Hand-in your solutions until ..., 2013, in Martina Dal Borgo's mailbox on K floor.

Exercise 1 Discuss whether or not the following market models are free of arbitrage and complete using the I and the II Fundamental Theorem of Asset Pricing.
i) A one period (annual) financial market model on $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ consisting of a bond with annual interest rate $r=5 \%$ and two risky assets $\left(S^{1}, S^{2}\right)$

$$
\begin{array}{ll}
S_{0}^{1}=10, & S_{1}^{1}= \begin{cases}12, & \left\{\omega_{1}\right\} \\
8, & \left\{\omega_{2}\right\} \\
6, & \left\{\omega_{3}\right\}\end{cases} \\
S_{0}^{2}=5, & S_{1}^{2}=\left\{\begin{array}{cc}
10, & \left\{\omega_{1}\right\} \\
4, & \left\{\omega_{2}\right\} \\
5, & \left\{\omega_{3}\right\}
\end{array}\right.
\end{array}
$$

ii) The market models (B, S^{1}, S^{2}) and (B, S^{1}) of Exercise 4-Sheet 3 (no need to rewrite the calculus).

In the previous exercise, you realised that a market is not complete because it is lacking enough tradable assets. We say that a market is completed by introducing new tradable assets (generally options), such that the newly formed secondary market is complete.

Exercise 2

Consider a one-period financial market model on $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$, consisting of a bond with interest rate $r=0$ and a risky stock with

$$
S_{0}=1, \quad 0<S_{1}\left(\omega_{1}\right)<S_{1}\left(\omega_{2}\right)<S_{1}\left(\omega_{3}\right)<S_{1}\left(\omega_{4}\right), \quad \mathbb{P}\left(\left\{\omega_{i}\right\}\right)>0, i=1, \ldots, 4 .
$$

We assume that the market is free of arbitrage. Show that there exist 2 different Call options with payoffs C_{1}^{1}, C_{1}^{2} and initial prices C_{0}^{1}, C_{0}^{2} which complete the market and keep it free of arbitrage.

Note:

The same exercise holds true if you consider a one-period financial market model on $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right\}, N>2$ consisting of a bond with interest rate $r=0$ and a risky stock with

$$
S_{0}=1, \quad 0<S_{1}\left(\omega_{1}\right)<S_{1}\left(\omega_{2}\right)<\cdots<S_{1}\left(\omega_{N}\right), \quad \mathbb{P}\left(\left\{\omega_{i}\right\}\right)>0, i=1, \ldots, N
$$

In this case there exist $N-2$ Call options which complete the market and keep it free of arbitrage.

Exercise 3

Consider a one-period financial market model on $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$, consisting of a bond with interest rate $r=0$ and a risky stock with

$$
S_{0}=1, \quad 0<S_{1}\left(\omega_{1}\right)<S_{1}\left(\omega_{2}\right)<S_{1}\left(\omega_{3}\right), \mathbb{P}\left(\left\{\omega_{i}\right\}\right)>0, i=1,2,3
$$

In this setup the set of all random variables on Ω can be identified with \mathbb{R}^{3}. The aim of the following questions is to give a geometric interpretation of the model. You are strongly advised to use the drawing made in class.

1. Describe the following objects in \mathbb{R}^{3} :
i) The set \mathcal{Q} of all equivalent martingale measures.
ii) The set \mathcal{X}^{r} of all replicable options.
2. What is the geometric relation between \mathcal{Q} and \mathcal{X}^{r} ?
3. Prove that under the assumptions $S_{1}\left(\omega_{1}\right)<1, S_{1}\left(\omega_{3}\right)>1$ the model is free of arbitrage.
4. Give an example of a non replicable option.
