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Abstract

We address in this work the problem of minimizing quantum entropies under
local constraints. We suppose macroscopic quantities such as the particle density,
current, and kinetic energy are fixed at each point of Rd, and look for a density
operator over L2(Rd) minimizing an entropy functional. Such minimizers are
referred to as a local Gibbs states. This setting is in constrast with the classical
problem of prescribing global constraints, where the total number of particles,
total current, and total energy in the system are fixed. The question arises for
instance in the derivation of fluid models from quantum dynamics. We prove,
under fairly general conditions, that the entropy admits a unique constrained
minimizer. Due to a lack of compactness, the main difficulty in the proof is to
show that limits of minimizing sequences satisfy the local energy constraint. We
tackle this issue by introducing a simpler auxiliary minimization problem and by
using a monotonicity argument involving the entropy.

1 Introduction

This work is concerned with the study of quantum entropies of the form

S(%) = Tr
(
β(%)

)
,

∗Romain.Duboscq@math.univ-tlse.fr
†pinaud@math.colostate.edu
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where % is a density operator, namely a self-adjoint, trace class, positive operator on
an infinite dimensional Hilbert space, Tr(·) denotes operator trace, and β is a convex
function (note that we choose here the opposite of the convention traditionally used
in the physics literature, for instance our definition of the von Neumann entropy is
Tr
(
% log(%)

)
and not its opposite). Quantum entropies have applications primarily in

quantum information theory and quantum statistical physics, see e.g. [13] for a review.
Our motivation here comes from quantum statistical physics and the construction

of quantum statistical equilibria. These are important for instance in the description of
reservoirs in the study of decohence in bipartite quantum systems, and in the derivation
of fluids models, both classical and quantum. More precisely, we are interested in the
following problem: given S(%) for an appropriate function β, we look for minimizers of
S(%) under constraints of local density, current, and kinetic energy. When the underlying
Hilbert space is L2(Rd), d ≥ 1, these local quantities are informally defined as follows:
if {ρp}p∈N and {φp}p∈N denote the eigenvalues and eigenfunctions of a density operator
%, then 

n[%] =
∑
p∈N

ρp|φp|2, local density

u[%] =
∑
p∈N

ρp=
(
φ∗p∇φp

)
, local current

k[%] =
∑
p∈N

ρp|∇φp|2, local kinetic energy.

(1)

For given functions {n0, u0, k0} in appropriate functional spaces, the problem consists in
looking for minimizers of S(%) under the constraints that {n[%], u[%], k[%]} = {n0, u0, k0}.

Such quantum statistical equilibria arise in the work of Nachtergaele and Yau in [12]
in their derivation of the Euler equations from quantum dynamics. Therein, S is the
von Neumann entropy, and the minimizers are referred to as local Gibbs states, which is
the terminology we adopt here. Nachtergaele and Yau prove that a density operator %t
solution to the quantum Liouville equation

i∂t%t = [H, %t], [H, %t] = H%t − %tH, H = −∆ + V, (2)

with as initial condition a local Gibbs state with constraints {n0, u0, k0}, converges
in an appropriate limit to a local Gibbs state with constraints {n0(t), u0(t), k0(t)},
where {n0(t), u0(t), k0(t)} are the solutions to the Euler equations with initial condition
{n0, u0, k0}. In [12], the authors suggest that such local Gibbs states can be obtained
by choosing appropriate Lagrange parameters, but there is no proof that this is indeed
possible. The problem is actually not trivial, and our goal here is to establish that
indeed the local Gibbs are well-defined and unique for a large class of entropy functions
β and adequate assumptions on the constraints.

Local Gibbs states are also central in the work of Degond and Ringhofer on the
derivation of quantum fluid models. Their theory consists in transposing to the quantum
picture the moment closure method used in the derivation of classical fluid models. They
consider the quantum Liouville equation (2) augmented with a collision operator Q(%)
that drives the system to an equilibrium:

i∂t%t = [H, %t] + iQ(%t). (3)
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Note that in [12], the system is assumed to be initially in a statistical equilibrium, while
in (3) above the system converges in the long-time limit to such equilibrium. After
deriving an infinite moment hierarchy from (3), Degond and coauthors close the system
by introducing local Gibbs states and obtain various quantum fluids models such as
the quantum Euler equations, quantum Navier-Stokes, or the quantum drift-diffusion
model. See [3, 2] for more details on this topic.

Our main contribution in this work is to establish that the entropy S(%) admits a
unique minimizer under fairly general conditions on β and on the constraints {n0, u0, k0}.
We work in the one-particle picture in the space L2(Rd), for any d ≥ 1, and plan in future
work to extend our results to the many-body problem in the fermionic (or bosonic) Fock
space. The latter is the actual problem that arises in [12], and is also of interest in the
density functional theory at non-zero temperature, see e.g. [14].

The main difficult in the proof consists in recovering the local energy constraint
from limits of minimizing sequences of the entropy. It can be shown that such sequences
converge to a density operator %? with finite energy, and as a consequence that k[%?] is
well-defined. The crucial part is then to show that %? satisfies the energy constraint,
i.e. k[%?] = k0. There is no sufficient compactness to directly pass to the limit in the
local energy, and the sole straightforward information is that ‖k[%?]‖L1 ≤ ‖k0‖L1 . We
proved in [6] that the equality k[%?] = k0 actually holds but the technique is limited
to one-dimensional bounded domains. We introduce here a new argument allowing us
to extend the result of [6] to Rd for arbitrary d ≥ 1. The key novel ingredient is to
define an auxiliairy, simpler minimization problem with global constraints instead of
local constraints. Namely, ‖n[%]‖L1 , ‖u[%]‖L1 and ‖k[%]‖L1 are prescribed instead of
n[%], u[%], k[%]. Such a minimization problem is shown to have a unique solution by
introducing what we call generalized Gibbs states, i.e. minimizers of the quantum free
energy

FT (%) = E(%) + TS(%)

under a global density constraint, i.e. Tr(%) is fixed. Above, T > 0 is temperature, and
E(%) = Tr

(√
H%
√
H
)

is the total energy with H = −∆+V for an appropriate potential
V . We prove the key result that such generalized Gibbs states have strictly monotone
total energy and entropy with respect to the temperature. This eventually allows us to
construct minimizers of the auxiliary problem and show the crucial property that their
entropy is strictly monotone in the global kinetic energy constraint on ‖k[%]‖L1 . These
results are standard and intuitive in the context of classical thermodynamics, and are of
independent interest for the generalized Gibbs states defined here. In some cases, we are
also able to quantify precisely the dependency of the kinetic energy on the temperature.
Using the strict monotonicity of the entropy, we are then able to go back to the original
problem with local constraints and prove our result.

The article is structured as follows: in Section 2, we introduce the functional setting,
the problem, and state our results. We prove two theorems: in the first one, we obtain
existence and uniqueness of minimizers of the entropy under appropriate assumptions
on the entropy and the constraints; in the second theorem, we show these assumptions
are verified under mild conditions. The section is concluded by an overview of the proof.
Section 3 is devoted to the proof of the first theorem, and Section 4 to that of the second
theorem.
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2 Main results

We start with some preliminaries.

2.1 Functional setting

We denote by Lr(Rd), d ≥ 1, r ∈ [1,∞], the usual Lebesgue spaces of complex-valued
functions on Rd, and by Hk(Rd) for k ≥ 1 the standard Sobolev spaces. The symbol
〈·, ·〉 is the Hermitian product on L2(Rd) with the convention 〈f, g〉 =

∫
Rd f

∗gdx. The
free Hamiltonian −∆, equipped with the domain H2(Rd), is denoted by H0. Moreover,
L(L2(Rd)) is the space of bounded operators on L2(Rd), and J1 ≡ J1(L2(Rd)) is the
space of trace class operators on L2(Rd). In the sequel, we will refer to a density operator
as a self-adjoint, trace class, positive operator on L2(Rd). For %∗ the adjoint of % and
|%| =

√
%∗%, we introduce the following space:

E =
{
% ∈ J1 :

√
H0|%|

√
H0 ∈ J1

}
,

where
√
H0|%|

√
H0 denotes the extension of the operator

√
H0|%|

√
H0 to L2(Rd). The

domain of
√
H0 is naturally H1(Rd). We will drop the extension sign in the sequel to

ease notation. The space E is a Banach space when endowed with the norm

‖%‖E = Tr
(
|%|
)

+ Tr
(√

H0|%|
√
H0

)
,

where Tr(·) denotes operator trace. The energy space is the following closed convex
subspace of E :

E+ = {% ∈ E : % ≥ 0} .

The eigenvalues {ρp}p∈N of a density operator are counted with multiplicity, and form
a nonincreasing sequence of positive numbers, converging to zero if the sequence is
infinite. We will keep the notation {ρp}p∈N for simplicity for the eigenvalues of a finite-
rank density operator, with the convention that ρp = 0 for p > N for some N .

2.2 The constraints

We first note that the quantities introduced in (1) are well-defined according to the
following remark.

Remark 2.1 Let % ∈ E+ with eigenvalues {ρp}p∈N and eigenvectors {φp}p∈N. Then all
series defined in (1) converge in L1(Rd) and almost everywhere. Moreover,

Tr(%) = ‖n[%]‖L1 , Tr
(√

H0 %
√
H0

)
= ‖k[%]‖L1 .

Note also that % ∈ E+ implies that ∇
√
n[%] ∈ (L2(Rd))d according to the inequality

‖∇
√
n[%]‖2

L2 ≤ ‖%‖E .
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The set of admissible local constraints is defined by

M =
{

(n, u, k) ∈ L1
+(Rd)× (L1(Rd))d × L1

+(Rd) :
√
n ∈ H1(Rd)

and (n, u, k) = (n[%], u[%], k[%]) for at least one % ∈ E+
}
.

Above, L1
+(Rd) = {ϕ ∈ L1(Rd) : ϕ ≥ 0 a.e.}. In other terms, M consists of the set

of functions (n, u, k) that are the local density, current and kinetic energy of at least
one density operator with finite energy. In the context of Degond-Ringhofer theory, the
constraints are always inM as originating from the solution %t to the quantum Liouville
equation (3). To the best of our knowledge, the characterization of M remains to be
done. We have though the following straightforward and helpful remark.

Remark 2.2 Constraints in the admissible setM satisfy some compatibility conditions.
Let indeed % ∈ E+. Then,

k[%] ≥ |u[%]|2

n[%]
+
∣∣∣∇√n[%]

∣∣∣2 . (4)

To see this, we remark that

1

2
∇n[%] =

∑
p∈N

ρp<
(
φ∗p∇φp

)
and u[%] =

∑
p∈N

ρp=
(
φ∗p∇φp

)
,

where both series converge in L1(Rd) and a.e. according to Remark 2.1, and, we deduce
that

1

2
∇n[%] + iu[%] =

∑
p∈N

ρpφ
∗
p∇φp.

It follows, by the Cauchy-Schwarz inequality, that

1

4
|∇n[%]|2 + |u[%]|2 =

∣∣∣∣12∇n[%] + iu[%]

∣∣∣∣2 =

∣∣∣∣∣∑
p∈N

ρpφ
∗
p∇φp

∣∣∣∣∣
2

≤

(∑
p∈N

ρp|φp|2
)(∑

p∈N

ρp|∇φp|2
)

= n[%]k[%],

which yields (4).

For (n0, u0, k0) ∈M, the feasible set is then given by

A(n0, u0, k0) =
{
% ∈ E+ : n[%] = n0, u[%] = u0 and k[%] = k0

}
.

The set A(n0, u0, k0) is not empty by construction since (n0, u0, k0) is admissible. We
will use the notation n̄ = ‖n0‖L1 in the rest of the paper.
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2.3 Results

We are now in position to state our main results. We recall that the entropy of a density
operator in E is denoted by

S(%) = Tr
(
β(%)

)
,

where β satisfies the following assumption.

Assumption 2.3 (Convexity) The function β ∈ C0([0, n̄]) is strictly convex and verifies
β(0) = 0.

It is a standard result, see e.g. [18] section II, that the strict convexity of β implies
that of S(%). We present our results in two steps. First of all, we prove in Theorem
2.8 that S admits a unique minimizer in A(n0, u0, k0) under a set of assumptions on β
and A(n0, u0, k0). Assumptions 2.4-2.5 below are natural in that we expect the entropy
to be bounded below and lower semi-continuous. Assumption 2.7 is the crucial ingre-
dient allowing us to overcome the lack of compactness of the minimizing sequences. In
Theorem 2.9, we provide a set of conditions under which Assumptions 2.4-2.5-2.7 hold.

We state first the next two assumptions:

Assumption 2.4 (Boundedness from below) There exists a subsetM0 ofM such that,
for (n0, u0, k0) ∈ M0, S(%) is well-defined on A(n0, u0, k0) (possibly infinite for some
%), and such that

−∞ < inf
A(n0,u0,k0)

S.

Assumption 2.5 (Lower semi-continuity) Let {%k}k∈N be a sequence in A(n0, u0, k0)
such that %k → % strongly in J1 as k → +∞. Then,

S(%) ≤ lim inf
k→+∞

S(%k).

In the next assumption, we suppose that the prescribed density n0 decays sufficiently
fast at the infinity. This will be needed in order to state Assumption 2.7.

Assumption 2.6 (Confinement) There exists a nonnegative potential V ∈ L2
loc(Rd),

with V → +∞ as |x| → +∞, such that n0V ∈ L1(Rd).

For a potential V as in Assumption 2.6, we consider the self-adjoint operator H =
H0 + V defined on an appropriate domain D(H), and introduce the total energy

E(%) = Tr
(√

H%
√
H
)
.

Note that E(%) is finite when % ∈ A(n0, u0, k0) and n0V ∈ L1(Rd). The spectrum of
H is purely discrete and its ground state {λ0, φ0} is non-degenerate, see e.g. Theorems
XIII.47 and XIII.67 in [15]. It can moreover easily be checked that for any % ∈ E+ with
n[%]V ∈ L1(Rd), we have

E(%) = Tr
(√

H0%
√
H0

)
+ ‖n[%]V ‖L1 .

The introduction of V is not necessary when the problem is posed on bounded domains of
Rd since the free Hamiltonian H0 has then a purely discrete spectrum (under appropriate
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boundary conditions). We will need the following set of density operators with finite
energy and fixed total trace: for a > 0,

S(a) :=
{
% ∈ E+; Tr (%) = a

}
.

We state then the

Assumption 2.7 (Monotonicity w.r.t. temperature) There exists Tc ≥ 0, such that for
each T > Tc, the free energy FT (%) = E(%) + TS(%) admits a unique minimizer %T
on S(n̄) such that u[%T ] = 0, T 7→ E(%T ) (resp. T 7→ S(%T )) is continuous strictly
increasing (resp. decreasing), with limT→+∞E(%T ) = +∞, and limT→Tc E(%T ) = λ0 n̄,
for λ0 the smallest eigenvalue of H.

A few comments are in order. Assumption 2.7 is used in the construction of minimiz-
ers of the entropy under global constraints of density, current and energy, i.e., ‖n[%]‖L1 ,
‖u[%]‖L1 and ‖k[%]‖L1 are prescribed instead of n[%], u[%], k[%]. Such minimizers are the
novel and key ingredient in obtaining sufficient compactness to recover the local energy
constraint. The monotonicity of the energy trivially holds in the context of classical
thermodynamics for the Boltzmann entropy for instance, where the energy is linear in
T . In the quantum case, it is not difficult to show that the energy of the usual Gibbs
states

%T = e−
H
T /ZT , ZT = n̄−1 Tr(e−

H
T ),

obtained for the Boltzmann entropy, is strictly increasing. For more general entropies,
we will refer to the minimizers of FT as generalized Gibbs states. They take the form
%T = ξ((H+µT )/T ), where ξ(x) = (β′)−1(−x) and µT is the chemical potential ensuring
the constraint Tr(%T ) = n̄ is satisfied. It is only implicitly defined, while we have
explicitly µT = T logZT for Gibbs states. The implicit nature of µT makes the analysis
more difficult, in particular that of the limit T → +∞ which requires some care. When
the generalized Gibbs state has finite rank, which occurs if β′(0) is finite, we will in
particular need to resort to the semi-classical form of the Lieb-Thirring inequality (which
is then an equality) to obtain that the energy tends to the infinity as T → +∞. The
limit as T → Tc yields a minimizer of the energy alone. The introduction of a critical
temperature Tc is necessary since the energy is actually constant for T ∈ (0, Tc] under
some conditions on β′ when the generalized Gibbs state has finite rank.

Our first result is then the following.

Theorem 2.8 Under Assumptions 2.3-2.4-2.5-2.6-2.7, the entropy S admits a unique
minimizer in A(n0, u0, k0).

Only the existence and uniqueness of a minimizer %? is addressed in Theorem 2.8. Its
characterization will be considered in future work, and appears to be quite difficult. The
formal solution reads %? = ξ(H(A,B,C)), where H(A,B,C) is an Hamiltonian depend-
ing on the Lagrange parameters (A,B,C) associated with the local constraints. The
essential difficulty is to obtain sufficient regularity on the implicitly defined (A,B,C)
to give a sense to the expression %? = ξ(H(A,B,C)). This was achieved in a one-
dimensional setting for the von Neumann entropy in [7], and in Rd for the density
constraint only in [5].
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We show in our next result, and under minimal assumptions on β and V , that
Assumptions 2.4-2.5-2.7 are verified. We require slightly more regularity on β than the
one in Assumption 2.5, in that strict convexity only implies that β′′(x) is nonnegative
and defined a.e., while we suppose in addition that β′′ is continuous and strictly positive.
The bound (5) below allows β′ to blow up around the origin but at a sufficiently slow
polynomial rate. This condition is sufficient to show that density operators with finite
total energy have a finite entropy. Depending on β′(0), there are two possibilities: when
β′(0) = −∞, then the generalized Gibbs states have infinite rank; when β′(0) is finite,
they have finite rank. In the latter case, we need the Hölder regularity type conditions
(6) around the origin to prove that the energy of the generalized Gibbs state goes to
the infinity as T → +∞.

Theorem 2.9 Suppose Assumptions 2.3 and 2.6 hold, with in addition β ∈ C2((0, n̄))
and β′′ > 0 on (0, n̄), and that there exist x̄ ∈ (0, n̄) and γ ∈ ( d

d+2
, 1) such that

sup
x∈[0,x̄]

|x|−γ+1|β′(x)| = Cx̄,γ <∞. (5)

Furthermore, we assume

• when β′(0) is infinite, that the V of Assumption 2.6 verifies V
d
2
− γ

1−γ ∈ L1(Rd)
(with γ

1−γ −
d
2
> 0 since γ ∈ ( d

d+2
, 1)),

• when β′(0) is finite, that we can take

V (x) = 1 + |x|θ,

with ( γ
1−γ −

d
2
)θ > d (so that V

d
2
− γ

1−γ ∈ L1(Rd)), and that there exist x > 0 and
r > 0 such that

c−x
r ≤ β′(x)− β′(0) ≤ c+x

r, ∀x ∈ [0, x], (6)

where c− and c+ are positive constants.

Then, Assumptions 2.4-2.5-2.7 are satisfied.

We verify below that some entropies frequently encountered in the literature satisfy
the assumptions of Theorem 2.9.

- The Boltzmann entropy β(x) = x log(x) − x. It is also referred to as the von
Neumann entropy in the quantum case. It is strictly convex, with β′(x) = log x
so that (5) is satisfied for any γ < 1. Then ξ(x) = e−x, and the generalized Gibbs
state has infinite rank.

- The Fermi-Dirac entropy β(x) = x log(x) + (1 − x) log(1 − x). It is also referred
to as the binary entropy in information theory. Besides classical thermodynamics,
it arises when considering the von Neumann entropy of quasi-free states on CAR
algebras, see e.g. Chapter 9 in [1]. It is strictly convex, with β′(x) = log( x

1−x) so
that (5) is also satisfied for any γ < 1 and n̄ ≤ 1. Then ξ(x) = 1/(ex + 1), and
the generalized Gibbs state has infinite rank.
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- The Bose-Einstein entropy β(x) = x log(x)−(1+x) log(1+x). As the Fermi-Dirac
entropy, it arises in classical thermodynamics and e.g. when considering the von
Neumann entropy of quasi-free states on CCR algebras. It is strictly convex, with
β′(x) = log( x

1+x
) and (5) satisfied for any γ < 1. Then ξ(x) = 1/(ex − 1), and

the generalized Gibbs state has infinite rank. Note that limx→a β
′(x) < +∞ when

a ∈ (1,+∞] (while the limit was infinite in the previous cases when a = +∞ and
a = 1), which has some incidence on the proofs.

- The Tsallis entropy β(x) = (q − 1)−1xq for q ∈ (0, 1) ∪ (1,∞) (note that the
Tsallis entropy is actually S(%) = (q − 1)−1(Tr(%q) − 1) but the extra constant
term plays no role). It is used in information theory. It is strictly convex, with
β′(x) = q(q−1)−1xq−1 and (5) satisfied for any γ < 1. When q > 1, then β′(0) = 0,
and the generalized Gibbs state has finite rank. Estimate (6) is trivially verified
in that case. When q < 1, the rank is infinite.

The regularized Boltzmann entropy of the form βη(x) = β(x + η) − β(η), η > 0, is
also sometimes used in practice to justify some calculations since its derivative β′η(x) =
log(x + η) is now bounded, see e.g. [7]. The corresponding minimizer has then finite
rank (which grows to the infinity as η → 0).

2.4 Strategy of the proof

We underline here the main steps of the proof. It starts with a minimizing sequence
{%m}m∈N in A(n0, u0, k0). Compactness results then allow us to obtain a %? with finite
energy such that %m → %? in J1 (along a subsequence still denoted {%m}m∈N) and such
that n[%m]→ n0, u[%m]→ u0 in L1(Rd) as m→ +∞. Regarding the energy constraint,
we can only deduce that ‖k[%?]‖L1 ≤ ‖k0‖L1 , which is not enough to conclude that
k[%?] = k0 and therefore that %? ∈ A(n0, u0, k0).

To overcome this difficulty, we realize first that it is actually enough to show that
‖k[%?]‖L1 = ‖k0‖L1 to obtain k[%?] = k0. This is a consequence of the positivity of k[%?]
and of an argument of the type weak convergence plus convergence of the norm implies
strong convergence in J1. The core to the proof is then to show that ‖k[%?]‖L1 < ‖k0‖L1

is not possible.
The first step for this is the inequality

S(%?) ≤ inf
σ∈A(n0,u0,k0)

S(σ), (7)

which follows from the lower semi-continuity of the entropy. Intuitively, the above in-
equality should only be possible if ‖k[%?]‖L1 = ‖k0‖L1 . Indeed, if ‖k[%?]‖L1 < ‖k0‖L1 ,
then %? is a state with an equal or lower entropy than that of a minimizer of S that
has a strictly larger total kinetic energy (assuming the infimum is a minimum). With
our definition of the entropy, i.e. the opposite of the physical entropy, and the common
heuristics that the physical entropy is a measure of disorder, this yields a contradic-
tion as we expect the state %? with strictly smaller energy to have a strictly larger
(mathematical) entropy. The main difficulty is then to make this argument rigorous.
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The second step is to introduce two minimization problems with global constraints,
which, as a consequence of (7), verify

inf
σ∈S(a0,b0,c1)

S(σ) ≤ inf
σ∈S(a0,b0,c0)

S(σ), (8)

where

S(a, b, c) =
{
% ∈ E+ : ‖n[%]‖L1 = a, ‖u[%]‖L1 = b, ‖e[%]‖L1 = c

}
,

with e[%] = k[%] + n[%]V (V as in Assumption 2.6), and

‖e0‖L1 = c0, ‖e[%?]‖L1 = c1, ‖n0‖L1 = a0, ‖u0‖L1 = b0 ∈ Rd.

The goal is to prove a contradiction now from (8) since we suppose that c1 < c0. The
main benefit in working with global constraints is that they are much easier to handle
than the local ones. Though, it is unclear at this point that the infima in (8) are actual
minima since there is still a compactness issue to recover the global energy constraints.
We solve this difficulty by introducing the generalized Gibbs states (GGS) defined in the
introduction. We ignore the global current constraints at this point since they are taken
care of by a simple change of gauge. We expect intuitively that the total energy of a
GGS is monotone with the temperature, and therefore that there is a unique temperature
associated with a given total energy. A minimizer of the entropy with global constraints
is then a GGS with a well-chosen temperature.

We make this argument precise by proving the strict monotonicity of the total energy
w.r.t the temperature, and show that the range of the total energy is [λ0n̄,+∞). The
lower bound is simply the minimal energy at zero temperature. The proof essentially
relies on calculus of variations type arguments, with as main difficulty accounting for the
chemical potential µT . The proof that the energy tends to the infinity as T → +∞ in
the finite rank case where β′(0) is finite requires somewhat surprisingly a more involved
strategy based on Riesz means for the operator H = H0 + V .

Once global minimizers are obtained, we show, using again the GGS, that the entropy
is strictly monotone in the temperature and therefore in the total energy, which then
proves the contradiction in (8).

3 Proof of Theorem 2.8

We start with some technical results.

3.1 Preliminary technical lemmas

The next Lemma is proved in [10].

Lemma 3.1 (Compactness of bounded sequences in E+) Let {%k}k∈N be a bounded se-
quence in E+. Then, there exists % ∈ E+ and a subsequence such that

1. %km →
m→+∞

% in J1.
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2.
√
H0%km

√
H0 →

√
H0%
√
H0 weak-∗ in J1, that is, for any compact operator K,

Tr
(
K
√
H%km

√
H0

)
→

m→+∞
Tr
(
K
√
H0%

√
H0

)
.

3. Tr
(√

H0%
√
H0

)
≤ lim infm→+∞Tr

(√
H0%km

√
H0

)
.

The Lemma below is proved in [17], Theorem 2.21 and addendum H.

Theorem 3.2 Suppose that %m → % weakly in the sense of operators and that ‖%m‖J1 →
m→∞

‖%‖J1. Then ‖%m − %‖J1 →
m→∞

0.

In the first step of the proof, we show that the problem is reduced to handling a
global energy constraint.

3.2 Step 1: reduction to the energy constraint

According to Assumption 2.4, the entropy S is bounded from below on A(n0, u0, k0).
There exists therefore a minimizing sequence {%m}m∈N in A(n0, u0, k0) such that

lim
m→+∞

S(%m) = inf
σ∈A(n0,u0,k0)

S(σ) > −∞.

Since by construction ‖n[%m]‖L1 = ‖n0‖L1 and ‖k[%m]‖L1 = ‖k0‖L1 , it follows that
{%m}m∈N is bounded in E+ and, hence, up to a subsequence (still abusively denoted by
{%m}m∈N), the sequence converges strongly in J1 to a %? ∈ E+ according to Lemma 3.1.
Then, by Assumption 2.5, we deduce the inequality (7).

It remains to prove that %? ∈ A(n0, u0, k0). The fact that n[%?] = n0 is a direct
consequence of the convergence of {%m}m∈N in J1, and that u[%?] = u0 is established
in [11], Theorem 4.3. The latter follows from sufficient compactness as u[%m] involves
one less derivative than the (bounded) kinetic energy Tr(

√
H0%m

√
H0). The remaining

point is then to prove that k[%?] = k0, which is the essential difficulty in the proof. For
this, we remark first from Item 3 of Lemma 3.1 that

‖k[%?]‖L1 = Tr(
√
H0%?

√
H0) ≤ lim inf

m→+∞
Tr(
√
H0%m

√
H0) = ‖k0‖L1 , (9)

and Item 2 that √
H0%m

√
H0 →

m→+∞

√
H0%

√
H0 weak- ∗ in J1.

The important observation is that it is enough to study ‖k[%?]‖L1 and ‖k0‖L1 , and not
the functions k[%?] and k0 themselves. Indeed, if ‖k[%?]‖L1 = ‖k0‖L1 , then we claim that
k[%?] = k0, and as a consequence %? is in A(n0, u0, k0) and the minimizer is unique by
strict convexity of the entropy. To prove the claim, if we have ‖k[%?]‖L1 = ‖k0‖L1 , we
obtain from (9) that

‖
√
H0%?

√
H0‖J1 = Tr(

√
H0%?

√
H0) = lim

m→+∞
Tr(
√
H0%m

√
H0)

= lim
m→+∞

‖
√
H0%m

√
H0‖J1 ,

11



and since the weak-∗ convergence in J1 implies the weak convergence in the sense of
operators, we deduce, by using Theorem 3.2, that√

H0%m
√
H0 →

m→+∞

√
H0%?

√
H0 in J1.

Since k[%m] = −n[∇ · %m∇], it can then directly be shown (by e.g. writing k[%m] =
n[∇ · (

√
H0 + 1)−1(

√
H0 + 1)%m(

√
H0 + 1)(

√
H0 + 1)−1∇]) that the above convergence

implies that k[%m]→ k[%?] in L1(Rd).
We therefore suppose that ‖k[%?]‖L1 < ‖k0‖L1 and will prove a contradiction. For

this, consider the V of Assumptions 2.6-2.7, and introduce the local total energy e[%] =
k[%] + V n[%], which is in L1(Rd) when % ∈ A(n0, u0, k0) according to Assumption 2.6.
With e0 := k0 + V n0 ∈ L1(Rd), let

Ae(n0, u0, e0) =
{
% ∈ E+ : n[%] = n0, u[%] = u0 and e[%] = e0

}
.

Since both k[%] and n[%] are prescribed when % ∈ A(n0, u0, k0), it follows thatA(n0, u0, k0) =
Ae(n0, u0, e0), and will work from now on with Ae(n0, u0, e0) since it simplifies a bit the
exposition. Note that we have ‖e[%?]‖L1 < ‖e0‖L1 as a consequence of our hypothesis
that ‖k[%?]‖L1 < ‖k0‖L1 .

3.3 Step 2: reduction to global constraints

With the notations S(a, b, c), a0, b0, c0 and c1 of Section 2.4, we define the set of
admissible global constraints

N (a, b, c) = {(n, u, e) ∈Me : ‖n‖L1 = a, ‖u‖L1 = b, and ‖e‖L1 = c} ,

where we write (n, u, e) ∈ Me for (n, u, e − nu) ∈ M (we recall that M is the set
of admissible local constraints). Note that without more hypotheses on (a, b, c), the
sets S(a, b, c) and N (a, b, c) might be empty. Though, it is clear that %? belongs to
S(a0, b0, c1) since n[%?] = n0 and u[%?] = u0. Hence, we have from (7),

inf
σ∈S(a0,b0,c1)

S(σ) ≤ S(%?) ≤ inf
σ∈Ae(n0,u0,e0)

S(σ). (10)

We have then the following important result.

Lemma 3.3 Let a, b, c ∈ R∗+× (R∗)d×R∗+ such that S(a, b, c) is not empty, and assume
that the minimization problem

inf
σ∈S(a,b,c)

S(σ),

admits a unique solution. Then, the following equality holds

inf
(n,u,e)∈N (a,b,c)

(
inf

σ∈Ae(n,u,e)
S(σ)

)
= inf

σ∈S(a,b,c)
S(σ). (11)

Proof. We denote by %0 the solution of the minimization problem

inf
σ∈S(a,b,c)

S(σ) = S(%0).

12



The first step consists in establishing equality (14) below. For this, since

(‖n[%0]‖L1 , ‖u[%0]‖L1 , ‖e[%0]‖L1) = (a, b, c), (12)

we immediately have that Ae(n[%0], u[%0], e[%0]) ⊂ S(a, b, c). Hence, we deduce that

inf
σ∈S(a,b,c)

S(σ) ≤ inf
σ∈Ae(n[%0],u[%0],e[%0])

S(σ). (13)

Furthermore, we clearly have %0 ∈ Ae(n[%0], u[%0], e[%0]) and, thus, we also obtain

inf
σ∈Ae(n[%0],u[%0],e[%0])

S(σ) ≤ S(%0).

Together with (13), this yields

inf
σ∈S(a,b,c)

S(σ) = inf
σ∈Ae(n[%0],u[%0],e[%0])

S(σ). (14)

We now proceed to the proof of (11) by proving two opposite inequalities. Consider
the mapping L :Me → R defined by

L(n, u, e) := inf
σ∈Ae(n,u,e)

S(σ).

For the first inequality in (11), we obtain directly, using (12) together with (14),

inf
(n,u,e)∈N (a,b,c)

L(n, u, e) ≤ L(n[%0], u[%0], e[%0]) = inf
σ∈S(a,b,c)

S(σ). (15)

For the second inequality, it follows, since for any (n, u, e) ∈ N (a, b, c), we haveAe(n, u, e) ⊂
S(a, b, c), that

inf
σ∈S(a,b,c)

S(σ) ≤ inf
σ∈Ae(n,u,e)

S(σ).

Taking the infimum over (n, u, e) ∈ N (a, b, c) yields

inf
σ∈S(a,b,c)

S(σ) ≤ inf
(n,u,e)∈N (a,b,c)

(
inf

σ∈Ae(n,u,e)
S(σ)

)
,

which gives the desired result together with (15).

Note that both S(a0, b0, c1) and S(a0, b0, c0) are not empty by construction. As-
suming S admits unique minimizers on S(a0, b0, c1) and S(a0, b0, c1) (these facts will be
proved in the next section), it follows from the previous Lemma and (10), by taking the
infimum over functions (n0, u0, e0) ∈ N (a0, b0, c0), that

inf
σ∈S(a0,b0,c1)

S(σ) ≤ inf
σ∈S(a0,b0,c0)

S(σ). (16)

This inequality is the reason for the introduction of the minimization problem with
global constraints, and we will prove that it cannot hold for c1 < c0. This is based
on Assumption 2.7 and the monotonicity of entropy in the temperature. We show first
in the next step that S admits unique minimizers on S(a0, b0, c0) and S(a0, b0, c1), as
required in Lemma 3.3.
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3.4 Step 3: the global minimization problem

We prove here the following result.

Proposition 3.4 Let c ∈ [a0λ0 + |b0|2/a0,+∞) (λ0 defined in Assumption 2.7). Then
S admits a unique minimizer on S(a0, b0, c).

The proof relies on the monotonicity of the energy stated in Assumption 2.7.

Proof of Proposition 3.4, step 1: an auxiliary problem. The proof begins by
showing that the solution to the minimization problem

min
%∈S(a0,b0)

FT (%) = min
%∈S(a0,b0)

E(%) + TS(%), (17)

where

S(a0) = {% ∈ E+ : ‖n[%]‖L1 = a0}, S(a0, b0) = {% ∈ S(a0) : ‖u[%]‖L1 = b0},

can be expressed in terms of the minimizers of FT on S(a0) thanks to a gauge transfor-
mation. We will need the following simple result.

Lemma 3.5 Let a0 > 0 and b, b0 ∈ Rd. Consider the transformation Gb : E+ 7→ E+

given by
Gb(%) = eix·b%e−ix·b.

Then, for % ∈ S(a0, b0), we have

n[Gb(%)] = n[%], u[Gb(%)] = u[%] + n[%]b and e[Gb(%)] = e[%]− 2b · u[%] + |b|2n[%].

Proof. Denoting by {ρj, φj}j∈N the eigen-elements of %, Gb(%) has the following
spectral decomposition (all series below converge since % ∈ E+)

eix·b%e−ix·b =
∑
j∈N

ρj|eix·bφj〉〈eix·bφj|.

We directly deduce that n[Gb(%)] = n[%] and we have

u[Gb(%)] =
∑
j∈N

ρj=
(
φ∗j(ib φj +∇φj)

)
= b n[%] + u[%].

Moreover, we compute

k[Gb(%)] =
∑
j∈N

ρj |∇φj + ibφj|2

= k[%] +
∑
j∈N

ρj
(
−2<(iφ∗j b · ∇φj) + |b|2 |φj|2

)
= k[%]− 2b · u[%] + |b|2n[%],

which yields
e[Gb(%)] = e[%]− 2b · u[%] + |b|2n[%].

14



Using the previous Lemma, and the fact that the eigenvalues of a density operator
are not changed by the action of Gb0/a0 , we have, for any % ∈ S(a0, 0),

S(Gb0/a0(%)) = S(%) and E(Gb0/a0(%)) = E(%) + |b0|2/a0.

Moreover, it is clear that Gb0/a0 is a bijective mapping from S(a0, 0) to S(a0, b0) with
inverse G−b0/a0 . For any T > 0, denote now by %T,a0 the minimizer of the free energy FT
in S(a0), which exists and is unique according to Assumption 2.7. It verifies u[%T,a0 ] = 0.
Hence, %T,a0 ∈ S(a0, 0) ⊂ S(a0). Thus, we have, using Lemma 3.5,

min
%∈S(a0,b0)

FT (%) = min
σ∈S(a0,0)

FT (Gb0/a0(σ)) = min
σ∈S(a0,0)

FT (σ) + |b0|2/a0

≥ min
σ∈S(a0)

FT (σ) + |b0|2/a0 = FT (%T,a0) + |b0|2/a0 = FT (Gb0/a0(%T,a0)),

which proves that Gb0/a0(%T,a0) is a minimizer of FT since Gb0/a0(%T,a0) ∈ S(a0, b0).
Since S is strictly convex, we deduce that Gb0/a0(%T,a0) is the unique minimizer. We
have therefore just characterized the solution to (17).

Proof of Proposition 3.4, step 2: monotonicity argument. We will use now
Assumption 2.7, and remark first that, by Lemma 3.5,

Ea0,b0(T ) : = Tr
(√

HGb0/a0(%T,a0)
√
H
)

= Tr
(√

H%T,a0
√
H
)

+ |b0|2/a0

=: Ea0(T ) + |b0|2/a0.

According to Assumption 2.7, Ea0(T ) is a continuous strictly increasing function from
[Tc,+∞) to [a0λ0,+∞). Hence, for any c ∈ [a0λ0 + |b0|2/a0,+∞), there exists a unique
T (a0, b0, c) ≥ Tc such that Gb0/a0(%T (a0,b0,c),a0) has total energy Ea0,b0(T ) = c, and as a
consequence

Gb0/a0(%T (a0,b0,c),a0) ∈ S(a0, b0, c).

We now show that Gb0/a0(%T (a0,b0,c),a0) is the unique minimizer of S on S(a0, b0, c). Since
Gb0/a0 is a bijective mapping from S(a0, 0, c − |b0|2/a0) to S(a0, b0, c), it follows that
%T (a0,b0,c),a0 ∈ S(a0, 0, c− |b0|2/a0). Introducing the notation T0 = T (a0, b0, c), we have

T0S(%T0,a0) + c− |b0|2/a0 = FT0(%T0,a0) = min
%∈S(a0)

FT0(%) ≤ min
%∈S(a0,b0,c)

FT0(%).

Then

min
%∈S(a0,b0,c)

FT0(%) = T0 min
%∈S(a0,0,c−|b0|2/a0)

S(Gb0/a0(%)) + c

≤ T0S(Gb0/a0(%T0,a0)) + c = T0S(%T0,a0) + c.

Above, we used the facts that S(Gb0/a0(%T0,a0)) = S(%T0,a0) since Gb0/a0 is unitary, and
that %T0,a0 ∈ S(a0, 0, c− |b0|2/a0) by construction. Hence, we obtain that

min
%∈S(a0,b0,c)

S(%) = S(%T0,a0) = S(Gb0/a0(%T0,a0)) (18)

and, by the strict convexity of S, that Gb0/a0(%T0,a0) is the unique minimizer of S in
S(a0, b0, c). This concludes the proof of Proposition 3.4.
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3.5 Step 4: Conclusion

We now use Proposition 3.4 and need to show that c1 ≥ a0λ0 + |b0|2/a0 (which implies
c0 > a0λ0+|b0|2/a0 since by assumption c0 > c1), in order to obtain that S admits unique
minimizers on S(a0, b0, c1) and S(a0, b0, c0). For this, we recall that %? ∈ S(a0, b0, c1),
and that any density operator in E+ verifies a.e., see Remark 2.2,

|∇
√
n[%]|2 +

|u[%]|2

n[%]
≤ k[%].

Since we know by construction that n[%?] = n0 and u[%?] = u0, it follows that

‖∇
√
n0‖2

L2 + ‖u0/
√
n0‖2

L2 + ‖n0V ‖L1 ≤ ‖k[%?]‖L1 + ‖n0V ‖L1 = Tr(
√
H%?
√
H) = c1.

It is clear by the min-max principle that

λ0‖n0‖L1 ≤ ‖∇
√
n0‖2

L2 + ‖n0V ‖L1 = E(|
√
n0〉〈
√
n0|),

and by the Cauchy-schwarz inequality that

|b0|2

a0

=
|
∫
Rd u0(x)dx|2

‖n0‖L1

≤ ‖u0/
√
n0‖2

L2 .

Collecting inequalities, we find the desired result c1 ≥ a0λ0 + |b0|2/a0. As a consequence
of Proposition 3.4, minimizers of S on S(a0, b0, c1) and S(a0, b0, c0) are uniquely defined,
and inequality (16) holds true. It reads

min
σ∈S(a0,b0,c1)

S(σ) ≤ min
σ∈S(a0,b0,c0)

S(σ),

which is also, using (18),
S(%T1,a0) ≤ S(%T0,a0), (19)

where T1 := T (a0, b0, c1), T0 := T (a0, b0, c0) are obtained as in Step 2 of Proposition
3.4. Since T (a0, b0, c) is strictly increasing with respect to c as T 7→ Ea0,b0(T ) is strictly
increasing, we have that T1 < T0 since c1 < c0. According to Assumption 2.7, T 7→
S(%a0,T ) is strictly decreasing, resulting in S(%T0,a0) < S(%T1,a0), which contradicts (50).
The only possibility is therefore that ‖k[%?]‖L1 = ‖k0‖L1 which concludes the proof of
Theorem 2.8.

4 Proof of Theorem 2.9

We start with Assumptions 2.4 and 2.5, whose proofs are relatively direct, and turn
next to Assumption 2.7 which requires more work.

4.1 Verification of Assumptions 2.4 and 2.5

The fact that Assumptions 2.4 and 2.5 are satisfied is a direct consequence of the next
lemma.
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Lemma 4.1 Under the conditions and notations of Theorem 2.9, the following results
hold:

1. (Control of the entropy) Let % ∈ E+ with n[%]V ∈ L1(Rd). Then, we have the
estimate

Tr(|β(%)|) ≤ C max
x∈[0,n̄]

|β(x)|+ CE(%)γ, (20)

where we recall E(%) = Tr(
√
H%
√
H).

2. (Continuity of the entropy) Let {%m}m∈N be a bounded sequence in E+ with ‖n[%m]V ‖L1

bounded, that converges strongly in J1 to % ∈ E+ with n[%]V ∈ L1(Rd). Then,

lim
m→∞

Tr (β(%m)) = Tr (β(%)) .

The proof of the Lemma is postponed to the end of the section. We now verify
Assumptions 2.4 and 2.5. Consider forM0 the set of (n0, u0, k0) ∈M such that n0V ∈
L1(Rd) for V as in Assumption 2.6 and satisfying V −1 ∈ L

γ
1−γ−

d
2 (Rd). Then, the first

Item of Lemma 4.1 holds under the conditions of Theorem 2.9, and |Tr(β(%))| is finite
for % ∈ A(n0, u0, k0). This shows that Assumption 2.4 is verified. Regarding Assumption
2.5, we first notice that if {%m}m∈N is a sequence in A(n0, u0, k0) converging in J1 to
some %, we have necessarily n[%]V ∈ L1(Rd) as a consequence of n0V ∈ L1(Rd). Indeed,
first of all

√
n[%m]V is uniformly bounded in L2(Rd) since n[%m] = n0 and n0V ∈ L1(Rd).

Hence, there exists v ∈ L2(Rd) and a subsequence such that
√
n[%mk ]V converges weakly

to v with
‖v‖L2 ≤ lim inf

k→∞
‖n[%mk ]V ‖

1/2

L1 = ‖n0V ‖1/2

L1 .

To identify v, we remark first that n[%m] converges to n[%] in L1(Rd) since %m converges to
% in J1, and as a consequence

√
n[%m]→

√
n[%] in L2(Rd). Hence, for any ϕ ∈ L2(Rd),

lim
k→∞

∫
Rd

√
n[%mk ]V (1 + V )−1ϕdx =

∫
Rd
v(1 + V )−1ϕdx =

∫
Rd

√
n[%]V (1 + V )−1ϕdx,

which yields v =
√
n[%]V . Hence, n[%]V ∈ L1(Rd).

To conclude, since every sequence in A(n0, u0, k0) is bounded in E+, we can use Item
2 of Lemma 4.1 to obtain the continuity of the entropy. This yields Assumption 2.5.

Proof of Lemma 4.1: Item 1. We will use the following classical inequality, see
e.g. [10, Lemma A.1]: for any % ∈ E+ such that n[%]V ∈ L1(Rd), we have∑

j∈N

λjρj ≤ Tr
(√

H%
√
H
)
, (21)

where {λj}j∈N is the nondecreasing sequence of eigenvalues of H and {ρj}j∈N the non-
increasing sequence of eigenvalues of %. Let a ∈ (0, x̄]. Then

Tr (|β(%)|) =
∑
j∈N

|β(ρj)| =
∑
j<Na

|β(ρj)|+
∑
j≥Na

|β(ρj)|,
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where Na is such that ρNa ≤ a and ρNa−1 > a. Since β(0) = 0, we have according to
(5), for x ∈ [0, x̄],

|β(x)| ≤
∫ x

0

|β′(s)|ds ≤ C|x|γ. (22)

Using Hölder’s inequality and (22), it follows that∑
j≥Na

|β(ρj)| ≤ C
∑
j≥Na

|ρj|γ = C
∑
j≥Na

|ρjλj|γλ−γj

≤

(∑
j≥Na

ρjλj

)γ (∑
j≥Na

λ
− γ

1−γ
j

)1−γ

.

According to [4], Theorem 1, we have the estimate∑
j∈N

λ
− γ

1−γ
j ≤ Cγ,d

∫
Rd

(V (x))
d
2
− γ

1−γ dx, (23)

which is finite by the assumption on V since d
2
− γ

1−γ < 0. Since we have directly∑
j<Na

|β(ρj)| ≤ Na max
x∈[0,x̄]

|β(x)|,

we find, using (21) and collecting estimates,∑
j∈N

|β(ρj)| ≤ Na max
x∈[0,n̄]

|β(x)|+ CE(%)γ,

which is (20).

Proof of Lemma 4.1: Item 2. We now turn to the convergence of the entropy. Let
η ∈ (0, n̄) and decompose

β(t) = β(t)1t≤η + β(t)1t>η =: β(1)
η (t) + β(2)

η (t).

Since {%m}m∈N converges to % in J1, we have, for any j ∈ N,

ρm,j →
m→+∞

ρj, (24)

for {ρm,j}j∈N the eigenvalues of %m. By continuity of β
(2)
η , this yields

lim
m→∞

Tr
(
β(2)
η (%m)

)
= Tr

(
β(2)
η (%)

)
. (25)

Regarding β
(1)
η , let Nη and Nm

η such that ρNη ≤ η, ρNη−1 > η, and ρm,Nm
η
≤ η, ρm,Nm

η −1 >
η. Thanks to (24), we have Nm

η → Nη as m → ∞ for each η, and we choose m0(η)
sufficiently large that |Nη − Nm0

η | ≤ 1 for m ≥ m0. Then, for m ≥ m0 and proceeding
as in the proof of Item 1, we find

∑
j≥Nm

η

|β(%m,j)| ≤ E(%m)γ

 ∑
j≥Nη−1

λ
− γ

1−γ
j

1−γ

.
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Since Nη → ∞ as η → 0, and
∑

j∈N λ
− γ

1−γ
j is finite as seen in the proof of Item 1, it

follows that
lim
η→0

sup
m∈N
|Tr

(
β(1)
η (%m)

∣∣ = 0.

Since the same estimate applies to β
(1)
η (%), we obtain the desired result by combining

with (25). This ends the proof of Lemma 4.1.

4.2 Verification of Assumption 2.7

The proof is divided into various steps. We construct first the minimizer of the free
energy FT (%) under the global density constraint Tr(%) = n̄. Then, we prove the strict
monotonicity of the energy and the entropy as well as the upper and lower limits for
the energy.

Preliminaries. Let

β− = lim
x→0

β′(x), β+ = lim
x→n̄

β′(x),

so that β′ : (0, n̄) 7→ (β−, β+). We need to be careful with the range of β′ since the
minimizer takes slightly different forms whether β− is finite or not. We have β− < β+

since β′ is strictly increasing, and possibly β− = −∞ and β+ = +∞. We introduce

ξ : t ∈ (−β+,−β−)→ (β′)−1(−t) ∈ (0, n̄),

with ξ(−β+) := limx→−β+ ξ(x) = n̄ and ξ(−β−) := limx→−β− ξ(x) = 0 since ξ is strictly
decreasing. For T > 0, let ξT (x) = ξ(x/T ) and µ0 ≡ µ0(T ) = −Tβ+−λ0 where λ0 is the
smallest eigenvalue of H (and µ0 = −∞ by definition when β+ = +∞). We will treat
separately the cases β− finite and β− infinite since the proofs may differ, and the cases
β+ finite and β+ infinite simultaneously since the proofs are identical. For uniformity of
notation when µ0 = −∞ and β+ = +∞, we will write f(µ0) or f(−β+) for an arbitrary
function f as a shorthand for limx→−∞ f(x).

We then introduce the following operator, defined for µ ∈ [µ0,∞), which will serve
as candidate minimizer of FT ,

%T,µ := ξT (H + µ)1{H+µ≤−Tβ−} =
∑
j∈N

ξT (λj + µ)1{λj+µ≤−Tβ−}|φj〉〈φj|,

where {λj}j∈N and {φj}j∈N are the (nondecreasing sequence of) eigenvalues and eigen-
functions of H.

Remark 4.2 Note that the choice µ ∈ [µ0,∞) ensures that H + µ ≥ −Tβ+. Further-
more, the cutoff 1{H+µ≤−Tβ−} is necessary when β− is finite in order to make sure that
the eigenvalues of H + µ remain in the range of β′. The cutoff becomes the identity
when β− = −∞.

We introduce
NT (µ) := max {j ∈ N : λj + µ ≤ −Tβ−} , (26)
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for µ ∈ [µ0, µM ] with µM ≡ µM(T ) := −Tβ− − λ0. We extend its definition by setting
NT (µ) := −1 when µ > µM and, in the case where β− = −∞, NT (µ) := +∞ (and
µM := +∞). In particular, this yields, for µ ∈ [µ0,+∞),

%T,µ =

NT (µ)∑
j=0

ξT (λj + µ)|φj〉〈φj|,

with the convention that a sum on an empty set is zero.

Step 0: the operator %T,µ belongs to E+. It is clear that %T is nonnegative.
The case β− infinite: we then need to show that

Tr(
√
H%T,µ

√
H) + Tr(%T,µ) =

∑
j∈N

(1 + λj)ξT (λj + µ) =: I <∞.

For this, we have |β′(x)| ≤ Cx̄,γ|x|γ−1 for x ∈ (0, x̄] and γ ∈ ( d
d+2

, 1) according to
hypothesis (5) in Theorem 2.9. This implies that

|ξ(x)| ≤ Cx̄,γ|x|−
1

1−γ , ∀x ∈ [−β′(x̄),−β−). (27)

For µ given in [µ0,∞), let N0 such that λj +µ ≥ −β′(x̄) for all j ≥ N0, and let N1 such
that λj ≥ µ/2 for j ≥ N1. Define N2 = max(N0, N1). Since ξT (λj + µ) is a decreasing
function of λj + µ, we have, using (27),

I ≤
N2−1∑
j=0

(1 + λj)ξT (λ0 + µ0) + Cx̄,γT
1

1−γ
∑
j≥N2

(1 + λj)|λj + µ|−
1

1−γ

≤ n̄

N2−1∑
j=0

(1 + λj) + C ′x̄,γ(2T )
1

1−γ
∑
j≥N2

|λj|−
γ

1−γ . (28)

Above, we used that ξT (λ0 +µ0) = n̄. We have already seen in (23) that the last term on
the right above is finite, and as a consequence %T,µ ∈ E+ for all T > 0 and µ ∈ [µ0,∞).
The case β− finite: in that situation, it is clear that %T,µ ∈ E+ since %T,µ is of finite rank
NT (µ), and we obtain the same estimate for I as above with C ′x̄,γ = 0 and N2 − 1 =
NT (µ).

Step 1: Candidate for the minimizer of FT . In this paragraph, we construct a
chemical potential µT such that Tr(%T,µT ) = n̄, and as a consequence %T := %T,µT belongs
to the feasible set S(n̄) since we already know that %T ∈ E+. Using the convexity of the
entropy, we then show that %T is the unique minimizer of FT in S(n̄).

Introduce the partition function

ZT : µ ∈ [µ0,+∞)→ Tr(%T,µ) =

NT (µ)∑
j=0

ξT (λj + µ).

The function ZT (µ) is strictly decreasing in µ since ξ is strictly decreasing and NT (µ)
is nonincreasing, and we now prove the following lemma.
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Lemma 4.3 For any T > 0, the function µ ∈ [µ0,+∞)→ ZT (µ) is continuous.

Proof. The case β− infinite: this is a direct consequence of dominated convergence
for series since µ 7→ ξT (λj + µ) is continuous and we have the uniform bound, for
µ ∈ [µ−, µ+] ⊂ [µ0,+∞),

ξT (λj + µ) ≤ ξT (λj + µ−). (29)

The case β− finite: we need to track how NT (µ) changes when µ varies. Suppose first
that µ is such that λNT (µ) + µ < −Tβ−. We can then take a sequence {µk}k∈N in a
sufficiently small neighborhood of µ such that NT (µk) = NT (µ) for all k, and continuity
is direct. When µ is such that λNT (µ) + µ = −Tβ−, consider the sequence µk = µ + δk

with limk→∞ δ
k = 0 and δk sufficiently small that, depending on the sign of δk, either

NT (µk) = NT (µ) or NT (µk) = NT (µ)− 1. When δk > 0, we have

ZT (µ)− ZT (µk) =

NT (µ)−1∑
j=0

(
ξT (λj + µ)− ξT (λj + µk)

)
,

since the additional term in ZT (µ) for j = NT (µ) vanishes as ξT (λNT (µ) +µ) = ξ(−β−) =
0. When δk < 0, we have the same expression as above with NT (µ) − 1 replaced by
NT (µ). Since ξ is continuous, this implies the continuity of ZT when β− is finite.

We have all needeed now to construct a µT such that ZT (µT ) = n̄ for each T ≥ 0.

Lemma 4.4 There exists a unique continuous function T ∈ (0,+∞) → µT such that,
for any T > 0,

ZT (µT ) = n̄.

Proof. The case β− infinite: on the one hand, we have, since ZT is strictly decreasing,

ZT (µ) ≤ ZT (µ0) = ξ(−β+) +
∞∑
j=1

ξT (λj + µ0) = n̄+ CT , CT > 0,

with CT = +∞ (resp. finite) when β+ = +∞ (resp. finite) by monotone convergence.
Above, we used that ξ(−β+) = n̄ and that ξ(t) > 0 when t ∈ (−β+,−β−). On the
other hand, it follows from dominated convergence and (29) that limµ→∞ ZT (µ) = 0
since limµ→∞ ξT (λj + µ) = 0 for all j ∈ N and T > 0. Hence, since ZT is continuously
strictly decreasing on [µ0,∞) with values in (0, n̄ + CT ], there exists a unique µT such
that ZT (µT ) = n̄. Note that the version of the implicit function theorem for monotone
functions shows that T 7→ µT is continuous.
The case β− finite: we carefully check the range of ZT (µ) for µ ∈ [µ0, µM ], with now
µM = −Tβ− − λ0 finite. For this, define

Tc :=
λ1 − λ0

β+ − β−
. (30)

Suppose that β+ is finite. We have Tc > 0 since the ground state of H is nondegenerate.
When T > Tc, we have NT (µ0) ≥ 1 since λ1+µ0 = λ1−λ0−Tβ+ < −Tβ−. It follows that
ξT (λ1 +µ0) > 0 and we have ZT (µ) ≤ ZT (µ0) = n̄+C ′T for some C ′T > 0. This provides
us with an upper bound for ZT . For the lower bound, we remark that NT (µM) = −1
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when µ > µM , and that ξT (λ0 + µM) = ξ(−β−) = 0, so that ZT (µM) = 0. A similar
argument based on monotonicity as in the case NT (µ) = +∞ then goes through when
T > Tc, and we obtain a unique µT continuous such that ZT (µT ) = n̄. When T ≤ Tc,
then only the j = 0 mode contributes to ZT . In that case, ZT (µ0) = ξ(−β+) = n̄, and
therefore, for all T ≤ Tc, µT = µ0(T ) = −Tβ+ − λ0. Now suppose that β+ is infinite.
Then Tc = 0 and we proceed as in the case Tc > 0.

To summarize our results, we have constructed a unique continuous function µT such
that %T := %T,µT ∈ S(n̄) for each T > 0. Since V is real, the eigenfunctions of H + V
can be chosen to be real-valued, and as a consequence u[%T ] = 0. We now prove that
such %T is the minimizer of FT in S(n̄).

Step 2: the operator %T is the minimizer. We show that

FT (%) ≥ FT (%T ), ∀% ∈ S(n̄).

The proof is based on convexity and on the particular form of %T . We denote by {ρj}j∈N
the eigenvalues of % (with possibily ρj = 0 for some j ≥ J), and set

νj :=

 ξT (λj + µT ), for 0 ≤ j ≤ NT (µT ),

0, for NT (µT ) + 1 ≤ j.

The convexity of β yields

β(ρj) ≥ β(νj) + β′(νj)(ρj − νj), ∀j ∈ N,

which, together with estimate (21), the facts that β′(0) = β− and Tβ′(νj) = −λj − µT
for j ≤ NT (µT ), gives

FT (%) = T
∑
j∈N

β(ρj) +
∑
j∈N

λjρj

≥ T
∑
j∈N

(β(νj) + β′(νj)(ρj − νj)) +
∑
j∈N

λjρj

≥
NT (µT )∑
j=0

(Tβ(νj) + λjνj) +
+∞∑

j=NT (µT )+1

(Tβ− + λj)ρj − µT
NT (µT )∑
j=0

(ρj − νj)

≥ FT (%T ) +
+∞∑

j=NT (µT )+1

(Tβ− + λj)ρj − µT
NT (µT )∑
j=0

ρj + µT n̄.

When NT (µT ) = +∞, the summation for j ≥ NT (µT ) + 1 is conventionally equal to
zero, and the last term becomes zero since both % and %T are normalized with traces
equal to n̄. When NT (µT ) is finite, we have by construction that λj + µT ≥ −Tβ− for
j ≥ NT (µT ) + 1, and as a consequence

+∞∑
j=NT (µT )+1

(Tβ− + λj)ρj − µT
NT (µT )∑
j=0

ρj ≥ −µT
∑
j∈N

ρj = −µT n̄.
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This results in FT (%) ≥ FT (%T ) for all % ∈ S(n̄), and since FT is strictly convex, it
follows that %T is the unique minimizer of FT in S(n̄).

Now that we have obtained the minimizer %T of FT , our goal is to prove the strict
monotonicity w.r.t the temperature of the energy and the entropy of %T , denoted by

E(T ) = Tr
(√

H%T
√
H
)
, S(T ) = Tr (β(%T )) .

For this, we will need to differentiate E(T ) and S(T ), which requires some regularity
on ξ and µT . While we know that ξ′ exists and is continuous on (−β+,−β−) since
β′′ ∈ C((0, n̄)), we have no control at the end points and it is also unclear, without
additional assumptions, how to make sure infinite sums involving ξ′T (λj +µT ) are finite.
We therefore need to regularize %T to justify the derivation.

Step 3: Regularization. We treat the cases β− finite and infinite separately.
The case β− infinite: for m an integer and {φj}j∈N the eigenfunctions of H, consider
the finite rank operator

%m ≡ %m,T,µ :=
m∑
j=0

ξT (λj + µ)|φj〉〈φj|.

Our first step is to construct a µT,m differentiable such that Tr(%m,T,µT,m) = n̄. Since the
sum in %m is finite, it is clear that %m has a finite energy and entropy, and we need to
make sure that its derivative w.r.t T is well-defined, and in particular that it has finite
energy. Since

ξ′(x) = − 1

β′′(ξ(x))
, 0 < β′′ ∈ C((0, n̄)), (31)

our goal is then simply to confine the range of ξ to a compact set so that β′′(x) ≥ C > 0
on this set. This is done by choosing the range of µ appropriately. For this, recall the
notation µ0 = −Tβ+− λ0 and that ξT (λ0 + µ0) = ξ(−β+) = n̄. Suppose first that β+ is
finite. For T > 0, denote

δn :=
∞∑
j=1

ξT (λj + µ0) > 0.

Consider now δ0 > 0 such that δ0 ≤ δn/4. Since ξ is continuously strictly decreasing
and so is ZT (µ) w.r.t µ, there exists η > 0 such that

ZT (µ0 + η) = ZT (µ0)− δ0 = n̄+ δn− δ0.

Set then M0 such that

m∑
j=0

ξT (λj + µ0 + η) ≥
∞∑
j=1

ξT (λj + µ0 + η)− δn

2
for m ≥M0.

Hence, for µ ≤ µ0 + η and m ≥M0,

Tr(%m,T,µ) =
m∑
j=0

ξT (λj + µ) ≥
∞∑
j=0

ξT (λj + µ0 + η)− δn

2
≥ n̄+

δn

4
.
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Next, it is clear that Tr(%m,T,µ) ≤ Tr(%T,µ) since ξ is nonnegative, and since both traces
are decreasing functions of µ, it is enough to look for µT,m in [µ0 +η, µT ] since such µT,m
will necessarily be less than µT (we choose η sufficiently small that µ0 + η < µT ). Since
ξ(x) lies in a compact set of (0, n̄) when x ∈ [µ0 + η, µT ], it follows from (31) that |ξ′|
is bounded on [µ0 + η, µT ], and that

ZT,m(µ) := Tr (%m,T,µ) , Em(T, µ) := Tr
(√

H%m,T,µ
√
H
)
, Sm(T, µ) := Tr (β(%m,T,µ)) ,

are all continuously differentiable functions of T and µ when µ ∈ [µ0 + η, µT ].
Since ZT,m(µ) is a continuously strictly decreasing function of µ, and ZT,m(µ0+η) > n̄

as well as ZT,m(µT ) < n̄ by construction, it follows that there exists a unique µT,m such
that ZT,m(µT,m) = n̄. A direct application of the implicit function theorem then shows
that T 7→ µT,m is continuously differentiable for T > 0, and that

∂TµT,m = −∂TZT,m(µT,m)

∂µZT,m(µT,m)
=

1

T

Tr
(
%′T,m(H + µT,m)

)
Tr(%′T,m)

=
µT,m
T

+
1

T

Tr
(
H%′T,m

)
Tr(%′T,m)

. (32)

Above, we used the notation %′T,m = ξ′T (H + µT,m) for ξ′T (x) = ξ′(x/T ). Note that

Tr
(
H%′T,m

)
=

m∑
j=0

λjξ
′
T (λj + µT,m), Tr

(
%′T,m

)
=

m∑
j=0

ξ′T (λj + µT,m),

are both well-defined since the sums are finite and ξ′T (λj + µT,m) is bounded for all
j = 0, . . . ,m. Writing µT,m = −λ0 + TγT,m, we find the equation

∂TγT,m = −λ0

T 2
+

1

T 2

Tr
(
H%′T,m

)
Tr(%′T,m)

. (33)

Since λ0 is the smallest eigenvalue of H, this shows that γm,T is nondecreasing. The case
β+ = +∞ follows similarly, with the difference that µ ∈ [µ0 + η, µM ] has to be replaced
by µ ∈ [−η−1, µM ] for η sufficiently small, we omit the details.
The case β− finite: the minimizer is already finite rank, so we only need to verify that
µT is not one of the end points µ = µ0 and µ = µM since we have no control of ξ′ at
these points. Suppose that β+ is finite. When T ≤ Tc, we have seen in Step 1 that
only the j = 0 mode contributes to the sum in ZT . As a consequence, the minimizer is
simply, for all 0 < T ≤ Tc,

%T = n̄|φ0〉〈φ0|, (34)

and it is clear that the associated energy is constant for 0 < T ≤ Tc. We therefore only
consider the case T > Tc, with the case T = Tc already solved. When T > Tc, we have
NT (µ0) ≥ 1, and then

ZT (µ0) = n̄+

NT (µ0)∑
j=1

ξT (λj + µ0) > n̄.
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Also, ZT (µM) = 0, and since ZT (µ) is strictly decreasing and continuous, it follows
that for T > Tc, µT lies in a compact set K of (µ0, µM). When β+ is infinite, Tc = 0
and ZT (µ0) = ∞, and we proceed as in the case T > Tc. Since ξ′ is bounded on K,
the function ZT (µ) is then continuously differentiable for T > Tc and µ ∈ K, and a
direct application of the implicit function theorem shows that T 7→ µT is continuously
differentiable. As a result, the quantities ZT (µT ), E(T ), and S(T ) are all continuously
differentiable and the calculations of the next section are all justified.

Step 4: Monotonicity. We will prove the following Proposition:

Proposition 4.5 For T > 0, the energy E(T ) (resp. the entropy S(T )) is continuous
and nondecreasing (resp. nonincreasing), and we have the relation for T2, T1 > 0,

FT2(%T2)− FT1(%T1) =

∫ T2

T1

S(%τ )dτ. (35)

Proof. When β− is infinite, we work with the regularized minimizer %T,m and then
pass to the limit m → ∞. The calculations are similar when β− is finite and are not
detailed. Differentiating Em(T ) and using (32), we find, denoting %′T,m = −|%′T,m| since
ξ′ < 0,

∂TEm(T ) =
m∑
j=0

λjξ
′
T (λj + µ) (T∂TµT,m − λj − µT,m) /T 2

=
1

T 2 Tr(%′T,m)

([
Tr
(
H%′T,m

)]2 − Tr
(
H2%′T,m

)
Tr(%′T,m)

)
=

1

T 2 Tr(|%′T,m|)

(
Tr
(
H2|%′T,m|

)
Tr(|%′T,m|)− Tr

(
H|%′T,m|

)2
)
.

Note that Tr
(
H2|%′T,a0,ε|

)
is well-defined since |%′T,m| has finite rank. We now use the

Cauchy-Schwarz inequality to deduce that[
Tr
(
H|%′T,m|

)]2 ≤ Tr
(
H2|%′T,m|

)
Tr(|%′T,m|),

which leads to the inequality
∂TEm(T ) ≥ 0.

It follows that, for any T1 ≥ T2 > 0,

Em(T1) ≥ Em(T2). (36)

We now turn to the entropy. We remark first that

∂TZT (µT ) =
m∑
j=0

ξ′T (λj + µT,m) (T∂TµT,m − λj − µT,m) /T 2 = 0
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since ZT (µT ) = n̄. Then,

∂TSm(T ) =
m∑
j=0

ξ′T (λj + µT,m) (T∂TµT,m − λj − µT,m) β′(ξT (λj + µ))/T 2

= −
m∑
j=0

ξ′T (λj + µT,m) (T∂TµT,m − λj − µT,m) (λj + µT,m)/T 3

= −
m∑
j=0

ξ′T (λj + µT,m) (T∂TµT,m − λj − µT,m)λj/T
3

= − 1

T
∂TEm(T ). (37)

This yields the monotonicity of the regularized entropy. With the above relations, it
follows directly that

∂TFT (%T,m) = Sm(T ). (38)

We now pass to the limit m → ∞ for each T fixed. We have seen in Step 3 that
µT,m ∈ [f(η), µT ] for f(η) = µ0 + η when β+ is finite, and f(η) = −η−1 when β+ is
infinite. Hence, µT,m is uniformly bounded in m. Denote by µ? the limit obtained by
extraction of a subsequence. Since ξ is continuously decreasing, we have

1j≤mξT (λj + µT,m) ≤ ξT (λj + f(η)), (39)

and using the latter for dominated convergence shows that

n̄ = lim
k→∞

ZT,mk(µT,mk) = ZT (µ?).

Since for each T > 0 there is a unique solution to the equation ZT (µ) = n̄, it follows
that µ? = µT , and also that the entire sequence µT,m converges to µT . With (39), we
also obtain

lim
m→∞

Em(T ) = E(T ), (40)

which, together with (36), yields the monotonicity of the energy.
For the continuity of E(T ), we have seen in Step 1 that T 7→ µT is continuous as an

application of the implicit function theorem for strictly monotone functions. Note that
we obtain as well from (33) that there exists a continuous nondecreasing function γT
such that

µT = −λ0 + TγT . (41)

Taking a sequence {Tn}n∈N in [T−, T+], we have the estimate, since ξT (x) is an increasing
function of T for each x,

ξTn(λj + µTn) ≤ ξT−(λj + µ̄), µ̄ = max
T∈[T−,T+]

µT , (42)

which allows us to pass to the limit in E(Tn) by dominated convergence. This yields the
continuity of E(T ).

We now treat the entropy, and we will use Item 2 of Lemma 4.1 to pass to the limit
in Sm(T ) for T fixed. We know from (40) that {%T,m}m∈N is bounded in E+, as well as
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n[%T,m]V in L1(Rd). It remains to show that %T,m converges to %T strongly in J1. For
this, write

%T − %T,m =
∞∑

j=m+1

ξT (λj + µT )|φj〉〈φj|+
m∑
j=0

(ξT (λj + µT )− ξT (λj + µT,m))|φj〉〈φj|

:= σ1 + σ2.

We have

‖σ1‖J1 =
∞∑

j=m+1

ξT (λj + µT ),

which goes to zero as m→∞ since %T ∈ J1. Besides,

‖σ2‖J1 =
m∑
j=0

|ξT (λj + µT )− ξT (λj + µT,m)|,

which also goes to zero thanks to (39) and dominated convergence. Item 2 of Lemma
4.1 then gives

lim
m→∞

Sm(T ) = S(T ),

which, together with (37) after integration in T , yields the monotonicity of the entropy.
The continuity of S(T ) follows from the same lines: we consider a sequence {%Tn}n∈N

for Tn ∈ [T−, T+], which is bounded in E+ with n[%Tn ]V bounded in L1(Rd) as a con-
sequence of (42). The fact that %Tn converges to %T in J1 is established in the same
manner as above, with the additional ingredient consisting of the continuity of T 7→ µT .
Item 2 of Lemma 4.1 then yields the continuity of S(T ) for T > 0.

It remains to derive (35) to conclude the proof. Integrating (38), we can pass to the
limit in the FTi(%Ti,m) terms, i = 1, 2, using what was just done for Em(T ) and Sm(T ),
and we just need to treat the integral term. For this, we remark first that Item 1 of
Lemma 4.1 yields

|Sm(T )| ≤ C + CE(%T,m)γ,

and proceeding as in (28), we find the estimate

E(%T,m) ≤ n̄

N2(T )−1∑
j=0

(1 + λj) + C ′x̄,γT
1

1−γ ,

where N2(T ) is a finite integer. This allows us to use dominated convergence to pass to
the limit in the integral term and obtain (35). This ends the proof.

We now prove that the monotonicity of the previous Proposition is actually strict.
We proceed by contradiction and suppose that E(T1) = E(T2) for T1 6= T2, with e.g
T2 > T1 > 0. Then, using (35), we have

T2S(T2)− T1S(T1) =

∫ T2

T1

S(τ)dτ.

Since S is nonincreasing, we have S(T1) ≥ S(T2), and the above equality gives

T2S(T2)− T1S(T1) ≥ (T2 − T1)S(T2).
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This is equivalent to S(T2) ≥ S(T1), and as a consequence S(T2) = S(T1). It follows that

FT1(%T1) = T1S(T1) + E(T1) = T1S(T2) + E(T2) = FT1(%T2),

and, by the uniqueness of the minimizer, we deduce that %T1 = %T2 . This gives, for any
j ∈ N, since ξ is one-to-one,

ξT1(λj + µT1) = ξT2(λj + µT2)⇒ λj

(
1

T1

− 1

T2

)
=
µT2
T2

− µT1
T1

.

Since this equality must be true for any j ∈ N, we deduce that T1 = T2 which contradicts
our assumption. Therefore, E(T ) is strictly increasing.

It remains to prove that S(T ) is strictly decreasing. From (35) and the fact that
S(T ) is nonincreasing, we have, for T2 > T1 > 0,

0 < E(T2)− E(T1) = T1S(T1)− T2S(T2) +

∫ T2

T1

S(τ)dτ

≤ T1S(T1)− T2S(T2) + S(T1)(T2 − T1) = T2(S(T1)− S(T2)).

This finally gives S(T1) > S(T2).

Step 5: The lower limit for the energy. When β− = −∞, let Tc = 0, and when
β− is finite, define Tc as in (30), with Tc = 0 when β+ = +∞. We prove that

lim
T→Tc

E(T ) = λ0n̄.

We remark that, using (4) and u[%T ] = 0, for any T > 0,

E(T ) ≥ ‖∇
√
n[%T ]‖2

L2 + ‖n[%T ]V ‖L1 = 〈H
√
n[%T ],

√
n[%T ]〉

≥ λ0n̄ (43)

The case β− finite and β+ finite: when T ≤ Tc, we have already established that the
minimizer is given by (34) and, thus, we have directly E(Tc) = λ0n̄.
The case β− infinite and β+ finite or infinite: when β+ is finite, since ξ is decreasing,

E(T ) ≤
∞∑
j=0

λjξT (λj + µ0) = λ0n̄+
∞∑
j=1

λjξ((λj − λ0)/T − β+).

Since ξ(x) → 0 as x → +∞, it follows from dominated convergence (with dominating
function e.g. λjξ(λj − λ0 − β+)) that the last term on the right converges to zero as
T → 0. The result then follows from (43). Consider now the case where β+ is infinite.
Recall from the proof of Proposition 4.5 that there exists a continuous nondecreasing
function γT such that (41) holds, that is

γT =
µT + λ0

T
.
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The function γT therefore admits a limit as T → 0. We will see that this limit has to
be −∞. Suppose the limit is finite and equal to γ?. Then, since ξ is decreasing and γT
is nondecreasing,

n̄ =
∞∑
j=0

ξT (λj + µT ) ≤ ξ(γ?) +
∞∑
j=1

ξ((λj − λ0)/T + γ?). (44)

The first term on the right is strictly less than n̄ since ξ(−∞) = n̄ and γ? is finite. The
second term goes to 0 as T → 0 by dominated convergence (with dominating function
ξ(λj − λ0 + γ?)) since ξ(x)→ 0 as x→ +∞. This yields a contradiction and therefore
the limit of γT as T → 0 is −∞. We now show that

lim
T→0

λ1 − λ0

T
+ γT = +∞. (45)

The limit cannot by guessed directly since the first term goes to +∞ and the second to
−∞. We proceed by contradiction and suppose that the limit is L, with L < ∞ (but
possibly L = −∞). We have, since ξ ≥ 0,

ξ(γT ) + ξ((λ1 − λ0)/T + γT ) ≤ n̄ =
∞∑
j=0

ξT (λj + µT ).

Sending T → 0, we find n̄ + ξ(L) ≤ n̄. When x 6= +∞, it follows that ξ(x) > 0, and
therefore that there is contradiction. Hence, (45) holds, and there exists T1 such that

γT ≥ 1− λ1 − λ0

T
, ∀T ≤ T1.

We then write, since ξ is decreasing,

E(T ) ≤ λ0ξ(γT ) + λ1ξ((λ1 − λ0)/T + γT ) +
∞∑
j=2

λjξ((λj − λ1)/T + 1).

The first term converges to λ0n̄ since γT → −∞, the second and last one to zero
because of (45), ξ(+∞) = 0, and dominated convergence with dominating function
λjξ(λj − λ1 + 1). This yields the expected limit thanks to (43).
The case β− finite and β+ infinite: we have by construction γT ≤ −β−, with γT
nondecreasing. If γT converges to a finite limit, then recalling (26), we can see that
NT (µT )→ 0 and we have

n̄ =

NT (µT )∑
j=0

ξT (λj + µT ) ≤ ξ(γ?) +

NT (µT )∑
j=1

ξ((λj − λ0)/T + γ?),

which leads to a contradiction by letting T → 0 since ξ(γ?) ≤ ξ(−∞) = n̄. Hence
limT→0 γT = −∞. We now show that

lim
T→0

λ1 − λ0

T
+ γT = −β−. (46)
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If this is not the case, we have for T sufficiently small that λ1 − λ0 + TγT < Tβ− so
that NT (µT ) ≥ 1. Following the same lines as (45), we find a contradiction using the
fact that ξ(x) > 0 if x 6= β−. The limit (46) yields that NT (µT ) → 1. Then, since ξ is
nonincreasing

E(T ) ≤ λ0ξ(γT ) + λ1ξ((λ1 − λ0)/T + γT ) +

NT (µT )∑
j=2

λjξ((λj − λ0)/T + γT )

≤ λ0ξ(γT ) + λ1ξ((λ1 − λ0)/T + γT ) +

NT (µT )∑
j=2

ξ(γT ).

The first term converges to λ0n̄ since γT → −∞, the second and last one to zero because
of (46), ξ(β−) = 0 and the fact that NT (µT )→ 1. This ends the proof thanks to (43).

Step 6: The upper limit for the energy. The upper limit as T → ∞ is more
subtle, and we use quite different arguments for the cases β− finite or infinite. We prove
that

lim
T→+∞

E(T ) = +∞. (47)

The case β− infinite: the proof combines relation (35), which allows us to quantify how
the free energy changes with temperature, with the study of the behavior of µT/T as
T →∞. First of all, the convexity of β yields 0 = β(0) ≥ β(x)−xβ′(x) which, by using
β′(ξT (x)) = −x/T , gives for any j ∈ N

−(λj + µT )ξT (λj + µT ) ≥ Tβ(ξT (λj + µT )),

and, by summation,

−µT n̄ =
+∞∑
j=0

ξT (λj + µT ) ≥
+∞∑
j=0

λjξT (λj + µT ) + Tβ(ξT (λj + µT )) = FT (%T ).

As a consequence, we deduce the inequality

−n̄µT ≥ FT (%T ) = E(%T ) + TS(%T ) ≥ TS(T ). (48)

Besides, for T > T1 > 0, we deduce from (35) and the decay of S(T) that

E(T ) ≥ FT1(%T1)− TS(T ) +

∫ T

T1

S(τ)dτ ≥ FT1(%T1)− T1S(T ).

Together with (48), this gives

E(T ) ≥ FT1(%T1) + T1n̄
µT
T
. (49)

This is the key estimate. Indeed, we already know that µT/T = −λ0/T + γT where
γT is nondecreasing, and as a consequence µT/T is nondecreasing as well and therefore
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admits a limit as T →∞. Suppose first that this limit is finite and equal to M . Since
ξ is decreasing, we have

ξT (λj + µT ) ≥ ξ(λj/T +M),

so that

ZT (µT ) = n̄ ≥
∞∑
j=0

ξ(λj/T +M).

Fatou’s lemma then yields

n̄ ≥
∞∑
j=0

lim inf
T→∞

ξ(λj/T +M) =
∞∑
j=0

ξ(M) = +∞, (50)

giving a contradiction. Hence, µT/T →∞ as T →∞. Then, fixing e.g. T1 = 1 in (49)
shows that E(T )→∞ as T →∞.
The case β− finite: this case is actually more difficult than the previous one since we
will see that µT/T converges to a finite number, and therefore (49) is not enough to get
the result. We will then have to resort to more technical tools and to a fine analysis
of the high energy eigenvalues of H. We recall that NT (µT ) is defined as the largest
integer such that

λNT (µT ) ≤ T (−β− − µT/T ) =: α(T ), (51)

and that µT ≤ µM(T ) = Tβ− − λ0. Our first task will be to show the following result.

Lemma 4.6 The following limits hold

lim
T→∞

α(T ) = +∞ and lim
T→∞

α(T )/T = 0. (52)

Proof. Step 1: we begin with limT→∞ α(T )/T = 0. The limit of µT/T exists since
it is nondecreasing as seen in the case β− infinite. Suppose that µT/T converges to a
constant M < −β−, and therefore we have ξ(M) > 0. Then α(T )→ +∞ according to
its definition, and since ξ is decreasing,

n̄ =

NT (µT )∑
j=0

ξT (λj + µT ) ≥
NT (µT )∑
j=0

ξ(λj/T +M).

Since α(T ) → +∞, we have NT (µT ) → +∞ when T → +∞, and this leads to a
contradiction according to Fatou’s lemma:

n̄ ≥
∞∑
j=0

lim inf
T→∞

1j≤NT (µT )ξ(λj/T +M) =
∞∑
j=0

ξ(M) = +∞.

Hence, µT/T converges to −β− and limT→+∞ α(T )/T = 0 as announced.
Step 2: we address now the limit limT→+∞ α := α∞. It is undetermined since we have
no information about the rate of convergence of µT/T . Note that this limit exists as
µT/T increases monotically to −β−. There are then two possibilities: since α(T ) ≥ 0,
either α∞ is infinite, or it is finite. Suppose the latter case holds. We then necessarily
have α∞ ≥ λ0 from (51), which shows that the limit of NT (µT ) is not empty and equal
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to some finite integer N∞ that depends on α∞. Moreover, we have just seen that for j
fixed,

lim
T→∞

(
λj
T

+
µT
T

)
= −β−.

Hence,
lim
T→∞

ξT (λj + µT ) = ξ(−β−) = 0,

which shows that

n̄ = lim
T→∞

ZT (µT ) =
N∞∑
j=0

ξ(−β−) = 0.

There is a contradiction here, and as consequence α∞ has to be infinite, and therefore
NT (µT ) tends the infinity as T →∞.

Owing to (52), our goal is now to characterize the limit of E(T ). This cannot be
done by directly passing to the limit in the definition of the energy since ξT (λj +µT )→
ξ(−β−) = 0 while the number of terms in the sum grows to infinity. We have the
following result.

Lemma 4.7 There exists a constant C > 0 such that

lim
T→+∞

E(T )

α(T )
≥ C.

Proof. We remark first that for y > 0 sufficiently small, we have from (6),

ξ−y
s ≤ ξ(−β− − y) ≤ ξ+y

s, s = 1/r > 0, (53)

with ξ± = c−s∓ . By using (51), we rewrite ξT (λj +µT ) as ξ(−β−− (α(T )−λj)/T ). Since
we know that α(T )/T → 0 and that

0 ≤ (α(T )− λj)/T ≤ (α(T )− λ0)/T,

we can choose T sufficiently large so that (α(T ) − λj)/T is arbitrary small for all j ≤
NT (µT ). Then (53) yields

ξ−T
−s

NT (µT )∑
j=0

(α(T )− λi)s ≤ n̄ ≤ ξ+T
−s

NT (µT )∑
j=0

(α(T )− λi)s.

The core to the proof is to estimate

NT (µT )∑
j=0

(α(T )− λi)s = Tr
(
|α(T )−H|s+

)
,

as T →∞. Above, |x|+ denotes the positive part of x. Such quantities are called Riesz
means in the literature (see e.g. [8]). Their asymptotic behavior is well-known, and is
obtained in terms of the quantity

Ws(E) :=

∫
Rd
|E − V (x)|s+

d
2

+ dx,
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leading to the following Weyl asymptotics, or limiting Lieb-Thirring equality,

lim
E→∞

Tr
(
|E −H|s+

)
Ws(E)

= Cs,d :=
Γ(s+ 1)

(4π)d/2Γ(s+ 1 + d
2
)
, (54)

where Γ is the gamma function. The above relation is obtained by introducing the
number of eigenvalues λj[H] of H = H0 + V less than E, defined by

N(E, V ) = #{j ∈ N : λj[H0 + V ] ≤ E}.

For the homogeneous potential V0(x) = |x|θ, θ > 0, the following asymptotic formula
holds for N(E, V0) (see [16, Chapter 9 and 11])

lim
E→∞

N(E, V0)∫
Rd
|E − V0(x)|

d
2
+ dx

=
1

(4π)d/2Γ(1 + d
2
)
.

With our choice of potential V (x) = 1 + V0(x), a similar formula naturally holds by
replacing E by E − 1. The result (54) then follows from the classical relation (see e.g.
[9])

Tr
(
|E −H|s+

)
= s

∫ +∞

0

ys−1N(E − y, V0)dy.

We have now everything needed to conclude. By using (54), we find that

lim
T→∞

n̄T s

Tr
(
|α(T )−H|s+

) = lim
T→∞

n̄T sWs(α(T ))

Tr
(
|α(T )−H|s+

)
Ws(α(T ))

= lim
T→∞

n̄T s

Cs,dWs(α(T ))
,

and, with (53), we find

ξ−Tr
(
|α(T )−H|s+

)
≤ n̄T s ≤ ξ+ Tr

(
|α(T )−H|s+

)
,

which leads to
Cs,dξ−
n̄
≤ lim

T→∞
T s (Ws(α(T )))−1 ≤ Cs,dξ+

n̄

This allows us to relate T and α(T ). Indeed, exploiting that V0(x) = |x|θ, we have

Ws(α(T )) = [α(T ) + 1]s+(1+ 2
θ

) d
2 Ws(1),

which gives

n̄

Ws(1)Cs,dξ+

≤ lim
T→∞

α(T )s+(1+ 2
θ

) d
2

T s
≤ n̄

Ws(1)Cs,dξ−
. (55)

We now turn to the energy and use similar arguments. We have, for T sufficiently large,

G(T ) := ξ−T
−s

NT (µT )∑
j=0

λj(α(T )− λj)s ≤ E(T ), (56)
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and rewrite the term on the left as

NT (µT )∑
j=0

λj(α(T )− λj)s = α(T )

NT (µT )∑
j=0

(α(T )− λj)s −
NT (µT )∑
j=0

(α(T )− λj)1+s

= α(T ) Tr
(
|α(T )−H|s+

)
− Tr

(
|α(T )−H|s+1

+

)
.

Proceeding as above, we find

lim
T→+∞

α(T ) Tr
(
|α(T )−H|s+

)
[α(T )]s+1+(1+ 2

θ
) d
2

= Cs,dWs(1),

and

lim
T→+∞

Tr
(
|α(T )−H|s+1

+

)
[α(T )]s+1+(1+ 2

θ
) d
2

= Cs+1,dWs+1(1),

In particular, this yields

lim
T→+∞

α(T ) Tr
(
|α(T )−H|s+

)
Tr
(
|α(T )−H|s+1

+

) =
Cs,dWs(1)

Cs+1,dWs+1(1)
:= κs,d,

where κs,d > 1. Indeed, a simple calculation shows that

Ws(1) =

∫
Rd
|1− V0(x)|s+d/2+ dx = ωd−1

∫ +∞

0

|1− rθ|s+d/2+ rd−1dr

= ωd−1

∫ 1

0

(1− rθ)s+d/2rd−1dr = ωd−1
Γ (1 + s+ d/2) Γ (d/θ)

θΓ (1 + s+ (1 + 2/θ)d/2)
,

where ωd−1 is the surface area of the d− 1 sphere of radius 1. It follows that

κs,d =
s+ 1 + d

2

s+ 1

1 + s+ d
2

+ d
θ

s+ 1 + d
2

=
1 + s+ d

2
+ d

θ

s+ 1
> 1.

Finally, we find from (56) and (55) that

lim
T→+∞

E(T )

α(T )
≥ lim

T→+∞

G(T )

α(T )
= ξ−(κs,d − 1) lim

T→+∞

Tr
(
|α(T )−H|s+1

+

)
T sα(T )

≥ ξ−(κs,d − 1)Cs+1,dWs+1(1) lim
T→+∞

α(T )s+(1+ 2
θ

) d
2

T s
≥ κs,d − 1

κs,d

ξ−n̄

ξ+

,

which concludes the proof since κs,d > 1.
This ends the proof of (47) since α(T )→∞ as T →∞.

Remark 4.8 Note that we also have an upper bound which, thanks to (55), shows that

E(T ) ∼
T→+∞

α(T ) ∼
T→+∞

T
1

1+(1+2
θ
) d2s .
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