Stochastic regularization effects of semi-martingales on random
functions

Romain Duboscq ! Anthony Réveillac 2

INSA de Toulouse ?
IMT UMR CNRS 5219
Université de Toulouse

Abstract

In this paper we address an open question formulated in [16]. That is, we extend the
It6-Tanaka trick, which links the time-average of a deterministic function f depending
on a stochastic process X and F' the solution of the Fokker-Planck equation associated
to X, to random mappings f. To this end we provide new results on a class of adapted
and non-adapted Fokker-Planck SPDEs and BSPDEs.
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1 Introduction

In [16], the authors analyzed the effects of a multiplicative stochastic perturbation on
the well-posedness of a linear transport equation. One of the key tool in their analysis
is the so-called Ito-Tanaka trick which links the time-average of a function f depending
on a stochastic process and F' the solution of the Fokker-Planck equation associated to
the stochastic process. More precisely, the formula reads as

T T
/ £t XT)dt = —F(0, ) —/ VE(t, X2) - dW,, P — a.s. (1.1)
0 0
where (X[)¢>0 is a solution of the stochastic differential equation
t
X7 ::E+/ b(s, X3)ds + Wy, (1.2)
0

and F' is the solution of the backward Fokker-Planck equation

Pt z) = /tT <;A +b(s,7) - v) F(s, z)ds — /tT F(s,2)ds. (1.3)
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In [25], by means of suitable regularity results for solutions of parabolic equations
in L9(LP) spaces, the authors showed, assuming f,b € E := L4([0,T]; LP(R%)) with
2/q+d/p < 1, that F € L9([0,T]; W*P(R?)). Hence, in the weak sense, F has 2
additional degrees of regularity compared to f in E. Thus, formula tells us
that the time-average of f with respect to the stochastic process (X})i>0 is more
regular than f itself (it has 1 additional degree of regularity). This is what we call a
stochastic reqularization effect or reqularization by noise. In this paper, we investigate
the following open question stated in [16]:

"The generalization to nonlinear transport equations, where b depends on u itself, would
be a major next step for applications to fluid dynamics but it turns out to be a difficult
problem. Specifically there are already some difficulties in dealing with a vector field b
which depends itself on the random perturbation W. There is no obuvious extension of
the Ito-Tanaka trick to integrals of the form fOT fw, s, X¥(w))ds with random f."

A major "pathology" in the framework of stochastic regularization is the existence of
random functions f for which the It6-Tanaka trick should not improve the regularity
of f. For instance, in [16], the authors consider a random function f of the form

flw,s,2) == flz — Wi(w)),
where (W})¢>0 is the Brownian motion from (1.2]). This gives, for b =0 in (L.2)),

T T
/f(w,t,Wt—irx)dt:/ F(t,2)dt,
0 0

which does not bring any additional regularity. It turns out that, when f is a random
function, the solution F' to ([1.3]) is not adapted anymore to (ftw ) te[0,T] the natural
filtration of the Brownian motion, making the stochastic integral on the right-hand side
of (|1.1) ill-posed.

In this paper we tackle this difficulty by considering another equation which is the
adapted version of the Fokker-Planck equation (1.3]). More precisely, we show in The-
orem that given random functions b and f which depend in an adapted way, of a
standard Brownian motion (W;)¢>0, the following formula holds

T T T
/ £t XP)dt = —F(0, ) / (VF(s, X7) + Z(s, X7)) dW,— / divZ(s, X7)ds, P—a.s.
0 0 0

(1.4)
where (F, Z) is the adapted mild solution of the following backward stochastic partial
differential equation (BSPDE)

F(t,a:)—/tT (;A—i—b(s,x)-V) F(s,x)ds—/tTf(s,x)ds—/tTZ(s,x)dWS, (1.5)

and (X}")s>0 together with a Brownian motion (W;):>¢ is a weak solution of the stochas-
tic differential equation

t
Xf::z—k/ b(s, X7)ds + Wr.
0

We name (1.4)) the [t6- Wentzell-Tanaka trick as the derivation of (|1.4)) calls for the use
of the Ito-Wentzell formula in place of the classical Itd formula which allows one to give
a semimartingale type decomposition of F'(t, X;*) when F'(t,x) is itself a semimartingale



random field. This contrasts with the classical It6-Tanaka trick where both f and b
must be deterministic mappings.

During the process of studying of the Fokker-Planck BSPDE, we incidentally prove new
results as Theorem on this equation in particular by allowing only L?(LP) regularity
on its coeflicients together with a representation of its mild solution in terms of the
solution to the non-adapted SPDE and of its Malliavin derivative. In addition, our
methodology generalizes: the well-known linearization technique used for linear BSDEs
and deterministic semigroups (see [12, Proposition 2.2|), and a Feynman-Kac formula
for BSPDEs related to Forward-Backward SDEs as in [26, Corollary 6.2] by providing
a unique (in the mild sense) solution to the BSPDE, which were, up to our knowledge,
both unknown for this class of equations. We also prove that the F' component of the
solution is Malliavin differentiable. The study of the BSPDE relies on the one of the
non-adapted Fokker-Planck equation in Section [4.2

There are well-known results concerning the regularization effects of stochastic processes
on deterministic functions (see the survey of Flandoli [14]) but, to our knowledge, there
exists no extension of the Ito6-Tanaka trick for random functions. Note however that
pathwise regularization effect are obtained in [5] using a rough path analysis based
on the class of so-called p-irregular functions. The phenomenon is widely used in the
recovery of the strong uniqueness of solutions of stochastic differential equations (SDEs)
with singular drifts [10] 19, 27 25, [32], 35]. It has been generalized to SDEs in infinite
dimension [8, 9, 28] and the conditions for the existence of a stochastic flow has also
drawn attention (see [1, 15 33]). Another direction of interest is the improvement of
the well-posedness of stochastic partial differential equations (SPDEs). In particular,
the stochastically perturbed linear transport equation has received a lot of interest
[2, /4] T3], [16]. More recent works provide extensions to nonlinear SPDEs, see for instance
[3, 17, 18] for models from fluid mechanics and |6} [7, [11] for dispersive equations. Let us
also mention that the type of processes that yield a regularization effect is not restricted
to Brownian semi-martingales. For instance, in |31}, [34] where a-stable processes have
been considered and, in [5], where the authors showed a regularization phenomenon
using rough paths (in particular for the fractional Brownian motion).

The paper is organized as follows. In Section [2] we make precise the definitions, the
notations and the material that will be used later on. Then, in Section [3| we state
our main results: namely the existence, uniqueness (in the mild sense) and regularity
of an adapted solution to Equation in Theorems on the one hand and the
It6-Wentzell-Tanaka trick in Theorem on the other hand. We also include in this
section a discussion about the regularization effect and some possible applications of the
Ito-Wentzell-Tanaka trick. Finally, proofs of Theorems [3.1}{3.2] are collected in Sections
[ and Bl

2 Notations and standing assumptions

2.1 Main notations

Throughout this paper 17" will be a fixed positive real number and d denotes a fixed
positive integer. For any z in R? we denote by |z| the Euclidian norm of z. Let
(E,||-||z) be a Banach space, we set B(E) the Borelian o-field on E. For given Banach
spaces E, F' and any p > 0, we set LP(E; F') the set of B(E)\B(F)-measurable mappings



f+ F — F such that

£y = [ 1£@nldo) < +oc,

where (1 is a non-negative measure on (E, B(E)). Naturally the norm depends on the
choice of i that will be made explicit in the context. If FF = R", n € N, then we simply
set LP(E) := LP(E;R™). We also denote by C°(E) (resp. CJ(E)) the set of continuous
(resp. bounded continuous) real-valued mappings f on E. For any p > 1 we set p the
Holder conjugate of p.

For any mapping ¢ : R — R we denote by 37@ the i-th partial derivative of ¢, (i =

i

1,---,n), by Vp := (aa—;’;, ol %) the gradient of ¢ (when it is well-defined), and by
Ay its Laplacian. For a multi index k := (ki,--- , kq) in N, we set VF¢p := %@

and k| == % | K.
For p,m € R, we set

WY = {p e LPRY:F (([L+1677/%0) € PR},
the usual Sobolev spaces equipped with its natural norm

lllwmrcen = [§7 (11 +1671m%5)

Lr(R4))

where $(€) = F(¢)(€) and F (resp. F~') denotes the Fourier transform (resp. the
inverse Fourier transform). Let n,k € N and a € (0,1). We set C(E) (resp. Cf’o‘(E))
the set of R%valued bounded functions having bounded derivatives up to order k (resp.
and with a-Hoélder continuous kth partial derivatives). We also set:

IV f(z) — Vif(y)|
©|| ~k,a = Pl ck + sup sup
H ch (B) H ”Cb (E) (o) £y |.%' _ y|a

)

where H‘PHc{j(E) 1= D | <k SWPrcE |VEf(2)|. Finally C°(R™), (n € N*) stands for the
set of infinitely continuously differentiable function with compact support.

Throughout this paper C will denote a non-negative constant which may differ from
line to line.

Standing Assumption 2.1. Unless stated otherwise, we always assume that the real

numbers p,q € (2,00) verify

d 2

-+ -<1.

p q
Remark 2.1. In the previous inequality, we exclude the cases p = oo or ¢ = co. The
latter can be handled without any difficulty since T is finite. Howewver, the former calls

for an analysis in other functional spaces that we do not consider in this paper.

2.2 Malliavin-Sobolev spaces

In this section, we introduce the main notations about the Malliavin calculus for random
fields. As we do not work, in the classical setting (that is we do not use a L? or Hilbert
space structure), we provide some technical justifications in



Let (2, F,P) be a probability space and W := (W¢),g(o,r7 @ Brownian motion on this
space (to the price of heavier notations all the definitions and properties in this section
and of the next one extend to a d-dimensional Brownian motion). We assume that
F=0(W, tel0,T)).

Consider S be the set of cylindrical fields, that is the set of random fields F : QxR — R
of the form:
F= @(tha e ,th,fﬂ)

with ¢ : R® x R? — R in C§°(R"T9). We fix p an integer with p > 2. For an element
F in S, we set DF' the LP([0,T])-valued random field as:

;)
DyF := Z%(tha'” 7th7$)1[0,ti](9)7 0 € [OaT]'

Note that for F in S, DV*F = V¥ DF for any multi index k. In addition, an integration
by parts formula for the operators DV* can be derived (see Lemma [A.1). By Lemma
@. the operators DV* (and so V¥D) are closable from S to LP(2 x R%; LP([0,T])).

For a positive integer m, we set DVP the closure of S with respect to the norm:

T
P UBsmp = ENEWns + [ B (1D W) 0 (21)

We also denote:
1 F|[ym.e := EIF[[fym.p), (2.2)

We conclude this section on the Malliavin derivative by introducing the space Dy"™? :=

L4([0,T); DY™P) (with p,q > 2) which consists of mappings F : [0,7] x  x R? — R
such that

T
1P = [ 1P ot < +o0. (2.3

We also use the following notation:
T
P g = [ NP it < o0

2.3 An SDE with random drift

Before proceeding further, we introduce the following notation: for a continuous map-
ping v € C([0,T]) and s € [0,T], we set 1), the element of C([0,77) defined by

Wy if r €10, 5]
Vi) { s if r € (s,T]

We consider the following SDE:
t
X =Xo+ / b(s, Xs, W(S))ds + W, te [O,T], (2.4)
0

where b is assumed to be a B([0,T] x R? x C([0, T))-measurable map, Xj is in R? and
W is a d-dimensional Brownian motion. To begin with, let us recall the definition of a
weak solution to Equation (2.4)).

Definition 2.1. A weak solution is a triple (X, W), (0, G,P), (Gt)iejo,r] where

5



e (2,G,P) is a probability space equipped with some filtration (Gi).cpo,1] that satisfies
the usual conditions,

e X is a continuous, (gt)tE[O’T]-adapted Re-valued process, W is a d-dimensional
(Qt)te[()’T]—Wiener process on the probability space,

o P(X(0) = Xo) =1 and P(f; |b(s, Xs, W5))|ds < +00) = 1, Vt € [0,T],

e Equation holds for all t in [0,T] with P-probability one.
Standing Assumption 2.2. There exists a weak solution (X, W), (Q,G,P), (Gt)ejo.1]
to the SDE (2.4)).

By definition, W is a (Gt¢)eo,7j-Brownian motion. So we denote by (Fi)iejo,7] its
natural completed right-continuous filtration which satisfies 7; C G; for any ¢ € [0, T.
In the following, the spaces DV™P or ]D);’m’p are understood to be defined with respect
to (Q, ]:T, P)

We now give a simple proof of existence and uniqueness of a weak solution to (2.4))
under some non-optimal assumptions.

Proposition 2.1. Let b € LI([0,T]; LP(R% CH(RY))). Then there exists a unique weak
solution to the SDE

t
X, = X, +/ b(s, Xo, We)ds + Wy, t€[0,T]. (2.5)
0

Proof. The proof is based on Girsanov’s theorem. Let us first remark that by(¢, z) :=
SUp, crd |Vyb(t,z,y)| and bi(t,z) = SUDy cRd |b(t, z,y)| belong in LI([0,T]; LP(R%)).
Thus, since 2/q + d/p < 1, by [25, Lemma 3.2] we have, V& € RT and k = 1,2,

E [enfoT bo(&Ws)de} \E [erOT b1 (s,Ws)Fkds < 400, (26)

where W is a standard Brownian motion.
Let (X¢)i>0 a standard Brownian motion on a probability space (€2, G, P) equipped with
a filtration (Gt);cpo - We consider the following SDE

t
Yt:YO—/ b(s, Xo, Yy)ds + Xi, ¢ € [0,T]. 2.7)
0

In this step, we prove that there exists a unique solution to (2.7). Since b is Lipschitz,
the uniqueness is obtain by a Gronwall lemma. Moreover, by using classical a priori
estimates for Lipschitz SDE, we obtain

<C <|y0|2 +T+E [/OT (16(s, X, 0)]* + bo(s, We)?) dsD ,

E | sup |Y[?
t€[0,T)

which yields the existence of a strong solution.
By (2.6), we have, Vk € RT,

E [enfows,xsys)\?ds} <E [enfoT b1<s,x5>2ds} < too.

We deduce that
() = el b(5,Xs,Ys)dXs—3 [5 [b(5,Xs,Y5) 2 ds

is a martingale under P by Novikov’s criterion. Hence, by Girsanov’s theorem, the

process Y is a Brownian motion under the measure Q given by CCITP = p(T). Thus, by
rewriting Y as W, the triple (X, W), (©, F,Q), (Gt)ic[o,1] is a weak solution to the SDE

239). O



2.4 The adapted Fokker-Planck equation

Throughout this section, we consider (X, W) a weak solution to the SDE and use
the notations of the previous section. We say that a random field ¢ : Qx [0, T]| xR? — R
is adapted if for any = in R?, ¢(-,z) is F-adapted. Note that by the definition of a
weak solution (cf. Deﬁnition as F. C G., any (Ft)se(o,r)-adapted field is (Gi)ejo,r)-
adapted. In order to derive our It6-Wentzell-Tanaka trick, we consider f a random field
and make the following standing assumption.

Standing Assumption 2.3. f is an adapted stochastic field.

We set the linear operator £;¥ on C3°(RY):
1
LE0(x) = S A0(x) +b(t, 2, Weyy) - VI(@), 0 € C(RY).
Now we consider the following BSPDE:
T T
Pt z) = / (LXF(r,2) — f(r,2)) dr — / Z(r, )dW,, (2.8)
t t

Before going further, we recall what is a solution to the BSPDE (2.8)) in our context.
We set for m € N:

Wgﬁ = {QD adapted field s HSOHWZJRW < +OO},
e = {p aapted feld (and Rvalued), feo | (f ofs.2)Pat)

[SIIS]

} dr < +oo%2..9>

Definition 2.2 (Adapted strong solution to a BSPDE). We say that a pair of adapted
random fields (F, Z) is strong solution to the BSPDE (2.8) if

F,Z) € W5 x MP
P.q

with % + % < 1 and Relation (2.8) is satisfied for every t in [0,T], for a.e. x in R?,
P-a.s..

Remark 2.2. We warn the reader that in the previous definition, the adapted feature
of the fields F,Z is crucial. In that sense we will speak of BSPDE. This differs from
the SPDE whose solution is not adapted (see Remark[{.1). In that case we will
speak of a SPDE to emphasize that the measurability requirement is not present.

3 Main results and discussion

3.1 Main results

In order to proceed further, we need some additional assumptions on the Malliavin
derivatives of f and b.

Standing Assumption 3.1. Let v € {0,1}, o > v/2 and 0,0 € [p,00] such that
1/04+1/¢ =1/p. We assume that f and b belong to ]Dé,’o’p and that:



i) there exist a function f' € L([0,T]; L*(Q; W=7P(R))), a function b € LI(][0,T]; LP(2x

R%)) and two mappings vy € LY L([0,T] x RY)), v, € L®([0,T] x R?) such
that

Dyf(t,x) = f'(t,x)v(0,t), VO<t<T,P—as.,
and  Db(t,z, W) = b'(t,z, W) )up(0,), VO <t<T,P—a.s.,

ii.a) one of the following statement is in force

o there exist Cyr,Co ¢ > 0 such that, VO < 0 < s <t < T,

va(07t)HLZ(Q) < Ch,r|0 —t|°,

3.1
078, 5) = v7(ts8)ll iy < Corlo — 1 (3.1

o v =0 and vs(0,t) = lg<r,;y where 7¢ is a random variable with values in
[0, 1],

ii.b) one of the following statement is in force
o there exist Cyp, Cop > 0 such that, V0 < 0 < s <t < T,

lup(0,t)] < C1pl60 —t|°,

|up(0, 5) — vp(t, 5)| < Copl —t|°, (3.2)

o v =0 and vp(0,t) = 1gp<5,) where 7, is a random variable with values in

[0,¢],
iii) there exists a function b € LI([0,T]) such that

16C¢, - Wi |l o ray + 16 (E, s Wie) | o ray < b(E), VE € [0,T], P—a.s..
Moreover, if v =1, we also assume that
IVb(t, - W)l Lo ey < b(8), Yt €[0,T], P —a.s..

The conditions above are probably quite cumbersome at first glance. However, the
counterpart of this formulation is that it allows one to consider quite general functional
dependency of the Brownian motion in the coefficients f and b. In particular, they can
depend of the past of W in a functional way and not only through the present value.
To illustrate this fact, we give below some standard examples of random functionals f
and b which satisfy Assumption [3.1

Example 3.1. Let f(t,x) = go(t,z + fot h.dr), where go € L([0,T]; LP(RY)), h is an
adapted bounded stochastic process such that, ¥t € [0,T], hy € DY2 and Dghy is bounded
uniformly in (t,0), and b(t,x) = g1(t,x + W) with g1 € Li([0,T); WHP(R?)). In that
case, the Malliavin derivatives of f and b are given by
¢ t
Dyf(t,z) = Vg (t,a: +/ hrdr> / Dgh,dr,
0 0
and Dgb(t,x) = Vg1 (t,7 + W) 19<p-
Example 3.2. Let f(t,z) = g1(t, =, p1 (W(t))), b(t,z) = ga(t,x, po (W(t))) where gq
and g belong to LI([0, T]; LP(R%; CL(R?))) and:

((rg)o<s<t) € 41, max rg, min r 1 =1,2.
pl(rozesr) € {re oo i =1,

8



In that cases, we have that (see e.g. [29, Exercice 1.2.11]):

DoWi = 119<yy, Do Jfnax, Ws = 1(p< 7}, and Dy Olggt Ws =119< 1}

where T := argmaxy<,<; Ws and 7 := argming«,, Ws.

We state below our first main theorem in which we provide existence, uniqueness
(in the mild sense) and regularity results to Equation (12.8)).

Theorem 3.1. There exists a strong (adapted) solution to Equation (2.8) (recall nota-
tions (29))
2
(F,2) e (W)

Futhermore, we have the following representation of F'

T
F(t,z) =E {—/ Pt)ﬂ{f(r, m)dr‘}}] , (3.3)
t
where PX denotes the propagator associated to LX defined in ([A.16)) (see Section .
In addition, for a.e. (t,x), F(t,x) is Malliavin differentiable (||F|pr2» < +00), and
q

for a.e. x € R, a version of the process (Z(t,z))efo, s given by

Z(t,x) =E [— /t ' DPX f(r, x)dr‘ft] . (3.4)

Finally, (F,Z) is the unique mild solution of Equation ({2.8]), that is

T T
Ft,z) = — /t P f(rx)dr — /t PXZ(r, x)dW,. (3.5)

Our second main result is the derivation of the Ito-Wentzell-Tanaka trick as follows:

Theorem 3.2. Let (F,Z) be the unique strong solution to (2.8). Then we have,
T T
/ £(s, Xs)ds = — F(0, Xo) —/ (VF(s, X,) + Z(s, Xs)) dW,
0 0

T
—/ divZ(s, Xs)ds, P — a.s. (3.6)
0

We postpone the proof of Theorems to Sections [AH5]

Remark 3.1. If f and b are deterministic, then, the BSPDE reduces to a PDE
that is Z = 0. Hence, VZ = 0 and we recover the formula of [25]. In particular, the
reqularity than one could obtain when f or b is random compared to the deterministic
realm is completely contained in the reqularity of Z and of its gradient.

Remark 3.2. Note that under Assumption 3.1, one can treat in a similar way the case
where the original SDE (2.4) is replaced by:

dXt = b(t, Xt, W(t))dt + O'(t, Xt)th,

where o : [0,T] % R? — R? is Borel measurable, uniformly continuous in © € R and
such that, V¢ € R4, Y(t,z) € [0,T] x RY,

AHEP < YT oyt )6y < MEP,
1<i,5<d

for some X > 0. The parabolic estimates from Proposition[{.9 and Lemmal[].3 below can
be obtained by following the same lines as in [21)] with the additional assumption that b
s uniformly bounded. Finally, we do not address here the question about existence of
weak solutions in case of non-constant diffusion o.

9



3.2 Discussion on the results

3.2.1 Stochastic regularization effect in the case of stochastic pertur-
bations

As stated in the introduction, the main application of the Itd6-Wentzell-Tanaka trick
is to yield a stochastic regularization effect. In the case of the Ito-Tanaka trick, the
regularization is a direct consequence of the regularity of the solution of the Fokker-
Planck equation since the terms in right-hand-side of have an additional (weak)
degree of regularity. Concerning the It6-Wentzell-Tanaka trick, we know that there
are examples of random functions f where there should not be any regularization effect
even if f belongs to Wg’p . In fact, one of the main pathology stems from the addition of
what we call stochastic perturbations to X which can either be smooth (when there is a
regularization effect) or singular (when there is no regularization effect). This problem
is also investigated in [5] where the author identify a set of smooth perturbations in
C([0,T7]) thanks to Girsanov’s theorem.

Let f € L9([0,T]; LP(R%)) and Y an adapted stochastic process defined on [0,7]. For
simplicity, we assume that b is a deterministic function which belongs in L4([0, T]; WP (R%)).
We set

f(t,.%') = f(tyl"f'y;f)'

We notice that the Malliavin derivative of f implies, a priori, a loss of regularity
compared to the case where f is deterministic since we have

Dyf(s,x) = Vf(z+Ys) - DpYs. (3.7)

However, even if Vf € L([0,T]; W~'?(R%)), we can still use the Ito-Wentzell- Tanaka
trick when DyY; verifies of Assumption with @ > 1/2. In this case, Y is a
smooth perturbation. This is due to the fact that one can exchange the "time regu-
larity" of DgY; to obtain "spatial regularity" through the heat semigroup. This is the
underlying mechanism used in the proof of Proposition [£.3 Furthermore, we remark
that if Y is given, as in Example by

¢
Yt:/ hdr,
0

where h is an adapted bounded stochastic process, we could have used Girsanov’s
theorem to remove the shift f(f h-dr from f under a new equivalent probability measure
Q, allowing one to apply the classical Ité6-Tanaka trick with respect to Q. On the
contrary, if one choose for instance Y; = W; or maxgc(p Ws, ¥ becomes a singular
perturbation since DpYs = 1<) where 7, is a random variable with values in [0, s]
(which obviously fails to verify for & > 1/2). In this case, we must have f €
L9([0, T); WLP(R?)) which implies that the regularity of the terms on the right-hand-
side of is the same as the one of f (hence, there is, a priori, no regularization
effect).

3.2.2 Strong uniqueness for SDEs with irregular stochastic drift

The aim of this section, is to provide a methodology to prove pathwise uniqueness to a
particular case of SDEs of the form (2.5) that we recall below:

t
Xt:X0+/ b(s, Xy, W.)ds + Wi, ¢ €[0,T], (3.8)
0

10



with b € LI([0,T]; WLP(R%; CL(RY))). However, to keep the length of this paper within
limits, we only sketch the different steps one has to go through to achieve this goal.

Thanks to Proposition the existence of a weak solution (X, W) solution is guar-
anteed. Furthermore, we remark that b verifies Assumptions and Indeed, for
Assumption we have that (with the same notations as in the proof of Proposition

5]
ng(t, x, Wt) = Vyb(t, z, Wt)1{9<t}7

and, thus,

Hb( ’ >Wt) )Hv b( ’ aWt)

HLp (R4)
< max(T — ¢, 1[|b(t, -, )| Lo wascp (ray)-

12y + (T

In fact, this computation also holds for V,b.
We now consider the following BSPDE (with f = —b and where the equation is
understood componentwise):

T T
Fy(t,z) = /t (LX Fx(r,z) — AF\(r, @) + b(r, 2, W,.)) dr — /t Zx(ryx)dW,.  (3.9)

It follows from Theorem and a gauge change, that its mild solution (Fy,Z)) €
2
(W?D’fj q> is given by

T
F\(t,z) =E {— / eA(Tt>Pt§b(r,x,Wr)dr(ft},
t

and

T
Zx(t,z) =E [—/ e M Dy PXb(r, 2, W) dr’]-"t]
t

Denoting Fy(t,z) = — fT —Alr— t)PXb(T x, W, )dr and following the same lines as in
the proof of Proposition H 4.2] the fact that Vb enJoys the requirement 447) in Assumptlon
1) for v = 1, enables us to get that Fy e D 5P by differentiation of Equation (4
(where f isreplaced by b+AF )\) with respect to the space variable. By similar arguments

2
as in the first step of the proof of Theorem we deduce that (Fy, Z)) € (W%pq) .

Finally, we obtain the next result which follows the lines of [17, Lemma 4].

Lemma 3.1. There exists a deterministic mapping ¢ : RT — RT such that ¢(\) )\—) 0
— 00

and

sup IVEA(t, z)| < o(\), P—a.s.
(t,2)€[0,T] xR?

which implies that there exists A* > 0 such that

sup \VF\=(t,z)] <1/4, P—a.s.
(t,x)€[0,T]x R4

We are now in position to state and prove the following

Proposition 3.1. Under the assumptions of this section, pathwise uniqueness holds

for SDE (3.8).

11



Proof. Mimicking what is done in [14] 16l 25 BI] for deterministic drifts, we rewrite
Equation (3.8), thanks to the Ito-Wentzel-Tanaka trick, to get:

t
X, = Xo+ Fy(0, Xo) — Fy(t, X,) + / (VE\(5, Xa) + Zx (s, X2) + Id) AW,
0

d d

+/0t SN 00, (22);(s. Xs) — AFA(s, X,) | ds. (3.10)

i=1 j=1

Let X}, X? be two weak solutions defined on the same probability space and with the
same Brownian motion W. For any G € W%p o & Sobolev embedding implies that

E [|G(t, X}) - G(t. X7)P] <E | sup [VG(t,2)?

zC€R4
<Gt ) e B [1X — X2

E[|IX; — X{[’]

For simplicity, we set §X; := X} — X?. Then choosing A = \*, it follows from Equation

(3.10) and Lemma that

t
E [|6X¢*] < SE[|0X:/%] +4/0 (1Ex= (s, My + 123 (5, ) g2 ) E [10X,]%] ds

N

t
+4T(1 + /\*)/0 (12 (5, ) Iys.o + [1Fx= (5, ) G2 ) B [|0X ] ds.
As a consequence we have :
t
E [|6X:%] < 16(1 +T+)\*)/ E [|6X,|*] dAs,
0

where A; := fg [ Fxx (3, ) I3s.0 + 123+ (5, ) [|3ys,ds. We conclude by Gronwall Lemma
that:
E[|6X:*] =E[|X} — X}[*)| =0, Vte[0,T].

4 Proof of Theorem 3.1

4.1 Some estimates

We will need below several technical results that we present now. In the following, we
denote by (P s)s>t>0 the heat semigroup. Adapting results from [22], 23] in the spaces
Dy™? we have

Lemma 4.1. Let 1 < q,p < +00 and v € R. Then, there exists a constant C such
that, V¢ € DyP,

T
/ P, ¢(s,x)ds
t

< Cl|llpr e, (4.1)

Dtlz,2+%p

and, Ye > 0, there exists another constant C. 7 > 0 such that, Vo € DL2y—2/atep,

||Pt,T90”]D)}1*2+%P < CE,THSOHDLHW*?/%E,P' (4'2)

12



The next result gives a Schauder estimate on the solution of a backward heat equa-
tion with a source term in ]D)[ll’o’p . Its proof is similar to the one from [22, Theorem 7.2]
and the arguments can be directly extended to the norms ]D)é’m’p .

Proposition 4.1. Let 1 < ¢,p < 400, 2/q < B < 2 and ¢ € Dy"". Denote, for
(t,z) € [0,T] x RY,

T
u(t,z) = —/ P, ¢(s,x)ds.
t
Then, there exists a constant C > 0 independent of T' such that, for any 0 < s <t < T,

[u(t) —u(s)|lprz-sr < O = S)ﬂ/Q_l/qH@ﬁllD;oyp, (4.3)

and, thus,
HuHCgﬁ/Q*l/q([o’T];Dl,Q—B,p) < CH¢H]D)570’P' (44>

A direct consequence of the previous result is the following

Corollary 4.1. Let ¢ € DL°?. Denote, for (t,x) € [0,T] x RY,

T
u(t,z) == —/ P, ¢(s,x)ds.
t
Then, for any € € (0,1) satisfying

d 2
e+—+-<1,
p q

there exists a constant C > 0 and € > 0 such that, ¥t € [0,T],

T 1/p
P AP /2
(& [ | +E| [ 1000 y8] ) < O = 02 olg00.
(4.5)

Proof. Let f =&+ 2/q where 0 < € <1— (¢ +d/p+2/q). The result follows by the
Sobolev embedding C;’O‘ CW?BP witha=1-8—d/p=1—-&—q/2—d/p > ¢, and
Proposition 4.1} O
4.2 The non-adapted Fokker-Planck equation

Given ¢ € DL2-2/a+p  with ¢ > 0, consider here the non-adapted Fokker-Planck
equation

T T
Pt 2) = o(x) + /t LB (r z)dr — /t Fr2)dr. (4.6)

Definition 4.1. A strong solution to Equation (4.6)) is a function F in Dé’lp such that,
for all t €10,T], we have

T T
F(t,z) = p(z) +/t LXF(r,x)dr —/t f(r,z)dr. (4.7)

Remark 4.1. Note that each random variable F(t,-) solution to the previous SPDE is
Fr-measurable, and hence it is not adapted.

13



We provide a Malliavin differentiability analysis for the solution the Fokker-Planck
equation (4.6). We define, Ym > 0,

Gy™P == {F € Dy™P; 0,F € Dy**},
and the associated norm
1Fllgams = [ Fllgsms + [19:Fl gso0.

We begin with a result concerning the existence and uniqueness of a solution to the
non-adapted Fokker-Planck equation.

1,2,p

Lemma 4.2. Let u € Gg*" and denote

T
et Wgs o= B [t )y g +E{ | 100t 2) 1 0]
Then

sup [lu(t, )|lme < Crllullgrer, (4.8)
t€[0,7) 1

where Cr is uniformly bounded with respect to T in compact sets of R™, and, Vt € [0,T],

Ib(t, -, Wesy) - Ve, )ipros < CO(t) ult, ). (4.9)

Proof. Firstly, let us remark that we have, Vu € G1’2’p

T
1
u(t,zr) = —/ P, [ﬁtu(r, x) + §Au(r, x)| dr,
t
and then, by using Corollary we obtain the estimate

sup |lu(t, )l[mr < Crllullgree.
t€(0,T)] a

Secondly, we compute
Hb(t’ K W(t)) ’ VU(t, ')H%I,O,p <E [Hb(tv K W(t)) ’ Vu(t, ')Hip(Rd)}
T
+CB | [ 1Dab(t 1 Wio) - Flt ] )
T
+ CE [/0 6, -, W) - DoVul(t, ')”I[)/p(Rd)d0:| :

Since the Malliavin derivative commutes with the spatial derivative in LP, we obtain

||b(t7 "y W(t)) ’ vu(t’ ')H]%l,o,p <E ||b(t7 W )HLp Rd) Sngj |vu(ta x)|p]
T
+ CE / |Dgb(t, -, W, )HLP R) df sup |Vu(t,z)P
0 z€R4

+ CE
zcRd

T
I Wi gy [ s |VDeu<t,x>|pde] .

14



Thus, by Assumption we have (4.9) as
[6(t, -, W) - Vu(t, )l[pror <

T 1/p
+E / sup |VDgu(t, x)|pd9]> .
0

zcRd

Ch(t) (E [sup Vu(t, z)”

zcRd

O

Proposition 4.2. Let ¢ € DY2-2/44eP with e > 0. Then there exists a unique solution
y 1727]3 y
F in Gg™" to the equation

T T
F(t,z) = Prro(x) — / P, sf(s,x)ds —I—/ P s [b(s,x,W(s)) - VF(s,z)]ds. (4.10)
t t
Moreover, the following estimate on the solution holds
IFllgy2r < Cr (I€llpra-2rasen + 1 fllgpor) (4.11)

where Cp > 0 depends on ||B||Lq([07T}) and is uniformly bounded with respect to T on
compact sets of RT.

Proof. Step 1: By using Corollary and Relation , we have
1EE s <CIPrelgs + Crllflilpor + Crllb- VEIG 0,
<Clellss +CrlflEyan +Cr [ B (s) (5, Y.
Thanks to a Gronwall lemma and the Sobolev embedding C;’E C W2—2/ateP  we deduce

sup F(t, Vs < (Crll fllgon + Cllgliprasiares) e ¢ Mo, (412)
te[0,7

We now turn to Estimate . We can apply the ]D 2P_norm to (4.10) and obtain,
by using lemma [4.T]

1FIE 20 <Crllelifas ssores + O lsnn +C / b5, W) - (5, s
<Crlela srasen + Clflpon +C / )| (s, ) [ s
which yields, thanks to ,
IF18y 0 < O (1 [0 e b0 (Hwngﬂ,ww 17150 ) , (4.13)

Then, we differentiate (4.10)) with respect to the time variable and deduce the equation

{ O F(t,x) = —LXF(t,x) + f(t,z),
F(T,x) = ¢(x).

By applying the D P norm to (4.14) and by using the estimate (4.12)), we obtain

(4.14)

1
9P llpso0 < SIAF g0 + | Fllpsos + - VFlpsos

15



<Cr (H@H]D)l@*?/ﬁs,p + ||f”DL1],0,p> s

which, together with (4.13)), gives Estimate (4.11)).

Step 2: The last argument of the proof consists in using the so-called continuity
method. For p € [0,1], we consider the equation

T T
Fu(t,z) = Pt,TSO(I)—/t Pt7sf(5,a:)ds+/t Py [pb(s,z, Ws)) - VE,(s,2)]| ds. (4.15)

We wish to prove that the set v C [0, 1] of elements u for which admits a unique
solution is [0, 1] (with p = 1 corresponding to the equation 4.10) In the case where
u = 0, the existence and uniqueness of a solution of | is stralghtforward and,
thus, v is not empty. Fix po € v and denote RH0 the mapplng from ]D) 0P o Gl 2
which maps f to the solution F},, of ([£.15) for ¢ = 0. Let p € [0,1] to be fix later.
The existence and uniqueness of the solution of equation relies on a fixed point
argument. We consider the mapping I',, given by

Lu(F) = Pre+ RS+ (uo — p)R* (b-VF),

and aim to prove that it is a contraction mapping from Gé,Q,p to itself. It follows from

the estimates (4.11)) and (4.8) that, VF}, Fs € Gé&p,

ITu(F1) = Cu(F2)llgr2r <Clu = polllb- V(FL = F)lppor

1/q

T ~
<Clu - ol ( [ bR - R »H%Imds)
<Clu = pol 1B/l Lago.m) I1FL — By|lgLap-

-1
ClbllLa o,y
a unique solution to (4.15). Therefore, by repeating the argument a finite number of
times, we prove that v = [0, 1] and that ( admits a unique solution in Gl 2P O

Hence, by choosing p such that |p—po| < , we can conclude that there exists

Using the regularity obtained above, we deduce the equality between the weak and
the mild solution as stated below.

Corollary 4.2. Let p € DY2-2/9ter with € > 0. There exists a unique solution F in

]D)é’z’p to the equation (4.6)).

From now on, we denote (Ps),ff)ogsgtg the propagator associated to the solution of

the Fokker-Planck equation determined by £X, that is, Pgi‘;go(x) is the solution to the
SPDE

Plo(x / LXPXp(x)dr, 0<s<t, (4.16)
with ¢ a Fj-measurable mapping in DV2-2/4teP For ¢ : [0, T] x R? — R%, we note:

Pp(r,x) i= (Pye(r, ) ().
We end this section by the following Lemma which gives some estimates on PX.

Lemma 4.3. Let p € DL2-2/ater yith e > 0. The following estimates hold

1P rellgizr < Crrlielpra-2iares, (4.17)
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T
e

T
| I PX ot i < el e (4.19)
0 4 'l

r < Corllelipon, (4.18)
GClI 2,p q

and

Proof. The estimates (4.17]) and (4.18]) are direct consequences of Proposition Con-
cerning the third estimate, thanks to (4.8)), (4.9), and (4.17)), there exists a constant
C, > 0 uniformly bounded in r € [0, T] such that

Ib- VS, Mpor < Collio(r, ipra-z/asen-

Therefore, (4.19) follows from (4.17)) since

T T
| 1EX Pt Madr < [ Ol et

We end this section with the following Proposition.

Proposition 4.3. There exists a constant C' > 0 such that

H/T P f' (s, )os (-, s)ds
H/T PV (s, Jup(-, 5)ds

Proof. We only deal with the first estimate (the second one is derived in a similar fashion
with v = 0). Moreover, let us remark that the estimate is direct, by Lemma if
v(0,t) = 1gg<-,}. We consider equation with f =0 and ¢(z) = f'(s,z). Under
Assumption and by setting F(t,2) = P/, f'(s,), we obtain on one hand, thanks
to Corollary [4.1| with deterministic norms (that is without the Malliavin derivative and
the integration on w € Q), the estimate

., S CN ' pago e w—r ()

>
q

and

< ClIV || pa(o, 1,10 (2xREY) -

2,p
Wy

sup ]VPts '(s,2)|2 < C sup |VPsf (s,2)| —i—C/ 9 sup |[VPX f'(s,z)|%du,
zcR? zcR? zcRd ’
which, by a Gronwall lemma, leads to
sup [VPX f/(s,2)| < C sup |V Py f'(s,2)| e zoom (4.20)

zcRd zcRd

On another hand, we have, thanks to Fubini’s theorem,
T T
/ PSS (s a)uy(t, s)ds = / Pyof/ (s, 2)us(t, s)ds
¢ t
T
+/ P [b(u z, W) V/ S (s, @) (u, s)ds] du
t

—|—/t P, [b(u z, W) V/ (s,x)05v¢(t, u)ds] du,
(4.21)
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where we denote dsvf(t,u) := vf(t,s) — v¢(u,s). By a Sobolev embedding (as in the
proof of Corollary and a classical inequality on the heat semigroup, we deduce from

(E:20) that

sup |[VFf'(s,2)] < C sup [VPysf'(s,2))|

zeRd zeR?
< CN(1 =AY PP (1= D)2 (s, ) lwa-s(re)
C !/
< “_S’(Q—_ﬁﬂmﬂf (8, ) lw=r(ra), (4.22)

where [ is strictly greater than 2/q. To conclude our proof, we need to provide ad-
equate bounds on the Wg’p -norm of each integrals from the right-hand-side of .
Concerning the first integral, we have, by Hdélder’s inequality and an estimate on the
heat semigroup,

-0 r Hf/(sa‘)HL@(Q;W—w(Rd))d
- — t1H+/2~a 55
W2.p |5 ’

T
/ Pt,sf’(s, x)vs(t,s)ds

t

and, since 1+ v/2 — a < 1, by a Hardy-Littlewood-Sobolev inequality,

)ds

/T 15/ (sy M e (e
0 \

s — ,‘1—1—7/2—04

/T Prsf'(s,x)vp(t, s)ds
¢

gc‘

W La((0.1])
< CN N aqo,myne uw v may))-

We now turn to the second integral. If follows from Lemma Inequality (4.22) and
Assumption [3.1] that

T
H/ P.,u[ (u, 2, Wiy) V/ usf s:cvf(us)ds]du
/ sup ‘VPfsf'(s,x)vf(u,s)}ds

<c /
zER?
T S PO !

< q ) W—">

< C’/t b(u) </u o — 5| 2=F-r20)]2 ds> du.

Since g1 :=1— /24 7/2 — a < 1/, we have, by Holder’s inequality,
T (s ) =t ) T ds
| ALt < Ol [

which implies a bound on the second integral. Finally, we consider the third integral.
We first assume that v = 0. We have, since g3 :=1— /2 < 1/g,

q

nglﬂ
q

du
LP(Q)

T T
/ Py [b(u,as, W) - V/ Pfsf'(s,w)ésvf(t,u)ds} du
t W
du

<C/ tl «@

u =1l L(©)
T (s, N ey e ray)

<C/ u—t|10‘(/u = s[i- 5/ ds | du

18
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' E(u) T ds
g C (A mdu ||f/”Lq([O,T];LZ(Q;LP(Rd))) </0 ’8’926d5> .

Applying the L%-norm on the previous inequality and using the Hardy-Littlewood-
Sobolev inequality, we bound the third integral.
We now suppose that v = 1. We have

T T
/ Py [b(u,x,W(u)) . V/ ijsf’(s,x)ésvf(t, u)ds] du
t u
T T
:/ div (Ptu [b(u,x,W(u))/ Pfsf/(s,x)ésvf(t,u)ds}> du
t U

T T
_/ P,y [div b(u,x,W(u))/ Pfsf'(s,x)ésvf(t,u)ds] du.
t u

Following the same computations as in the case v = 0, we obtain

T T
/ div (Pt,u [b(u,x, W(u))/ Pfsf/(s, x)@vﬂt,u}ds}) du
t u W2,p

g B(U) , T 4s
S C </0 Wdu Hf HLq([O,T];LE(Q;Wfl,p(Rd))) </O Mmdg) ,

and, since the LP-norm of Vb can be bounded by l~),

T T
/ P,y [div b(u,x,W(u))/ Pfsf'(s,x)ésvf(t,u)ds} du
t i W2.p

T b(u) T 4s
¢ (/0 mdu Hf/”Lq([O,T];LZ(Q;Wpr(]Rd))) </0 ’3’Q3qu> .

We conclude our proof by applying the L%-norm and using the Hardy-Littlewood-
Sobolev inequality on the previous inequalities. O

We can also compute the Malliavin derivative of (Pé)gg s<t<r. This is the goal of
the next lemma.

Lemma 4.4. We have the following commutation formula between the Malliavin deriva-
tive and the operator PX

T
Dtﬂfgpcp(:):) = Pt)prtgo(x) +/ Pgﬁ (Dtb(r, x) - VPZ(Tcp(ac)) dr (4.23)
t

Proof. Let t <r < T. Denote
O(r,x) := DiPp(a),

then, a direct computation of the Malliavin derivative applied to the representation
formula of PX gives

T T
O(r,z) = ®(T,x) +/ LX®(u, z)du +/ Dib(u, x) - VPu)anp(x)du.

Hence, by the representation formula of PX, we deduce the following mild formulation
of ¢

T
O(r,x) = P,,),(T@(T, x) + / Pé; (Deb(u, z) - VPngo(:c)) du,

and, thus, the desired result. O
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4.3 Proof of Theorem [3.1]

Throughout Step 1 and Step 2, we assume that f and f’ are smooth with respect to
x. Since the norms of F' and Z in Wg’p are bounded by the norms of f € Wg’p and
[ e L™([0,T]; LY(Q; LP(R?))) (see Step 1 and Step 2), we can consider two sequences of
smooth approximations (f,)nen and (f))nen such that the limit (Fn, Zn) — (F,Z)

converges in Wq’ . Moreover, thanks to the mild formulation , we obtain that
(F, Z) is solution of the Equation (2.8]).
Step 1: Set

F(t,z) :=E [— /tT PEf(r, :r)dr‘}"t} . (4.24)

We start with proving that F' belongs to W?D’I;. Indeed, by using (4.18) and Jensen’s
inequality, it holds that

p

||F<t,->|rgl,2,p=HE _ / PX (s dsyft}
L t ]]])1217

T T
‘IEI [—/ PXf(s ds‘]-"t] +/ E
t

Ww2.p

T p
<E [ | Pstsas / [ / DoPEf (s 0
t W2:p W?2.p
T P
< / Ptf(sf(s )ds < +o00. (4.25)
t D1.2,p
We now turn to the derivation of Z. We have
T T T
/ ([é{F(s,aj) - f(a:,s)) ds = —/ E [/ EfPs’er(r,z)dr—i—f(s,x) ]:s] ds.
t t S

By denoting
T
m(s,x) := —/ Eg(PXf(r x)dr — f(s,x),

we have that, thanks to the representation (4.16)),

/tTE {m(s’x)‘}—t} ds=—-E _/T/Tﬁijfrf(r,a;)drds+/Tf(37x)d$’]_—t]
:—E//LXPsrfrxdsdr+/ f(s,z)ds|F; ]

I

= F(t,x).

In the previous computations, we have used Fubini’s theorem, which can be applied
since, thanks to Lemma [£.3]

1/q
//HﬁXPX )H]D)lopdsdr<(/ / L PN f (,-)H%lp,pdsdr)

< CHfHD(lIv?*?/qus,p- (426)
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This enables us to conveniently express the martingale that we are looking for in terms
of an adapted field Z. That is, we have

T
F(t,x):/t (LXF(s,2) — f(s,2)) ds — M(T,z) + M(t,z),

M(t,z) := /OtE [m(s,x)‘]:s} ds + /tTE [m(s,x)‘]—}} ds

Let us now check that M is indeed a LP(R?)-valued martingale. Note first that by
estimate (4.26), M (T, ) is integrable as

where

E[”M( )HLP(Rd] = TE[ “F} p

Lr(R4)
< c/ (s, V12, g | s < +oo,

since m belongs to ID);’O’p (by (4.26) and by our assumption on f). In addition, Yu €
[0,t], we have

E [M(t, ) — M(u, )‘]—"u} —/:IE [m(s, )‘]—"u} ds + /tTE [m(s, ))}"u} ds — AT]E [m(s, )‘]—"u] ds

=0,

therefore, M is indeed a martingale. It remains to represent M can be written as a
stochastic integral against the Brownian motion W. To this end we apply a localization
in space procedure. More precisely, for any n > 1, set:

Mn(tvx) = M(O,.’E) + M(tvx)l\x|<n1t€(0,T]

which is a L?(R?)-valued martingale. Hence, there exists an adapted random field Z"
such that

T
E [/ | Z"(t, x)||%2(Rd)dt} < 400,
0

and
t
M"(t,a:):M(O,a:)—i-/ Z"(s,x)dW,, (t,z) € [0,T] x R%
0

Note that by definition, we have that:
Z"(t,x) = 2" (t,z), P —a.s. for |z| <n.

Set Z(t,x) = limp_400 Z"(t, ), where the limit is pointwise and non-decreasing. We
have using Fubini’s theorem, and Doob’s inequality for real-valued martingales:

t p
B | sup |M(t) - MO.) — [ Z(s, )W,
t€[0,T] 0 Lr(R4)
t p
g/ E | sup M(t,-)—M(O,-)—/ Z(s,-)dW, ]d:v
Rd  |te[0,T] 0
p T P
- 0
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SL lim

T
p—1n—=+4oc0 'M (T,-) = M(0,) - /0 Z"(s,)dWs

p
]d:vz().

Hence, the representation M (t,z) = fo s,x)dWy holds for almost every
(w, t,x) and Z belongs to MP. Thus, we obtam that (F,Z) € vaq x MP solves Equation
2.8)

Step 2: Proof of .

Recall that by (4.25), ||F(¢,-)||pt.2» < +o00. In addition, following the same lines as in
the computation of | , we have that:
dt

T
/Ei(F(r Ydr / /EXF
t DlOp D1,0,p
dr

<T/ 55/ PX f(s,-)ds
DL.0,p

= T/ / HEXPX a‘)H](]I)LQ,p drds, by Lemma@

|z|<n

q

<cr /0 0 s srase = CTUFI s e
q

Combining this result with Relation (2.§)), we obtain that for a.e. (¢, ) ft (s, z)dWs
belongs to DI (see Remark |A.2 - Slnce DL  DY? (see m A1 for a deﬁmtlon of these
spaces), by [30, Lemma 2.3, this is equivalent to for a.e. =, Z(-,z) € L([t,T],D%?).
As a consequence, for a.e. (t,x) and for any 0 < s < ¢,

t t

D,F(t,z) = —/ (DsLXF(r,z) — Dy f(r,x)) dr—I—Z(s,x)—i—/ D,Z(r,x)dW,, P—a.s..
S S

Hence taking s = t, in the previous relation, we have that for a.e. x, a version of

the process (Z(t,z))ieo,r) 18 given by Z(t,x) = D;F(t,z). Representation (3.4) can

then be deduced using [29, Proposition 1.2.8]. We are now in position to prove that Z
27p 37 3
belongs to W;*. By using Lemma and Assumption we have

} - [_ /tT P f'(r oy (¢, T’)dr’]-"t}

+E {/t /tr Pt)i (V' (u, 2)vp(t, w) - VPj’(Tf(r, z)) dudr‘}}] .
(4.27)

D.F [/Dt fracdr

By Assumption and Proposition , we estimate the first term on the rhs of
HE {— /T PXf(r, ')’Uf('ar)dr‘f-] HWZ’Z’ < Clf N paqo,ryLeuw—vra)))-
' a
For the second term of , we remark that, thanks to Fubini’s theorem,
/ / (u, 2, Weyy)vu(t, ) - VPfo(r,az)) dudr = /tT Pt),ZG(u,ac)Ub(t, u)du,

where we denote G (u, ) := V' (u, x, W(,)-V [f flr,z dr] Hence, we can proceed
by similar arguments as for the first term of the rhs of (4.27)) since, by (4.9), (4.8) and
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Lemma

||GHL‘1([O,T];LP(Q><Rd)) <C

< Ol o < o0.

T
/ PX f(r,2)dr
u ' (G,g 2,p

Therefore, we conclude that D F'(t,x) belongs to Wg’p and, thus, Z itself belongs to
W2,

Step 3: Proof of the mild representation (13.5))-

Fix ¢ in [0,7]. Set F(t,z) := —j; (r,z)dr. By Lemma E F(t, ) belongs to
DY for a.e. € RY. Hence Clark- Ocone formula (see |29, Proposition 1.3.14]) implies
that:

T
F(t,x)zﬁ(t,x)—/t E[D,F(t, z)| Fs)dWs, P —a.s..

Recall that Z can be chosen as Z(s,x) = DsF(s,x). Thus Relation (3.5) follows if one
proves that, for a.e. s in [¢,T],

E[D,F(t,x)|Fs] = P, D;E[F(s, x)| Fy]. (4.28)
Let t < u < s. Using Relation (4.16[), we have:

PYX.D,E[F(s,z)|F,] = (s,2)|Fs] / LY P, DE[F (s, z)|Fylda
= D E[F(u, )| Fs] + DsE[(F(s,x) — F(u, x))|F] / LY P, DE[F (s, z)|Fs)da.

We now compute the second term of the right-hand side above to get:

DE[(F (s, ) = F(u,))|F]

— D.E —/ PX f(r,a dr‘}'} + D,E UuT PX f(r, x)dr‘fs}

— D,E —/ PX f(r, dr‘]—"} + D,E [/T P f(r, x)dr‘}"s} . by [20, Proposition 1.2.8[]
_DE|- /T(PX PX)f(r, x)dr’fs}

— D,E / / LXPX f(r,x)da dr‘}“]

:DSE: LY P, PX f(r, ) da|Fs| .
[lexns (- mssear) wlz)

Using similar arguments to those used in Lemma [£.4] one proves that:

DSE[E),i@(iU)lfs} = PtﬁDSE[(I)(xﬂfs],

for any F,-measurable random field ® with r > s. Hence,

_ B s T
DE[(F(s,z) — F(u,x))|Fs] = / EijstsE [—/ Ps)gﬂf(r, x)dr

which establishes (4.28) in light of the previous computations. We finally conclude
the proof by addressing the uniqueness of the adapted mild solution (F,Z) which, by
linearity, boils down to prove that (0,0) is the unique solution to:

T
—/ Pt)’iZ(r, x)dW,
t

]:5} da



As F must be adapted, F(t,z) = E[F(t,2)|F] = E [— A x)dWr|]-"t} =0 if

we prove that for almost every ¢, [, Pt)yqu (r,x)dW, is a true martingale. In fact by
Burkholder-Davis-Gundy’s inequality for real-valued martingales and Lemma it

holds that
q T T s |2 1
< C/ ‘ / }Pt)f,Z(r, | dr dt
WP 0 t ’ W2.p/2

T T ) q/2
< C/ </ | P2 (r, ')sz,p dr) dt
0 t

T r
< C/ / | P2 (r, -)H;’W dtdr
0 0

< CIIZI 5, < +o0,

T
H / PXZ(r,-)dw,

which proves the required property.

5 Proof of Theorem 3.2
5.1 The It6-Wentzell formula

Let us recall the It6-Wentzell formula in the context of processes with values in Sobolev
spaces [24].

Proposition 5.1 (It6-Wentzell formula). Let F' in W?,’f?q be such that for any ¢ €
LP(RY):
t t
(F(t.).0) = (P00 + [ C))aWer [((Aspids 6

with F(0,-) € LP(RY), A in WP and T' in WP . Then, Vt € [0,T], Vo € LP(RY),

(F(t, + X)) =(F(0,- + Xo), ) + /0 [(T(s, - + Xs),0) + (VE(s, - + Xs), )| dW
" /0 [(divI(s, - + Xs), ) + (A(s,- + Xs), )] ds
+ /t(ﬁfF(s, -+ Xs),p)ds, P—a.s.. (5.2)
0

Remark 5.1. As noted earlier, elements ofW%pq are adapted with respect to (]:t)te[O,T]
the natural filtration of W. However, by definition of a weak solution to the SDE,
(Gt)iejo,m-adapted processes are also (Fi)e(o,r)-adapted.

Remark 5.2. Note that for any ¢ in LP(R?), the stochastic process s — (I'(s, -+X,), ©)
s square integrable so that the stochastic integral of this process against the Brownian
motion is well-defined. The same comment implies that all the integrals involved in
Relations - are well-defined. We also would like to point out that contrary
to the original formula in [24] where the test functions ¢ are assumed to be infinitely
differentiable, the reqularity assumption on our processes allows us to consider only LP
test functions.
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5.2 Proof of Theorem [3.2]
It follows from the It6-Wentzell formula from Proposition that, Vo € LP(R?),

T
/0 <f(57 -+ Xs)7 90>d5
T
— (PO, + Xo). ) - /0 (VF(s, + X)) + (Z(s,- + X.), 0)) AW,
- /T<din(s, -+ Xs),p)ds, P —a.s.. (5.3)
0

Let us remark that by Theoremand a Sobolev embedding, F, Z € L%([0, T]; LP(€;C1*(RY)))
for a certain a« > 0. We choose ¢ = 6°, ¢ > 0 a mollifier in Equation (5.3). For any
positive € we have

T T
/ fe(s, Xs)ds = —F°(0, Xo) —/ (VF®(s,Xs) + Z°(s, Xs)) dW5
0 0
T
—/ divZe(s, Xs)ds, P — a.s., (5.4)
0

where we denote G*(t,z) = (G(t,),0°(xz — -)) for G = f, F,VF, Z;‘i:l Z;lzl Oy, Z;. We
remark that, given a function G € L% ([0, T; LP(€; Cy*(R%))) it holds that

£ [/OT (G (s, Xs) = Gls. X,)| ds] < (/OT (E [ [ 16,2+ X,) - G(s,Xs)lﬁa(:c)dw} )qd$> v

T qa/p 1/q
p apne
g(/o B 165 g ds) ([ b0 o)

<0Gl g}

[0,T];LP () (RN))™ 50

Thus, each term from the right-hand side of (5.4} converges to the corresponding value.
In order to handle with the term in the left-hand side, we have to prove that the integral
I defined by

T
I(x) ::/0 f(s,x + Xs)ds,

is continuous, P — a.s.. This comes from the fact that I belongs to W'?. Indeed, thanks
to (5.3]), Itd’s isometry, a change of variable and Jensen’s inequality, we have that

1l IE(, -+ X0) i
T 1/2
2 ( | IV EGs X0 B+ 265, + Xs>u%w,pds)

0

T
—i—/ IVZ(s, -+ Xs)|lwrrds
0

T 1/q
<IF (O, Yo +C ( /O VE(s, )2, + 1205, ->|r§w,pds)

T 1/q
; ( | iz ~>u3w2,p) ds.
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Since F,Z € Wy*?, we deduce that I € W'?. By the Sobolev embedding C%*(R?) C
WhP(RY), we deduce that I is P-a.s. continuous. Thus, we have, by using Fubini’s
theorem,

T
156X = (5. Xolds| = [T = 1067} =3 0. P = as.

which concludes the proof.

A Malliavin calculus for random fields

In this section we recall the classical definitions of Malliavin-Sobolev spaces presented
in [29] and extended them to functional valued random variables that from now on we
will refer as random fields. We start with some facts about Malliavin’s calculus for
random variables.

A.1 Malliavin calculus for random variables

Let (2, F,P) be a probability space and W := (W¢),g(o,r7 @ Brownian motion on this
space (to the price of heavier notations all the definitions and properties in this section
and of the next one extend to a d-dimensional Brownian motion). We assume that
F=0(W, tel0,T)).

Let 8™ be the set of cylindrical functionals, that is the set of random variable 3 of the
form:

ﬁZSO(WtU"' 7th)
with N*, ¢ : R” - R in C°(R") and 0 < ¢; < --- < t, <T. For an element 3 in S"",

we set DF the L?([0, T])-valued random variable as:
Do =) a—xi(th, e W) (0), 0 €0, T).
i=1
For a positive integer p > 1, we set D'? the closure of S™ with respect to the norm:

</0T |D95|2d9>p/2] .

To D is associated a dual operator denoted ¢ defined through the following integration

18151, = ElBI7] + E

by parts formula:
T
E[85(u)] = E [ | o utdt] , (A1)

for any 8 in D%? and any L?([0, T])-valued random variable u such that there exists a
positive constant C' such that ‘E [fOT Dtxutdt} ‘ < C|lx|lpr2, ¥x € D2, In particular

if u := (ut)iepo,r) is a adapted process then §(u) = fOT ugdWy. In addition, according
to [29, Proposition 1.3.4], for any § in S and any h in LP([0,T]) (with p > 2), 6(hp) is
well-defined and satisfies

T
5(hB) = Bo(h) — /0 hy Dy (A.2)
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A.2 Malliavin calculus for random fields

We now extend these definitions to random fields that is to measurable mappings F' :
Q x R4 — R. More precisely, we consider S be the set of cylindrical fields, that is the
set of random fields F' of the form:

F= @(thv"' 7th>$)

with ¢ : R” x RY — R in C§°(R"T9). We fix p an integer with p > 2. For an element
F in S, we set DF the LP([0,T])-valued random field as:

"~ Oy

DoF =
0 856

(Wt17 e 7th7$)1[0,t¢](9)? 9 € [07 T]

Note that for F in S, DV*F = V¥ DF for any multi index k. In addition, an integration
by parts formula for the operators DV* can be derived as follows.

Lemma A.1. Let F in S, h in LP([0,T]) and G in S. Let k be a multi-index in N¢,
then the following integration by parts formula holds true:

E[/OT RthVkF(x)htG(:c)dxdt] :E[/Rd F(z) 6(V*)*G(x)h)dz| , (A.3)

where (V¥)* denotes the dual operator of V*.

Proof. By the Malliavin-integration by parts formula (see e.g. [29, Lemma 1.2.1]|) and
by the classical integration by parts formula in R? we have that:

E [ /O ! g DtV’“F(z)htG(x)da:dt]
—/ E /OT DthF(x)htG(a:)dt} da
/ E :V’“F(:c)é(G(x)h)] dz, by
/R dE:VkF(x)G(x)é(h)] dz — / [ / DG htdt] dz, by (A2)
E| F(x)(Vk)*G(m)d:pé(h)} —JE[ / z)(VF)* / DG htdtdx}

L/ R4

=E _/Rd F(x) ((vk / Dy(VF)*G )htdt> dw}

=E /Rd F(x) 5((Vk)*G(x)h)d1:] , by (A.2).

O]

This integration by parts formula allows us to prove that the operators DV* are
closable.

Lemma A.2. Let p > 2 and k be in N%. The operators DV* (and so V*D) are closable
from S to LP(Q x R%; LP([0,T))).
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Proof. Let (F,) C S a sequence of random fields which converges in LP(€2 x R%; LP(R9))
to 0 and such that (DV¥FE},), converges in LP(2 x R% LP(]0,T])) to some element 7
in LP(Q x R4 LP([0,T])). Let h in LP([0,T]) and G : R? — R in S. We recall that

D= ]%. For any n > 1, it holds that

E [ /R d /0 b () hedt )
) [ /R ) /0 T(n(t, ) — DthF"(x))htdtG(:r)dx] +E [ /R ) /0 ' DthF”(x)htdtG(:n)dx]

=E Uw /OT(n(t,x) - DthF"(a:))htdtG(m)dx] +E [ F™(x) 5((vk)*G(a:)h)da;] :

Rd

where we have used the integration by parts formula (A.3]). We estimate the two terms
above separately. For the first one, using successive Holder’s Inequality, we have that

‘IE [/Rd /OT(n(t,x) - DthF”(x))htdtG(:c)dx}

T 1/p ) i
<E [/}Rd/o In(t ) — DthFn(x)]pdtdm} E[HG”IEIS(W)]l/thHLﬁ([o,T])

— 0.
n—-+o0o

The second term can be estimated as follows (using also Holder’s inequality and (A.2)).

']E [/Rd F"(x) 6((Vk)*G(z)h)dx]

_ ‘E [ /R d F"(x)(v’f)*(;(x)a(h)dx] _E [ /R (@) /0 ! Dt(V’“)*G(w)htdtdx]

1/p ~ _
<ce| [ iFr@pde| (B B0 v )

1/p

NSl

e YD) T )
<1 6] " | [ ([ oitrewra)

— 0.
n—-+o0o

Combining the previous estimates and relations we conclude that

E [ /R ) /0 Tn(t,az)htdtG(x)dx] = 0.

The conclusion follows from the fact that the set of elements of the form Gh with A in

LP([0,T]) and G in S is dense in LP(Q x R%; LP([0, T))). O

Remark A.1. Lemma and Lemma [A2] still holds if we replace the differential
operator V¥ with the Bessel potential (1 — A)™? for any m € R.

Remark A.2. In particular, if a random field F belongs to D¥™P (with m > 0), then
for a.e. (t,x), w > VFE(t,z)(w) belongs to the classical Malliavin space DYP whose
definition has been recalled in Section (for any k such that |k| < m) for random
variables that depend only on w and not on (t,z).
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