
Computer Physics Communications 00 (2014) 1–37

Computer
Physics

Communi-
cations

GPELab, a Matlab Toolbox to solve Gross-Pitaevskii Equations I:
computation of stationary solutions

Xavier Antoine1,b, Romain Duboscq1,c

aUniversité de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, F-54506, France
bInria Nancy Grand-Est/IECL - ALICE

cInria Nancy Grand-Est/IECL - CORIDA

Abstract
This paper presents GPELab (Gross-Pitaevskii Equation Laboratory), an advanced easy-to-use and flexible Matlab toolbox for
numerically simulating many complex physics situations related to Bose-Einstein condensation. The model equation that GPELab
solves is the Gross-Pitaevskii equation. The aim of this first part is to present the physical problems and the robust and accurate
numerical schemes that are implemented for computing stationary solutions, to show a few computational examples and to explain
how the basic GPELab functions work. Problems that can be solved include: 1d, 2d and 3d situations, general potentials, large
classes of local and nonlocal nonlinearities, multi-components problems, fast rotating gazes. The toolbox is developed in such a
way that other physics applications that require the numerical solution of general Schrödinger-type equations can be considered.
GPELab also presents some functionalities to compute the dynamics of Bose-Einstein condensates and to numerically include
some stochastic effects.

c© 2011 Published by Elsevier Ltd.

Keywords: Bose-Einstein condensates, nonlinear Schrödinger equation, Gross-Pitaevskii equation, stationary states, ground
states, imaginary time, conjugate normalized gradient flow, numerical simulation, computational methods, pseudospectral method
PACS: 02.60.-x, 02.70.-c, 31.15.-p, 31.15.xf
2010 MSC: 35Q41, 81Q05, 65M06, 65M12, 65M70, 65Z05

Contents

1 Introduction 2

2 The dimensionless rotating Gross-Pitaevskii equation 3
2.1 The GPE equation coming from physics . 3
2.2 The dimensionless GPE . 4

3 Stationary states - initial data - potentials - nonlinearities 5
3.1 Stationary states . 5
3.2 Initial data . 6
3.3 Potentials . 6
3.4 Nonlinearities . 7

Email addresses: xavier.antoine@univ-lorraine.fr (Xavier Antoine), romain.duboscq@univ-lorraine.fr (Romain Duboscq)
1

/ Computer Physics Communications 00 (2014) 1–37 2

4 Conjugate Normalized Gradient Flow (CNGF) formulation and discretization (for the one-component
BEC) 7
4.1 Time and space discretizations: the Backward Euler (BE) scheme 7

4.1.1 Backward Euler Finite Difference (BEFD) scheme . 8
4.1.2 Backward Euler pseudoSPectral (BESP) scheme . 9

4.2 One- and three-dimensional problems . 11

5 Extension to the multi-components case 11
5.1 The multi-components GPE . 11
5.2 Stationary states - CNGF . 12
5.3 Time and space discretizations . 13

6 A simple but complete example 14

7 How to use GPELab 17
7.1 Notations and preliminary remarks . 17
7.2 Setting the numerical scheme and the geometry . 18

7.2.1 The Method Var2d function . 18
7.2.2 The Geometry2D Var2d.m function . 19

7.3 Setting the physical problem . 20
7.3.1 The Physics2D Var2d function . 20
7.3.2 The Dispersion Var2d function . 21
7.3.3 The Potential Var2d function . 22
7.3.4 The Nonlinearity Var2d function . 23
7.3.5 The gradient functions . 25
7.3.6 The InitialData Var2d function . 26

7.4 Launching the simulation... 26
7.4.1 The OutputsINI Var2d function . 26
7.4.2 The Print Var2d function . 29
7.4.3 The Figure Var2d function . 29
7.4.4 The GPELab2d function . 30

8 Two additional examples 30
8.1 Ground state of a system of 2d GPEs modeling a spin-orbit-coupled BEC under rotation 30
8.2 Ground state of a 3d GPE with a quadratic potential, a cubic nonlinearity and a rotational operator . . 32

9 Conclusion 35

1. Introduction

GPELab1 (Gross-Pitaevskii Equation Laboratory) is a flexible Matlab toolbox devoted to the numerical computation
of stationary and dynamical solutions of 1d-2d-3d Gross-Pitaevskii Equations (GPEs) [41, 52, 53, 63, 64] arising
in the modeling of Bose-Einstein Condensates (BECs) [10, 30, 34]. In particular, GPELab can handle advanced
physical problems that consider general potentials [45, 46, 48, 74], local and nonlocal (dipole-dipole) nonlinearities
[38, 39, 40, 49, 62], include rotation terms [4, 55, 56, 57, 66], stochastic effects [1, 2, 3, 36, 37, 70] and/or multi-
components problems [6, 47, 50, 59, 61, 69, 75]. One of the main purposes of GPELab is to provide to physicists
a generic, friendly and robust numerical modeling tool to compute theoretical data related to BECs through GPEs.
The numerical methods implemented in GPELab are based on pseudospectral approximation techniques [14, 18, 76]
that lead to highly accurate spatial solutions. In this first paper, we present the GPEs that GPELab can solve, the
numerical schemes that are used for computing stationary solutions and the associated GPELab functions. Examples

1http://gpelab.math.cnrs.fr/

2

http://gpelab.math.cnrs.fr/

/ Computer Physics Communications 00 (2014) 1–37 3

of GPELab scripts are fully developed to show some of its possibilities for physics problems of interest. A second
paper [12] will present the numerical schemes that are included in GPELab for solving the deterministic [11] and
stochastic dynamics of GPEs [1, 2, 3, 14, 36], the associated GPELab functions and a few numerical examples. Since
the GPEs are Schrödinger-type equations, GPELab could also be used to solve other physics problems that need to
numerically compute the solution to a Schrödinger equation like for example in nonlinear laser optics [7, 8, 33, 58].

Freely distributed computational physics codes for solving specific nonlinear Schrödinger equations already ex-
ist in the literature. For example, in [71], the authors propose a Fortran 90 code that solves the non rotating one-
component GPE for a cubic nonlinearity and a quadratic potential by using the imaginary time method. In [60, 73],
the authors distribute codes developed around finite difference methods for solving the GPE with a radial or a spherical
potential for a single-component, without rotation. Furthermore, improvements concerning the parallelization of the
codes by using OpenMP are realized in [73]. Other examples of codes (Fortran or Matlab codes) for numerically solv-
ing GPEs can be found in [25, 42, 54]. However, to the best of our knowledge, GPELab seems to be the most generic
freely available toolbox that provides robust and efficient numerical methods for solving stationary and dynamical
problems for a large class of Gross-Pitaevskii equations.

The paper is structured as follows. In Section 2, we introduce the standard Gross-Pitaevskii equation used to
model Bose-Einstein condensates in a rotating frame and we derive the associated dimensionless form of the GPE
that is used in GPELab. Section 3 is dedicated to the problem of characterizing the stationary states of the GPE
and to present the robust and fast numerical methods to solve these problems. In particular, we recall the standard
approximate steady state solutions that can be derived for the GPE since they play the role of initial guess for the
iterative algorithms (e.g. imaginary time [5, 9, 14, 19, 24, 26, 27, 32, 35]) used to compute the stationary solutions.
Examples of potentials and nonlinearities are also provided. We next describe in Section 4 the computational methods
that are used in GPELab. Essentially, the techniques are based on a semi-implicit backward Euler scheme in time [19]
and finite difference or (FFT-based) pseudospectral approximation schemes in space [18]. They are combined with
robust Krylov subspace iterative solvers [67, 68, 72] accelerated by physics-based preconditioners [15]. We extend
the methods in Section 5 to a large class of multi-components GPEs that state the foundations of GPELab. Section 6
gives a simple but complete example of GPELab source code for a two-dimensional BEC with rotation. This allows
us to explain the general philosophy of GPELab and to show step-by-step how to build a GPELab script for a model
problem. Section 7 describes with more details the different functions that are included in GPELab and how they must
be used for stationary state problems. Section 8 provides two additional examples of simulations. Finally, Section 9
concludes.

2. The dimensionless rotating Gross-Pitaevskii equation

2.1. The GPE equation coming from physics
The aim of GPELab is to compute both stationary solutions and the dynamics of Bose-Einstein Condensates

(BECs) [63, 65] based on Gross-Pitaevskii Equations (GPEs) [41, 52, 53, 64]. We do not want here to describe the
complex physics behind the BECs and GPE (see [63, 65]) but only to state a few well-known facts about GPE and
explain how to rewrite the physical form of the GPE as a dimensionless GPE which is the model equation used in
GPELab. It is also developed in such a way that the user can define its own equations and compute its proper physical
outputs of interest.

We consider a system of N atoms in a cold gas that are confined by using a trapping system. Let us furthermore
assume that the temperature T is much smaller than the critical temperature Tc

Tc ≈

(
N

ζ(3/2)

)3/2 h2

2πmkB
,

where h is the Planck constant, m is the atomic mass, kB is the Boltzmann’s constant and ζ is the zeta function. We
can describe a BEC under a rotation effect in the z-axis through a macroscopic wave function ψ which depends on
the spatial variable x := (x, y, z) ∈ R3 and time t > 0. This function has a dynamics which is governed by a specific
nonlinear Schrödinger equation, the so-called Gross-Pitaevskii equation, given by

i~
∂ψ

∂t
=

(
−
~2

2m
∆ + V(t, x) + (N − 1)U0|ψ|

2 −ΩLz

)
ψ, (2.1)

3

/ Computer Physics Communications 00 (2014) 1–37 4

where ~ = h/2π is the reduced Planck constant and Ω is the angular velocity of the condensate along the z-axis. The
complex number i is the complex unit: i2 = −1. The potential function V is an external trap which depends on x but
may also depend on t according to the physical situation. The typical example of potential V is the confining harmonic
(or quadratic) trap

V(x) =
m
2

(ω2
xx2 + ω2

yy2 + ω2
z z2), (2.2)

where ωx, ωy and ωz are the trap frequencies in the directions x, y and z, respectively. The quantity U0, defined by

U0 =
4π~2as

m
, (2.3)

describes the interaction between the atoms of the condensate, as being the scattering length which is positive for a
repulsive interaction and negative for an attractive interaction. The operator Lz is such that

Lz = xpy − ypx = −i~(x∂y − y∂x). (2.4)

This is the z-component of the angular momentum L = x × P, where the momentum operator is P = −i~∇ =

(px, py, pz)T . The energy of the functional is defined by [63, 65]

E(ψ) =

∫
R3

[
~2

2m
|∇ψ|2 + V |ψ|2 +

NU0

2
|ψ|4 −Ωψ∗Lzψ

]
dx. (2.5)

The wave function is normalized
||ψ||20 :=

∫
R3
|ψ(t, x)|dx = 1, (2.6)

which corresponds to the mass conservation constraint.

2.2. The dimensionless GPE
Let us introduce the following changes of variables [21, 29, 43]

t →
t
ωm

, ωm = min(ωx, ωy, ωz), x→ xa0, a0 =

√
~

mωm
,

ψ→
ψ

a3/2
0

, Ω→ Ωωm, E(·)→ ~ωmEβ,Ω(·).
(2.7)

This leads to the following dimensionless GPE

i
∂ψ

∂t
=

(
−

1
2

∆ + V + β|ψ|2 −ΩLz

)
ψ, (2.8)

where
β =

U0N
a3

0~ωm
=

4πasN
a0

, (2.9)

and Lz = −i(x∂y − y∂x). The potential is now

V(x) =
1
2

(γ2
x x2 + γ2

yy2 + γ2
z z2), (2.10)

setting γx,y,z = ωx,y,z/ωm, where ωm = minx,y,z ωx,y,z. The dimensionless energy functional Eβ,Ω is defined [20] by

Eβ,Ω(ψ) =

∫
R3

[
1
2
|∇ψ|2 + V |ψ|2 +

β

2
|ψ|4 −Ωψ∗Lzψ

]
dx. (2.11)

In the special case of a disk-shaped condensation, we consider that ωx ≈ ωy and ωz � ωx. This leads to: γx = 1,
γy ≈ 1, and γz � 1, with ω = ωx. This means that excitations along the x- and y-axes require less energy than along

4

/ Computer Physics Communications 00 (2014) 1–37 5

the z-axis. Therefore, the BEC dynamics is mostly in the x- and y-directions whereas it is stationary in the z-direction.
If we consider the following decomposition of the wave function [44, 51]: ψ(t, x) = ψ2(t, x, y)ψ3(z), where

ψ3(z) =

(∫
R2
|ψ0(x, y, z)|2dxdy

)1/2

,

with ψ0 the ground state of the BEC, then, the 3d GPE reduces to a 2d GPE given by

i
∂ψ2

∂t
=

(
−

1
2

∆ + V2 + σ + β2|ψ2|
2 −ΩLz

)
ψ2, (2.12)

where

σ =
1
2

∫
R

(
γ2

z z2|ψ3(z)|2 + |∂zψ3(z)|2
)

dz, β2 = β

∫
R
|ψ3(z)|4dz, V2(x, y) =

1
2

(γ2
x x2 + γ2

yy2).

By using the gauge transformation ψ2(t, x, y) → ψ2(t, x, y)e−
iσ
2 t, we can integrate the constant σ and thus eliminate it

from Equation (2.12). As a conclusion, one may write the GPE in dimension d as

i
∂ψ

∂t
=

(
−

1
2

∆ + Vd + βd |ψ|
2 −ΩLz

)
ψ, (2.13)

for x ∈ Rd, t > 0, β3 = β and V3(x, y, z) = V(x, y, z). When Ω = 0, we can also reduce the 2d GPE to a 1d GPE by
using similar arguments when considering a cigar-shaped condensation [14, 21, 44, 51].

3. Stationary states - initial data - potentials - nonlinearities

Let us assume that we are now in the 2d case. We remark here that 3d (and 1d) problems can also be treated by
GPELab but, for conciseness, we restrict ourselves to the 2d case, the extensions to the 1d and 3d situations being
quite direct [13].

3.1. Stationary states
One important question in the numerical solution of GPEs is the computation of stationary states. The problem

consists in finding a solution
ψ(t, x) = e−iµtφ(x), (3.14)

where µ is called the chemical potential of the condensate and φ is a time independent function. This solution is given
as the solution to the nonlinear elliptic equation

µφ(x) = −
1
2

∆φ(x) + V(x)φ(x) + β|φ(x)|2φ(x) −ΩLzφ(x), (3.15)

under the normalization constraint
||φ||20 =

∫
R2
|φ(x)|2dx = 1. (3.16)

This nonlinear eigenvalue problem can be solved by computing the chemical potential

µβ,Ω(φ) = Eβ,Ω(φ) +
β

4

∫
R2
|φ(x)|4dx, (3.17)

with

Eβ,Ω(φ) =

∫
R2

[
1
2
|∇φ|2 + V |φ|2 +

β

2
|φ|4 −Ωφ∗Lzφ

]
dx. (3.18)

Furthermore, (3.15) can be seen as the Euler-Lagrange equations associated with the constraint minimization problem
(3.16). This also means that the eigenfunctions are the critical points of the energy functional Eβ,Ω over the unit
sphere: S := {||φ||0 = 1} [44, 63]. Computing the global minimal solution(s) φg to the energy functional (3.18) under
the normalization constraint

φg = argmin
φ∈S

Eβ,Ω(φ) (3.19)

provides a ground state solution while local minima are excited (metastable) states.
5

/ Computer Physics Communications 00 (2014) 1–37 6

3.2. Initial data
When one wants to compute numerically solutions to the minimization problem (3.18)-(3.19), then an iterative

procedure is of course needed. This means that an initial guess has to be given to the method to initialize it and then
the minimization process computes (or tries to compute) a minimal solution through iterations. The initial data is
often (but not always) chosen as an Ansatz of the expected solution for a simplified problem.

For a non-rotating BEC, it can be proved [17, 53] that the global minimal solution is unique and gives a ground
state φg ≥ 0 for a positive initial data φ0. Therefore, for a weak nonlinear interaction, one may choose the solution
to the linear Schrödinger equation with harmonic potential when we are under the critical frequency: Ω � γxy, with
γxy = min(γx; γy) for a harmonic trap

V(x) =
1
2

(γ2
x x2 + γ2

yy2). (3.20)

The initial data is then given in 2d by

φ(x) =
(γxγy)1/4

√
π

e−(γx x2+γyy2)/2. (3.21)

This choice can also be considered for the (non-rotating) harmonic potential and a potential of a stirrer corresponding
to a far-blue detuned gaussian laser beam (toroidal trap) [19, 22, 74]

V(x) =
1
2

(γ2
x x2 + γ2

yy2) + w0e−||x−x0 ||
2/d2

. (3.22)

When a rotation is taken into account, the choice of the initial data is less clear. In [23], Bao et al. propose to choose,
for γx = γy = 1,

φ(x) =
(1 −Ω)φho(x) + Ωφv

ho(x)
||(1 −Ω)φho(x) + Ωφv

ho(x)||0
, (3.23)

with

φho(x) =
1
√
π

e−(γx x2+γyy2)/2, φv
ho(x) =

(γxx + iγyy)
√
π

e−(γx x2+γyy2)/2. (3.24)

With the above initial data, ground states for rotating gazes can be obtained for Ω < γxy by using imaginary time
methods (see Section 4) (while this is not e.g. the case with (3.21) when the rotation speed Ω is too large).

In the case of a strong linearity, one may also consider the Thomas-Fermi (TF) approximation [19, 21] of the
ground state as initial data. For the 2d case and a quadratic potential, the TF approximate function [31, 44] is such
that

φT F
β (x) =


√

(µT F
β − V(x))/βd, if βT F > V(x),

0, otherwise.
(3.25)

The eigenvalue approximation µT F
β is given by: µT F

β = (4βγxγy/π)1/2/2. More details about these functions as well as
InitialData Var2d can be found in Section 7.3.6. Let us remark that this function allows to use one of the above
initial data but the user can also consider its own initial data (that then need to be defined).

3.3. Potentials
As already said, GPELab provides the possibility of considering many potentials as well as to define its own

potentials. This is for example the case of a harmonic trap (3.20) (quadratic potential2d function) with a possible
added exponential term like in (3.22) (quadratic plus exp potential2d). Other possibilities include

• Quadratic-plus-quartic potential (quadratic plus quartic potential2d function) [46]

V(x) = (1 − α)
1
2

(γ2
x x2 + γ2

yy2) +
κ

4
(γ2

x x2 + γ2
yy2)2. (3.26)

• Quadratic-plus-sin (optical) potential (quadratic plus sin potential2d function) [28]

V(x) =
1
2

(γ2
x x2 + γ2

yy2) +
a1

2
sin

(
πx
d1

)2

+
a2

2
sin

(
πy
d2

)2

. (3.27)

6

/ Computer Physics Communications 00 (2014) 1–37 7

• Double-well trapping potential (double well trapping potential2d function) [74]

V(x) =
1
2

(
γ2

x x2 + γ2
yy2

)
+ V0e−x2/2d2

. (3.28)

Any new initial data or potential can be added by just following the way the functions are written. This makes GPELab
flexible to handle many physics configuration. Functions for the 1d and 3d cases are available as well.

3.4. Nonlinearities
In GPELab, a large class of nonlinearities can be considered in the Gross-Pitaevskii equation. We have already

mentioned the standard cubic nonlinearity given by: f (ψ)ψ = |ψ|2ψ, which describes the van der Waals interactions
between the atoms in the condensate. This nonlinearity is related to the s-wave scattering length [63, 65] and is an
effective local interaction. Other types of interactions can be taken into account in the Gross-Pitaevskii model like
for the magnetic dipole-dipole interaction in BECs made of 52Cr atoms [39, 40]. Due to the large magnetic moment
of chromium atoms, the magnetic interaction between the atoms in the condensate cannot be neglected. This type of
interaction is modeled by a nonlocal nonlinearity [38, 49, 62]. In the 3d case, it is given by

f (ψ)ψ =
µµ0

4π

∫
R3

1 − 3 cos(θ(y))2

|x − y|2
|ψ(t, y)|2dy,

where θ(y) is the angle between the direction of polarization and y. The constant µ and µ0 are the magnetic moment
of the atoms and the magnetic permeability of the vacuum, respectively.

4. Conjugate Normalized Gradient Flow (CNGF) formulation and discretization (for the one-component BEC)

One classical solution for computing the solution to (3.18)-(3.19) is through the projected gradient method [19]
which is also called imaginary time method in the Physics community [9]. This is the basic method that is implemented
in GPELab for computing stationary solutions to GPEs. All the corresponding 2d GPELab functions are available
in the subdirectory Code2D. For the 1d and 3d problems, the associated subdirectories are Code1D and Code3D,
respectively.

The method consists in i) computing one step of a gradient method and then ii) project the solution onto the unit
sphere S. Let us denote by t0 < ... < tn < ... the discrete times and by δtn = tn+1 − tn the local time step. The
Continuous Normalized Gradient Flow (CNGF) is given by [19]

∂tφ = −∇φ∗Eβ,Ω(φ) =
1
2

∆φ − Vφ − β|φ|2φ + ΩLzφ, tn < t < tn+1,

φ(x, tn+1) = φ(x, t+n+1) =
φ(x, t+n+1)
||φ(x, t+n+1)||0

,

φ(x, 0) = φ0(x), x ∈ R2, with ||φ||0 = 1.

(4.29)

In the above equations, we set: φ(x, t±n+1) := limt→t±n φ(x, t). Hence, iterations in times correspond to iterations in the
projected gradient. It is proved in [19] that the CNGF is normalization conserving and energy diminishing if β = 0
and if the potential is positive. When t tends towards infinity, φ gives an approximation of the steady state solution
which is a critical point of the energy functional when V ≥ 0. The initial guess φ0 is chosen according to the possible
choices provided in Section 3.2. Finally, let us remark that we write φ(x, t) and not φ(t, x) like for the dynamical case
to insist on the fact that t is not a real time but rather a continuation parameter (imaginary time).

4.1. Time and space discretizations: the Backward Euler (BE) scheme
Different schemes can be considered for computing ground states. In [19], the authors show that the Time Splitting

sine-Spectral (TSSP) and the Backward Euler (BE) Finite Difference (FD) schemes (BEFD) are well-adapted when no
rotation is included. TSSP is supposed to be fast since this is an explicit scheme with FFT-based spatial discretization
but it requires very small time steps when it is used for ground states computations. For this reason, we do not
use this scheme for the stationary states (but it is used in GPELab for the dynamics). Here, we rather consider the

7

/ Computer Physics Communications 00 (2014) 1–37 8

BEFD scheme with rotating term (see Section 4.1.1). The scheme is implicit and therefore it requires at each step the
solution to a linear system. It however can be solved efficiently by using a direct solver or a preconditioned Krylov
subspace iterative method (e.g. BiConjugate Gradient Stabilized (BiCGStab) [68, 72]). The interesting property is
that the scheme is energy diminishing for the non rotating case and larger time steps can be used. The BEFD scheme
is however only second-order accurate in space which is a limitation for computing fast rotating condensates. Higher
order schemes must then be used. This is the goal of Section 4.1.2 where we present the BESP scheme which is based
on BE in time but on a SPectral FFT scheme in space to capture accurately the creation of vortices for fast rotating
condensates. BESP is the scheme that you should prefer to use in GPELab when you consider fast rotating gazes.
BEFD (Section 4.1.1) and BESP (Section 4.1.2) are included in GPELab for 1d, 2d and 3d (not for BEFD) problems,
general potentials and nonlinearities. As we see latter (Section 5), systems of BECs can also be considered by using
these methods.

4.1.1. Backward Euler Finite Difference (BEFD) scheme
Concerning the time discretization of (4.29), the application of the Backward Euler scheme leads to the semi-

discrete semi-implicit (linear) scheme (BE scheme)
φ̃ − φn

δt
=

1
2

∆φ̃ − V(x)φ̃ − β|φn|2φ̃ + ΩLzφ̃, 1 ≤ n ≤ N, x ∈ R2,

φn+1 =
φ̃

||φ̃||0
, x ∈ R2,

(4.30)

setting Mδt = Tcvg, where Tcvg is the maximal time of computation and N is the number of time steps. Let us remark
here that Tcvg is not known a priori but rather fixed by a stopping criterion to check the convergence of the iterative
scheme towards the ground state solution. In GPELab, the (strong) stopping criterion that is used is the following

||φn+1 − φn||∞ < εδt, (4.31)

where ‖ · ‖∞ is the uniform norm. There is also a (weak) stopping criterion associated with the evolution of the energy
that is given by

|Eβ,Ω(φn+1) − Eβ,Ω(φn)| < εδt. (4.32)

We need to fix ε small enough to obtain a good accuracy (most particularly when considering highly accurate solutions
based on pseudospectral spatial approximation like in Section 4.1.2) in the approximation of the stationary state. Until
now, GPELab only includes uniform time stepping in time, for a fixed (user-defined) time step δt.

For the numerical purpose, the scheme (4.30) still requires to be space discretized. To this end, we use a second-
order finite difference discretization here. Since the domain is R2, we have to set suitable boundary conditions on
a fictitious boundary to get a finite computational domain. Here, we impose the homogeneous Dirichlet boundary
condition: φ̃(x) = 0, for x on the boundary of a large enough computational box: O :=]− ax; ax[×]− ay; ay[, assuming
that the physics takes place inside O. Let us introduce the spatial grid points (x j, yk), for (j, k) ∈ DJ,K , setting:
DJ,K =

{
(j, k) ∈ N2; 1 ≤ j ≤ J − 1 and 1 ≤ k ≤ K − 1

}
, with J,K ≥ 3, and for uniform discretization steps hx and hy in

the x- and y-directions, respectively. Therefore, for 1 < j ≤ J − 1, hx = (x j − x j−1) = 2ax/J, and, for 1 < k ≤ K − 1,
hy = (yk − yk−1) = 2ay/K, the rotation term Lz is discretized by a two-points second-order centered scheme

[Lz]φn
j,k := −i(x jδyφ

n
j,k − ykδxφ

n
j,k). (4.33)

We associate a matrix [Lz] to this discrete operator and denote by φn := (φn
I(j,k))(j,k)∈DJ,K the unknown vector where we

assume that the global numbering is made by a local-to-global reordering procedure based on I(j, k) = j+(J−1)(k−1)
(which corresponds to using the reshape Matlab function when coding). Each discrete x- and y-derivative uses the
two-points scheme adapted to the homogeneous Dirichlet boundary condition

δxφ
n
j,k =

φn
j+1,k − φ

n
j−1,k

2hx
, δyφ

n
j,k =

φn
j,k+1 − φ

n
j,k−1

2hy
. (4.34)

8

/ Computer Physics Communications 00 (2014) 1–37 9

The Laplacian is discretized thanks to the five-points scheme with homogeneous Dirichlet boundary conditions.
The interior scheme is based on

δ2
xφ

n
j,k =

φn
j+1,k − 2φn

j,k + φn
j−1,k

h2
x

, δ2
yφ

n
j,k =

φn
j,k+1 − 2φn

j,k + φn
j,k−1

h2
y

,

[∆]φn
j,k = δ2

xφ
n
j,k + δ2

yφ
n
j,k, (j, k) ∈ DJ,K .

(4.35)

This provides the matrix [∆] ∈ MMD (C) which must be applied to a (global) vector φn := (φn
I(j,k))(j,k)∈DJ,K of size

MD, where MD = (J − 1)(K − 1) (respectively MD = J − 1 and MD = (J − 1)(K − 1)(L − 1)) in 2d (respectively
1d and 3d). Finally, the potential is only considered at the interior discretization points leading to a diagonal matrix
[V] ∈ MMD (C), with diagonal elements [V]I(j,k).

The spatial discretization of (4.30) consists in solving the MD × MD linear system with normalization step
[A]φ̃ = bn,

φn+1 =
φ̃

||φ̃||0
,

(4.36)

with
[A] :=

1
δt

[I] −
1
2

[∆] + [V] + β[|φn|2] −Ω[Lz], bn :=
φn

δt
. (4.37)

Hereabove, we set: [I] ∈ MMD (C) as the identity matrix and [|φn|2] ∈ MMD (C) as the diagonal (”nonlinear potential”)
matrix with diagonal terms [|φn|2]I(j,k) := |φn|2I(j,k). For the sake of conciseness, we denote by || · ||0 the discrete 2-norm
of a vector. In the finite difference context, the norm of a vector φ is simply defined by

||φ||0 := h1/2
x h1/2

y (
∑

(j,k)∈DJ,K

|φ j,k |
2)1/2. (4.38)

Furthermore, we define the discrete (strong) stopping criterion as

||φn+1 − φn||∞ < εδt, (4.39)

with the discrete uniform norm defined by: ∀φ ∈ CMD , ‖φ‖∞ = max(j,k)∈DJ,K |φI(j,k)|, and the discrete (weak) stopping
criterion as

|Eβ,Ω(φn+1) − Eβ,Ω(φn)| < εδt, (4.40)

with the discrete energy

Eβ,Ω(φ) = h1/2
x h1/2

y

∑
(j,k)∈DJ,K

<

{
φ∗I(j,k)

(
−

1
2

[∆] + [V] + β[|φI(j,k)|
2] −Ω[Lz]

)
φI(j,k)

}
.

BEFD can be used in GEPLab for 1d and 2d problems but does not exist for 3d problems. The reason is that BESP is
preferred in practice for 3d problems because of its robustness and accuracy.

4.1.2. Backward Euler pseudoSPectral (BESP) scheme
Rather than a finite difference scheme, pseudospectral approximation of the spatial derivatives can be used to get

high-order accuracy in space [14]. GPELab considers an approach based on Fourier series representations through
FFTs. To this end, we impose a periodic boundary condition on the fictitious boundary of a large enough finite
computational box: O :=] − ax; ax[×] − ay; ay[. We also introduce the set PJ,K of indices of the spatial grid points
(x j, yk), for (j, k) ∈ PJ,K , as

PJ,K =
{
(j, k) ∈ N2; 0 ≤ j ≤ J − 1 and 0 ≤ k ≤ K − 1

}
,

with J,K ≥ 2, and for uniform discretization steps hx and hy in the x- and y-directions, respectively. The partial
Fourier pseudospectral discretizations in the x- and y-directions are respectively given by

φ̃(x j, yk, t) =
1
J

J/2−1∑
p=−J/2

̂̃φp(yk, t)eiµp(x j+ax), φ̃(x j, yk, t) =
1
K

K/2−1∑
q=−K/2

̂̃φq(x j, t)eiλq(yk+ay), (4.41)

9

/ Computer Physics Communications 00 (2014) 1–37 10

where ̂̃φp and ̂̃φq are respectively the Fourier coefficients in the x- and y-directions

̂̃φp(yk, t) =

J−1∑
j=0

φ̃(x j, yk, t)e−iµp(x j+ax), ̂̃φq(x j, t) =

K−1∑
k=0

φ̃(x j, yk, t)e−iλq(yk+ay), (4.42)

with µp =
πp
Lx

and λq =
πq
Ly

. For the backward Euler scheme, this implies that we have the following spatial approxi-
mation 

ABE,nφ̃ = bBE,n,

φn+1(x) =
φ̃

||φ̃||0
,

(4.43)

where φ̃ = (φ̃(x j,k))(j,k)∈PJ,K is the discrete unknown array inMMP (C) and the right-hand side is bBE,n := φn/δt, with
φn = (φn(x j,k))(j,k)∈PJ,K ∈ MMP (C). Here,MMP (C) designates the set of complex-valued 2d (respectively 1d and 3d)
arrays, with MP = JK (respectively MP = J and MP = JKL) in 2d (respectively 1d and 3d). For conciseness, let us
remark that we do not make any distinction between an array φ inMMP (C) and the corresponding reshaped vector in
CMP .

The operator ABE,n is given by the map which for any vector ψ ∈ CMP , that is assumed to approximate (ψ(x j,k)) ∈
CMP for a function ψ, computes a vector Ψ ∈ CMP such that

Ψ := ABE,nψ = ABE,n
TF ψ + ABE

∆,Ωψ,

ABE,n
TF ψ :=

(
[[I]]
δt

+ [[V]] + β[[|φn|2]]
)
ψ,

ABE
∆,Ωψ :=

(
−

1
2

[[∆]] −Ω[[Lz]]
)
ψ.

(4.44)

The evaluation of the two above operators is made as follows. For ABE,n
TF , the application is direct since it is realized

pointwize in the physical space by setting

[[I]] j,k := δ j,k, [[V]] j,k := V(x j,k), [[|ψn|2]] j,k = |ψn|2(x j,k), (4.45)

for (j, k) ∈ PJ,K . The symbol δ j,k denotes the Dirac delta symbol which is equal to 1 if and only if j = k and 0
otherwise. Let us note that the discrete operator ABE,n

TF is represented by a diagonal matrix after reshaping. The label
TF refers to the fact that this operator is related to the discretization of the Thomas-Fermi approximation. By using
(4.41) and (4.42), the partial differential operators in the x- and y-directions are discretized as

∀(j, k) ∈ PJ,K , ([[∂x]]φ̃) j,k =
1
J

J/2−1∑
p=−J/2

iµp
̂̃φp(yk, t)eiµp(x j+ax), ([[∂y]]φ̃) j,k =

1
K

K/2−1∑
q=−K/2

iλq
̂̃φq(xk, t)eiλq(yk+ay).

Therefore, we obtain the following pseudospectral approximation of the operator Lz on the spatial grid

∀(j, k) ∈ PJ,K , ([[Lz]]φ̃) j,k = −i
(
x j([[∂y]]φ̃) j,k − yk([[∂x]]φ̃) j,k

)
. (4.46)

Another differentiation leads to the discretization of the second-order differential operators in the x- or y-directions

∀(j, k) ∈ PJ,K , ([[∂2
x]]φ̃) j,k =

1
J

J/2−1∑
p=−J/2

−µ2
p
̂̃φp(yk, t)eiµp(x j+ax), ([[∂2

y]]φ̃) j,k =
1
K

K/2−1∑
q=−K/2

−λ2
q
̂̃φq(xk, t)eiλq(yk+ay),

leading to the discrete Laplace operator ∆ defined by

([[∆]]φ̃) j,k =
(
[[∂2

x]]φ̃ + [[∂2
y]]φ̃

)
j,k
. (4.47)

The operator [[∆]] is diagonal in the Fourier space but not [[Lz]]. Finally, the discrete || · ||0 norm is given by

∀φ ∈ CMP , ||φ||0 := h1/2
x h1/2

y (
∑

(j,k)∈PJ,K

|φ j,k |
2)1/2. (4.48)

10

/ Computer Physics Communications 00 (2014) 1–37 11

Morover, we define the discrete (strong) stopping criterion as

||φn+1 − φn||∞ < εδt, (4.49)

with the discrete uniform norm defined by: ∀φ ∈ CMP , ‖φ‖∞ = max(j,k)∈PJ,K |φ j,k |, and the discrete (weak) stopping
criterion as

|Eβ,Ω(φn+1) − Eβ,Ω(φn)| < εδt, (4.50)

with the discrete energy

Eβ,Ω(φ) = h1/2
x h1/2

y

∑
(j,k)∈PJ,K

<

{
φ∗j,k

(
−

1
2

[∆] + [V] + β[|φ j,k |
2] −Ω[Lz]

)
φ j,k

}
.

In practice, the linear system (4.44) is efficiently solved by a Krylov solver (BiCGStab [68, 72]) preconditioned
by either the TF operator ABE,n

TF or a Laplace-type preconditioner (see [15]). BESP is the default method used to solve
the CNGF in GPELab. The output physical quantities are the same as those provided by the BEFD scheme.

Finally, another possibility provided in GPELab is semi-implicit Crank-Nicolson schemes [19] for both FD and
SP discretizations (CNFD and CNSP schemes). However, it is proved in [19] that CNFD (and CNSP) leads to a
CFL-type constraint linking the time and spatial steps. For this reason, we do not develop the method here and refer
the interested reader to [13] for further details.

4.2. One- and three-dimensional problems

All the functions that are found in the two-dimensional case have been developed for the one-dimensional case. In
this situation, there is clearly no rotation term. All functions can be found in the directory Code1D and have the same
corresponding names as for the two-dimensional case but with the suffix 1d instead of 2d. BESP, BEFD, CNSP and
CNFD methods are coded. From the user point of view, considering a one- or a two-dimensional problem does not
need a lot of modifications in the main GPELab file that is launched for the simulations.

For the three-dimensional case, only the BESP and CNSP methods are coded. In the same spirit as for the one- and
two-dimensional functions, the suffix is 3d and the functions are available in the Code3D directory (see the GPELab
documentation [13] for further informations).

5. Extension to the multi-components case

5.1. The multi-components GPE

The CNGF extends to the multi-components case [14], i.e. a system of coupled GPEs. For the sake of conciseness,
the spatial variable x is defined by: x := (x1, ..., xd) ∈ Rd. We denote by Ψ = (ψ1, ..., ψNc), with Nc ∈ N∗ := N − {0}, a
vector of Nc wave functions and consider the following generic system of Gross-Pitaevskii equations

i∂tΨ(t, x) = −
1
2

∆Ψ(t, x) + V(x)Ψ(t, x) +

d∑
j=1

G j(x)∂x jΨ(t, x) + βF(Ψ(t, x), x)Ψ(t, x), (t, x) ∈ R+ × Rd, (5.51)

with initial condition: Ψ(t = 0, x) := Ψ0(x), and where the operators are defined by

• the diagonal Laplacian
∆Ψ(t, x) = (∆ψ j(t, x)) j=1,...,Nc ,

• the potential matrix

V(x) =


V11(x) V12(x) · · · V1Nc (x)
V21(x) V22(x) · · · V2Nc (x)
...

...
. . .

...
VNc1(x) VNc2(x) · · · VNcNc (x)

 ,
11

/ Computer Physics Communications 00 (2014) 1–37 12

• the variable coefficients matrices in front of the gradient

G j(x) =


G j

11(x) G j
12(x) · · · G j

1Nc
(x)

G j
21(x) G j

22(x) · · · G j
2Nc

(x)
...

...
. . .

...

G j
Nc1(x) G j

Nc2(x) · · · G j
NcNc

(x)

 ,

• the diagonal gradient
∂x jΨ(t, x) = (∂x jψl(t, x))l=1,...,Nc ,

• and the nonlinearity matrix

F(Ψ(t, x), x) =


F11(Ψ(t, x), x) F12(Ψ(t, x), x) · · · F1Nc (Ψ(t, x), x)
F21(Ψ(t, x), x) F22(Ψ(t, x), x) · · · F2Nc (Ψ(t, x), x)

...
...

. . .
...

FNc1(Ψ(t, x), x) FNc2(Ψ(t, x), x) · · · FNcNc (Ψ(t, x), x)

 .
Moreover, we have the following mass normalization constraint

N(Ψ) :=
Nc∑
j=1

N(ψ j) =

Nc∑
j=1

∫
Rd
|ψ j(t, x)|2dx =

Nc∑
j=1

∫
Rd
|ψ j(0, x)|2dx = ‖Ψ‖20 = 1.

We define the energy

E(Ψ) :=
Nc∑
j=1

1
2

∫
Rd
|∇ψ j(t, x)|2dx +

∫
Rd
<

Ψ(t, x)∗
V(x) +

d∑
k=1

Gk∂xk + βFenergy(Ψ(t, x), x)

 Ψ(t, x)

 dx, (5.52)

where Fenergy is an operator related to the nonlinearity F by the differentiation relation

δ(Ψ∗Fenergy(Ψ))
δΨ∗

= F(Ψ),

where δ designates the Gâteaux derivative. For example, in the case of a decoupled cubic nonlinearity, Fenergy is
already defined in GPELab and is given by

Fenergy(Ψ(t, x), x) =
1
2


|ψ1(t, x)|2 0 · · · 0

0 |ψ2(t, x)|2 · · · 0
...

...
. . .

...
0 0 · · · |ψNc (t, x)|2

 .
For dipolar gazes, when a nonlocal integral form of the nonlinearity must be considered, then the user must define
himself the corresponding function Fenergy in GPELab.

5.2. Stationary states - CNGF
Like the one-component case, we consider the problem of finding stationary states for system (5.51). More

specifically, we are looking for a solution Ψ such that

Ψ(t, x) = e−itµΦ(x),

where Φ = (φ1, ..., φNc) is a time-independent function, which is a solution of the following problem

iµΦ(x) = −
1
2

∆Φ(x) + V(x)Φ(x) +

d∑
j=1

G j(x)∂x jΦ(x) + βF(Φ(x), x)Φ(x), (5.53)

12

/ Computer Physics Communications 00 (2014) 1–37 13

under the total mass constraint N(Φ) = 1, and where µ(Φ) is the chemical potential given by the formula

µ(Φ) =

l∑
j=1

1
2

∫
Rd
|∇φ j(x)|2dx +

∫
Rd
<

Φ(x)∗
V(x) +

d∑
k=1

Gk(x)∂xk + βF(Φ(x), x)

 Φ(x)

 dx.

As for the one-component case, we propose to use the CNGF for the multi-components problem which is a direct
extension 

∂tΦ = −∇Φ∗E(Φ) =
1
2

∆Φ − V(x)Φ −
d∑

j=1

G j(x)∂x jΦ − βF(Φ, x)Φ, tn < t < tn+1,

Φ(x, tn+1) =
Φ(x, t+n+1)
‖Φ(x, t+n+1)‖0

,

Φ(x, 0) = Φ0(x).

(5.54)

In the above equations, we set: Φ(x, t+n+1) = limt→t+n+1
Φ(x, t). When t tends towards infinity, Φ gives an approximation

of the steady state which is solution to (5.53). The ground state is again computed as a solution of the minimization
problem of the energy functional E under the normalization constraint Φg = argmin

‖Φ‖0=1
E(Φ). Let us remark here that

(5.51) provides a very general form of coupled nonlinear Schrödinger equations. Therefore, very complex systems of
GPEs can be treated but not only. For example, GPELab could be used for nonlinear optics computations involving
Schrödinger-type equations [7, 8].

5.3. Time and space discretizations
We essentially focus on schemes based on the Backward Euler time discretization, that is BEFD and BESP. By

using the operators introduced for the one-component case, the extension is direct, even from the point of view of
the Krylov solver solution. We have the following time discretization of system (5.54) based on the semi-implicit
Backward Euler scheme

Φ̃ − Φn

δt
=

1
2

∆Φ̃ − V(x)Φ̃ −
d∑

j=1

G j(x)∂x jΦ̃ − βF(Φn, x)Φ̃, 1 ≤ n ≤ M, x ∈ Rd,

Φn+1 =
Φ̃

‖Φ̃‖0
, x ∈ Rd,

setting Mδt = Tcvg, where Tcvg is the time of computation to get a solution satisfying the convergence criterion and
M is the number of related time steps. For the 2d spatial discretization (d = 2), we consider the discrete Laplacian
and gradients introduced in the one-component case. The functions are evaluated pointwize on a rectangular uni-
form discretization grid, according to the space dimension. For the Finite Difference (respectively SPectral scheme),
the resulting method is again called BEFD (respectively BESP). The semi-implicit Crank-Nicolson scheme is also
implemented resulting in the CNFD and CNSP computational methods.

Let us consider the notations for the one-component case. Since we assume that all the components are compactly
supported in O, then each φl, l = 1, ...,Nc, satisfies a periodic boundary condition (which can in fact be set to zero) on
∂O and we can use discrete Fourier transforms. For BESP, the following approximation holds

ABE,nΦ̃ = bBE,n,

Φn+1(x) =
Φ̃

||Φ̃||0
,

(5.55)

where Φ̃ = ((φ̃1(x j,k))(j,k)∈DJ,K , ..., (φ̃Nc (x j,k))(j,k)∈DJ,K) is the discrete unknown array in CMNc and the right-hand side is
bBE,n := Φn/δt, with Φn = ((Φn

1(x j,k))(j,k)∈DJ,K , ..., (Φ
n
Nc

(x j,k))(j,k)∈DJ,K) ∈ CMNc . The operator ABE,n : CMNc → Ψ ∈

CMNc is defined by
ABE,nΦ = ABE,n

TF Φ + ABE
∆,ΩΦ,

ABE,n
TF Φ :=

(
[[INc]]
δt

+ [[V]] + β[[F(Φn)]]
)
Φ,

ABE
∆,∇Φ :=

(
−

1
2

[[∆]] + [[G1]][[∂x]] + [[G2]][[∂y]]
)
Φ.

(5.56)

13

/ Computer Physics Communications 00 (2014) 1–37 14

The finite dimensional operator ABE,n
TF is explicitly given through the matrices

[[INc]] :=


[[I]] 0 · · · 0

0 [[I]] · · · 0
...

...
. . .

...
0 0 · · · [[I]]

 , [[V]] :=


[[V11]] [[V12]] · · · [[V1Nc]]
[[V21]] [[V22]] · · · [[V2Nc]]
...

...
. . .

...
[[VNc1]] [[V2Nc]] · · · [[VNcNc]]

 ,
and

[[F(Φn)]] :=


[[F11(Φn)]] [[F12(Φn)]] · · · [[F1Nc (Φ

n)]]
[[F21(Φn)]] [[F22(Φn)]] · · · [[F2Nc (Φ

n)]]
...

...
. . .

...
[[FNc1(Φn)]] [[F2Nc (Φ

n)]] · · · [[FNcNc (Φ
n)]]

 .
In the above equations, we set

[[Flm(Φn)]] =
(
Flm(Φn

j,k, x j,k)
)

(j,k)∈DJ,K
,

where Φn
j,k = (φl(x j,k))l=1,...,Nc , and [[Vlm]] = (Vlm(x j,k))(j,k)∈DJ,K . The matrix ABE

∆,∇ is implicitly given by the discrete
differentiation operators via the FFT: [[∆]]Φ := ([[∆φl]])l=1,...,Nc

, and

[[∂x]]Φ := ([[∂xφl]])l=1,...,Nc
, [[∂y]]Φ :=

(
[[∂yφl]]

)
l=1,...,Nc

. (5.57)

We also define

[[Gk]] :=


[[Gk

11]] [[Gk
12]] · · · [[Gk

1Nc
]]

[[Gk
21]] [[Gk

22]] · · · [[Gk
2Nc

]]
...

...
. . .

...
[[Gk

Nc1]] [[Gk
2Nc

]] · · · [[Gk
NcNc

]]

 ,∀k = 1, 2,

setting [[Gk
lm]] = (Gk

lm(x j,k))(j,k)∈DJ,K . Finally, the norm || · ||0 of a discrete vector Φ of Nc components is defined by

∀Φ ∈ CMNc , ||Φ||0 := (
Nc∑
l=1

||φl||
2
0)1/2, (5.58)

where the discrete norm for each component is given by (4.48).
For solving the first equation of (5.55), we again use the preconditioned BiCGStab[68, 72]. The preconditioners

are based on the diagonal part of the TF approximation of the multi-components system. We refer to [13] for further
details.

6. A simple but complete example

We now present how to compute the ground state of a one-component Gross-Pitaevskii equation with quadratic
potential, cubic nonlinearity and rotational operator in 2d. The following program is an example of how the user
writes a GPELab script to launch the computation of a ground state for such a physical configuration. The first part of
the script consists in building two structures named Method and Geometry2D that contain all the informations related
to the method and the geometry, respectively. In this example, we choose the BESP scheme to compute a ground
state. Moreover, we fix the time step δt to: δt = 0.5, and the stopping criterion in (4.49) is chosen with ε := 10−5.
Concerning the geometry, the computational domain is O :=] − 10, 10[×] − 10, 10[and the number of grid points
(including the boundary points) is set to Nx = 27 + 1 and Ny = 27 + 1. We can see in Table 1 the corresponding
GPELab source code.

The next step is to define the physical problem. In this example, we compute the ground state of the following
GPE

i∂tψ(x, y, t) = −δ∆ψ(x, y, t) +
1
2

(|x|2 + |y|2)ψ(x, y, t) + β|ψ(x, y, t)|2ψ(x, y, t) + iΩ(y∂x − x∂y)ψ(x, y, t),
14

/ Computer Physics Communications 00 (2014) 1–37 15

Computation = ’Ground’;

Ncomponents = 1;

Type = ’BESP’;

Deltat = 5e-1;

Stop time = [];

Stop crit = {’MaxNorm’,1e-5};

Method = Method Var2d(Computation,Ncomponents, Type, Deltat, Stop time , Stop crit);

xmin = -10;

xmax = 10;

ymin = -10;

ymax = 10;

Nx = 2^7+1;

Ny = 2^7+1;

Geometry2D = Geometry2D Var2d(xmin,xmax, ymin,ymax, Nx, Ny);

Table 1. An example of the Method and Geometry2D structures in GPELab for computing a ground state.

with δ = 0.5, β = 500 and Ω = 0.5. GPELab is designed in such a way that the user may define and add operators of
the following types: a potential operator, a nonlinear operator and gradient operators. The potential and the nonlinear
operators are functions of the space variables (and the wave function for the nonlinear operator) that are multiplied by
the wave function. The gradient operators are defined by functions that are multiplied by the partial derivative of the
wave function in the space directions. In our case, we identify

• the potential function: V(x, y) = 1
2 (|x|2 + |y|2),

• the nonlinear function: F(ψ, x, y) = |ψ(t, x, y)|2,

• the gradient function in the x-direction: G1(x, y) = iΩy,

• the gradient function in the y-direction: G2(x, y) = −iΩx.

In this example, the operators are predefined in GPELab but for clarity we define them again in our script. To set
the physical problem, we first need to build the Physics2D structure and fix the values of the parameters δ, β and
Ω. The Physics2D structure contains all the informations related to the physical problem, that is, among others, the
functions related to the operators. Therefore, we have to add the operators by using suitable GPELab functions to the
Physics2D structure. As already said, the operators are predefined and are set as default arguments in the functions
Dispersion Var2d, Potential Var2d, Nonlinearity Var2d, Gradientx Var2d and Gradienty Var2d. The
resulting code in available in Table 2.

Delta = 0.5;

Beta = 500;

Omega = 0.5;

Physics2D = Physics2D Var2d(Method,Delta,Beta);

Physics2D = Dispersion Var2d(Method, Physics2D, @(fftx,ffty) Delta*(fftx.^2+ffty.^2));

Physics2D = Potential Var2d(Method, Physics2D, @(x,y) (1/2)*(x.^2+y.^2));

Physics2D = Nonlinearity Var2d(Method, Physics2D, @(phi,x,y) abs(phi).^2);

Physics2D = Gradientx Var2d(Method, Physics2D,@(x,y) 1i*Omega*y);

Physics2D = Gradienty Var2d(Method, Physics2D,@(x,y) -1i*Omega*x);

Table 2. Definition of the physical problem in GPELab through the Physics2D structure.

We now provide the initial data for CNGF. Initial data in GPELab are defined as a cell array, each cell containing
a complex matrix which is the initial wave function of a component. A GPELab user can also fix its initial data

15

/ Computer Physics Communications 00 (2014) 1–37 16

himself. However, the GPELab function InitialData Var2d is helpful if one wants to use standard initial data like
the centered gaussian (3.23) or the Thomas-Fermi approximation (3.25). Here, we consider the centered gaussian as
an initial wave function. This is done by setting the InitialData choice variable to 1 (see Table 3).

InitialData choice = 1;

Phi 0 = InitialData Var2d(Method, Geometry2D, Physics2D,InitialData choice);

Table 3. Initialization by a centered gaussian.

Finally, let us consider now that we want to resolve our problem and to get informations about the wave function
during the computations (for example to be sure that the energy is diminishing). Thus, we need to build the Outputs
structure that contains all the outputs computed during the simulation. Some outputs quantities like the energy or the
mean-square radius are always defined and stored during a calculation. To print these informations when computing,
the Print structure has to be built to define how to print the outputs. For example, in Table 4, we require that the
informations are printed every 15 iterations and drawing the solution is forced.

Outputs = OutputsINI Var2d(Method);

Printing = 1;

Evo = 15;

Draw = 1;

Print = Print Var2d(Printing,Evo,Draw);

Table 4. Printing/drawing informations during the computations.

To effectively launch the simulation, we need to use the GPELab2d function which gathers all the previous struc-
tures (and thus the informations about the simulation). The GPELab command is given in Table 5.

[Phi,Outputs]= GPELab2d(Phi 0,Method,Geometry2D,Physics2D,Outputs,[],Print);

Table 5. Launching the numerical computation of the solution.

At the end of the simulation, we obtain the modulus and phase of the wave function on the computational domain
(see Figures 1(a)-1(b)). This model example shows that using GPELab is quite easy and direct to use.

(a) Modulus of the ground state (b) Phase of the ground state

Figure 1. Ground state computed with GPELab by using the parameters from Section 6.

16

/ Computer Physics Communications 00 (2014) 1–37 17

7. How to use GPELab

After the presentation of a GPELab model example in Section 6, we describe now more deeply the different
functionalities that are defined in the toolbox. First, we begin with some notations and preliminary recalls (subsection
7.1). The main functions that are needed to run a full situation like the previous one are detailed in subsections 7.2 to
7.4. This description follows the way a GPELab script must be built. Section 8 provides some advanced additional
examples.

7.1. Notations and preliminary remarks
GPELab uses the following Matlab data type: matrix, cell, function and structure. For more informations, we refer

for example to the online Matlab user guide2. Let us now introduce some general notations to understand the types of
the input and output arguments in the GPELab functions. Let us define

• Nx, Ny, Nz: these parameters are equal to the number of degrees of freedom (dof) of the numerical method that
is considered, in the x-, y- and z-directions, respectively. We emphasize here on the fact that these are not equal
to N x, Ny and Nz which designate the total number of grid points, including the boundary points. For the FD
scheme, the number of dof is Nx = N x − 2 in the x-direction and Nx = N x − 1 for the SP scheme. In example 1,
page 15, N x = 28 + 1 but the number of dof is Nx = 28 which optimizes FFTs computations.

• Nc is the number of components for the GPE.

Furthermore, let us consider the different sets of variables below that must be used when considering the corresponding
Matlab variables in GPELab

• N denotes the positive integers,

• R designates the real numbers,

• R+ := R − {0} is the set of strictly positive real numbers,

• C denotes the set of complex numbers.

We also need the set of strings of characters that we designate by S and the set of Matlab structures denoted by S.
We now introduce K = ×N

j=1K j and L = ×M
`=1L`, where K j and L` are two sets of variables like the ones defined

above. In the sequel, we use the following notations

• F(K; L) is the set of Matlab functions f from K → L of the form

f : (x1,x2,...,xN)→ @(x1,x2,...,xN) f(x1,x2,...,xN)

where (x1,x2,...,xN) ∈ K1 × K2 × ... × KN . More generally, we sometimes use the notation F(K p; L) =

F(K, ...,K; L), if K is repeated p times.

• MN,M(K) designates a N × M (Matlab) matrix with values in K, for N and M ∈ N.

• CN,M{K} is a N × M (Matlab) cell array with values in K, with N,M ∈ N.

Let us consider any input variable xj in a set K j of a function f. In GPELab, all inputs of f have already default
values xjdefault that can be modified. For clarity, this is designated in the sequel by the notation: xj (K j, xj

default).
We essentially detail the Matlab functions for the two-dimensional case. Unless precised, the extension from

the 2d to the 1d and 3d cases is done by changing the functions names. For example, the Method Var2d function
corresponds to the Method Var1d function in 1d and to the Method Var3d function in 3d. If changing the dimension
implies any modification of the number or the nature of the input or output arguments of the function, it is precised.
Concerning the form of the variables x, y and z, we use the standard meshgrid ordering of variables. More precisely,
this means that x ∈ M1,Nx (K) in the 1d case, x, y ∈ MNy,Nx (K) in the 2d case and x, y, z are in MNy,Nx,Nz (K) for the
3d case. Here, K = R. The same situation occurs when computing the set of frequencies (for example to compute
nonlocal nonlinear interactions like for dipolar gazes) but K = C.

2http://www.mathworks.fr/fr/help/matlab/

17

http://www.mathworks.fr/fr/help/matlab/

/ Computer Physics Communications 00 (2014) 1–37 18

7.2. Setting the numerical scheme and the geometry

First, the user has to define the geometry and the numerical method. There exist two variables that need to be de-
fined: Method and Geometry, and which are respectively created by using the two following functions: Method Var2d

and Geometry2D Var2d.

7.2.1. The Method Var2d function

Method = Method Var2d(Computation,Ncomponents, Type, Deltat, Stop time, Stop crit,

Max iter, Precond type, Output, Splitting, BESP, Solver FD, Iterative tol,

Iterative maxit);

Table 6. The Method Var2d function.

The Method Var2d function (see Table 6) creates the Method structure that contains all the parameters relative
to the method. By method, we mean the solver which is used to compute a solution. This includes the kind of
computation (dynamics or ground state), the number of components, the type of scheme (BESP, BEFD, CNSP, CNFD
for the ground state and Relaxation, Splitting for the dynamics [11, 12]), the semi discretization parameters and
other inputs that we explain below. The only output is the structure Method. As seen above, the input variable of
Method Var2d has already some default values that may be modified. The optional arguments are the following

• Computation (S,’Ground’) is a variable that must be ’Ground’ to compute a ground state by using the
Continuous Normalized Gradient Flow (imaginary time method).

• Ncomponents (N,1) is a variable corresponding to the number of components that describe the condensate.

• Type (S, ’BESP’) is a variable corresponding to the scheme used in the computation. In the case of a ground
state computation, it must be either ’BEFD’ to use the Backward Euler Finite Difference scheme (see Section
4.1.1), ’CNFD’ to use the Crank-Nicolson Finite Difference scheme, ’BESP’ to use the Backward Euler SPectral
discretization scheme (see Section 4.1.2) or ’CNSP’ to use the Crank-Nicolson SPectral discretization scheme.

• Deltat (R+,1e-3) is a variable corresponding to the time step of the method. The time discretization is always
uniform.

• Stop time (R+,1) is a variable corresponding to the final time of computation in the case of a dynamical
problem.

• Stop crit ({S,R+},{’MaxNorm’,1e-6}) is a variable where the real number in the cell corresponds to the
(strong) stopping criterion (4.49) when the string in the cell is set to ’MaxNorm’ and the (weak) stopping
criterion (4.50) when set to ’Energy’ .

• Max iter (N, 1e6) is a variable corresponding to the maximum number of iterations for a stationary state
computation.

• Preconditioner (S,’FLaplace’) is a variable that must be either ’None’ for a calculation without pre-
conditioner, ’Laplace’ for the Laplace preconditioner, ’ThomasFermi’ for the Thomas Fermi precondi-
tioner, ’FThomasFermi’ for a multi-components Thomas Fermi preconditioner and ’FLaplace’ for a multi-
components Laplace preconditioner.

• Output (N,1) is a variable that must either be 1 if one computes outputs during the computations or 0 if not.

• Splitting (S,’Strang’) is a variable corresponding to the type of splitting in the case of a dynamic compu-
tation.

• BESP (N,0) is a variable that must be either 1 if one uses the Jacobi method or 0 for the Krylov method, for the
BESP scheme.

18

/ Computer Physics Communications 00 (2014) 1–37 19

• Solver FD (N,0) is a variable that must be either 1 if one uses the direct Gauss solver from Matlab (i.e.
backslash \) or 0 for the Krylov method.

• Iterative tol (R+, 1e-9) is a variable corresponding to the stopping criterion related to the residual between
two successive iterates in the Krylov solver.

• Iterative maxit (N,1e3) is a variable corresponding to the stopping criterion related to the maximum number
of iterations in the Krylov solver.

For example, let us consider that we want to compute a stationary solution for a single-component BEC by using
the BESP scheme. We choose a time step δt = 10−2 and a stopping criterion for ε = 10−8. We set the maximal number
of iterations to 106 and we compute some outputs during the simulation. Then, this gives the code in Table 7.

Computation = ’Ground’;

Ncomponents = 1;

Type = ’BESP’;

Deltat = 1e-2;

Stop time = [];

Stop crit = {’Energy’,1e-10};

Max iter = 10e6;

Precond type = ’None’;

Output = 1;

Method = Method Var2d(Computation,Ncomponents, Type, Deltat, Stop time, Stop crit,

Max iter, Precond type, Output);

Table 7. An example of initialization and use of the Method Var2d function.

7.2.2. The Geometry2D Var2d.m function
The call to the function Geometry2D Var2d.m is given in Table 8.

Geometry2D = Geometry2D Var2d(xmin, xmax, ymin, ymax, Nx, Ny);

Table 8. The Geometry2D Var2d function.

The aim of the Geometry2D Var2d.m function is to create the Geometry2D structure which contains the size of
the computational box and the number of points in each spatial direction (including the boundaries). Note that the
spatial domain is always rectangular with a uniform mesh grid. The output is the Geometry2D structure. As for the
Method Var2d function, this function includes default values for the input arguments. The optional arguments are
the following

• xmin (R,-10) is a variable corresponding to the left endpoint of the computational domain in the x-direction.

• xmax (R,10) is a variable corresponding to the right endpoint of the computational domain in the x-direction.

• ymin (R,-10) is a variable corresponding to the lower endpoint of the computational domain in the y-direction.

• ymax (R,10) is a variable corresponding to the upper endpoint of the computational domain in the y-direction.

• Nx (N,2^7+1) is a variable corresponding to the number of points in the x-direction.

• Ny (N,2^7+1) is a variable corresponding to the number of points in the y-direction.

In the case of a 1d simulation, one has to discard ymin, ymax and Ny. Moreover, in the case of a 3d simulation,
one must add zmin and zmax after ymax and Nz after Ny.

If one considers a computational box] − 15, 15[×] − 15, 15[with a number of grid points Nx = Ny = 29 + 1 for a
spectral scheme, one builds the Geometry2D structure as in Table 9.

19

/ Computer Physics Communications 00 (2014) 1–37 20

xmin = -15;

xmax = 15;

ymin = -15;

ymax = 15;

Nx = 2^9+1;

Ny = 2^9+1;

Geometry2D = Geometry2D Var2d(xmin, xmax, ymin, ymax, Nx, Ny);

Table 9. An example of the way to use the Geometry2D Var2d function.

7.3. Setting the physical problem

We now explain how to set the physical problem. We consider the following general GPE with Nc components,
each one being defined in the d-dimensional space by

i∂tΨ(t, x) = D(−i∇)Ψ(t, x) + V(x)Ψ(t, x) +

d∑
j=1

G j(x)∂x jΨ(t, x) + βF(Ψ(t, x), x)Ψ(t, x), (t, x) ∈ R+ × Rd. (7.59)

This system corresponds to the one developed in Section 5, page 11. Here, δ and β are two real-valued constants in R.
The energy for each component is

E j(Ψ) =

∫
Rd
<

ψ(t, x)∗j


D(i∇) + V(x) +

d∑
k=1

Gk(x)∂xk + Fenergy(Ψ(t, x), x)

 Ψ(t, x)


j

 dx, (7.60)

and the chemical potential is

µ j(Ψ) =

∫
Rd
<

ψ(t, x)∗j


D(i∇) + V(x) +

d∑
k=1

Gk(x)∂xk + F(Ψ(t, x), x)

 Ψ(t, x)


j

 dx, (7.61)

for j ∈ {1, ...,Nc}.

7.3.1. The Physics2D Var2d function

Physics2D = Physics2D Var2d(Method,Delta,Beta,Omega);

Table 10. The Physics2D Var2d function.

The Physics2D Var2d function (Table 10) builds the Physics2D structure and enables the user to define the
basic physical constants δ, β, and the rotation speed Ω (if the gradient operators are set as default (see Section 7.3.5)).
The Physics2D structure also contains the physical operators as explained below. The Method structure is a required
argument and the optional arguments are the following

• Delta (R,1/2) is a variable corresponding to the constant in front of the Laplace operator i.e. δ in the Laplace
operator −δ∆ (see Section 7.3.2) .

• Beta (R,0) is a variable corresponding to the constant in front of the nonlinearity (β in equation (7.59)).

• Omega (R,0 orM1,3(R),0) is a variable that defines the rotation speed if the default gradient operators ((x∂y−y∂x)
in 2d, or (x × ∇) in 3d) are present in the equation (otherwise, it has no effect). It is a real-valued parameter
(Ω ∈ R) in the 2d case or a vector (Ω ∈ M1,3(R)) in the 3d case. We note that this variable does not exist in the

20

/ Computer Physics Communications 00 (2014) 1–37 21

1d situation. If the default gradient operators are defined, then we have the following rotation operators

2∑
j=1

G j(x)∂x j =


Ω

(
x∂y − y∂x

)
0 · · · 0

0 Ω
(
x∂y − y∂x

)
· · · 0

...
...

. . .
...

0 0 · · · Ω
(
x∂y − y∂x

)
 ,

in the 2d physical problem, and

3∑
j=1

G j(x)∂x j =


Ω · (x × ∇) 0 · · · 0

0 Ω · (x × ∇) · · · 0
...

...
. . .

...
0 0 · · · Ω · (x × ∇)

 ,
for the 3d case.

We remind that, for a rotational operator with a rotation speed ranging from 0 to 1 excluded, then a quadratic
potential (V(x) ≈ |x|2) is enough to compensate the centrifugal force. However, for a rotation speed larger than 1, a
stronger potential must used (a quartic potential V(x) ≈ |x|4 for example). In Table 11, we show the corresponding
GPELab code to create the Physics2D structure with δ = 1

2 , β = 1000 and Ω = 0.7.

Delta = 0.5;

Beta = 1000;

Omega = 0.7;

Physics2D = Physics2D Var2d(Method,Delta,Beta,Omega);

Table 11. An example of the way the Physics2D Var2d function is used.

7.3.2. The Dispersion Var2d function
The Dispersion Var2d function (see Table 12) defines a dispersion operator (e.g. the Laplace operator −δ∆) in

the problem by modifying the Physics2D structure.

Physics2D = Dispersion Var2d(Method, Physics2D, Dispersion, G);

Table 12. The Dispersion Var2d function.

It must be provided with the Method and Physics2D structures. The optional arguments are the following

• Dispersion: If a function Dispersion, in F(MNy,Nx (C)2;MNy,Nx (C)) is provided, the dispersion is defined
as follows, for j, k ∈ {1, ...,Nc},

D j,k(ξx, ξy) =

{
Potential(ξx, ξy) if j = k
0 if j , k

where ξx and ξy are the discrete Fourier frequencies in the x- and y-directions, respectively. If Dispersion is a
cell array of functions in CNc,Nc {F(MNy,Nx (R)2;MNy,Nx (C))}, then the dispersion is defined by

D j,k(ξx, ξy) = Dispersion{ j, k}(ξx, ξy),

for j, k ∈ {1, ...,Nc}. The default argument is the Laplace operator −∆ which corresponds to

D j,k(ξx, ξy) =

{
δ(ξ2

x + ξ2
y) if j = k

0 if j , k

where δ is parameter defined in Physics2D structure, i.e. Delta (∈ R).
21

/ Computer Physics Communications 00 (2014) 1–37 22

• G (MNc,Nc (C), ones(N c)) is a complex variable that multiplies the dispersion element-by-element, leading to
the following dispersion operator

D j,k(ξx, ξy) = G(j, k)Dispersion{ j, k}(ξx, ξy)

for j, k ∈ {1, ...,Nc}.

An interesting case of coupling between two Gross-Pitaevskii equations is the spin-orbit coupling (see [6] and
Section 8.1). For example, in the case of a system of two GPEs with a quadratic potential, a coupled cubic nonlinearity
and a spin-orbit coupling, we obtain the following set of equations

i∂tψ1 =

[
−

1
2

∆ + V(x) + (β11|ψ1|
2 + β12|ψ2|

2)
]
ψ1 − κ(i∂x + ∂y)ψ2,

i∂tψ2 =

[
−

1
2

∆ + V(x) + (β22|ψ2|
2 + β12|ψ1|

2)
]
ψ2 − κ(i∂x − ∂y)ψ1,

where V(x) = 1
2 (x2 + y2) is the quadratic potential, β jk are the interactions constants and κ is the intensity of the

spin-orbit coupling. To define the effect of the operator, we have to set the dispersion operator such that

D(ξx, ξy) =

(1
2 (ξ2

x + ξ2
y) κ(ξx − iξy)

κ(ξx + iξy) 1
2 (ξ2

x + ξ2
y)

)
.

In GPELab, we thus have to create a cell array of functions and to use the Dispersion Var2d function like in Table
13 to add the spin-orbit coupling to a system of two Gross-Pitaevskii equations.

function Dispersion = Example Dispersion(Kappa)

Dispsersion = cell(2);

Dispsersion {1,1} = @(fftx,ffty) (1/2)*(fftx^2+ffty.^2);

Dispsersion {1,2} = @(fftx,ffty) Kappa*(fftx-1i*ffty);

Dispsersion {2,1} = @(fftx,ffty) Kappa*(fftx+1i*ffty);

Dispsersion {2,2} = @(fftx,ffty) (1/2)*(fftx^2+ffty.^2);

end

Kappa = 1;

Physics2D = Dispersion Var2d(Method, Physics2D, Example Dispersion(Kappa));

Table 13. An example of the way the Dispersion Var2d.m function must be used.

7.3.3. The Potential Var2d function

Physics2D = Potential Var2d(Method, Physics2D, Potential, G);

Table 14. The Potential Var2d function.

The Potential Var2d function (Table 14) allows to define the time-independent potential operator (i.e. V(t, x) =

V(x)) in the problem by modifying the Physics2D structure. It must be provided with the Method and Physics2D

structures. The optional arguments are the following

• Potential: If a function Potential in F(MNy,Nx (R)2;MNy,Nx (C)) is provided, the physical potential is defined
as follows, for each j, k ∈ {1, ...,Nc},

V j,k(x, y) =

{
Potential(x, y) if j = k
0 if j , k

22

/ Computer Physics Communications 00 (2014) 1–37 23

If Potential is a cell array of functions in

CNc,Nc {F(MNy,Nx (R)2;MNy,Nx (C))},

then the potential is defined by
V j,k(x, y) = Potential{ j, k}(x, y),

for j, k ∈ {1, ...,Nc}. The default argument is quadratic potential2d which corresponds to

V j,k(x, y) =

{ 1
2 (x2 + y2) if j = k
0 if j , k

Note that in the case of a stationary state computation, the potential operator should be time-independent.

• G (MNc,Nc (C), ones(N c)) is a complex variable that multiplies the potential element-by-element, leading to
the following potential

V j,k(x, y) = G(j, k)Potential{ j, k}(x, y)

for j, k ∈ {1, ...,Nc}.

For example, let us consider that we want to define a quadratic potential for the computation of a ground state for
a multi-components BEC with internal atomic Josephson junction [16]. The two-components BECs is modeled by
the system 

i∂tψ1 =

[
−

1
2

∆ + V(x) + δ + (β11|ψ1|
2 + β12|ψ2|

2)
]
ψ1 + λψ2,

i∂tψ2 =

[
−

1
2

∆ + V(x) + (β22|ψ2|
2 + β12|ψ1|

2)
]
ψ2 + λψ1,

where δ is the detuning constant of the Raman transition, β jk are the interactions constants and λ is the effective Rabi
frequency. Thus, we have to build a potential operator, where the diagonal terms are quadratic potentials (plus the
detuning constant δ for the first component) and the off-diagonal terms are the effective Rabi frequency λ. To this
end, we create a cell array of functions and then we modify the Physics2D structure to define the potential operator,
resulting in the code given in Table 15.

function P = Example potential(Detuning constant,Rabi frequency)

P = cell(2);

P{1,1} = @(x,y) (1/2)*(x.^2+y.^2)+Detuning constant;

P{1,2} = @(x,y) Rabi frequency;

P{2,1} = @(x,y) Rabi frequency;

P{2,2} = @(x,y) (1/2)*(x.^2+y.^2);

end

Detuning constant = 1;

Rabi frequency = -5;

Physics2D = Potential Var2d(Method, Physics2D, ...

Example potential(Detuning constant,Rabi frequency));

Table 15. An example of how to use the Potential Var2d function.

7.3.4. The Nonlinearity Var2d function

Physics2D = Nonlinearity Var2d(Method, Physics2D, Nonlinearity, G, Nonlinearity energy);

Table 16. The Nonlinearity Var2d function.

23

/ Computer Physics Communications 00 (2014) 1–37 24

The Nonlinearity Var2d function (see Table 16) allows to define the nonlinear term, i.e. F(Ψ(t, x), x), in the
problem by modifying the Physics2D structure. Note that in GPELab the solution of the system is defined as a cell
array of matrices (CNc,Nc {MNy,Nx(C)}). This function must be provided with the Method and Physics2D structures
and has the following optional arguments

• Nonlinearity: If a function Nonlinearity in F(CNc,Nc {MNy,Nx (C)},MNy,Nx (R)2;MNy,Nx (C)), is given, the
physical nonlinearity is defined as follows, for each j, k ∈ {1, ...,N},

F j,k(Ψ(t, x), x, y) =

{
Nonlinearity(Ψ(t, x), x, y) if j = k
0 if j , k

If Nonlinearity is a cell array of functions in CNc,Nc {F(CNc,Nc {MNy,Nx (C)},MNy,Nx (R)2;MNy,Nx (C))}, then the
nonlinear operator is defined by

F j,k(Ψ(t, x), x, y) = Nonlinearity{ j, k}(Ψ(t, x), x, y),

for j, k ∈ {1, ...,N}. The default argument is Cubic2d which corresponds to

F j,k(Ψ(t, x), x, y) =

{
|ψ j(t, x)|2 if j = k
0 if j , k

• G (MNc,Nc (C), ones(N c)) is a complex-valued variable that multiplies the nonlinearity element-by-element,
leading to the following definition of the nonlinearity

F j,k(Ψ(t, x), x, y) = G(j, k)Nonlinearity{ j, k}(Ψ(t, x), x, y)

for j, k ∈ {1, ...,N}.

• Nonlinearity energy is a nonlinear operator used to compute the energy associated to the physical nonlin-
earity. It corresponds to Fenergy(Ψ(t, x), x) in the energy definition (7.60). Note that it must be the same type of
variable as the variable Nonlinearity. If the variable G is defined, it is also multiplied element-by-element by
Nonlinearity energy. If a function Nonlinearity energy in F(CNc,Nc {MNy,Nx (C)},MNy,Nx (R)2;MNy,Nx (C))
is given, the nonlinear energy operator is defined as follows, for each j, k ∈ {1, ...,N},

(Fenergy) j,k(Ψ(t, x), x, y) =

{
Nonlinearity energy(Ψ(t, x), x, y) if j = k
0 if j , k

If Nonlinearity energy is a cell array of function in CNc,Nc {F(CNc,Nc {MNy,Nx (C)},MNy,Nx (R)2;MNy,Nx (C))},
then the nonlinear energy operator is

(Fenergy) j,k(Ψ(t, x), x, y) = Nonlinearity energy{ j, k}(Ψ(t, x), x, y)

for j, k ∈ {1, ...,N}. The default argument is Cubic energy2d and corresponds to

(Fenergy) j,k(Ψ(t, x), x, y) =

 1
2
|ψ j(t, x)|2 if j = k

0 if j , k

This way of proceeding allows us to develop the example from Section 7.3.3, page 22, where we fix a potential in
the case of an internal atomic Josephson junction. We also need to define the coupled nonlinearities if we want to
effectively take into account all the effects in the system of equations [16]. In the case of a two-components Gross-
Pitaevskii equation with a Josephson junction, we have{

F11(Ψ(t, x), x) = β11|ψ1|
2 + β12|ψ2|

2,

F22(Ψ(t, x), x) = β22|ψ2|
2 + β12|ψ1|

2,

and F12(Ψ(t, x), x) = F21(Ψ(t, x), x) = 0. This results in the code given in Table 17, where we create a cell ar-
ray of functions corresponding to the previous nonlinearities and then define the nonlinear operator by using the
Nonlinearity Var2d function.

24

/ Computer Physics Communications 00 (2014) 1–37 25

function NL = Example nonlinearity(Beta 11,Beta 22,Beta 12)

NL = cell(2);

NL{1,1} = @(Phi,x,y) Beta 11*abs(Phi{1}).^2 + Beta 12*abs(Phi{2}).^2;

NL{2,2} = @(Phi,x,y) Beta 22*abs(Phi{2}).^2 + Beta 12*abs(Phi{1}).^2;

NL{1,2} = @(Phi,x,y) 0;

NL{2,1} = @(Phi,x,y) 0;

end

Beta 11 = 2;

Beta 12 = 1;

Beta 22 = 2;

Physics2D = Nonlinearity Var2d(Method, Physics2D, ...

Example nonlinearity(Beta 11,Beta 22,Beta 12));

Table 17. An example of application of the Nonlinearity Var2d function.

Physics2D = Gradientx Var2d(Method, Physics2D, Gradientx, G);

Table 18. The Gradientx Var2d function.

7.3.5. The gradient functions
The gradient functions define the derivation operators

∑d
j=1 G j(x)∂x j in the problem by modifying the Physics2D

structure. Here, we take for example the function Gradientx Var2d (see Table 18), as the other gradient func-
tions work similarly. We remark that we can only define Gradientx in 1d, Gradientx and Gradienty in 2d and
Gradientx, Gradienty and Gradientz in 3d. The Method and Physics2D structures are required arguments. It is
possible to include the following optional arguments

• Gradientx: Let us provide a function Gradientx in F(MNy,Nx (R)2;MNy,Nx (C)), then the variable coefficients
in front of the gradient are defined by

G1
j,k(x, y) =

{
Gradientx(x, y) if j = k
0 if j , k

for each j, k ∈ {1, ...,Nc}. If Gradientx is a cell array of functions in CNc,Nc {F(MNy,Nx (R)2;MNy,Nx (C))}, then
the variable coefficients are

G1
j,k(x, y) = Gardientx{ j, k}(x, y)

for j, k ∈ {1, ...,Nc}. The default argument is the part of the rotational operator corresponding to

G1
j,k(x, y) =

{
iΩy if j = k
0 if j , k

for the Gradientx Var2d function, where Ω is the rotation speed defined in the Physics2D structure, i.e.
Omega (∈ R). In the case of the Gradienty Var2d function, we have

G2
j,k(x, y) =

{
−iΩx if j = k
0 if j , k

Note that in the 1d case, the default argument is: G1
j,k(x) = 0. In the 3d situation, the default operator is the

following rotational operator

G1
j,k(x, y, z) =

{
i(Ω3y −Ω2z) if j = k
0 if j , k

G2
j,k(x, y, z) =

{
i(Ω1z −Ω3x) if j = k
0 if j , k

25

/ Computer Physics Communications 00 (2014) 1–37 26

G3
j,k(x, y, z) =

{
i(Ω2x −Ω1y) if j = k
0 if j , k

where Ω corresponds to the rotation vector defined in the Physics3D structure, i.e. Omega (∈ M1,3(R)).

• G (MNc,Nc (C), ones(N c)) is a variable that multiplies the gradient operator element-by-element

G1
j,k(x, y) = G(j, k)Gradientx{ j, k}(x, y)

for j, k ∈ {1, ...,Nc}.

7.3.6. The InitialData Var2d function

Phi 0 = InitialData Var2d(Method, Geometry2D, Physics2D, InitialData Choice, X0, Y0,

gamma x, gamma y);

Table 19. The InitialData Var2d function.

The InitialData Var2d function (see Table 19) builds an initial wave function (i.e. Ψ0(x)) for the simulations.
Already defined initial data corresponding to the Thomas-Fermi approximation or the centered Gaussian are existing
in GPELab. Note that the user can also create its own initial wave function without using this function. The Method,
Geometry2D and Physics2D structures are needed arguments for the function. Optional arguments are

• InitialData Choice (N,1) is a variable that must be either 1 if one uses a centered gaussian or 2 for Thomas-
Fermi approximations as initial data. The option 3 allows to use the imaginary-time method with the BESP
scheme to compute ground-states for each component where the operators are restricted to their diagonal parts
(i.e. the components are decoupled).

• X0,Y0 (M1,Nc (R), 0) are variables corresponding to the coordinates of the center of the gaussian or Thomas-
Fermi approximation as initial data. We note that, in the 1d case, we only have to define X0 and, in the 3d case,
Z0 is required.

• gamma x, gamma y (R, 1) are variables corresponding to the parameters of the centered gaussian. We note that,
in the 1d case, we only have to define gamma x and, in the 3d case, we have to add gamma z.

For example, if we want to compute a Thomas-Fermi approximation as initial data, we proceed as in Table 20.

InitialData Choice = 2;

Phi 0 = InitialData Var2d(Method, Geometry2D, Physics2D, InitialData Choice);

Table 20. An example to use the InitialData Var2d function.

7.4. Launching a simulation, setting the outputs and informations related to the computation
7.4.1. The OutputsINI Var2d function

Outputs = OutputsINI Var2d(Method, Evo outputs, save, userdef outputs,

userdef outputs names, globaluserdef outputs, globaluserdef outputs names);

Table 21. The OutputsINI Var2d function.

The OutputsINI Var2d function (see Table 21) initializes the outputs of a simulation by building the Outputs

structure. Outputs are scalar values computed by using each component of the wave function during the simulation.
In GPELab, the predefined outputs are: the modulus of the wave function at the center of the domain, the root mean-
square in each direction, the energy, the chemical potential and the angular momentum. More outputs can be computed

26

/ Computer Physics Communications 00 (2014) 1–37 27

by using user-defined functions. The outputs are computed and displayed in the command window at each iteration
incremented by the value of the Evo outputs variable. They are also stored after the simulation in the Outputs

structure (see the GPELab2d function, Section 7.4.4, page 30). The Method structure is a required argument of this
function. Concerning the optional arguments, we have

• Evo outputs (N, 5) is a variable corresponding to the number of iterations between each computation of the
outputs. It must be smaller or equal to Evo from the Print Var2d (see Section 7.4.2, page 29).

• save (N,0) is a variable corresponding to the choice of whether or not to save the computed wave functions in
the output structure every Evo. It must be either 1 if one saves the wave functions or 0 otherwise.

• userdef outputs is a cell array of functions in C1,nLout {F(MNy,Nx (C),MNy,Nx (R)2,MNy,Nx (C)2;R)} that allows
the user to define himself nLout relevant physical output quantities. These quantities are computed through nLout

Matlab functions that the user must write himself under the form

(ψ`(t, x), x, y, ξx, ξy)→ userdef outputs{ j}(ψ`(t, x), x, y, ξx, ξy)

for j ∈ {1, ..., nLout}, where ξx and ξy are the discrete Fourier frequencies in the x- and y-directions. We remark
that userdef outputs must have (ψ`(t, x), x, y, ξx, ξy) as arguments only in the case where a spectral scheme
is used. Otherwise, the arguments are (ψ`(t, x), x, y). By default, there is no other output computed than the
predefined ones.

• userdef outputs names (C1,nLout {S},’User defined function’) is a cell array of character strings, where
the j-th component corresponds to the name displayed in the command window of the j-th physical quantity
appearing in userdef outputs.

• globaluserdef outputs is a cell array of functions inC1,nGout {F(C1,Nc {MNy,Nx (C)},MNy,Nx (R)2,MNy,Nx (C)2;R)}
that defines nGout relevant physical output quantities. We remark that, compared with the previous variable
userdef outputs, these physical quantities can be defined through expressions involving the full wave func-
tion Ψ and not only its one-by-one components. They are evaluated through nGout Matlab functions that must
be of the form

(Ψ(t, x), x, y, ξx, ξy)→ globaluserdef outputs{ j}(Ψ(t, x), x, y, ξx, ξy)

for j ∈ {1, ..., nGout}, where ξx and ξy are the discrete Fourier frequencies in the x- and y-directions. We remark
that globaluserdef outputs must have (ψ`(t, x), x, y, ξx, ξy) as arguments only in the case where a spectral
scheme is used. Otherwise, the arguments are (ψ`(t, x), x, y). By default, there is no predefined output quantity
in GPELab which means that the user must define its own functions.

• globaluserdef outputs names (C1,nGout {S},’User defined function’) is a variable that has the same
role as userdef outputs names but for globaluserdef outputs.

Let us assume that we launch a simulation that ends after Niter iterations. Therefore, the outputs are computed

Nout = Int
[[

Niter

Evo outputs

]]
+ 1

times at tk := k Evo outputs ∆t, 1 ≤ k ≤ Nout, and tNout+1 = Niter∆t. In the above equation, Int[[r]] designates the
integer part of a real-valued number r. The resulting Outputs structure has the following variables

• Solution (C1,Nout {C1,Nc {MNy,Nx (C)}}) contains the computed solutions for times tk if save = 1.

• phi abs 0 (C1,Nc {M1,Nout (R)}) is a cell array of vectors that contains the values of the square modulus of each
wave function ψ` at the center of the domain for times tk

phi abs 0{`}(k) =

∣∣∣∣∣ψ` (tk, x max + x min

2
,
y max + y min

2

)∣∣∣∣∣2
where x max, x min, y max and y min have been defined by the Geometry2D Var2d function (see Subsection
7.2.2, page 19).

27

/ Computer Physics Communications 00 (2014) 1–37 28

• x rms, y rms (C1,Nc {M1,Nout (R)}) is a cell array of vectors containing the values of the root mean-square of each
wave function ψ` with respect to the x- and y-directions. They are computed by

x rms{`}(k) =

(∫
O

x2|ψ`(tk, x, y)|2dxdy
)1/2

and

y rms{`}(k) =

(∫
O

y2|ψ`(tk, x, y)|2dxdy
)1/2

.

• Energy (C1,Nc {M1,Nout (R)}) is a cell array of vectors such that (see Equation (7.60), page 20)

Energy{`}(k) = E`(Ψ)(tk)

• Chemical potential (C1,Nc {M1,Nout (R)}) is a cell array of vectors such that (see Equation (7.61), page 20)

Chemical potential{`}(k) = µ`(Ψ)(tk)

• User defined local (C1,nLout {M1,Nout (R)}) are the user-defined functions userdef outputs.

• User defined global (C1,nGout {M1,Nout (R)}) are the user-defined functions globaluserdef outputs.

For example, to compute the L2-norm of the gradient of each component of a Bose-Einstein condensate on the
computational domain O

Grad norm =

∫
O

|∇ψ(t, x)|2dxdy,

one has to first define a function that computes the L2-norm of the gradient by using a FFT and then create the Outputs
structure by using the OutputsINI Var2d function with the function as argument (see Table 22).

function Grad norm = Example outputs(Geometry2D,phi,x,y,fftx,ffty)

Grad x = ifft2(1i*fftx.*fft2(phi));

Grad y = ifft2(1i*ffty.*fft2(phi));

Grad x norm = sqrt((Geometry2D.dx*Geometry2D.dy)*sum(sum(abs(Grad x).^2)));

Grad y norm = sqrt((Geometry2D.dx*Geometry2D.dy)*sum(sum(abs(Grad y).^2)));

Grad norm = Grad x norm + Grad y norm;

end

Outputs = OutputsINI Var2d(Method, 1, ...

@(phi,x,y,fftx,ffty) Example outputs(Geometry2D,phi,x,y,fftx,ffty));

Table 22. An example showing how to use the OutputsINI Var2d function for a user-defined function (single-component BEC).

However, to compute the root mean-square of the sum of two components

RMS =

∫
O

(|x|2 + |y|2)|ψ1(t, x) + ψ2(t, x)|2dxdy,

one has to proceed differently because a function computing the root mean-square of the sum of two components takes
the cell vector of the two wave functions as argument. Therefore, globaluserdef outputs must be used (see Table
23).

28

/ Computer Physics Communications 00 (2014) 1–37 29

function RMS = Example outputs(Geometry2D,Phi,x,y,fftx,ffty)

RMS local = (x.^2+y.^2).*abs(Phi{1}+Phi{2}).^2;

RMS = sqrt((Geometry2D.dx*Geometry2D.dy)*sum(sum(abs(RMS local).^2)));

end

Outputs = OutputsINI Var2d(Method, 1, [],[],...

@(Phi,x,y,fftx,ffty) Example outputs(Geometry2D,Phi,x,y,fftx,ffty));

Table 23. An example to use the OutputsINI Var2d function for a user-defined function (multi-components BEC).

Print = Print Var2d(Printing,Evo,Draw);

Table 24. The Print Var2d function.

7.4.2. The Print Var2d function
The Print Var2d function builds the Print structure (Table 24). The aim is to provide to the program the

printing informations displayed during the computation. The following optional arguments are

• Printing (N,1) is a variable equals to 1 for printing informations during the computation and 0 otherwise.

• Evo (N,5) is a variable corresponding to the number of iterations between each displayed information (including
drawing some figures). It must be larger than or equal to Evo outputs from the OutputsINI Var2d function
(see Section 7.4.1, page 26).

• Draw (N,1) is a variable equal to 1 if the modulus and the phase of the wave functions are drawn during the
simulation and 0 if not.

For example, if one wants to print informations every 10 iterations but does not want to slow the program by
drawing the modulus and phase of the wave function, one defines the Print structure by using the Print Var2d

function (see Table 25).

Printing = 1;

Evo = 10;

Draw = 0;

Print = Print Var2d(Printing,Evo,Draw);

Table 25. Using the Print Var2d function.

7.4.3. The Figure Var2d function

Figure = Figure Var2d(map);

Table 26. The Figure Var2d function.

The Figure Var2d function builds the Figure structure which contains informations needed to draw figures in 2d
(see Table 26). We have the following optional argument: map (S,’jet’) is a variable corresponding to the colormap
of the figures. It must be either ’jet’, ’hsv’, ’hot’, ’cool’, ’spring’, ’summer’, ’autumn’, ’winter’,
’gray’, ’bone’, ’copper’, ’pink’ or ’lines’ (see the Matlab documentation for further informations about
colormap3). If one wants to draw figures using the ’hot’ colormap for example, then it can be done by defining the
Figure structure as in Table 27.

29

/ Computer Physics Communications 00 (2014) 1–37 30

map = ’hot’;

Figure = Figure Var2d(map);

Table 27. An example for the Figure Var2d function.

[Phi,Outputs] = GPELab2d(Phi 0,Method,Geometry2D,Physics2D,Outputs,Continuation,

Print,Figure);

Table 28. The GPELab2d function.

7.4.4. The GPELab2d function
The GPELab2d function (see Table 28) is the main function to launch a full simulation with respect to a given

configuration. The output arguments are

• Phi (C1,Nc {MNy,Nx (C)}), the wave functions computed at the final time (with respect to a stopping criterion for
a stationary state or a fixed time for a dynamical computation [12]).

• Outputs (S) which is a structure containing all the outputs computed during the simulation.

The initial data Phi 0 (C1,Nc {MNy,Nx (C)}) and the Method, Geometry2D, Physics2D and Outputs structures are
required arguments. The optional arguments that can be considered are the following

• Continuation (S,[]) is the continuation structure if one wants to use a continuation method.

• Print (S,Print Var2d) is the printing structure.

• Figure (S,Figure Var2d.) is the structure setting the parameters to draw the figures.

We report in Table 29 a model example to call the GPELab2d function.

[Phi,Outputs] = GPELab2d(Phi 0,Method,Geometry2D,Physics2D,Outputs);

Table 29. An example of call to the GPELab2d function.

8. Two additional examples

8.1. Ground state of a system of 2d GPEs modeling a spin-orbit-coupled BEC under rotation
The aim of this Section is to consider the computation of the ground state of a 2d system composed of two

Gross-Pitaevskii equations with quadratic potentials, rotational operators, coupled cubic nonlinearities and coupled
gradients. This system of GPEs models a spin-orbit-coupled BEC under rotation [6]. The two first structures that
need to be defined are the Method and Geometry2D structures. In our case, we have to set GPELab to simulate two
components. Moreover, we use the BESP scheme with δt = 0.5 and a spatial grid with 29 + 1 points in each direction
for a computational domain]− 10, 10[×]− 10, 10[. We use the strong stopping criterion that we fix to 10−5 (see Table
30).

Let us consider the problem of computing the ground state of the following system of Gross-Pitaevskii equations

i∂tψ1(t, x, y) =
1
2

∆ψ1(t, x, y) +

(
1
2

(
|x|2 + |y|2

)
+ β1|ψ1(t, x, y)|2 + β12|ψ2(t, x, y)|2

)
ψ1(t, x, y)

+iΩ
(
y∂x − x∂y

)
ψ1(t, x, y) − κ

(
i∂x + ∂y

)
ψ2(t, x, y),

i∂tψ2(t, x, y) =
1
2

∆ψ2(t, x, y) +

(
1
2

(
|x|2 + |y|2

)
+ β2|ψ2(t, x, y)|2 + β12|ψ1(t, x, y)|2

)
ψ2(t, x, y)

+iΩ
(
y∂x − x∂y

)
ψ2(t, x, y) − κ

(
i∂x − ∂y

)
ψ1(t, x, y),

3http://www.mathworks.fr/fr/help/matlab/ref/colormap.html

30

http://www.mathworks.fr/fr/help/matlab/ref/colormap.html

/ Computer Physics Communications 00 (2014) 1–37 31

Computation = ’Ground’;

Ncomponents = 2;

Type = ’BESP’;

Deltat = 5e-1;

Stop time = [];

Stop crit = {’MaxNorm’,1e-5};

Method = Method Var2d(Computation,Ncomponents, Type, Deltat, Stop time , Stop crit);

xmin = -10;

xmax = 10;

ymin = -10;

ymax = 10;

Nx = 2^9+1;

Ny = 2^9+1;

Geometry2D = Geometry2D Var2d(xmin,xmax, ymin,ymax, Nx, Ny);

Table 30. Calling the Method Var2d and Geometry2D Var2d functions to build the Method and Geometry2D structures.

with β1 = β2 = 1000, β12 = 2000, Ω = 0.1 and κ = 1.75. Since the default potential is the quadratic potential and
the default gradients define the rotational operator, we only have to provide the coupled cubic nonlinearity and the
spin-orbit coupling operators. The coupled cubic nonlinearities are defined by using a script (see Table 31).

function [CoupledCubicNonlinearity] = Coupled Cubic2d(Beta coupled)

CoupledCubicNonlinearity = cell(2);

CoupledCubicNonlinearity{1,1} = @(Phi,X,Y) Beta coupled(1,1)*abs(Phi{1}).^2+...

Beta coupled(1,2)*abs(Phi{2}).^2;

CoupledCubicNonlinearity{2,2} = @(Phi,X,Y) Beta coupled(2,2)*abs(Phi{2}).^2+...

Beta coupled(2,1)*abs(Phi{1}).^2;

CoupledCubicNonlinearity{1,2} = @(Phi,X,Y) 0;

CoupledCubicNonlinearity{2,1} = @(Phi,X,Y) 0;

Table 31. Defining the coupled nonlinearity.

We also have to define the energy associated to the coupled cubic nonlinearity (Table 32). Then, we use the
Dispersion Var2d function to define the Laplacian and spin-orbit coupling operators (Table 33). This definition
of the dispersion operator enables GPELab to construct the Laplace preconditioner with respect to the Laplacian and
the spin-orbit coupling operator. We can now build the Physics2D structure accordingly to our problem. We set the
coefficients for the Laplacian, the nonlinearity and the rotational operator by using the Physics2D Var2d function.
Then, we add the default potential, the default gradients and the coupled cubic nonlinearity to the physics of the
problem thanks to the functions associated to each operator (see Table 34).

function [CoupledCubicEnergy] = Coupled Cubic energy2d(Method,Beta coupled)

CoupledCubicEnergy = cell(2);

CoupledCubicEnergy{1,1} = @(Phi,X,Y) (1/2)*Beta coupled(1,1)*abs(Phi{1}).^2+...

(1/2)*Beta coupled(1,2)*abs(Phi{2}).^2;

CoupledCubicEnergy{2,2} = @(Phi,X,Y) (1/2)*Beta coupled(2,2)*abs(Phi{2}).^2+...

(1/2)*Beta coupled(2,1)*abs(Phi{1}).^2;

CoupledCubicEnergy{1,2} = @(Phi,X,Y) 0;

CoupledCubicEnergy{2,1} = @(Phi,X,Y) 0;

Table 32. Defining the energy associated with the coupled nonlinearity.

We then set the initial data as the Thomas-Fermi approximation (see Table 35).
31

/ Computer Physics Communications 00 (2014) 1–37 32

function Dispersion = Dispersion SpinOrbit(Kappa)

Dispsersion = cell(2);

Dispsersion {1,1} = @(fftx,ffty) (1/2)*(fftx^2+ffty.^2);

Dispsersion {1,2} = @(fftx,ffty) Kappa*(fftx-1i*ffty);

Dispsersion {2,1} = @(fftx,ffty) Kappa*(fftx+1i*ffty);

Dispsersion {2,2} = @(fftx,ffty) (1/2)*(fftx^2+ffty.^2);

end

Table 33. An example of the way the Dispersion Var2d.m function has to be used.

Delta = 0.5;

Beta = 1000;

Beta coupled= [1,2;2,1];

Omega = 0.1;

Kappa = 1.75;

Physics2D = Physics2D Var2d(Method,Delta,[],Omega);

Physics2D = Dispersion Var2d(Method, Physics2D, Dispersion SpinOrbit(Kappa));

Physics2D = Potential Var2d(Method, Physics2D);

Physics2D = Nonlinearity Var2d(Method, Physics2D,...

Coupled Cubic2d(Method,Beta coupled),...

[],Coupled Cubic energy2d(Method,Beta coupled));

Physics2D = Gradientx Var2d(Method, Physics2D);

Physics2D = Gradienty Var2d(Method, Physics2D);

Table 34. Building the Physics2D structure.

InitialData choice = 2 ;

Phi 0 = InitialData Var2d(Method, Geometry2D, Physics2D,InitialData choice);

Table 35. Constructing the initial data.

Finally, Table 36 provides the informations for the outputs and printing options. We report on Figures 2(a)-2(d)
the moduli and the phases of the stationary state solutions at the end of the computations for the two-components. We
observe that the solution has a very complex structure.

Outputs = OutputsINI Var2d(Method);

Printing = 1;

Evo = 15;

Draw = 1;

Print = Print Var2d(Printing,Evo,Draw);

[Phi,Outputs]= GPELab2d(Phi 0,Method,Geometry2D,Physics2D,Outputs,[],Print);

Table 36. Printing options and launching the computation.

8.2. Ground state of a 3d GPE with a quadratic potential, a cubic nonlinearity and a rotational operator

In this Section, we consider the problem of computing the ground state of a GPE with a quadratic potential, a
cubic nonlinearity and a rotational operator in 3d. We first build the Method and Geometry3D structures. We use the
BESP scheme with δt = 0.5, a spatial grid with 27 + 1 points in the x-, y- and z-directions for O :=] − 10, 10[×] −
10, 10[×] − 15, 15[. Moreover, we set the strong stopping criterion to 10−6. We can see in Table 37 how to proceed to
set these parameters in the Method and Geometry3D structures by using the Method Var3d and Geometry3D Var3d

32

/ Computer Physics Communications 00 (2014) 1–37 33

(a) Modulus of component 1 of the ground state (b) Phase of component 1 of the ground state

(c) Modulus of component 2 of the ground state (d) Phase of component 2 of the ground state

Figure 2. Ground state obtained at the end of the simulation for the spin-orbit-coupled BEC.

functions. We want to compute the ground state of the following GPE

i∂tψ(t, x, y, z) =
1
2

∆ψ(t, x, y, z) +
1
2

(
γ2

x |x|
2 + γ2

y |y|
2 + γ2

z |z|
2
)
ψ(t, x, y, z)

+β|ψ(t, x, y, z)|2ψ(t, x, y, z) +Ω · (x × ∇)ψ(t, x, y, z),

with γx = γy = 1, γz = 1/2, β = 500 and Ω = (0, 0, 0.7). We keep in mind that the default dispersion is the
Laplacian, the default nonlinearity is the cubic nonlinearity and the default gradients operators are the rotational
operators. This implies that we only have to build the Physics3D structure with the required coefficients and then
to add each operator (see Table 38 for more details). In this case, the quadratic potential has to be defined in the
Potential Var3d function. We then fix the initial data by using InitialData Var3d. We choose the Thomas-
Fermi approximation (see Table 39). We finally set the outputs and the printing informations, then we launch the
simulation following Table 40.

At the end of the computation, we draw on Figure 3(a) the 10−3-isovalues of the modulus of the stationary state
solution. In particular we observe the creation of vortex lines inside the BEC. Furthermore, we represent on Figure
3(b) the phase of the ground state in the (x, y)-plane.

33

/ Computer Physics Communications 00 (2014) 1–37 34

Computation = ’Ground’;

Ncomponents = 1;

Type = ’BESP’;

Deltat = 5e-1;

Stop time = [];

Stop crit = {’MaxNorm’,1e-6};

Method = Method Var3d(Computation,Ncomponents, Type, Deltat, Stop time , Stop crit);

xmin = -10;

xmax = 10;

ymin = -10;

ymax = 10;

zmin = -15;

zmax = 15;

Nx = 2^7+1;

Ny = 2^7+1;

Nz = 2^7+1;

Geometry3D = Geometry3D Var3d(xmin,xmax, ymin,ymax, zmin,zmax, Nx, Ny, Nz);

Table 37. Building the Method and Geometry3D structures.

Delta = 0.5;

Beta = 500;

Omega = [0,0,0.7];

gamma x = 1;

gamma y = 1;

gamma z = 1/2;

Physics3D = Physics3D Var3d(Method,Delta,Beta,Omega);

Physics3D = Dispersion Var3d(Method,Physics3D);

Physics3D = Potential Var3d(Method, Physics3D, @(X,Y,Z) quadratic potential3d(gamma x,

gamma y,gamma z,X,Y,Z));

Physics3D = Gradientx Var3d(Method, Physics3D);

Physics3D = Gradienty Var3d(Method, Physics3D);

Physics3D = Gradientz Var3d(Method, Physics3D);

Physics3D = Nonlinearity Var3d(Method, Physics3D);

Table 38. Setting the coefficients and adding the default operators to the Physics3D structure.

InitialData choice = 2 ;

Phi 0 = InitialData Var3d(Method, Geometry3D, Physics3D,InitialData choice);

Table 39. Building the initial data as the Thomas-Fermi approximation.

Outputs = OutputsINI Var3d(Method);

Printing = 1;

Evo = 15;

Draw = 1;

Print = Print Var3d(Printing,Evo,Draw);

[Phi,Outputs]= GPELab3d(Phi 0,Method,Geometry3D,Physics3D,Outputs,[],Print);

Table 40. Creating the Outputs and Print structures and launching the computation.

34

/ Computer Physics Communications 00 (2014) 1–37 35

(a) 10−3-isovalues of the modulus of the ground state (b) Slice in the (x, y)-plane of the phase of the ground state

Figure 3. Ground state obtained at the end of the simulation.

9. Conclusion

In this paper, we presented GPELab which is a flexible and robust Matlab toolbox for the computation of sta-
tionary states (and dynamics) of BECs by using Gross-Pitaevskii equations. This toolbox provides a helpful tool to
numerically simulate the solution to various kinds of nontrivial GPEs as shown on a few examples. Furthermore,
GPELab integrates some possibilities for computing the dynamics of BECs as well as considering stochastic effects
[12, 14].

Acknowledgements. This work was partially supported by the French ANR grant ANR-12-MONU-0007-02 BE-
CASIM (”Modèles Numériques” call).

References

[1] F. Kh. Abdullaev, B. B. Baizakov, and V. V. Konotop. Dynamics of a Bose-Einstein condensate in optical trap. In Nonlinearity and Disorder:
Theory and Applications, volume 45 of NATO Science Series, pages 69–78. Springer Netherlands, 2001.

[2] F. Kh. Abdullaev, J. C. Bronski, and R. M. Galimzyanov. Dynamics of a trapped 2d Bose-Einstein condensate with periodically and randomly
varying atomic scattering length. Physica D: Nonlinear Phenomena, 184(1-4):319 – 332, 2003.

[3] F. Kh. Abdullaev, J. C Bronski, and G. Papanicolaou. Soliton perturbations and the random Kepler problem. Physica D: Nonlinear Phenom-
ena, 135(3-4):369 – 386, 2000.

[4] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. Observation of vortex lattices in Bose-Einstein condensates. Science,
292(5516):476–479, 2001.

[5] S. K. Adhikari. Numerical solution of the two-dimensional Gross-Pitaevskii equation for trapped interacting atoms. Physics Letters A,
265(1):91–96, 2000.

[6] A. Aftalion and P. Mason. Phase diagrams and Thomas-Fermi estimates for spin-orbit-coupled Bose-Einstein condensates under rotation.
Phys. Rev. A, 88:023610, Aug 2013.

[7] G. Agrawal. Nonlinear fiber optics. Springer, 2000.
[8] G. Agrawal. Applications of Nonlinear Fiber Optics. Optics and photonics. Elsevier Science, 2001.
[9] P. Amara, D. Hsu, and J. E. Straub. Global energy minimum searches using an approximate solution of the imaginary time Schrödinger

equation. The Journal of Physical Chemistry, 97(25):6715–6721, 1993.
[10] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of Bose-Einstein condensation in a dilute

atomic vapor. Science, 269(5221):198–201, 1995.
[11] X. Antoine, W. Bao, and C. Besse. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations.

Computer Physics Communications, 184(12):2621 – 2633, 2013.
[12] X. Antoine and R. Duboscq. GPELab, a Matlab Toolbox to solve Gross-Pitaevskii Equations II: dynamics and stochastics. In preparation.
[13] X. Antoine and R. Duboscq. GPELab User Guide.
[14] X. Antoine and R. Duboscq. Modeling and computation of Bose-Einstein condensates: stationary states, nucleation, dynamics, stochasticity.

Lecture Notes in Mathematics. Springer, to appear, 2014.
[15] X. Antoine and R. Duboscq. Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and

strongly interacting Bose-Einstein condensates. Journal of Computational Physics, 258C:509–523, 2014.
35

/ Computer Physics Communications 00 (2014) 1–37 36

[16] W. Bao and Y. Cai. Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction. East Asian J.
Appl. Math, 1:49–81, 2011.

[17] W. Bao and Y. Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic and Related Models, 6(1):1–135,
Mar 2013.

[18] W. Bao, I-L. Chern, and F.Y. Lim. Efficient and spectrally accurate numerical methods for computing ground and first excited states in
Bose-Einstein condensates. Journal of Computational Physics, 219(2):836–854, 2006.

[19] W. Bao and Q. Du. Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM Journal on
Scientific Computing, 25(5):1674–1697, 2004.

[20] W. Bao, Q. Du, and Y. Zhang. Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation. SIAM
Journal on Applied Mathematics, 66(3):758–786, 2006.

[21] W. Bao and W. Tang. Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional. Journal of Computa-
tional Physics, 187(1):230–254, 2003.

[22] W. Bao and H. Wang. An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates.
Journal of Computational Physics, 217(2):612–626, 2006.

[23] W. Bao, H. Wang, and P. A. Markowich. Ground, symmetric and central vortex states in rotating Bose-Einstein condensates. Communications
in Mathematical Sciences, 3(1):57–88, 2005.

[24] D. Baye and J-M. Sparenberg. Resolution of the Gross-Pitaevskii equation with the imaginary-time method on a Lagrange mesh. Physical
Review E, 82(5):056701, 2010.

[25] M. Caliari and S. Rainer. GSGPEs: A matlab code for computing the ground state of systems of Gross-Pitaevskii equations. Computer
Physics Communications, 184(3):812 – 823, 2013.

[26] M. M. Cerimele, M. L. Chiofalo, F. Pistella, S. Succi, and M. P. Tosi. Numerical solution of the Gross-Pitaevskii equation using an explicit
finite-difference scheme: An application to trapped Bose-Einstein condensates. Physical Review E, 62(1):1382, 2000.

[27] M. L. Chiofalo, S. Succi, and M. P. Tosi. Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time
algorithm. Physical Review E, 62(5):7438, 2000.

[28] D.-I. Choi and Q. Niu. Bose-Einstein condensates in an optical lattice. Phys. Rev. Lett., 82:2022–2025, Mar 1999.
[29] F. Dalfovo and S. Stringari. Bosons in anisotropic traps: Ground state and vortices. Phys. Rev. A, 53:2477–2485, Apr 1996.
[30] K. B. Davis, M-O. Mewes, M. R. van Andrews, N. J. Van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-Einstein condensation in

a gas of sodium atoms. Physical Review Letters, 75(22):3969–3973, 1995.
[31] V. Dunjko, V. Lorent, and M. Olshanii. Bosons in cigar-shaped traps: Thomas-Fermi regime, Tonks-Girardeau regime, and in between. Phys.

Rev. Lett., 86:5413–5416, Jun 2001.
[32] M. Edwards and K. Burnett. Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. Physical

Review A, 51:1382–1386, 1995.
[33] J-P. Fouque. Wave propagation and time reversal in randomly layered media, volume 56. Springer, 2007.
[34] D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak. Bose-Einstein condensation of atomic

hydrogen. Physical Review Letters, 81:3811–3814, Nov 1998.
[35] A. Gammal, T. Frederico, and L. Tomio. Improved numerical approach for the time-independent Gross-Pitaevskii nonlinear Schrödinger

equation. Physical Review E, 60(2):2421, 1999.
[36] J. Garnier, F. Kh. Abdullaev, and B. B. Baizakov. Collapse of a Bose-Einstein condensate induced by fluctuations of the laser intensity.

Physical Review A, 69:053607, May 2004.
[37] M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas. Dynamics of noise-induced heating in atom traps. Physical Review A,

58:3914–3921, Nov 1998.
[38] S. Giovanazzi, A. Görlitz, and T. Pfau. Tuning the dipolar interaction in quantum gases. Phys. Rev. Lett., 89:130401, Sep 2002.
[39] K. Góral, K. Rza̧żewski, and T. Pfau. Bose-Einstein condensation with magnetic dipole-dipole forces. Physical Review A, 61:051601, Mar

2000.
[40] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau. Bose-Einstein condensation of chromium. Physical Review Letters, 94:160401,

Apr 2005.
[41] E. P. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento Series 10, 20(3):454–477, 1961.
[42] U. Hohenester. OCTBEC: A Matlab toolbox for optimal quantum control of Bose-Einstein condensates. Computer Physics Communications,

2013.
[43] M. J. Holland, D. S. Jin, M. L. Chiofalo, and J. Cooper. Emergence of interaction effects in Bose-Einstein condensation. Phys. Rev. Lett.,

78:3801–3805, May 1997.
[44] A. D. Jackson, G. M. Kavoulakis, and C. J. Pethick. Solitary waves in clouds of Bose-Einstein condensed atoms. Physical Review A,

58:2417–2422, Sep 1998.
[45] B. Jackson, J. F. McCann, and C. S. Adams. Vortex formation in dilute inhomogeneous Bose-Einstein condensates. Physical Review Letters,

80:3903–3906, 1998.
[46] K. Kasamatsu, M. Tsubota, and M. Ueda. Giant hole and circular superflow in a fast rotating Bose-Einstein condensate. Phys. Rev. A,

66:053606, Nov 2002.
[47] Y. Kawaguchi and M. Ueda. Spinor Bose-Einstein condensates. Physics Reports, 2012.
[48] T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada. Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett.,

78:4713–4716, Jun 1997.
[49] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau. The physics of dipolar bosonic quantum gases. Reports on Progress in Physics,

72(12):126401, 2009.
[50] C. K. Law, H. Pu, and N. P. Bigelow. Quantum spins mixing in spinor Bose-Einstein condensates. Phys. Rev. Lett., 81:5257–5261, Dec 1998.
[51] P. Leboeuf and N. Pavloff. Bose-Einstein beams: Coherent propagation through a guide. Physical Review A, 64:033602, Aug 2001.
[52] M. Lewin, P. T. Nam, and N. Rougerie. Derivation of Hartree’s theory for generic mean-field Bose systems. arXiv preprint arXiv:1303.0981,

36

/ Computer Physics Communications 00 (2014) 1–37 37

2013.
[53] E. H. Lieb and R. Seiringer. Derivation of the Gross-Pitaevskii equation for rotating Bose gases. Communications in Mathematical Physics,

264(2):505–537, 2006.
[54] E. J. M. Madarassy and V. T. Toth. Numerical simulation code for self-gravitating Bose-Einstein condensates. Computer Physics Communi-

cations, 184(4):1339 – 1343, 2013.
[55] K. W. Madison, F. Chevy, V. Bretin, and J. Dalibard. Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation.

Physical Review Letters, 86(20):4443–4446, 2001.
[56] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortex formation in a stirred Bose-Einstein condensate. Physical Review Letters,

84(5):806–809, 2000.
[57] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortices in a stirred Bose-Einstein condensate. Journal of Modern Optics,

47(14-15):2715–2723, 2000.
[58] R. Marty. On a splitting scheme for the nonlinear Schroedinger equation in a random medium. Communications in Mathematical Sciences,

4(4):363 – 376, 2006.
[59] H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur, and W. Ketterle. Observation of metastable states in spinor

Bose-Einstein condensates. Phys. Rev. Lett., 82:2228–2231, Mar 1999.
[60] P. Muruganandam and S. K. Adhikari. Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap. Com-

puter Physics Communications, 180(10):1888 – 1912, 2009.
[61] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman. Production of two overlapping Bose-Einstein condensates by

sympathetic cooling. Physical Review Letters, 78:586–589, Jan 1997.
[62] P. Pedri and L. Santos. Two-dimensional bright solitons in dipolar Bose-Einstein condensates. Physical Review Letters, 95:200404, Nov

2005.
[63] C. J. Pethick and H. Smith. Bose-Einstein condensation in dilute gases. Cambridge University Press, 2002.
[64] L. P. Pitaevskii. Vortex lines in an imperfect bose gas. Soviet Physics JETP-USSR, 13(2), 1961.
[65] L. P. Pitaevskii and S. Stringari. Bose-Einstein condensation, volume 116. Clarendon press, 2003.
[66] C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle. Vortex nucleation in a stirred Bose-Einstein condensate. Physical Review

Letters, 87(21):210402, 2001.
[67] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.
[68] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on

Scientific and Statistical Computing, 7(3):856–869, 1986.
[69] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn. Spontaneous symmetry breaking in a quenched ferromag-

netic spinor Bose-Einstein condensate. Nature, 443(7109):312–315, 2006.
[70] T. A. Savard, K. M. O’Hara, and J. E. Thomas. Laser-noise-induced heating in far-off resonance optical traps. Physical Review A, 56:R1095–

R1098, Aug 1997.
[71] R. P. Tiwari and A. Shukla. A basis-set based fortran program to solve the Gross-Pitaevskii equation for dilute bose gases in harmonic and

anharmonic traps. Computer Physics Communications, 174(12):966 – 982, 2006.
[72] H. A. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM

Journal on Scientific and Statistical Computing, 13(2):631–644, 1992.
[73] D. Vudragović, I. Vidanović, A. Balaž, P. Muruganandam, and S. K. Adhikari. C programs for solving the time-dependent Gross-Pitaevskii

equation in a fully anisotropic trap. Computer Physics Communications, 183(9):2021 – 2025, 2012.
[74] L. Wen, H. Xiong, and B. Wu. Hidden vortices in a Bose-Einstein condensate in a rotating double-well potential. Physical Review A,

82(5):053627, 2010.
[75] X.-Q. Xu and J. H. Han. Spin-orbit coupled Bose-Einstein condensate under rotation. Phys. Rev. Lett., 107:200401, Nov 2011.
[76] R. Zeng and Y. Zhang. Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates. Computer Physics Communications,

180(6):854–860, 2009.

37

	Introduction
	The dimensionless rotating Gross-Pitaevskii equation
	The GPE equation coming from physics
	The dimensionless GPE

	Stationary states - initial data - potentials - nonlinearities
	Stationary states
	Initial data
	Potentials
	Nonlinearities

	Conjugate Normalized Gradient Flow (CNGF) formulation and discretization (for the one-component BEC)
	Time and space discretizations: the Backward Euler (BE) scheme
	Backward Euler Finite Difference (BEFD) scheme
	Backward Euler pseudoSPectral (BESP) scheme

	One- and three-dimensional problems

	Extension to the multi-components case
	The multi-components GPE
	Stationary states - CNGF
	Time and space discretizations

	A simple but complete example
	How to use GPELab
	Notations and preliminary remarks
	Setting the numerical scheme and the geometry
	The Method_Var2d function
	The Geometry2D_Var2d.m function

	Setting the physical problem
	The Physics2D_Var2d function
	The Dispersion_Var2d function
	The Potential_Var2d function
	The Nonlinearity_Var2d function
	The gradient functions
	The InitialData_Var2d function

	Launching the simulation...
	The OutputsINI_Var2d function
	The Print_Var2d function
	The Figure_Var2d function
	The GPELab2d function

	Two additional examples
	Ground state of a system of 2d GPEs modeling a spin-orbit-coupled BEC under rotation
	Ground state of a 3d GPE with a quadratic potential, a cubic nonlinearity and a rotational operator

	Conclusion

