T ];Lp(Rd)) ≤ C2|λ|T 1+αβ− 2
dσR2σ ‖ψ1 − ψ2‖La([0,T ];L2σ+2(Rd)) . (3.6)

We remark that, since 2/dσ ≤ 1 and αβ > 0, we have

1 + αβ − 2

dσ
> 0.

Hence, by setting
R = 2C1‖ψ0‖L2(Rd),

and taking T > 0 such that

C2|λ|T 1+αβ− 2
dσR2σ < 1,

we can see that Γ is a contraction from BR,La([0,T ];L2σ+2(Rd)) to itself. It follows from a
Banach fixed point theorem that there exists a unique solution to (1.2). The proof of
Theorem 1.2 then follows by iterating this argument on time intervals of length T since
we have ‖ψ(T )‖L2(Rd) = ‖ψ0‖L2(Rd).
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