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Abstract

In this paper we address an open question formulated in [16]. That is, we extend the
Itô-Tanaka trick, which links the time-average of a deterministic function f depending
on a stochastic process X and F the solution of the Fokker-Planck equation associated
to X, to random mappings f . To this end we provide new results on a class of adapted
and non-adapted Fokker-Planck SPDEs and BSPDEs.
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1 Introduction
In [16], the authors analyzed the effects of a multiplicative stochastic perturbation on
the well-posedness of a linear transport equation. One of the key tool in their analysis
is the so-called Itô-Tanaka trick which links the time-average of a function f depending
on a stochastic process and F the solution of the Fokker-Planck equation associated to
the stochastic process. More precisely, the formula reads as∫ T

0
f(t,Xx

t )dt = −F (0, x)−
∫ T

0
∇F (t,Xx

t ) · dWt, P− a.s. (1.1)

where (Xx
t )t≥0 is a solution of the stochastic differential equation

Xx
t = x+

∫ t

0
b(s,Xx

s )ds+Wt, (1.2)

and F is the solution of the backward Fokker-Planck equation

F (t, x) =

∫ T

t

(
1

2
∆ + b(s, x) · ∇

)
F (s, x)ds−

∫ T

t
f(s, x)ds. (1.3)
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In [25], by means of suitable regularity results for solutions of parabolic equations
in Lq(Lp) spaces, the authors showed, assuming f, b ∈ E := Lq([0, T ];Lp(Rd)) with
2/q + d/p < 1, that F ∈ Lq([0, T ];W 2,p(Rd)). Hence, in the weak sense, F has 2
additional degrees of regularity compared to f in E. Thus, formula (1.1) tells us
that the time-average of f with respect to the stochastic process (Xx

t )t≥0 is more
regular than f itself (it has 1 additional degree of regularity). This is what we call a
stochastic regularization effect or regularization by noise. In this paper, we investigate
the following open question stated in [16]:

"The generalization to nonlinear transport equations, where b depends on u itself, would
be a major next step for applications to fluid dynamics but it turns out to be a difficult
problem. Specifically there are already some difficulties in dealing with a vector field b
which depends itself on the random perturbation W . There is no obvious extension of
the Itô-Tanaka trick to integrals of the form

∫ T
0 f(ω, s,Xx

s (ω))ds with random f ."

A major "pathology" in the framework of stochastic regularization is the existence of
random functions f for which the Itô-Tanaka trick should not improve the regularity
of f . For instance, in [16], the authors consider a random function f̃ of the form

f̃(ω, s, x) := f(x−Ws(ω)),

where (Wt)t≥0 is the Brownian motion from (1.2). This gives, for b = 0 in (1.2),∫ T

0
f̃(ω, t,Wt + x)dt =

∫ T

0
f(t, x)dt,

which does not bring any additional regularity. It turns out that, when f is a random
function, the solution F to (1.3) is not adapted anymore to

(
FWt

)
t∈[0,T ]

the natural
filtration of the Brownian motion, making the stochastic integral on the right-hand side
of (1.1) ill-posed.

In this paper we tackle this difficulty by considering another equation which is the
adapted version of the Fokker-Planck equation (1.3). More precisely, we show in The-
orem 3.2 that given random functions b and f which depend in an adapted way, of a
standard Brownian motion (Wt)t≥0, the following formula holds∫ T

0
f(t,Xx

t )dt = −F (0, x)−
∫ T

0
(∇F (s,Xx

s ) + Z(s,Xx
s )) dWs−

∫ T

0
divZ(s,Xx

s )ds, P−a.s.

(1.4)
where (F,Z) is the adapted mild solution of the following backward stochastic partial
differential equation (BSPDE)

F (t, x) =

∫ T

t

(
1

2
∆ + b(s, x) · ∇

)
F (s, x)ds−

∫ T

t
f(s, x)ds−

∫ T

t
Z(s, x)dWs, (1.5)

and (Xx
t )t≥0 together with a Brownian motion (Wt)t≥0 is a weak solution of the stochas-

tic differential equation

Xx
t = x+

∫ t

0
b(s,Xx

s )ds+Wt.

We name (1.4) the Itô-Wentzell-Tanaka trick as the derivation of (1.4) calls for the use
of the Itô-Wentzell formula in place of the classical Itô formula which allows one to give
a semimartingale type decomposition of F (t,Xx

t ) when F (t, x) is itself a semimartingale
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random field. This contrasts with the classical Itô-Tanaka trick where both f and b
must be deterministic mappings.

During the process of studying of the Fokker-Planck BSPDE, we incidentally prove new
results as Theorem 3.1 on this equation in particular by allowing only Lq(Lp) regularity
on its coefficients together with a representation of its mild solution in terms of the
solution to the non-adapted SPDE and of its Malliavin derivative. In addition, our
methodology generalizes: the well-known linearization technique used for linear BSDEs
and deterministic semigroups (see [12, Proposition 2.2]), and a Feynman-Kac formula
for BSPDEs related to Forward-Backward SDEs as in [26, Corollary 6.2] by providing
a unique (in the mild sense) solution to the BSPDE, which were, up to our knowledge,
both unknown for this class of equations. We also prove that the F component of the
solution is Malliavin differentiable. The study of the BSPDE relies on the one of the
non-adapted Fokker-Planck equation in Section 4.2.

There are well-known results concerning the regularization effects of stochastic processes
on deterministic functions (see the survey of Flandoli [14]) but, to our knowledge, there
exists no extension of the Itô-Tanaka trick for random functions. Note however that
pathwise regularization effect are obtained in [5] using a rough path analysis based
on the class of so-called ρ-irregular functions. The phenomenon is widely used in the
recovery of the strong uniqueness of solutions of stochastic differential equations (SDEs)
with singular drifts [10, 19, 27, 25, 32, 35]. It has been generalized to SDEs in infinite
dimension [8, 9, 28] and the conditions for the existence of a stochastic flow has also
drawn attention (see [1, 15, 33]). Another direction of interest is the improvement of
the well-posedness of stochastic partial differential equations (SPDEs). In particular,
the stochastically perturbed linear transport equation has received a lot of interest
[2, 4, 13, 16]. More recent works provide extensions to nonlinear SPDEs, see for instance
[3, 17, 18] for models from fluid mechanics and [6, 7, 11] for dispersive equations. Let us
also mention that the type of processes that yield a regularization effect is not restricted
to Brownian semi-martingales. For instance, in [31, 34] where α-stable processes have
been considered and, in [5], where the authors showed a regularization phenomenon
using rough paths (in particular for the fractional Brownian motion).

The paper is organized as follows. In Section 2 we make precise the definitions, the
notations and the material that will be used later on. Then, in Section 3 we state
our main results: namely the existence, uniqueness (in the mild sense) and regularity
of an adapted solution to Equation (1.5) in Theorems 3.1 on the one hand and the
Itô-Wentzell-Tanaka trick in Theorem 3.2 on the other hand. We also include in this
section a discussion about the regularization effect and some possible applications of the
Itô-Wentzell-Tanaka trick. Finally, proofs of Theorems 3.1-3.2 are collected in Sections
4 and 5.

2 Notations and standing assumptions

2.1 Main notations
Throughout this paper T will be a fixed positive real number and d denotes a fixed
positive integer. For any x in Rd, we denote by |x| the Euclidian norm of x. Let
(E, ‖ · ‖E) be a Banach space, we set B(E) the Borelian σ-field on E. For given Banach
spaces E,F and any p ≥ 0, we set Lp(E;F ) the set of B(E)\B(F )-measurable mappings
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f : E → F such that

‖f‖pLp(E;F ) :=

∫
‖f(x)‖pFµ(dx) < +∞,

where µ is a non-negative measure on (E,B(E)). Naturally the norm depends on the
choice of µ that will be made explicit in the context. If F = Rn, n ∈ N, then we simply
set Lp(E) := Lp(E;Rn). We also denote by C0(E) (resp. C0

b (E)) the set of continuous
(resp. bounded continuous) real-valued mappings f on E. For any p > 1 we set p̄ the
Hölder conjugate of p.

For any mapping ϕ : Rd → R we denote by ∂ϕ
∂xi

the i-th partial derivative of ϕ, (i =

1, · · · , n), by ∇ϕ := ( ∂ϕ∂x1
, . . . , ∂ϕ∂xd ) the gradient of ϕ (when it is well-defined), and by

∆ϕ its Laplacian. For a multi index k := (k1, · · · , kd) in Nd, we set ∇kϕ := ∂k1+···+kdϕ
∂x1...∂

kd
ϕ

and |k| :=
∑d

i=1 ki.

For p,m ∈ R, we set

Wm,p(Rd) =
{
ϕ ∈ Lp(Rd);F−1

(
([1 + |ξ|2]m/2ϕ̂

)
∈ Lp(Rd))

}
,

the usual Sobolev spaces equipped with its natural norm

‖ϕ‖Wm,p(Rd) :=
∥∥∥F−1

(
([1 + |ξ|2]m/2ϕ̂

)∥∥∥
Lp(Rd))

,

where ϕ̂(ξ) = F(ϕ)(ξ) and F (resp. F−1) denotes the Fourier transform (resp. the
inverse Fourier transform). Let n, k ∈ N and α ∈ (0, 1). We set Ckb (E) (resp. Ck,αb (E))
the set of Rd-valued bounded functions having bounded derivatives up to order k (resp.
and with α-Hölder continuous kth partial derivatives). We also set:

‖ϕ‖Ck,αb (E)
:= ‖ϕ‖Ckb (E) + sup

|`|=k
sup
x 6=y

|∇`f(x)−∇`f(y)|
|x− y|α

,

where ‖ϕ‖Ckb (E) :=
∑
|`|≤k supx∈E |∇`f(x)|. Finally C∞0 (Rn), (n ∈ N∗) stands for the

set of infinitely continuously differentiable function with compact support.

Throughout this paper C will denote a non-negative constant which may differ from
line to line.

Standing Assumption 2.1. Unless stated otherwise, we always assume that the real
numbers p, q ∈ (2,∞) verify

d

p
+

2

q
< 1.

Remark 2.1. In the previous inequality, we exclude the cases p = ∞ or q = ∞. The
latter can be handled without any difficulty since T is finite. However, the former calls
for an analysis in other functional spaces that we do not consider in this paper.

2.2 Malliavin-Sobolev spaces
In this section, we introduce the main notations about the Malliavin calculus for random
fields. As we do not work, in the classical setting (that is we do not use a L2 or Hilbert
space structure), we provide some technical justifications in A.
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Let (Ω,F ,P) be a probability space and W := (Wt)t∈[0,T ] a Brownian motion on this
space (to the price of heavier notations all the definitions and properties in this section
and of the next one extend to a d-dimensional Brownian motion). We assume that
F = σ (Wt, t ∈ [0, T ]).

Consider S be the set of cylindrical fields, that is the set of random fields F : Ω×Rd → R
of the form:

F = ϕ(Wt1 , · · · ,Wtn , x)

with ϕ : Rn × Rd → R in C∞0 (Rn+d). We fix p an integer with p ≥ 2. For an element
F in S, we set DF the Lp([0, T ])-valued random field as:

DθF :=
n∑
i=1

∂ϕ

∂xi
(Wt1 , · · · ,Wtn , x)1[0,ti](θ), θ ∈ [0, T ].

Note that for F in S, D∇kF = ∇kDF for any multi index k. In addition, an integration
by parts formula for the operators D∇k can be derived (see Lemma A.1). By Lemma
A.2 the operators D∇k (and so ∇kD) are closable from S to Lp(Ω × Rd;Lp([0, T ])).
For a positive integer m, we set D1,m,p the closure of S with respect to the norm:

‖F‖pD1,m,p := E[‖F‖pWm,p ] +

∫ T

0
E
[
‖DθF‖pWm,p(Rd)

]
dθ, (2.1)

We also denote:
‖F‖pWm,p := E[‖F‖pWm,p ], (2.2)

We conclude this section on the Malliavin derivative by introducing the space D1,m,p
q :=

Lq([0, T ];D1,m,p) (with p, q ≥ 2) which consists of mappings F : [0, T ] × Ω × Rd → R
such that

‖F‖q
D1,m,p
q

:=

∫ T

0
‖F (t, ·)‖qD1,m,pdt < +∞. (2.3)

We also use the following notation:

‖F‖qWm,p
q

:=

∫ T

0
‖F (t, ·)‖qWm,pdt < +∞.

2.3 An SDE with random drift
Before proceeding further, we introduce the following notation: for a continuous map-
ping ψ ∈ C([0, T ]) and s ∈ [0, T ], we set ψ(s) the element of C([0, T ]) defined by

ψ(s) 7→
{
ψr if r ∈ [0, s]
ψs if r ∈ (s, T ]

.

We consider the following SDE:

Xt = X0 +

∫ t

0
b(s,Xs,W(s))ds+Wt, t ∈ [0, T ], (2.4)

where b is assumed to be a B([0, T ]×Rd × C([0, T ]))-measurable map, X0 is in Rd and
W is a d-dimensional Brownian motion. To begin with, let us recall the definition of a
weak solution to Equation (2.4).

Definition 2.1. A weak solution is a triple (X,W ), (Ω,G,P), (Gt)t∈[0,T ] where
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• (Ω,G,P) is a probability space equipped with some filtration (Gt)t∈[0,T ] that satisfies
the usual conditions,

• X is a continuous, (Gt)t∈[0,T ]-adapted Rd-valued process, W is a d-dimensional
(Gt)t∈[0,T ]-Wiener process on the probability space,

• P(X(0) = X0) = 1 and P(
∫ t

0 |b(s,Xs,W(s))|ds < +∞) = 1, ∀t ∈ [0, T ],

• Equation (2.4) holds for all t in [0, T ] with P-probability one.

Standing Assumption 2.2. There exists a weak solution (X,W ), (Ω,G,P), (Gt)t∈[0,T ]

to the SDE (2.4).

By definition, W is a (Gt)t∈[0,T ]-Brownian motion. So we denote by (Ft)t∈[0,T ] its
natural completed right-continuous filtration which satisfies Ft ⊂ Gt for any t ∈ [0, T ].
In the following, the spaces D1,m,p or D1,m,p

q are understood to be defined with respect
to (Ω,FT ,P).

We now give a simple proof of existence and uniqueness of a weak solution to (2.4)
under some non-optimal assumptions.

Proposition 2.1. Let b ∈ Lq([0, T ];Lp(Rd; C1
b (Rd))). Then there exists a unique weak

solution to the SDE

Xt = X0 +

∫ t

0
b(s,Xs,Ws)ds+Wt, t ∈ [0, T ]. (2.5)

Proof. The proof is based on Girsanov’s theorem. Let us first remark that b0(t, x) :=
supy∈Rd |∇yb(t, x, y)| and b1(t, x) := supy∈Rd |b(t, x, y)| belong in Lq([0, T ];Lp(Rd)).
Thus, since 2/q + d/p < 1, by [25, Lemma 3.2] we have, ∀κ ∈ R+ and k = 1, 2,

E
[
eκ

∫ T
0 b0(s,Ws)kds

]
+ E

[
eκ

∫ T
0 b1(s,Ws)kds

]
< +∞, (2.6)

where W is a standard Brownian motion.
Let (Xt)t≥0 a standard Brownian motion on a probability space (Ω,G,P) equipped with
a filtration (Gt)t∈[0,T ]. We consider the following SDE

Yt = Y0 −
∫ t

0
b(s,Xs, Ys)ds+Xt, t ∈ [0, T ]. (2.7)

In this step, we prove that there exists a unique solution to (2.7). Since b is Lipschitz,
the uniqueness is obtain by a Gronwall lemma. Moreover, by using classical a priori
estimates for Lipschitz SDE, we obtain

E

[
sup
t∈[0,T ]

|Yt|2
]
≤ C

(
|Y0|2 + T + E

[∫ T

0

(
|b(s,Xs, 0)|2 + b0(s,Ws)

2
)
ds

])
,

which yields the existence of a strong solution.
By (2.6), we have, ∀κ ∈ R+,

E
[
eκ

∫ T
0 |b(s,Xs,Ys)|

2ds
]
≤ E

[
eκ

∫ T
0 b1(s,Xs)2ds

]
< +∞.

We deduce that
ρ(·) := e

∫ ·
0 b(s,Xs,Ys)dXs−

1
2

∫ ·
0 |b(s,Xs,Ys)|

2ds,

is a martingale under P by Novikov’s criterion. Hence, by Girsanov’s theorem, the
process Y is a Brownian motion under the measure Q given by dQ

dP = ρ(T ). Thus, by
rewriting Y asW , the triple (X,W ), (Ω,F ,Q), (Gt)t∈[0,T ] is a weak solution to the SDE
(2.5).
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2.4 The adapted Fokker-Planck equation
Throughout this section, we consider (X,W ) a weak solution to the SDE (2.4) and use
the notations of the previous section. We say that a random field ϕ : Ω×[0, T ]×Rd → R
is adapted if for any x in Rd, ϕ(·, x) is F-adapted. Note that by the definition of a
weak solution (cf. Definition 2.1) as F· ⊂ G·, any (Ft)t∈[0,T ]-adapted field is (Gt)t∈[0,T ]-
adapted. In order to derive our Itô-Wentzell-Tanaka trick, we consider f a random field
and make the following standing assumption.

Standing Assumption 2.3. f is an adapted stochastic field.

We set the linear operator LXt on C∞0 (Rd):

LXt ϑ(x) :=
1

2
∆ϑ(x) + b(t, x,W(t)) · ∇ϑ(x), ∀ϑ ∈ C∞0 (Rd).

Now we consider the following BSPDE:

F (t, x) =

∫ T

t

(
LXr F (r, x)− f(r, x)

)
dr −

∫ T

t
Z(r, x)dWr, (2.8)

Before going further, we recall what is a solution to the BSPDE (2.8) in our context.
We set for m ∈ N:

Wm,p
P,q := {ϕ adapted field , ‖ϕ‖Wm,p

q
< +∞},

Mp :=

{
ϕ adapted field (and Rd-valued),

∫
Rd E

[(∫ T
0 |ϕ(s, x)|2dt

) p
2

]
dx < +∞

}
.

(2.9)

Definition 2.2 (Adapted strong solution to a BSPDE). We say that a pair of adapted
random fields (F,Z) is strong solution to the BSPDE (2.8) if

(F,Z) ∈W2,p
P,q ×Mp

with d
p + 2

q < 1 and Relation (2.8) is satisfied for every t in [0, T ], for a.e. x in Rd,
P-a.s..

Remark 2.2. We warn the reader that in the previous definition, the adapted feature
of the fields F,Z is crucial. In that sense we will speak of BSPDE. This differs from
the SPDE (4.6) whose solution is not adapted (see Remark 4.1). In that case we will
speak of a SPDE to emphasize that the measurability requirement is not present.

3 Main results and discussion

3.1 Main results
In order to proceed further, we need some additional assumptions on the Malliavin
derivatives of f and b.

Standing Assumption 3.1. Let γ ∈ {0, 1}, α > γ/2 and `, ¯̀ ∈ [p,∞] such that
1/`+ 1/¯̀= 1/p. We assume that f and b belong to D1,0,p

q and that:
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i) there exist a function f ′ ∈ Lq([0, T ];L`(Ω;W−γ,p(Rd))), a function b′ ∈ Lq([0, T ];Lp(Ω×
Rd)) and two mappings υf ∈ L

¯̀
(Ω;L∞([0, T ] × Rd)), υb ∈ L∞([0, T ] × Rd) such

that

Dθf(t, x) = f ′(t, x)υf (θ, t), ∀θ ≤ t ≤ T, P− a.s.,
and Dθb(t, x,W(t)) = b′(t, x,W(t))υb(θ, t), ∀θ ≤ t ≤ T, P− a.s.,

ii.a) one of the following statement is in force

• there exist C1,f , C2,f > 0 such that, ∀0 ≤ θ ≤ s ≤ t ≤ T ,

‖υf (θ, t)‖L¯̀(Ω) ≤ C1,f |θ − t|α,
‖υf (θ, s)− υf (t, s)‖L¯̀(Ω) ≤ C2,f |θ − t|α.

(3.1)

• γ = 0 and υf (θ, t) = 1{θ≤τf} where τf is a random variable with values in
[0, t],

ii.b) one of the following statement is in force

• there exist C1,b, C2,b > 0 such that, ∀0 ≤ θ ≤ s ≤ t ≤ T ,

|υb(θ, t)| ≤ C1,b|θ − t|α,
|υb(θ, s)− υb(t, s)| ≤ C2,b|θ − t|α,

(3.2)

• γ = 0 and υb(θ, t) = 1{θ≤τb} where τb is a random variable with values in
[0, t],

iii) there exists a function b̃ ∈ Lq([0, T ]) such that

‖b(t, ·,W(t))‖Lp(Rd) + ‖b′(t, ·,W(t))‖Lp(Rd) ≤ b̃(t), ∀t ∈ [0, T ], P− a.s..

Moreover, if γ = 1, we also assume that

‖∇b(t, ·,W(t))‖Lp(Rd) ≤ b̃(t), ∀t ∈ [0, T ], P− a.s..

The conditions above are probably quite cumbersome at first glance. However, the
counterpart of this formulation is that it allows one to consider quite general functional
dependency of the Brownian motion in the coefficients f and b. In particular, they can
depend of the past of W in a functional way and not only through the present value.
To illustrate this fact, we give below some standard examples of random functionals f
and b which satisfy Assumption 3.1.

Example 3.1. Let f(t, x) = g0(t, x +
∫ t

0 hrdr), where g0 ∈ Lq([0, T ];Lp(Rd)), h is an
adapted bounded stochastic process such that, ∀t ∈ [0, T ], ht ∈ D1,2 and Dθht is bounded
uniformly in (t, θ), and b(t, x) = g1(t, x + Wt) with g1 ∈ Lq([0, T ];W 1,p(Rd)). In that
case, the Malliavin derivatives of f and b are given by

Dθf(t, x) = ∇g0

(
t, x+

∫ t

0
hrdr

)∫ t

θ
Dθhrdr,

and Dθb(t, x) = ∇g1 (t, x+Wt)1{θ≤t}.

Example 3.2. Let f(t, x) = g1(t, x, ϕ1

(
W(t)

)
), b(t, x) = g2(t, x, ϕ2

(
W(t)

)
) where g1

and g2 belong to Lq([0, T ];Lp(Rd; C1
b (Rd))) and:

ϕi((rs)0≤s≤t) ∈
{
rt, max

0≤s≤t
rs, min

0≤s≤t
rs

}
, i = 1, 2.
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In that cases, we have that (see e.g. [29, Exercice 1.2.11]):

DθWt = 1{θ≤t}, Dθ max
0≤s≤t

Ws = 1{θ≤ τ̄}, and Dθ min
0≤s≤t

Ws = 1{θ≤ τ},

where τ̄ := argmax0≤s≤tWs and τ := argmin0≤s≤tWs.

We state below our first main theorem in which we provide existence, uniqueness
(in the mild sense) and regularity results to Equation (2.8).

Theorem 3.1. There exists a strong (adapted) solution to Equation (2.8) (recall nota-
tions (2.9))

(F,Z) ∈
(
W2,p
P,q

)2
.

Futhermore, we have the following representation of F

F (t, x) = E
[
−
∫ T

t
PXt,rf(r, x)dr

∣∣∣Ft] , (3.3)

where PX denotes the propagator associated to LX defined in (4.16) (see Section 4.2).
In addition, for a.e. (t, x), F (t, x) is Malliavin differentiable (‖F‖D1,2,p

q
< +∞), and

for a.e. x ∈ Rd, a version of the process (Z(t, x))t∈[0,T ] is given by

Z(t, x) = E
[
−
∫ T

t
DtP

X
t,rf(r, x)dr

∣∣∣Ft] . (3.4)

Finally, (F,Z) is the unique mild solution of Equation (2.8), that is

F (t, x) = −
∫ T

t
PXt,rf(r, x)dr −

∫ T

t
PXt,rZ(r, x)dWr. (3.5)

Our second main result is the derivation of the Itô-Wentzell-Tanaka trick as follows:

Theorem 3.2. Let (F,Z) be the unique strong solution to (2.8). Then we have,∫ T

0
f(s,Xs)ds =− F (0, X0)−

∫ T

0
(∇F (s,Xs) + Z(s,Xs)) dWs

−
∫ T

0
divZ(s,Xs)ds, P− a.s. (3.6)

We postpone the proof of Theorems 3.1-3.2 to Sections 4-5.

Remark 3.1. If f and b are deterministic, then, the BSPDE (2.8) reduces to a PDE
that is Z ≡ 0. Hence, ∇Z ≡ 0 and we recover the formula of [25]. In particular, the
regularity than one could obtain when f or b is random compared to the deterministic
realm is completely contained in the regularity of Z and of its gradient.

Remark 3.2. Note that under Assumption 3.1, one can treat in a similar way the case
where the original SDE (2.4) is replaced by:

dXt = b(t,Xt,W(t))dt+ σ(t,Xt)dWt,

where σ : [0, T ] × Rd → Rd is Borel measurable, uniformly continuous in x ∈ Rd and
such that, ∀ξ ∈ Rd,∀(t, x) ∈ [0, T ]× Rd,

λ−1|ξ|2 ≤
∑

1≤i,j≤d
σi,j(t, x)ξiξj ≤ λ|ξ|2,

for some λ > 0. The parabolic estimates from Proposition 4.2 and Lemma 4.3 below can
be obtained by following the same lines as in [21] with the additional assumption that b
is uniformly bounded. Finally, we do not address here the question about existence of
weak solutions in case of non-constant diffusion σ.
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3.2 Discussion on the results
3.2.1 Stochastic regularization effect in the case of stochastic pertur-
bations

As stated in the introduction, the main application of the Itô-Wentzell-Tanaka trick
is to yield a stochastic regularization effect. In the case of the Itô-Tanaka trick, the
regularization is a direct consequence of the regularity of the solution of the Fokker-
Planck equation since the terms in right-hand-side of (1.1) have an additional (weak)
degree of regularity. Concerning the Itô-Wentzell-Tanaka trick, we know that there
are examples of random functions f where there should not be any regularization effect
even if f belongs to W0,p

q . In fact, one of the main pathology stems from the addition of
what we call stochastic perturbations to X which can either be smooth (when there is a
regularization effect) or singular (when there is no regularization effect). This problem
is also investigated in [5] where the author identify a set of smooth perturbations in
C([0, T ]) thanks to Girsanov’s theorem.

Let f̃ ∈ Lq([0, T ];Lp(Rd)) and Y an adapted stochastic process defined on [0, T ]. For
simplicity, we assume that b is a deterministic function which belongs in Lq([0, T ];W 1,p(Rd)).
We set

f(t, x) := f̃(t, x+ Yt).

We notice that the Malliavin derivative of f implies, a priori, a loss of regularity
compared to the case where f is deterministic since we have

Dθf(s, x) = ∇f̃(x+ Ys) ·DθYs. (3.7)

However, even if ∇f̃ ∈ Lq([0, T ];W−1,p(Rd)), we can still use the Itô-Wentzell-Tanaka
trick when DθYs verifies (3.1) of Assumption 3.1 with α > 1/2. In this case, Y is a
smooth perturbation. This is due to the fact that one can exchange the "time regu-
larity" of DθYs to obtain "spatial regularity" through the heat semigroup. This is the
underlying mechanism used in the proof of Proposition 4.3. Furthermore, we remark
that if Y is given, as in Example 3.1, by

Yt =

∫ t

0
hrdr,

where h is an adapted bounded stochastic process, we could have used Girsanov’s
theorem to remove the shift

∫ t
0 hrdr from f under a new equivalent probability measure

Q, allowing one to apply the classical Itô-Tanaka trick with respect to Q. On the
contrary, if one choose for instance Yt = Wt or maxs∈[0,t]Ws, Y becomes a singular
perturbation since DθYs = 1{θ≤τb} where τb is a random variable with values in [0, s]

(which obviously fails to verify (3.1) for α > 1/2). In this case, we must have f̃ ∈
Lq([0, T ];W 1,p(Rd)) which implies that the regularity of the terms on the right-hand-
side of (1.4) is the same as the one of f̃ (hence, there is, a priori, no regularization
effect).

3.2.2 Strong uniqueness for SDEs with irregular stochastic drift

The aim of this section, is to provide a methodology to prove pathwise uniqueness to a
particular case of SDEs of the form (2.5) that we recall below:

Xt = X0 +

∫ t

0
b(s,Xs,Ws)ds+Wt, t ∈ [0, T ], (3.8)
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with b ∈ Lq([0, T ];W 1,p(Rd; C1
b (Rd))). However, to keep the length of this paper within

limits, we only sketch the different steps one has to go through to achieve this goal.

Thanks to Proposition 2.1, the existence of a weak solution (X,W ) solution is guar-
anteed. Furthermore, we remark that b verifies Assumptions 2.3 and 3.1. Indeed, for
Assumption 3.1, we have that (with the same notations as in the proof of Proposition
2.1)

Dθb(t, x,Wt) = ∇yb(t, x,Wt)1{θ<t},

and, thus,

‖b(t, ·,Wt)‖pLp(Rd)
+ (T − t)‖∇yb(t, ·,Wt)‖pLp(Rd)

≤ max(T − t, 1)‖b(t, ·, ·)‖Lp(Rd;C1
b (Rd)).

In fact, this computation also holds for ∇xb.
We now consider the following BSPDE (with f = −b and where the equation is

understood componentwise):

Fλ(t, x) =

∫ T

t

(
LXr Fλ(r, x)− λFλ(r, x) + b(r, x,Wr)

)
dr −

∫ T

t
Zλ(r, x)dWr. (3.9)

It follows from Theorem 3.1 and a gauge change, that its mild solution (Fλ, Zλ) ∈(
W2,p
P,q

)2
is given by

Fλ(t, x) = E
[
−
∫ T

t
e−λ(r−t)PXt,rb(r, x,Wr)dr

∣∣∣Ft] ,
and

Zλ(t, x) = E
[
−
∫ T

t
e−λ(r−t)DtP

X
t,rb(r, x,Wr)dr

∣∣∣Ft] .
Denoting F̃λ(t, x) = −

∫ T
t e−λ(r−t)PXt,rb(r, x,Wr)dr and following the same lines as in

the proof of Proposition 4.2, the fact that ∇b enjoys the requirement iii) in Assumption
3.1 for γ = 1, enables us to get that F̃λ ∈ D1,3,p

q by differentiation of Equation (4.10)
(where f is replaced by b+λF̃λ) with respect to the space variable. By similar arguments

as in the first step of the proof of Theorem 3.1, we deduce that (Fλ, Zλ) ∈
(
W3,p
P,q

)2
.

Finally, we obtain the next result which follows the lines of [17, Lemma 4].

Lemma 3.1. There exists a deterministic mapping ϕ : R+ 7→ R+ such that ϕ(λ) −→
λ→∞

0

and
sup

(t,x)∈[0,T ]×Rd
|∇F̃λ(t, x)| ≤ ϕ(λ), P− a.s.

which implies that there exists λ∗ > 0 such that

sup
(t,x)∈[0,T ]×Rd

|∇Fλ∗(t, x)| ≤ 1/4, P− a.s.

We are now in position to state and prove the following

Proposition 3.1. Under the assumptions of this section, pathwise uniqueness holds
for SDE (3.8).
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Proof. Mimicking what is done in [14, 16, 25, 31] for deterministic drifts, we rewrite
Equation (3.8), thanks to the Itô-Wentzel-Tanaka trick, to get:

Xt = X0 + Fλ(0, X0)− Fλ(t,Xt) +

∫ t

0
(∇Fλ(s,Xs) + Zλ(s,Xs) + Id) dWs

+

∫ t

0

 d∑
i=1

d∑
j=1

∂xi(Zλ)j(s,Xs)− λFλ(s,Xs)

 ds. (3.10)

Let X1
t , X2

t be two weak solutions defined on the same probability space and with the
same Brownian motion W . For any G ∈W2,p

P,q, a Sobolev embedding implies that

E
[
|G(t,X1

t )−G(t,X2
t )|2

]
≤ E

[
sup
x∈Rd

|∇G(t, x)|2
]
E
[
|X1

t −X2
t |2
]

≤ ‖G(t, ·)‖2W2,pE
[
|X1

t −X2
t |2
]
.

For simplicity, we set δXt := X1
t −X2

t . Then choosing λ = λ∗, it follows from Equation
(3.10) and Lemma 3.1 that

E
[
|δXt|2

]
≤ 1

2
E
[
|δXt|2

]
+ 4

∫ t

0

(
‖Fλ∗(s, ·)‖2W3,p + ‖Zλ∗(s, ·)‖2W2,p

)
E
[
|δXs|2

]
ds

+ 4T (1 + λ∗)

∫ t

0

(
‖Zλ∗(s, ·)‖2W3,p + ‖Fλ∗(s, ·)‖2W2,p

)
E
[
|δXs|2

]
ds.

As a consequence we have :

E
[
|δXt|2

]
≤ 16(1 + T + λ∗)

∫ t

0
E
[
|δXs|2

]
dAs,

where At :=
∫ t

0 ‖Fλ∗(s, ·)‖2W3,p + ‖Zλ∗(s, ·)‖2W3,pds. We conclude by Gronwall Lemma
that:

E
[
|δXt|2

]
= E

[
|X1

t −X2
t |2
]

= 0, ∀t ∈ [0, T ].

4 Proof of Theorem 3.1

4.1 Some estimates
We will need below several technical results that we present now. In the following, we
denote by (Pt,s)s≥t≥0 the heat semigroup. Adapting results from [22, 23] in the spaces
D1,m,p
q we have

Lemma 4.1. Let 1 < q, p < +∞ and γ ∈ R. Then, there exists a constant C such
that, ∀φ ∈ D1,γ,p

q , ∥∥∥∥∫ T

t
Pt,sφ(s, x)ds

∥∥∥∥
D1,2+γ,p
q

≤ C‖φ‖D1,γ,p
q

, (4.1)

and, ∀ε > 0, there exists another constant Cε,T > 0 such that, ∀ϕ ∈ D1,2+γ−2/q+ε,p,

‖Pt,Tϕ‖D1,2+γ,p
q

≤ Cε,T ‖ϕ‖D1,2+γ−2/q+ε,p . (4.2)
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The next result gives a Schauder estimate on the solution of a backward heat equa-
tion with a source term in D1,0,p

q . Its proof is similar to the one from [22, Theorem 7.2]
and the arguments can be directly extended to the norms D1,m,p

q .

Proposition 4.1. Let 1 < q, p < +∞, 2/q < β ≤ 2 and φ ∈ D1,0,p
q . Denote, for

(t, x) ∈ [0, T ]× Rd,

u(t, x) := −
∫ T

t
Pt,sφ(s, x)ds.

Then, there exists a constant C > 0 independent of T such that, for any 0 ≤ s ≤ t ≤ T ,

‖u(t)− u(s)‖D1,2−β,p ≤ C(t− s)β/2−1/q‖φ‖D1,0,p
q

, (4.3)

and, thus,
‖u‖C0,β/2−1/q

b ([0,T ];D1,2−β,p)
≤ C‖φ‖D1,0,p

q
. (4.4)

A direct consequence of the previous result is the following

Corollary 4.1. Let φ ∈ D1,0,p
q . Denote, for (t, x) ∈ [0, T ]× Rd,

u(t, x) := −
∫ T

t
Pt,sφ(s, x)ds.

Then, for any ε ∈ (0, 1) satisfying

ε+
d

p
+

2

q
< 1,

there exists a constant C > 0 and ε̃ > 0 such that, ∀t ∈ [0, T ],(
E
[
‖u(t, ·)‖p

C1,ε
b (Rd)

]
+ E

[∫ T

0
‖Dθu(t, ·)‖p

C1,ε
b (Rd)

dθ

])1/p

≤ C(T − t)ε̃/2‖φ‖D1,0,p
q

.

(4.5)

Proof. Let β = ε̃ + 2/q where 0 < ε̃ < 1 − (ε + d/p + 2/q). The result follows by the
Sobolev embedding C1,α

b ⊂W 2−β,p, with α = 1− β − d/p = 1− ε̃− q/2− d/p > ε, and
Proposition 4.1.

4.2 The non-adapted Fokker-Planck equation
Given ϕ ∈ D1,2−2/q+ε,p, with ε > 0, consider here the non-adapted Fokker-Planck
equation

F (t, x) = ϕ(x) +

∫ T

t
LXr F (r, x)dr −

∫ T

t
f(r, x)dr. (4.6)

Definition 4.1. A strong solution to Equation (4.6) is a function F in D1,2,p
q such that,

for all t ∈ [0, T ], we have

F (t, x) = ϕ(x) +

∫ T

t
LXr F (r, x)dr −

∫ T

t
f(r, x)dr. (4.7)

Remark 4.1. Note that each random variable F (t, ·) solution to the previous SPDE is
FT -measurable, and hence it is not adapted.
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We provide a Malliavin differentiability analysis for the solution the Fokker-Planck
equation (4.6). We define, ∀m ≥ 0,

G1,m,p
q :=

{
F ∈ D1,m,p

q ; ∂tF ∈ D1,0,p
q

}
,

and the associated norm

‖F‖G1,m,p
q

:= ‖F‖D1,m,p
q

+ ‖∂tF‖D1,0,p
q

.

We begin with a result concerning the existence and uniqueness of a solution to the
non-adapted Fokker-Planck equation.

Lemma 4.2. Let u ∈ G1,2,p
q and denote

‖u(t, ·)‖pH1,p := E
[
‖u(t, x)‖pC1

b (Rd)

]
+ E

[∫ T

0
‖Dθu(t, x)‖pC1

b (Rd)
dθ

]
.

Then
sup
t∈[0,T ]

‖u(t, ·)‖H1,p ≤ CT ‖u‖G1,2,p
q

, (4.8)

where CT is uniformly bounded with respect to T in compact sets of R+, and, ∀t ∈ [0, T ],

‖b(t, ·,W(t)) · ∇u(t, ·)‖D1,0,p ≤ Cb̃(t)‖u(t, ·)‖H1,p . (4.9)

Proof. Firstly, let us remark that we have, ∀u ∈ G1,2,p
q ,

u(t, x) = −
∫ T

t
Pt,r

[
∂tu(r, x) +

1

2
∆u(r, x)

]
dr,

and then, by using Corollary 4.1, we obtain the estimate

sup
t∈[0,T ]

‖u(t, ·)‖H1,p ≤ CT ‖u‖G1,2,p
q

.

Secondly, we compute

‖b(t, ·,W(t)) · ∇u(t, ·)‖pD1,0,p ≤ E
[
‖b(t, ·,W(t)) · ∇u(t, ·)‖p

Lp(Rd)

]
+ CE

[∫ T

0
‖Dθb(t, ·,W(t)) · ∇u(t, ·)‖p

Lp(Rd)
dθ

]
+ CE

[∫ T

0
‖b(t, ·,W(t)) ·Dθ∇u(t, ·)‖p

Lp(Rd)
dθ

]
.

Since the Malliavin derivative commutes with the spatial derivative in Lp, we obtain

‖b(t, ·,W(t)) · ∇u(t, ·)‖pD1,0,p ≤ E

[
‖b(t, ·,W(t))‖

p
Lp(Rd)

sup
x∈Rd

|∇u(t, x)|p
]

+ CE

[∫ T

0
‖Dθb(t, ·,W(t))‖

p
Lp(Rd)

dθ sup
x∈Rd

|∇u(t, x)|p
]

+ CE

[
‖b(t, ·,W(t))‖

p
Lp(Rd)

∫ T

0
sup
x∈Rd

|∇Dθu(t, x)|pdθ

]
.
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Thus, by Assumption 3.1, we have (4.9) as

‖b(t, ·,W(t)) · ∇u(t, ·)‖D1,0,p ≤

Cb̃(t)

(
E

[
sup
x∈Rd

|∇u(t, x)|p
]

+ E

[∫ T

0
sup
x∈Rd

|∇Dθu(t, x)|pdθ

])1/p

.

Proposition 4.2. Let ϕ ∈ D1,2−2/q+ε,p, with ε > 0. Then there exists a unique solution
F in G1,2,p

q to the equation

F (t, x) = Pt,Tϕ(x)−
∫ T

t
Pt,sf(s, x)ds+

∫ T

t
Pt,s

[
b(s, x,W(s)) · ∇F (s, x)

]
ds. (4.10)

Moreover, the following estimate on the solution holds

‖F‖G1,2,p
q
≤ CT

(
‖ϕ‖D1,2−2/q+ε,p + ‖f‖D1,0,p

q

)
, (4.11)

where CT > 0 depends on ‖b̃‖Lq([0,T ]) and is uniformly bounded with respect to T on
compact sets of R+.

Proof. Step 1: By using Corollary 4.1 and Relation (4.9), we have

‖F (t, ·)‖qH1,p ≤C‖Pt,Tϕ‖qH1,p + CT ‖f‖qD1,0,p
q

+ CT ‖b · ∇F‖qD1,0,p
q

≤C‖ϕ‖qH1,p + CT ‖f‖qD1,0,p
q

+ CT

∫ T

t
|b̃(s)|q‖F (s, ·)‖qH1,pds.

Thanks to a Gronwall lemma and the Sobolev embedding C1,ε
b ⊂W

2−2/q+ε,p, we deduce

sup
t∈[0,T ]

‖F (t, ·)‖H1,p ≤
(
CT ‖f‖D1,0,p

q
+ C‖ϕ‖D1,2−2/q+ε,p

)
e
CT T

q
‖b̃‖q

Lq([0,T ]) . (4.12)

We now turn to Estimate (4.11). We can apply the D1,2,p
q -norm to (4.10) and obtain,

by using lemma 4.1,

‖F‖q
D1,2,p
q
≤CT ‖ϕ‖qD1,2−2/q+ε,p + C‖f‖q

D1,0,p
q

+ C

∫ T

t
‖b(s, ·,W(s)) · ∇F (s, ·)‖qD1,0,pds

≤CT ‖ϕ‖qD1,2−2/q+ε,p + C‖f‖q
D1,0,p
q

+ C

∫ T

t
|b̃(s)|q‖F (s, ·)‖qH1,pds

which yields, thanks to (4.12),

‖F‖q
D1,2,p
q
≤ CT

(
1 + ‖b̃‖qLq([0,T ])e

CTT‖b̃‖qLq([0,T ])

)(
‖ϕ‖qD1,2−2/q+ε,p + ‖f‖q

D1,0,p
q

)
, (4.13)

Then, we differentiate (4.10) with respect to the time variable and deduce the equation{
∂tF (t, x) = −LXt F (t, x) + f(t, x),
F (T, x) = φ(x).

(4.14)

By applying the D1,0,p
q -norm to (4.14) and by using the estimate (4.12), we obtain

‖∂tF‖D1,0,p
q
≤ 1

2
‖∆F‖D1,0,p

q
+ ‖f‖D1,0,p

q
+ ‖b · ∇F‖D1,0,p

q
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≤ CT
(
‖ϕ‖D1,2−2/q+ε,p + ‖f‖D1,0,p

q

)
,

which, together with (4.13), gives Estimate (4.11).
Step 2: The last argument of the proof consists in using the so-called continuity

method. For µ ∈ [0, 1], we consider the equation

Fµ(t, x) = Pt,Tϕ(x)−
∫ T

t
Pt,sf(s, x)ds+

∫ T

t
Pt,s

[
µb(s, x,W(s)) · ∇Fµ(s, x)

]
ds. (4.15)

We wish to prove that the set ν ⊂ [0, 1] of elements µ for which (4.15) admits a unique
solution is [0, 1] (with µ = 1 corresponding to the equation (4.10)). In the case where
µ = 0, the existence and uniqueness of a solution of (4.10) is straightforward and,
thus, ν is not empty. Fix µ0 ∈ ν and denote Rµ0 the mapping from D1,0,p

q to G1,2,p
q

which maps f to the solution Fµ0 of (4.15) for ϕ = 0. Let µ ∈ [0, 1] to be fix later.
The existence and uniqueness of the solution of equation (4.15) relies on a fixed point
argument. We consider the mapping Γµ given by

Γµ(F ) = P·,Tϕ+Rµ0f + (µ0 − µ)Rµ0 (b · ∇F ) ,

and aim to prove that it is a contraction mapping from G1,2,p
q to itself. It follows from

the estimates (4.11) and (4.8) that, ∀F1, F2 ∈ G1,2,p
q ,

‖Γµ(F1)− Γµ(F2)‖G1,2,p
q
≤C|µ− µ0|‖b · ∇(F1 − F2)‖D1,0,p

q

≤C|µ− µ0|
(∫ T

0
|b̃(s)|q‖F1(s, ·)− F2(s, ·)‖qH1,pds

)1/q

≤C|µ− µ0|‖b̃‖Lq([0,T ])‖F1 − F2‖G1,2,p
q

.

Hence, by choosing µ such that |µ−µ0| < 1
C‖b̃‖Lq([0,T ])

, we can conclude that there exists

a unique solution to (4.15). Therefore, by repeating the argument a finite number of
times, we prove that ν = [0, 1] and that (4.10) admits a unique solution in G1,2,p

q .

Using the regularity obtained above, we deduce the equality between the weak and
the mild solution as stated below.

Corollary 4.2. Let ϕ ∈ D1,2−2/q+ε,p, with ε > 0. There exists a unique solution F in
D1,2,p
q to the equation (4.6).

From now on, we denote (PXs,t)0≤s≤t≤T the propagator associated to the solution of
the Fokker-Planck equation determined by LX , that is, PXs,tϕ(x) is the solution to the
SPDE

PXs,tϕ(x) = ϕ(x) +

∫ t

s
LXr PXr,tϕ(x)dr, 0 ≤ s ≤ t, (4.16)

with ϕ a Ft-measurable mapping in D1,2−2/q+ε,p. For ϕ : [0, T ]× Rd 7→ Rd, we note:

PXs,tϕ(r, x) :=
(
PXs,tϕ(r, ·)

)
(x).

We end this section by the following Lemma which gives some estimates on PX .

Lemma 4.3. Let ϕ ∈ D1,2−2/q+ε,p, with ε > 0. The following estimates hold

‖PX·,Tϕ‖G1,2,p
q
≤ C1,T ‖ϕ‖D1,2−2/q+ε,p , (4.17)
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∥∥∥∥∫ T

·
PX·,rϕ(r, ·)dr

∥∥∥∥
G1,2,p
q

≤ C2,T ‖ϕ‖D1,0,p
q

, (4.18)

and ∫ T

0
‖LX· PX·,rϕ(r, ·)‖q

D1,0,p
q

dr ≤ C‖ϕ‖q
D1,2−2/q+ε,p
q

. (4.19)

Proof. The estimates (4.17) and (4.18) are direct consequences of Proposition 4.2. Con-
cerning the third estimate, thanks to (4.8), (4.9), and (4.17), there exists a constant
Cr > 0 uniformly bounded in r ∈ [0, T ] such that

‖b · ∇PX·,rϕ(r, ·)‖D1,0,p
q
≤ Cr‖ϕ(r, ·)‖D1,2−2/q+ε,p .

Therefore, (4.19) follows from (4.17) since∫ T

0
‖LX· PX·,rϕ(r, ·)‖q

D1,0,p
q

dr ≤
∫ T

0
Cqr‖ϕ(r, ·)‖qD1,2−2/q+ε,pdr.

We end this section with the following Proposition.

Proposition 4.3. There exists a constant C > 0 such that∥∥∥∥∫ T

·
PX·,sf

′(s, ·)υf (·, s)ds
∥∥∥∥
W2,p
q

≤ C‖f ′‖Lq([0,T ];L`(Ω;W−γ,p(Rd))),

and ∥∥∥∥∫ T

·
PX·,sb

′(s, ·)υb(·, s)ds
∥∥∥∥
W2,p
q

≤ C‖b′‖Lq([0,T ];Lp(Ω×Rd)).

Proof. We only deal with the first estimate (the second one is derived in a similar fashion
with γ = 0). Moreover, let us remark that the estimate is direct, by Lemma 4.3, if
υf (θ, t) = 1{θ≤τf}. We consider equation (4.10) with f = 0 and ϕ(x) = f ′(s, x). Under
Assumption 3.1 and by setting F (t, x) = PXt,sf

′(s, x), we obtain on one hand, thanks
to Corollary 4.1 with deterministic norms (that is without the Malliavin derivative and
the integration on ω ∈ Ω), the estimate

sup
x∈Rd

|∇PXt,sf ′(s, x)|q ≤ C sup
x∈Rd

|∇Pt,sf ′(s, x)|q + C

∫ s

t
b̃(u)q sup

x∈Rd
|∇PXu,sf ′(s, x)|qdu,

which, by a Gronwall lemma, leads to

sup
x∈Rd

|∇PXt,sf ′(s, x)| ≤ C sup
x∈Rd

|∇Pt,sf ′(s, x)|eCT ‖b̃‖
q
Lq([0,T ]) . (4.20)

On another hand, we have, thanks to Fubini’s theorem,∫ T

t
PXt,sf

′(s, x)υf (t, s)ds =

∫ T

t
Pt,sf

′(s, x)υf (t, s)ds

+

∫ T

t
Pt,u

[
b(u, x,W(u)) · ∇

∫ T

u
PXu,sf

′(s, x)υf (u, s)ds

]
du

+

∫ T

t
Pt,u

[
b(u, x,W(u)) · ∇

∫ T

u
PXu,sf

′(s, x)δsυf (t, u)ds

]
du,

(4.21)
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where we denote δsυf (t, u) := υf (t, s) − υf (u, s). By a Sobolev embedding (as in the
proof of Corollary 4.1) and a classical inequality on the heat semigroup, we deduce from
(4.20) that

sup
x∈Rd

|∇PXt,sf ′(s, x)| ≤ C sup
x∈Rd

|∇Pt,sf ′(s, x)|

≤ C‖(1−∆)γ/2Pt,s(1−∆)−γ/2f ′(s, ·)‖W 2−β,p(Rd)

≤ C

|t− s|(2−β+γ)/2
‖f ′(s, ·)‖W−γ,p(Rd), (4.22)

where β is strictly greater than 2/q. To conclude our proof, we need to provide ad-
equate bounds on the W2,p

q -norm of each integrals from the right-hand-side of (4.21).
Concerning the first integral, we have, by Hölder’s inequality and an estimate on the
heat semigroup,∥∥∥∥∫ T

t
Pt,sf

′(s, x)υf (t, s)ds

∥∥∥∥
W2,p

≤ C
∫ T

t

‖f ′(s, ·)‖L`(Ω;W−γ,p(Rd))

|s− t|1+γ/2−α ds,

and, since 1 + γ/2− α < 1, by a Hardy-Littlewood-Sobolev inequality,∥∥∥∥∫ T

t
Pt,sf

′(s, x)υf (t, s)ds

∥∥∥∥
W2,p
q

≤ C

∥∥∥∥∥
∫ T

0

‖f ′(s, ·)‖L`(Ω;W−γ,p(Rd))

|s− ·|1+γ/2−α ds

∥∥∥∥∥
Lq([0,T ])

≤ C‖f ′‖Lq([0,T ];L`(Ω;W−γ,p(Rd))).

We now turn to the second integral. If follows from Lemma 4.1, Inequality (4.22) and
Assumption 3.1 that∥∥∥∥∫ T

·
P·,u

[
b(u, x,W(u)) · ∇

∫ T

u
PXu,sf

′(s, x)υf (u, s)ds

]
du

∥∥∥∥q
W2,p
q

≤ C
∫ T

t
b̃(u)q

∥∥∥∥∥
∫ T

u
sup
x∈Rd

∣∣∇PXu,sf ′(s, x)υf (u, s)
∣∣ ds∥∥∥∥∥

q

Lp(Ω)

du

≤ C
∫ T

t
b̃(u)q

(∫ T

u

‖f ′(s, ·)‖W−γ,`

|u− s|(2−β+γ−2α)/2
ds

)q
du.

Since %1 := 1− β/2 + γ/2− α < 1/q̄, we have, by Hölder’s inequality,∫ T

u

‖f ′(s, ·)‖W−γ,`

|u− s|(2−β+γ−2α)/2
ds ≤ C‖f ′‖W−γ,p

q

∫ T

0

ds

|s|%1q̄
,

which implies a bound on the second integral. Finally, we consider the third integral.
We first assume that γ = 0. We have, since %2 := 1− β/2 < 1/q̄,∥∥∥∥∫ T

t
Pt,u

[
b(u, x,W(u)) · ∇

∫ T

u
PXu,sf

′(s, x)δsυf (t, u)ds

]
du

∥∥∥∥
W2,p

≤ C
∫ T

t

b̃(u)

|u− t|1−α

∥∥∥∥∥
∫ T

u
sup
x∈Rd

∣∣∇PXu,sf ′(s, x)
∣∣ ds∥∥∥∥∥

Lp(Ω)

du

≤ C
∫ T

0

b̃(u)

|u− t|1−α

(∫ T

u

‖f ′(s, ·)‖L`(Ω;Lp(Rd))

|u− s|1−β/2
ds

)
du
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≤ C

(∫ T

0

b̃(u)

|u− t|1−α
du

)
‖f ′‖Lq([0,T ];L`(Ω;Lp(Rd)))

(∫ T

0

ds

|s|%2q̄
ds

)
.

Applying the Lq-norm on the previous inequality and using the Hardy-Littlewood-
Sobolev inequality, we bound the third integral.
We now suppose that γ = 1. We have∫ T

t
Pt,u

[
b(u, x,W(u)) · ∇

∫ T

u
PXu,sf

′(s, x)δsυf (t, u)ds

]
du

=

∫ T

t
div

(
Pt,u

[
b(u, x,W(u))

∫ T

u
PXu,sf

′(s, x)δsυf (t, u)ds

])
du

−
∫ T

t
Pt,u

[
div b(u, x,W(u))

∫ T

u
PXu,sf

′(s, x)δsυf (t, u)ds

]
du.

Following the same computations as in the case γ = 0, we obtain∥∥∥∥∫ T

t
div

(
Pt,u

[
b(u, x,W(u))

∫ T

u
PXu,sf

′(s, x)δsυf (t, u)ds

])
du

∥∥∥∥
W2,p

≤ C

(∫ T

0

b̃(u)

|u− t|1+1/2−αdu

)
‖f ′‖Lq([0,T ];L`(Ω;W−1,p(Rd)))

(∫ T

0

ds

|s|%3q̄
ds

)
,

and, since the Lp-norm of ∇b can be bounded by b̃,∥∥∥∥∫ T

t
Pt,u

[
div b(u, x,W(u))

∫ T

u
PXu,sf

′(s, x)δsυf (t, u)ds

]
du

∥∥∥∥
W2,p

≤ C

(∫ T

0

b̃(u)

|u− t|1−α
du

)
‖f ′‖Lq([0,T ];L`(Ω;W−1,p(Rd)))

(∫ T

0

ds

|s|%3q̄
ds

)
.

We conclude our proof by applying the Lq-norm and using the Hardy-Littlewood-
Sobolev inequality on the previous inequalities.

We can also compute the Malliavin derivative of (PXs,t)0≤s≤t≤T . This is the goal of
the next lemma.

Lemma 4.4. We have the following commutation formula between the Malliavin deriva-
tive and the operator PX

DtP
X
t,Tϕ(x) = PXt,TDtϕ(x) +

∫ T

t
PXt,r

(
Dtb(r, x) · ∇PXr,Tϕ(x)

)
dr (4.23)

Proof. Let t ≤ r ≤ T . Denote

Φ(r, x) := DtP
X
r,Tϕ(x),

then, a direct computation of the Malliavin derivative applied to the representation
formula of PX gives

Φ(r, x) = Φ(T, x) +

∫ T

r
LXu Φ(u, x)du+

∫ T

r
Dtb(u, x) · ∇PXu,Tϕ(x)du.

Hence, by the representation formula of PX , we deduce the following mild formulation
of Φ

Φ(r, x) = PXr,TΦ(T, x) +

∫ T

r
PXr,u

(
Dtb(u, x) · ∇PXu,Tϕ(x)

)
du,

and, thus, the desired result.
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4.3 Proof of Theorem 3.1
Throughout Step 1 and Step 2, we assume that f and f ′ are smooth with respect to
x. Since the norms of F and Z in W2,p

q are bounded by the norms of f ∈ W0,p
q and

f ′ ∈ Lm([0, T ];L`(Ω;Lp(Rd))) (see Step 1 and Step 2), we can consider two sequences of
smooth approximations (fn)n∈N and (f ′n)n∈N such that the limit (Fn, Zn) −→

n→∞
(F,Z)

converges in W2,p
q . Moreover, thanks to the mild formulation (3.5), we obtain that

(F,Z) is solution of the Equation (2.8).
Step 1: Set

F (t, x) := E
[
−
∫ T

t
PXt,rf(r, x)dr

∣∣∣Ft] . (4.24)

We start with proving that F belongs to W2,p
P,q. Indeed, by using (4.18) and Jensen’s

inequality, it holds that

‖F (t, ·)‖pD1,2,p =

∥∥∥∥E [−∫ T

t
PXt,sf(s, ·)ds

∣∣∣Ft]∥∥∥∥p
D1,2,p

= E

[∥∥∥∥E [−∫ T

t
PXt,sf(s, ·)ds

∣∣∣Ft]∥∥∥∥p
W 2,p

]
+

∫ T

0
E

[∥∥∥∥DθE
[
−
∫ T

t
PXt,sf(s, ·)ds

∣∣∣Ft]∥∥∥∥p
W 2,p

]
dθ

≤E

[∥∥∥∥∫ T

t
PXt,sf(s, ·)ds

∥∥∥∥p
W 2,p

]
+

∫ t

0
E

[∥∥∥∥∫ T

t
DθP

X
t,sf(s, ·)ds

∥∥∥∥p
W 2,p

]
dθ

≤
∥∥∥∥∫ T

t
PXt,sf(s, ·)ds

∥∥∥∥p
D1,2,p

< +∞. (4.25)

We now turn to the derivation of Z. We have∫ T

t

(
LXs F (s, x)− f(x, s)

)
ds = −

∫ T

t
E
[∫ T

s
LXs PXs,rf(r, x)dr + f(s, x)

∣∣∣Fs] ds.
By denoting

m(s, x) := −
∫ T

s
LXs PXs,rf(r, x)dr − f(s, x),

we have that, thanks to the representation (4.16),∫ T

t
E
[
m(s, x)

∣∣∣Ft] ds = −E
[∫ T

t

∫ T

s
LXs PXs,rf(r, x)drds+

∫ T

t
f(s, x)ds

∣∣∣Ft]
= −E

[∫ T

t

∫ r

t
LXs PXs,rf(r, x)dsdr +

∫ T

t
f(s, x)ds

∣∣∣Ft]
= −E

[∫ T

t

(
PXt,rf(r, x)− f(r, x)

)
dr +

∫ T

t
f(s, x)ds

∣∣∣Ft]
= F (t, x).

In the previous computations, we have used Fubini’s theorem, which can be applied
since, thanks to Lemma 4.3,∫ T

t

∫ r

t
‖LXs PXs,rf(r, ·)‖D1,0,pdsdr ≤

(∫ T

0

∫ T

0
‖LXs PXs,rf(r, ·)‖qD1,0,pdsdr

)1/q

≤ C‖f‖D1,2−2/q+ε,p
q

. (4.26)

20



This enables us to conveniently express the martingale that we are looking for in terms
of an adapted field Z. That is, we have

F (t, x) =

∫ T

t

(
LXs F (s, x)− f(s, x)

)
ds−M(T, x) +M(t, x),

where

M(t, x) :=

∫ t

0
E
[
m(s, x)

∣∣∣Fs] ds+

∫ T

t
E
[
m(s, x)

∣∣∣Ft] ds.
Let us now check that M is indeed a Lp(Rd)-valued martingale. Note first that by
estimate (4.26), M(T, ·) is integrable as

E
[
‖M(T, ·)‖p

Lp(Rd)

]
= E

[∥∥∥∥∫ T

0
E
[
m(s, ·)

∣∣∣Fs] ds∥∥∥∥p
Lp(Rd)

]

≤ C
∫ T

0
E
[
‖m(s, ·)‖p

Lp(Rd)

]
ds < +∞,

since m belongs to D1,0,p
q (by (4.26) and by our assumption on f). In addition, ∀u ∈

[0, t], we have

E
[
M(t, ·)−M(u, ·)

∣∣∣Fu] =

∫ t

u
E
[
m(s, ·)

∣∣∣Fu] ds+

∫ T

t
E
[
m(s, ·)

∣∣∣Fu] ds− ∫ T

u
E
[
m(s, ·)

∣∣∣Fu] ds
= 0,

therefore, M is indeed a martingale. It remains to represent M can be written as a
stochastic integral against the Brownian motionW . To this end we apply a localization
in space procedure. More precisely, for any n ≥ 1, set:

Mn(t, x) := M(0, x) +M(t, x)1|x|<n1t∈(0,T ]

which is a L2(Rd)-valued martingale. Hence, there exists an adapted random field Zn

such that

E
[∫ T

0
‖Zn(t, x)‖2L2(Rd)dt

]
< +∞,

and

Mn(t, x) = M(0, x) +

∫ t

0
Zn(s, x)dWs, (t, x) ∈ [0, T ]× Rd.

Note that by definition, we have that:

Zn(t, x) = Zn+1(t, x), P− a.s. for |x| < n.

Set Z(t, x) := limn→+∞ Z
n(t, x), where the limit is pointwise and non-decreasing. We

have using Fubini’s theorem, and Doob’s inequality for real-valued martingales:

E

[
sup
t∈[0,T ]

∥∥∥∥M(t, ·)−M(0, ·)−
∫ t

0
Z(s, ·)dWs

∥∥∥∥p
Lp(Rd)

]

≤
∫
Rd

E

[
sup
t∈[0,T ]

∣∣∣∣M(t, ·)−M(0, ·)−
∫ t

0
Z(s, ·)dWs

∣∣∣∣p
]
dx

≤ p

p− 1

∫
Rd

E

[∣∣∣∣M(T, ·)−M(0, ·)−
∫ T

0
Z(s, ·)dWs

∣∣∣∣p
]
dx
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≤ p

p− 1
lim

n→+∞

∫
|x|<n

E

[∣∣∣∣Mn(T, ·)−M(0, ·)−
∫ T

0
Zn(s, ·)dWs

∣∣∣∣p
]
dx = 0.

Hence, the representation M(t, x) = M(0, x) −
∫ t

0 Z(s, x)dWs holds for almost every
(ω, t, x) and Z belongs toMp. Thus, we obtain that (F,Z) ∈W2,p

P,q×Mp solves Equation
(2.8).

Step 2: Proof of (3.4).

Recall that by (4.25), ‖F (t, ·)‖D1,2,p < +∞. In addition, following the same lines as in
the computation of (4.25), we have that:∥∥∥∥∫ T

t
LXr F (r, ·)dr

∥∥∥∥q
D1,0,p
q

=

∫ T

0

∥∥∥∥∫ T

t
LXr F (r, ·)dr

∥∥∥∥q
D1,0,p

dt

≤ T
∫ T

0

∥∥∥∥LXr ∫ T

r
PXr,sf(s, ·)ds

∥∥∥∥q
D1,0,p

dr

≤ T
∫ T

0

∫ s

0

∥∥LXr PXr,sf(r, ·)
∥∥q
D1,2,p drds, by Lemma 4.3

≤ CT
∫ T

0
‖f(r, ·)‖qD1,2−2/q+ε,p dr = CT‖f‖q

D1,2−2/q+ε,p
q

.

Combining this result with Relation (2.8), we obtain that for a.e. (t, x),
∫ T
t Z(s, x)dWs

belongs to D1,p (see Remark A.2). Since D1,p ⊂ D1,2 (see A.1 for a definition of these
spaces), by [30, Lemma 2.3], this is equivalent to for a.e. x, Z(·, x) ∈ L2([t, T ],D1,2).
As a consequence, for a.e. (t, x) and for any 0 ≤ s ≤ t,

DsF (t, x) = −
∫ t

s

(
DsLXr F (r, x)−Dsf(r, x)

)
dr+Z(s, x)+

∫ t

s
DsZ(r, x)dWr, P−a.s..

Hence taking s = t, in the previous relation, we have that for a.e. x, a version of
the process (Z(t, x))t∈[0,T ] is given by Z(t, x) = DtF (t, x). Representation (3.4) can
then be deduced using [29, Proposition 1.2.8]. We are now in position to prove that Z
belongs to W2,p

q . By using Lemma 4.4 and Assumption 3.1, we have

DtF (t, x) = E
[
−
∫ T

t
DtP

X
t,rf(r, x)dr

∣∣∣Ft] = E
[
−
∫ T

t
PXt,rf

′(r, x)υf (t, r)dr
∣∣∣Ft]

+ E
[∫ T

t

∫ r

t
PXt,u

(
b′(u, x)υb(t, u) · ∇PXu,rf(r, x)

)
dudr

∣∣∣Ft] .
(4.27)

By Assumption 3.1 and Proposition 4.3, we estimate the first term on the rhs of (4.27)∥∥∥∥E [−∫ T

·
PX·,rf

′(r, ·)υf (·, r)dr
∣∣∣F·]∥∥∥∥

W2,p
q

≤ C‖f ′‖Lq([0,T ];L`(Ω;W−γ,p(Rd))).

For the second term of (4.27), we remark that, thanks to Fubini’s theorem,∫ T

t

∫ r

t
PXt,u

(
b′(u, x,W(u))υb(t, u) · ∇PXu,rf(r, x)

)
dudr =

∫ T

t
PXt,uG(u, x)υb(t, u)du,

where we denote G(u, x) := b′(u, x,W(u)) ·∇
[∫ T
u PXu,rf(r, x)dr

]
. Hence, we can proceed

by similar arguments as for the first term of the rhs of (4.27) since, by (4.9), (4.8) and
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Lemma 4.3,

‖G‖Lq([0,T ];Lp(Ω×Rd)) ≤ C
∥∥∥∥∫ T

u
PXu,rf(r, x)dr

∥∥∥∥
G0,2,p
q

≤ C‖f‖W0,p
q
<∞.

Therefore, we conclude that DtF (t, x) belongs to W2,p
q and, thus, Z itself belongs to

W2,p
q .

Step 3: Proof of the mild representation (3.5).

Fix t in [0, T ]. Set F̃ (t, x) := −
∫ T
t PXt,rf(r, x)dr. By Lemma 4.3, F̃ (t, x) belongs to

D1,2 for a.e. x ∈ Rd. Hence Clark-Ocone formula (see [29, Proposition 1.3.14]) implies
that:

F (t, x) = F̃ (t, x)−
∫ T

t
E[DsF̃ (t, x)|Fs]dWs, P− a.s..

Recall that Z can be chosen as Z(s, x) = DsF (s, x). Thus Relation (3.5) follows if one
proves that, for a.e. s in [t, T ],

E[DsF̃ (t, x)|Fs] = PXt,sDsE[F̃ (s, x)|Fs]. (4.28)

Let t ≤ u ≤ s. Using Relation (4.16), we have:

PXu,sDsE[F̃ (s, x)|Fs] = DsE[F̃ (s, x)|Fs] +

∫ s

u
LXa PXa,sDsE[F̃ (s, x)|Fs]da

= DsE[F̃ (u, x)|Fs] +DsE[(F̃ (s, x)− F̃ (u, x))|Fs] +

∫ s

u
LXa PXa,sDsE[F̃ (s, x)|Fs]da.

We now compute the second term of the right-hand side above to get:

DsE[(F̃ (s, x)− F̃ (u, x))|Fs]

= DsE
[
−
∫ T

s
PXs,rf(r, x)dr

∣∣∣Fs]+DsE
[∫ T

u
PXu,rf(r, x)dr

∣∣∣Fs]
= DsE

[
−
∫ T

s
PXs,rf(r, x)dr

∣∣∣Fs]+DsE
[∫ T

s
PXu,rf(r, x)dr

∣∣∣Fs] , by [29, Proposition 1.2.8]∗

= DsE
[
−
∫ T

s
(PXs,r − PXu,r)f(r, x)dr

∣∣∣Fs]
= DsE

[
−
∫ T

s

∫ s

u
LXa PXa,rf(r, x)da dr

∣∣∣Fs]
= DsE

[∫ s

u
LXa PXa,s

(
−
∫ T

s
PXs,rf(r, x)dr

)
da
∣∣∣Fs] .

Using similar arguments to those used in Lemma 4.4, one proves that:

DsE[PXt,sΦ(x)|Fs] = PXt,sDsE[Φ(x)|Fs],

for any Fr-measurable random field Φ with r ≥ s. Hence,

DsE[(F̃ (s, x)− F̃ (u, x))|Fs] =

∫ s

u
LXa PXa,sDsE

[
−
∫ T

s
PXs,rf(r, x)dr

∣∣∣Fs] da
which establishes (4.28) in light of the previous computations. We finally conclude
the proof by addressing the uniqueness of the adapted mild solution (F,Z) which, by
linearity, boils down to prove that (0, 0) is the unique solution to:

F (t, x) = −
∫ T

t
PXt,rZ(r, x)dWr.

23



As F must be adapted, F (t, x) = E[F (t, x)|Ft] = E
[
−
∫ T
t PXt,rZ(r, x)dWr|Ft

]
= 0 if

we prove that for almost every t,
∫ ·
t P

X
t,rZ(r, x)dWr is a true martingale. In fact by

Burkholder-Davis-Gundy’s inequality for real-valued martingales and Lemma 4.3, it
holds that∥∥∥∥∫ T

·
PX·,rZ(r, ·)dWr

∥∥∥∥q
W2,p
q

≤ C
∫ T

0

(∥∥∥∥∫ T

t

∣∣PXt,rZ(r, ·)
∣∣2 dr∥∥∥∥1/2

W2,p/2

)q
dt

≤ C
∫ T

0

(∫ T

t

∥∥PXt,rZ(r, ·)
∥∥2

W2,p dr

)q/2
dt

≤ C
∫ T

0

∫ r

0

∥∥PXt,rZ(r, ·)
∥∥q
W2,p dtdr

≤ C‖Z‖q
W2,p
q
< +∞,

which proves the required property.

5 Proof of Theorem 3.2

5.1 The Itô-Wentzell formula
Let us recall the Itô-Wentzell formula in the context of processes with values in Sobolev
spaces [24].

Proposition 5.1 (Itô-Wentzell formula). Let F in W2,p
P,q be such that for any ϕ ∈

Lp̄(Rd):

〈F (t, ·), ϕ〉 = 〈F (0, ·), ϕ〉+

∫ t

0
〈Γ(s, ·), ϕ〉dWs +

∫ t

0
〈A(s, ·), ϕ〉ds (5.1)

with F (0, ·) ∈ Lp(Rd), A in W0,p
P,q and Γ in W1,p

P,q. Then, ∀t ∈ [0, T ], ∀ϕ ∈ Lp̄(Rd),

〈F (t, ·+Xt), ϕ〉 =〈F (0, ·+X0), ϕ〉+

∫ t

0
[〈Γ(s, ·+Xs), ϕ〉+ 〈∇F (s, ·+Xs), ϕ〉]dWs

+

∫ t

0
[〈divΓ(s, ·+Xs), ϕ〉+ 〈A(s, ·+Xs), ϕ〉] ds

+

∫ t

0
〈LXs F (s, ·+Xs), ϕ〉ds, P− a.s.. (5.2)

Remark 5.1. As noted earlier, elements of W2,p
P,q are adapted with respect to (Ft)t∈[0,T ]

the natural filtration of W . However, by definition of a weak solution to the SDE,
(Gt)t∈[0,T ]-adapted processes are also (Ft)t∈[0,T ]-adapted.

Remark 5.2. Note that for any ϕ in Lp̄(Rd), the stochastic process s 7→ 〈Γ(s, ·+Xs), ϕ〉
is square integrable so that the stochastic integral of this process against the Brownian
motion is well-defined. The same comment implies that all the integrals involved in
Relations (5.1)-(5.2) are well-defined. We also would like to point out that contrary
to the original formula in [24] where the test functions ϕ are assumed to be infinitely
differentiable, the regularity assumption on our processes allows us to consider only Lp̄

test functions.
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5.2 Proof of Theorem 3.2
It follows from the Itô-Wentzell formula from Proposition 5.1 that, ∀ϕ ∈ Lp̄(Rd),∫ T

0
〈f(s, ·+Xs), ϕ〉ds

=− 〈F (0, ·+X0), ϕ〉 −
∫ T

0
(〈∇F (s, ·+Xs), ϕ〉+ 〈Z(s, ·+Xs), ϕ〉) dWs

−
∫ T

0
〈divZ(s, ·+Xs), ϕ〉ds, P− a.s.. (5.3)

Let us remark that by Theorem 3.1 and a Sobolev embedding, F,Z ∈ LqP([0, T ];Lp(Ω; C1,α(Rd)))
for a certain α > 0. We choose ϕ = θε, ε > 0 a mollifier in Equation (5.3). For any
positive ε we have∫ T

0
f ε(s,Xs)ds = −F ε(0, X0)−

∫ T

0
(∇F ε(s,Xs) + Zε(s,Xs)) dWs

−
∫ T

0
divZε(s,Xs)ds, P− a.s., (5.4)

where we denote Gε(t, x) = 〈G(t, ·), θε(x− ·)〉 for G = f, F,∇F,
∑d

i=1

∑d
j=1 ∂xiZj . We

remark that, given a function G ∈ LqP([0, T ];Lp(Ω; C0,α
b (Rd))) it holds that

E
[∫ T

0
|Gε(s,Xs)−G(s,Xs)| ds

]
≤
(∫ T

0

(
E
[∫

Rd
|G(s, x+Xs)−G(s,Xs)|θε(x)dx

])q
ds

)1/q

≤

(∫ T

0
E
[
‖G(s, ·)‖p

C0,α
b (Rd)

]q/p
ds

)1/q (∫
Rd
|x|αθε(x)dx

)
≤C‖G‖

Lq([0,T ];Lp(Ω;C0,α
b (Rd)))

εα −→
ε→0

0.

Thus, each term from the right-hand side of (5.4) converges to the corresponding value.
In order to handle with the term in the left-hand side, we have to prove that the integral
I defined by

I(x) :=

∫ T

0
f(s, x+Xs)ds,

is continuous, P−a.s.. This comes from the fact that I belongs to W1,p. Indeed, thanks
to (5.3), Itô’s isometry, a change of variable and Jensen’s inequality, we have that

‖I‖W1,p ≤‖F (0, ·+X0)‖W1,p

+ 2

(∫ T

0
‖∇F (s, ·+Xs)‖2W1,p + ‖Z(s, ·+Xs)‖2W1,pds

)1/2

+

∫ T

0
‖∇Z(s, ·+Xs)‖W1,pds

≤‖F (0, ·)‖W1,p + C

(∫ T

0
‖F (s, ·)‖qW2,p + ‖Z(s, ·)‖qW1,pds

)1/q

+

(∫ T

0
‖Z(s, ·)‖qW2,p

)1/q

ds.
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Since F,Z ∈ W1,2,p
q , we deduce that I ∈ W1,p. By the Sobolev embedding C0,α(Rd) ⊂

W 1,p(Rd), we deduce that I is P-a.s. continuous. Thus, we have, by using Fubini’s
theorem, ∣∣∣∣∫ T

0
[f ε(s,Xs)− f(s,Xs)]ds

∣∣∣∣ = |〈[I(·)− I(0)], θε〉| −→
ε→0

0, P− a.s.,

which concludes the proof.

A Malliavin calculus for random fields
In this section we recall the classical definitions of Malliavin-Sobolev spaces presented
in [29] and extended them to functional valued random variables that from now on we
will refer as random fields. We start with some facts about Malliavin’s calculus for
random variables.

A.1 Malliavin calculus for random variables
Let (Ω,F ,P) be a probability space and W := (Wt)t∈[0,T ] a Brownian motion on this
space (to the price of heavier notations all the definitions and properties in this section
and of the next one extend to a d-dimensional Brownian motion). We assume that
F = σ (Wt, t ∈ [0, T ]).

Let Srv be the set of cylindrical functionals, that is the set of random variable β of the
form:

β = ϕ(Wt1 , · · · ,Wtn)

with N∗, ϕ : Rn → R in C∞0 (Rn) and 0 ≤ t1 < · · · < tn ≤ T . For an element β in Srv,
we set DF the L2([0, T ])-valued random variable as:

Dθβ :=
n∑
i=1

∂ϕ

∂xi
(Wt1 , · · · ,Wtn)1[0,ti](θ), θ ∈ [0, T ].

For a positive integer p ≥ 1, we set D1,p the closure of Srv with respect to the norm:

‖β‖pD1,p := E[|β|p] + E

[(∫ T

0
|Dθβ|2dθ

)p/2]
.

To D is associated a dual operator denoted δ defined through the following integration
by parts formula:

E[βδ(u)] = E
[∫ T

0
Dtβ utdt

]
, (A.1)

for any β in D1,2 and any L2([0, T ])-valued random variable u such that there exists a
positive constant C such that

∣∣∣E [∫ T0 Dtχutdt
]∣∣∣ ≤ C‖χ‖D1,2 , ∀χ ∈ D1,2. In particular

if u := (ut)t∈[0,T ] is a adapted process then δ(u) =
∫ T

0 utdWt. In addition, according
to [29, Proposition 1.3.4], for any β in S and any h in Lp([0, T ]) (with p ≥ 2), δ(hβ) is
well-defined and satisfies

δ(hβ) = βδ(h)−
∫ T

0
htDtβdt. (A.2)
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A.2 Malliavin calculus for random fields
We now extend these definitions to random fields that is to measurable mappings F :
Ω× Rd → R. More precisely, we consider S be the set of cylindrical fields, that is the
set of random fields F of the form:

F = ϕ(Wt1 , · · · ,Wtn , x)

with ϕ : Rn × Rd → R in C∞0 (Rn+d). We fix p an integer with p ≥ 2. For an element
F in S, we set DF the Lp([0, T ])-valued random field as:

DθF :=

n∑
i=1

∂ϕ

∂xi
(Wt1 , · · · ,Wtn , x)1[0,ti](θ), θ ∈ [0, T ].

Note that for F in S, D∇kF = ∇kDF for any multi index k. In addition, an integration
by parts formula for the operators D∇k can be derived as follows.

Lemma A.1. Let F in S, h in Lp([0, T ]) and G in S. Let k be a multi-index in Nd,
then the following integration by parts formula holds true:

E
[∫ T

0

∫
Rd
Dt∇kF (x)htG(x)dxdt

]
= E

[∫
Rd
F (x) δ((∇k)∗G(x)h)dx

]
, (A.3)

where (∇k)∗ denotes the dual operator of ∇k.

Proof. By the Malliavin-integration by parts formula (see e.g. [29, Lemma 1.2.1]) and
by the classical integration by parts formula in Rd we have that:

E
[∫ T

0

∫
Rd
Dt∇kF (x)htG(x)dxdt

]
=

∫
Rd

E
[∫ T

0
Dt∇kF (x)htG(x)dt

]
dx

=

∫
Rd

E
[
∇kF (x)δ(G(x)h)

]
dx, by (A.1)

=

∫
Rd

E
[
∇kF (x)G(x)δ(h)

]
dx−

∫
Rd

E
[
∇kF (x)

∫ T

0
DtG(x)htdt

]
dx, by (A.2)

= E
[∫

Rd
F (x)(∇k)∗G(x)dxδ(h)

]
− E

[∫
Rd
F (x)(∇k)∗

∫ T

0
DtG(x)htdtdx

]
= E

[∫
Rd
F (x)

(
(∇k)∗G(x)δ(h)−

∫ T

0
Dt(∇k)∗G(x)htdt

)
dx

]
= E

[∫
Rd
F (x) δ((∇k)∗G(x)h)dx

]
, by (A.2).

This integration by parts formula allows us to prove that the operators D∇k are
closable.

Lemma A.2. Let p ≥ 2 and k be in Nd. The operators D∇k (and so ∇kD) are closable
from S to Lp(Ω× Rd;Lp([0, T ])).
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Proof. Let (Fn) ⊂ S a sequence of random fields which converges in Lp(Ω×Rd;Lp(Rd))
to 0 and such that (D∇kFn)n converges in Lp(Ω × Rd;Lp([0, T ])) to some element η
in Lp(Ω × Rd;Lp([0, T ])). Let h in Lp([0, T ]) and G : Rd → R in S. We recall that
p̄ := p

p−1 . For any n ≥ 1, it holds that

E
[∫

Rd

∫ T

0
η(t, x)htdtG(x)dx

]
= E

[∫
Rd

∫ T

0
(η(t, x)−Dt∇kFn(x))htdtG(x)dx

]
+ E

[∫
Rd

∫ T

0
Dt∇kFn(x)htdtG(x)dx

]
= E

[∫
Rd

∫ T

0
(η(t, x)−Dt∇kFn(x))htdtG(x)dx

]
+ E

[∫
Rd
Fn(x) δ((∇k)∗G(x)h)dx

]
,

where we have used the integration by parts formula (A.3). We estimate the two terms
above separately. For the first one, using successive Hölder’s Inequality, we have that∣∣∣∣E [∫

Rd

∫ T

0
(η(t, x)−Dt∇kFn(x))htdtG(x)dx

]∣∣∣∣
≤ E

[∫
Rd

∫ T

0
|η(t, x)−Dt∇kFn(x)|pdtdx

]1/p

E[‖G‖p̄
Lp̄(Rd)

]1/p̄‖h‖Lp̄([0,T ])

−→
n→+∞

0.

The second term can be estimated as follows (using also Hölder’s inequality and (A.2)).∣∣∣∣E [∫
Rd
Fn(x) δ((∇k)∗G(x)h)dx

]∣∣∣∣
=

∣∣∣∣E [∫
Rd
Fn(x)(∇k)∗G(x)δ(h)dx

]
− E

[∫
Rd
Fn(x)

∫ T

0
Dt(∇k)∗G(x)htdtdx

]∣∣∣∣
≤ CE

[∫
Rd
|Fn(x)|pdx

]1/p (
E
[
δ(h)2p̄

]1/(2p̄) ∨ ‖h‖L2([0,T ])

)

×

E
[
‖(∇k)∗G‖2p̄

L2p̄(Rd)

]1/(2p̄)
+ E

∫
Rd

(∫ T

0
|Dt(∇k)∗G(x)|2dt

) p̄
2

dx

1/p̄


−→
n→+∞

0.

Combining the previous estimates and relations we conclude that

E
[∫

Rd

∫ T

0
η(t, x)htdtG(x)dx

]
= 0.

The conclusion follows from the fact that the set of elements of the form Gh with h in
Lp([0, T ]) and G in S is dense in Lp(Ω× Rd;Lp([0, T ])).

Remark A.1. Lemma A.1 and Lemma A.2 still holds if we replace the differential
operator ∇k with the Bessel potential (1−∆)m/2 for any m ∈ R.

Remark A.2. In particular, if a random field F belongs to D1,m,p (with m ≥ 0), then
for a.e. (t, x), ω 7→ ∇kF (t, x)(ω) belongs to the classical Malliavin space D1,p whose
definition has been recalled in Section A.1 (for any k such that |k| ≤ m) for random
variables that depend only on ω and not on (t, x).
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