Hand-in your solutions until 11.12.2014, in Martina Dal Borgo's mailbox on K floor.

Let M be a continuous integrable adapted stochastic process on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_t, \mathbb{P})$. We say that M is a continuous-time martingale with respect to (\mathcal{F}_t) and to the measure \mathbb{P} if

$$\mathbb{E}^{\mathbb{P}}\left[M_t | \mathcal{F}_s\right] = M_s, \quad \forall \ 0 \le s \le t.$$

Exercise 1

Let W be a real Brownian motion on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})$ and $\sigma \in \mathbb{R}$. Prove that

- i) W_t ,
- ii) $W_t^2 t$,
- ii) $e^{\sigma W_t \frac{\sigma^2}{2}t}$.

are continuous (\mathcal{F}_t) -martingale.

Exercise 2

We consider an arbitrage-free discrete binomial market (S, B) on the space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})$ and a path-independent European-style derivative, that is the payoff is \mathcal{F}_T -measurable random variable Φ on $(\Omega, \mathcal{F}, \mathbb{P})$, which can be expressed as $\Phi = f(S_T)$ for some function f. Therefore, as in Exercise 3 Sheet 5, the price process P_t of the derivative can be expressed as

$$P_t = p(t, S_t),$$

where $p: \mathbb{N} \times \mathbb{R}_+ \to \mathbb{R}_+$. Assume that f is a Lipschitz function with Lipschitz constant K:

$$|f(x) - f(y)| \le K|x - y|, \quad x, y \in \mathbb{R}.$$

Prove that the amount of shares $(\alpha_t)_t$ of the risky asset the seller of the option has to hold in order to hedge the option satisfies

- i) $|\alpha_t| \leq K, \forall t,$
- ii) if $f \uparrow$, then $\alpha_t \ge \forall t$,
- iii) if $f \downarrow$, then $\alpha_t \leq 0, \forall t$.

Note that in case of

- a European Call K = 1 and f is increasing, therefore $\alpha_t \in [0, 1], \forall t$;
- a European Put K = 1 and f is decreasing, therefore $\alpha_t \in [-1, 0], \forall t$.

Give a financial interpretation of the above comments.

Hint: Recall that a call option is equivalent to the promise of buying the stock for a strike price.

Exercise 3

Explain in why the 2nd fundamental theorem is in fact an equivalence between:

- Uniqueness of the risk neutral measure \mathbb{Q} .
- The representation of \mathbb{Q} -martingales as stochastic integrals. Formally, for every \mathbb{Q} -martingale $M = (M_s)_{1 \leq s \leq T}$, there exists a predictable process $(\eta_s)_{1 \leq s \leq T}$ such that:

$$M_t = M_0 + \sum_{s=1}^t \eta_s \cdot \left(\tilde{S}_s - \tilde{S}_{s-1}\right)$$