Hand-in your solutions until 1.10.2014 in Martina Dal Borgo's mailbox on K floor.

The Binomial Model

The binomial model is a discrete time financial market model, composed of a non-risky asset B (bond), corresponding to an investment into a savings account in a bank and of a risky asset S, which is a stochastic process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The quotes of each asset change at times times $0<1<\cdots<T$.

- The dynamic of the bond is deterministic given by

$$
B_{t}=(1+r)^{t}, \quad t \in\{0,1, . ., T\}
$$

where r is the risk-free interest rate on $[0, T]$.

- The risky asset $\left(S_{t}\right)_{t=0, \ldots, T}$ has the following stochastic dynamic: when passing from time $t-1$ to time t the stock can only increase or decrease its value with constant increase and decrease rates denoted u for "up" and d for "down":

$$
\left\{\begin{array}{l}
S_{0} \in \mathbb{R}_{>0} \\
S_{t}=S_{t-1} \xi_{t}, \quad t=1, \ldots, T
\end{array}\right.
$$

where $\left(\xi_{t}\right)_{t \in\{0,1, \ldots, T\}}$ are i.i.d. Bernouilli random variables whose distribution is a combination of Dirac's Deltas: Let $p \in(0,1)$ be the probability that the stock increases. We have:

$$
\begin{aligned}
& \mathbb{P}\left[S_{t}=u S_{t-1}\right]=\mathbb{P}\left[\xi_{t}=u\right]=p \\
& \mathbb{P}\left[S_{t}=d S_{t-1}\right]=\mathbb{P}\left[\xi_{t}=d\right]=1-p
\end{aligned}
$$

that is

$$
S_{t}= \begin{cases}u S_{t-1}, & \text { with probability } p \\ d S_{t-1}, & \text { with probability } 1-p\end{cases}
$$

Hence a trajectory of the stock is a vector such as $(T=4)$

$$
\left(S_{0}, u S_{0}, u d S_{0}, u^{2} d S_{0}, u^{3} d S_{0}\right)
$$

which can be identified with the vector

$$
(u, d, u, u) \in\{u, d\}^{4}
$$

of the occurrence of the random vector $\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)$. Therefore we can assume that the sample space Ω is the family

$$
\{u, d\}^{T}=\left\{\left(e_{1}, \ldots, e_{N}\right) \mid e_{n}=u \text { or } e_{n}=d\right\}
$$

containing 2^{N} elements and \mathcal{F} is the σ-algebra of all subsets of Ω. Moreover we assume that $\mathbb{P}[\omega]>0, \forall \omega \in \Omega$ and we endow this probability space with the filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ defined by:

$$
\begin{align*}
& \mathcal{F}_{0}=\{\emptyset, \Omega\}=\sigma(\emptyset), \tag{1}\\
& \mathcal{F}_{t}=\sigma\left(\xi_{1}, . ., \xi_{t}\right), \quad t \in\{1, . ., T\} . \tag{2}
\end{align*}
$$

The σ-algebra \mathcal{F}_{t} represents the amount of information available in the market at time t. Thanks to exercise 1 and formula (1), one sees that in the model the initial price S_{0} of the asset is deterministic. The family of trajectories can be represented on a binomial tree ($T=3$)

Exercise 1

Prove that if X is a random variable on (Ω, \mathbb{P}), measurable with respect to the trivial σ-algebra $\mathcal{F}=\{\emptyset, \Omega\}$, then X is constant.

Exercise 2

Prove that in the binomial model the stock at time $t, t=0,1, \ldots, T$ is

$$
S_{t}=S_{0} u^{\mathcal{B}} d^{t-\mathcal{B}}
$$

where $\mathcal{B} \sim \operatorname{Binomial}(t, p)$ i.e.

$$
\mathbb{P}[\mathcal{B}=k]=\binom{t}{k} p^{k}(1-p)^{t-k}
$$

Exercise 3

Consider a two-period (2 semesters) binomial market model (B, S) consisting of a bond, B, paying an annual risk-free rate $r=4 \%$, and a risky asset with current spot price $S_{0}=20$. The parameters of the model are $u=1.25, d=0.75$.
Verify whether the exercise of a European Call option written on S with strike $K=18$ and with maturity $T=6$ months, is more likely than the exercise of a European Call option as the one above but with maturity $T^{\prime}=1$ year.

Explanation: more likely means which of the two options has the bigger probability of being exercised by the buyer of the option.

Exercise 4

Consider a one-period (annual) financial market model (B, S) consisting of a bond, B, paying an annual risk-free rate $r \geq 0$, in one risky asset, S, whose final value depends on some random event (we assume that the event can assume only two possible states $\left\{\omega_{1}, \omega_{2}\right\}, \mathbb{P}\left(\omega_{1}\right)=\mathbb{P}\left(\omega_{1}\right)=1 / 2$ in which S_{1} takes the values $S_{1}\left(\omega_{1}\right)$ and $\left.S_{1}\left(\omega_{2}\right)\right)$. We denote by C a Call option written on the risky asset, with maturity of 1 year and strike $K=100$, depending on the same random event:

Time	0	$T=1$ (year)
Bond	$B_{0}=1$	$B_{1}=(1+r)$
Risky asset	$S_{0}=100$	$S_{1}= \begin{cases}120 \text { if } \omega_{1} \\ 90 & \text { if } \omega_{2}\end{cases}$
Call option	$C_{0}=?$	$C_{1}=\left\{\begin{array}{l}(120-100)^{+}=20 \text { if } \omega_{1} \\ (90-100)^{+}=0 \quad \text { if } \omega_{2}\end{array}\right.$

Notice that in one period, a self-financing strategy is given by a single vector $\phi=(\beta, \alpha)$ that is \mathcal{F}_{0} measurable (hence deterministic). Find a trading strategy $\phi=(\beta, \alpha)$ such that the final value of this strategy $V_{1}(\phi)$ satisfies

$$
C_{1}=V_{1}(\phi)=\beta B_{1}+\alpha S_{1} .
$$

regardless of the outcome ω_{1} or ω_{2}. Compute numerically the initial value of this strategy $V_{0}(\phi)=\alpha S_{0}+\beta$.

Exercise 5

Consider a one-period (annual) financial market model (B, S) consisting of a bond, B, paying an annual risk-free rate $r \geq 0$, in one risky asset, S, whose final value depends on some random event (we assume that the event can assume three possible states $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$, with $\mathbb{P}\left(\omega_{1}\right)=p_{1}, \mathbb{P}\left(\omega_{2}\right)=p_{2}, \mathbb{P}\left(\omega_{3}\right)=1-p_{1}-p_{2}$, in which S_{1} takes the values $S_{1}\left(\omega_{1}\right)$ and $\left.S_{1}\left(\omega_{2}\right)\right)$. We denote by C a Call option written on the risky asset, with maturity of 1 year and strike $K=100$, depending on the same random event:

Time	0	$T=1$ (year)
Bond	$B_{0}=1$	$B_{1}=(1+r)$
Risky asset	$S_{0}=100$	$S_{1}=\left\{\begin{array}{lll}150 & \text { if } \omega_{1} \\ 110 & \text { if } \omega_{2} \\ 40 & \text { if } \omega_{3}\end{array}\right.$
Call option	$C_{0}=?$	$C_{1}= \begin{cases}(150-100)^{+}=50 & \text { if } \omega_{1} \\ (110-100)^{+}=10 & \text { if } \omega_{2} \\ (40-100)^{+}=0 & \text { if } \omega_{3}\end{cases}$

In the same spirit as the previous exercise, try to find a trading strategy $\phi=(\beta, \alpha)$ such that the final value of this strategy $V_{1}(\phi)$ satisfies

$$
C_{1}=V_{1}(\phi)=\beta B_{1}+\alpha S_{1} .
$$

