Hand-in your solutions until 8.10.2014, in Martina Dal Borgo's mailbox on K floor (or give the sheet in person on the 8.10.2014 in class).

Exercise 1

Consider the model of the Exercise 4 Sheet 2.
i) Determine the probability measure $\mathbb{Q}, \mathbb{Q}\left(\omega_{i}\right)>0, i=1,2$ such that

$$
S_{0}=\frac{1}{1+r} \mathbb{E}^{\mathbb{Q}}\left[S_{1}\right]
$$

ii) Does the initial value of the strategy (found in Sheet 2) equal the risk-neutral price $(1+r)^{-1} \mathbb{E}^{\mathbb{Q}}\left[C_{1}\right]$?
iii) Show that there are arbitrage strategies in the model if one prices the Call option at time $t=0$ as the discounted expectation under the real-world (historic) probability measure, i.e. $(1+r)^{-1} \mathbb{E}^{\mathbb{P}}\left[C_{1}\right] \neq$ $(1+r)^{-1} \mathbb{E}^{\mathbb{Q}}\left[C_{1}\right]$ and determine an arbitrage strategy which yelds a risk-free profit of

$$
\begin{equation*}
\left|\mathbb{E}^{\mathbb{P}}\left[C_{1}\right]-\mathbb{E}^{\mathbb{Q}}\left[C_{1}\right]\right|>0 \tag{1}
\end{equation*}
$$

You are required to give numerical answers in the case of $1+r=1$ first and, then $1+r=1.1$. Specify in each case if the call priced under \mathbb{P} is too expensive or too cheap.
Hint: If the call option for the price $(1+r)^{-1} \mathbb{E}^{\mathbb{P}}\left[C_{1}\right]$ is too expensive, sell it and produce a replicating strategy which will leave you with $\mathbb{E}^{\mathbb{P}}\left[C_{1}\right]-\mathbb{E}^{\mathbb{Q}}\left[C_{1}\right]>0$ as left over money. If it is too cheap, buy one and use the opposite of the replication strategy for calls. One can also resort to call-put parity in this second case and use the replication strategy for the put: If the call is too cheap, then the put is too expensive.

Exercise 2

Consider a one-period (1 year) binomial market model (B, S) consisting of a bond, paying an annual risk-free rate of $r=4 \%$ and a risky asset, with current spot price $S_{0}=100$. In the next year the price of the risky asset can increase, with increase rate $u=1.5$, with probability $p=50 \%$ and decrease, with decrease rate $d=0.6$, with probability $1-p=50 \%$.
Now, consider a European call option on S, with strike 18 and maturity of 1 year.
i) Determine the initial price of the Call option.
ii) Would you buy this option?
iii) What if I told you now that the dynamics of the stock are given by $p=99 \%$ and $1-p=1 \%$? Does the price change? Does your position regarding buying the option change?

Exercise 3

Consider a one period (annual) binomial model consisting of a bond, B, paying an annual risk-free rate of 25% and in one risky asset S, whose price can only increase or decrease with constant increase and decrease rates $u=2, d=0.5$ in the next year:

Time	0	$T=1$ year
Bond	$B_{0}=1$	$B_{1}=(1+0.25)$
Risky asset	$S_{0}=50$	$S_{1}=\left\{\begin{array}{l}100 \\ 25\end{array}\right.$

i) Find, via the probability measure \mathbb{Q}, the price of a European Call option on one share of the stock S, with strike $K=50$ and maturity $T=1$ (year).
ii) Suppose that the option in i) is initially priced 1 above the arbitrage free price. Describe a strategy (for trading in stock, bond and the option) that is an arbitrage.
iii) What is the arbitrage free price for a European Put with the same strike and maturity as the Call in $i)$?

Exercise 4

Consider a one-period (annual) financial market model (B, S^{1}, S^{2}) consisting of a bond, B, paying an annual risk-free rate of 5% and in two risky assets S^{1} and S^{2}, given by:

Time	0	$T=1($ year $)$
Bond	$B_{0}=1$	$B_{1}=(1+r)$
Risky asset 1	$S_{0}^{1}=10$	$S_{1}^{1}=\left\{\begin{array}{lll}12 & \text { if } \omega_{1} \\ 10 & \text { if } & \omega_{2} \\ 6 & \text { if } & \omega_{3}\end{array}\right.$
Risky asset 2	$S_{0}^{2}=10$	$S_{1}^{2}=\left\{\begin{array}{lll}15 & \text { if } & \omega_{1} \\ 8 & \text { if } & \left\{\omega_{2}, \omega_{3}\right\}\end{array}\right.$

with $\mathbb{P}\left(\omega_{i}\right)>0, i=1,2,3$ and $\sum_{i=1}^{3} \mathbb{P}\left(\omega_{i}\right)=1$.
i) Prove that there exists a unique probability measure \mathbb{Q}, with $\mathbb{Q}\left(\omega_{i}\right)>0, i=1,2,3$, such that

$$
S_{0}^{1}=\frac{1}{1+r} \mathbb{E}^{\mathbb{Q}}\left[S_{1}^{1}\right] \quad \text { and } \quad S_{0}^{2}=\frac{1}{1+r} \mathbb{E}^{\mathbb{Q}}\left[S_{1}^{2}\right]
$$

ii) Consider two derivatives A and B with maturity 1 year and payoffs

$$
X_{A}=\left(\frac{S_{1}^{1}+S_{1}^{2}}{2}-8\right)^{+}, \quad X_{B}=\left(S_{1}^{1}-S_{1}^{2}\right)^{+}
$$

Find two strategies $\phi^{A}\left(\operatorname{resp} \phi^{B}\right)$ such that

$$
X_{A}=V_{1}\left(\phi^{A}\right) \quad\left(\operatorname{resp} X_{B}=V_{1}\left(\phi^{B}\right)\right)
$$

iii) Discuss whether in the market formed only by $\left(B, S^{1}\right)$ there exists a probability measure \mathbb{Q}, with $\mathbb{Q}\left(\omega_{i}\right)>0, i=1,2,3$, such that

$$
S_{0}^{1}=\frac{1}{1+r} \mathbb{E}^{\mathbb{Q}}\left[S_{1}^{1}\right]
$$

and if this probability measure is unique.

