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Preamble

These lecture notes are very introductory by nature, and quite plain vanilla. Due to the
large amount of material covering the subject, these notes do not intend to be complete
in any way. They are rather intended to serve as a roadmap for the course MAT519 and
are largely based on the very good books of Williams [Wil06] and Lamberton-Lapeyre
[LL08] - sometimes shamelessly. The keen students can complement their knowledge
by looking at the very practical book of Fries [Fri07].

In order to learn mathematical finance, my general feeling is that the students are
faced with two distinct challenges:

• On the one hand, one needs to understand the mathematics and more precisely
the underlying probability theory. Therefore, the prerequisites for the class are a
standard course in measure theory and a first probability class. The corresponding
modules at the University of Zürich are “Analysis 3” and “Probability 1”. This
provides sufficient tools in order to deliver a course in mathematical finance in
discrete time. The notions of conditional expectation and martingales, considered
more advanced, will be introduced when needed.

• On the other hand, one needs to understand how financial markets are organised.
To the mathematically-minded people, this is perhaps the most difficult task, as
describing financial markets cannot be done with a sequence of definitions, lem-
mas, propositions and theorems. There is nothing canonical about the legal texts
that define financial contracts. It would be much easier if one is allowed to step
inside a bank. I tried filling the gap with the first section where non-mathematical
notions of mathematical finance are presented. The complete reference would be
the book of Hull [Hul06].

The time variable is generally denoted t and will be discrete for most of the lectures.
We adopt the convention that prices are revealed exactly at times t = 0, 1, 2, 3, . . . and,
in between, one is allowed to strategise and rebalance portfolios.

I would like to thanks Markus Neumann, for type-setting the first lecture; and
Martina Dal Borgo for her feedback. All mistakes are mine and I will gladly correct
them, once pointed out.
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1 Non-mathematical notions of mathematical finance

1.1 The “universal bank” structure

No two banks are organised exactly the same way. However, one can draw a general
scheme of how a generic ”universal bank” is structured.

Bank

Retail Investment banking

Deposits, credit card... M& A Private equity Capital Markets

The capitals markets division is in charge of the business that happens on financial
markets. Itself is broken down to smaller divisions depending on the different existing
asset classes. Some names are self-explanatory:

• FX (Foreign eXchange).

• Commodities: Oil, Metal, Grain...

• Fixed income: Credit products and interest rates.

• Equities: Products related to stocks.

We will mainly focus on the assets and financial contracts related to equities. This
is the standard entrance point to mathematical finance. Other asset classes are usually
the subject of more specialised classes.

1.2 Financial markets

An aspect of finance, like any specialised field, is the prevalence of jargon, i.e, specialised
vocabulary. Jargon will be indicated in bold letters with a Bsign as follows.

BLong and short positions: If one buys an asset or enters in a financial contract,
he is said to hold a long position. Reciprocally, if one sells an asset or offers the financial
contract, he is said to be in a short position.

Financial markets are the platforms where assets are traded. These tradable assets
are called securities and we distinguish between two kinds of markets depending on the
level of sophistication of the securities they trade:

• On Primary markets, one trades basic securities like:

– Stocks. We will generally denote the value of a single stock by St. If more are
available, we will use a vector notation

(
S1
t , . . . , S

d
t

)
. This value is commonly

called a Bspot.

– Currencies.

– Bonds are products with given or predictable interest rate in the future.
Two examples we will often use are:

∗ The risk free bond with value:

Bt = (1 + r)t

It tantamounts to a standard bank account where the risk free interest
rate is compounded.

∗ The zero coupon bond is the bond which gives you 1$ at time T . At
time t, its value is:

B0
t,T = (1 + r)−(T−t)
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• On a secondary market, more elaborate securities are traded. Because they are
based on securities from the primary markets, these more sophisticated assets are
called derivatives. Options are the derivatives we will be dealing with: financial
contracts that give the buyer the possibility but not the obligation of performing
a deal at or until a maturity date T . Of course, this optionality earned them the
name of “options”.

As a down-to-earth example, a perfectly standard financial contract is the option
of buying 106 gallons of kerosene at the price of 0.55$ per gallon, in a year from
now (maturity=1 year). One sees how such a contract is useful to an airline
company.

BBid vs. Ask: The bid price is the price for which agents are willing to buy
the asset. The ask price is the price for which agents are willing to sell the asset.
The difference between the two is called the bid-ask spread. Daily-life examples are in
exchange offices in airports that ask you 1.37$ for their euro and bid 1.25$ for your
euro. Here the asset in question is the euro on a US dollar market, and the bid-ask
spread is 1.37− 1.25 = 0.12$.

A market is said to be liquid if assets are easily bought and sold. In other words,
at any time, one can find a buyer or a seller without having to change too much his
price. This supposes plenty of offer and demand, but also a competitive environment.
A corollary of high liquidity is that the bid-ask spread is very small. We assume the
bid-ask spread is zero, therefore lifting any ambiguity about what is the price an asset:
assets can be bought and sold a specific price called the spot price.

BOTC vs. non-OTC: OTC stands for Over The Counter and refers to unreg-
ulated financial contracts. They are unregulated in the sense that no financial official
is organising the deal. Naturally, OTC contracts are generally between large financial
institutions for whom default risk is minimal.

• The forward is an OTC agreement to buy or sell an asset at a certain price.
The forward price, decided at time t for a deal at T , is ft,T . E.g Facebook now is
S0 = 100$. Would you lock the forward price f0,T = 102$ with T being a year?
The answer depends on the interest rate...

• A future is similar to the forward but much more regulated. It is traded on
a financial exchange. For example, these follow a settlement procedure called
“marking to market”, detailed in the exercise class. Basically, in order to reduce
default risk, the invester makes an initial deposit (≈ 70%) of Ft,T a clearing house,
which will give you a margin call in case the security’s value drops too low.

As a useful approximation, the future price Ft,T is in general assumed to be equal
to the forward price ft,T .

• Options: Financial product that gives you the option (not obligation) of buy-
ing/selling at a certain price called the strike and which we will denote by K.
The cash flow at the time of exercise is called the Bpayoff and determines the
option.

– European options: Exercising happens at time T (called Maturity). (τ =
T ). The example of a call on kerosene was a European option with strike
0.5$ and maturity a year. We write ΦT for the cash flow at maturity for
European options.

– American options: Exercising can happen any time τ until T . (τ ∈ [t0, T ])
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– Call: Right (optional) of buying a stock S at price K.

– Put: Right of selling a stock S at price K.

1.3 Cash versus physical settlements

Consider options such as the right of selling or buying at a certain price. Upon exercising
such an option, one of the parties would hand in the strike’s amount and would receive
in exchange a physical asset - technically. Indeed, most assets are physical in essence.
This is true for stocks as owning a stock means in practice owning a legal document
declaring you are the owner. This is even more true for commodities, where owning
106 gallons of kerosene implies you need a tanker to store it. In such a case, we speak
of physical settlements, historically the only kind of settlements.

A cash settlement happens when instead of receiving the physical asset, one receives
its monetary value. In all the following, we will always assume cash settlements in order
to equate assets and their monetary value. Notice that equating cash and physical
settlements supposes high liquidity - again.

We leave it to the reader to convince himself/herself that the cash settlement of a
call option is equivalent to a monetary payoff ΦT = (ST −K)+. In the same fashion, a
cash settlement of a put option is equivalent to a monetary payoff of ΦT = (K − ST )+.

1.4 Arbitrage

An arbitrage or an opportunity of arbitrage (OA) is an opportunity of making profit
without risk.

Example: The price of an i-Phone in EU is 600e? and in the US is 600$. But
the exchange rate is 1e = 1, 3$. An arbitrage is easily found and is known as the
Bcash-and-carry arbitrage with the :

1. Borrow 600$

2. Buy the product on the US dollars on the market

3. Sell on European market: +600e

4. Exchange 600e→ 800$

5. Pay back your dept

6. Total: +200$

If a market is liquid, prices move very fast to eliminate OA. The basic line of
reasoning in mathematical finance is that absence of opportunity of arbitrage (AOA)
forces relations between prices of forwards, futures, calls and puts on a stock. One
of the goals of mathematical finance is to establish these relations. However, unlike
physics, very few laws are available. The only rule in mathematical finance, is the
dominance relation: Financial products with larger payoffs must have larger prices.

Axiom 1.1 (Dominance relation). Given two financial products A and B, with payoffs
ΦT (A),ΦT (B), prices PA, PB at t = 0

AOA⇐⇒
(

ΦT (A) > ΦT (B)⇒ PA > PB

)
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Notice that we take this relation as a working axiom, rather than a theorem under
certain hypotheses. These hypotheses would be liquidity, equality of all agents in the
market and perfect symmetry in the information available. Some would argue this is
the work of economists, but it is certainly not the scope of this lecture.

1.5 Applications of AOA

Here, we propose two applications of the absence of opportunity of arbitrage. The first
one deals with computing the forward price of a stock St.

Lemma 1.1 (Forward price). By AOA, ft,T = (1 + r)TSt = St
B0
t,T

.

Proof. In the case of ft,T > (1 + r)TSt, perform the following strategy:

1. At time t, borrow price of St, buy St and offer a foward contract with forward
price ft,T .

2. Wait until time T .

3. At time T , hand the stock ST , cash in ft,T and pay back the debt St (1 + r)T−t.

The final value of such a strategy is VT = −St(1 + r)T−t + ft,T > 0. We just found an
arbitrage. In the case ft,T > (1 + r)TSt:

1. At time t, short-sell the stock, put that money in the bank, enter a forward
constract.

2. Wait until time T .

3. Pay ft,T , recieve the stock and pass it to your broker who short-sold you the
stock.

The final value of such a strategy is VT = −ft,T + (1 + r)T−tSt > 0. Another arbitrage.

Remark 1.1. In the second case, we supposed we are on a trading platform that al-
lows short-selling, which basically amounts to borrowing a stock and selling it with the
promise of giving it back later to the lender. This service is provided by brokers, one you
open an account. A broker has the incentive to provide such services since he charges
fees for the account’s maintenance. However, larger players that have direct access to
the market would rather not use brokers as intermediates. A different mechanism called
repurchasing or “repo” is used. More about that in the exercise class.

Remark 1.2. We have proved that necessarily, ft,T = (1 + r)TSt = St
B0
t,T

. However,

we cannot assert that this price is arbitrage-free. Without the appropriate tools, it is
difficult to prove that arbitrages do not exist.

The second application is a relation between the prices of European calls and puts
with same strike and maturity. This is expected as the two contracts are somehow dual
to each other:

Lemma 1.2 (Call-Put parity). Let C(T,K) and P (T,K) be the prices of a call and
put with maturity T and strike K, at time t = 0. Then, by AOA:

C(T,K)− P (T,K) = S0 −K(1 + r)−T

Proof. Exercise.
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1.6 The different players in financial markets

There are very different players on the market. Not only they have different incentives,
but they also operate differently. One can list the following categories, although they
are not mutually exclusive:

• Market makers serve as intermediates and their role is to quote prices of assets
publicly, and continuously in time. At any moment, they should offer the service
of buying or selling. Their presence is key in order to achieve liquidity, and their
activity is generally restricted to the primary market.

• Arbitragists or speculators aim at identifying opportunities of arbitrage, and tak-
ing advantage of them.

• Hedgers generally deal with more complicated expositions (seconday market) and
aim at neutralising the sensitivities of portfolios to risk. Supposedly, their incen-
tive is not monetary gain.
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2 Binomial or C-R-R model

C-R-R stands for Cox-Ross-Rubinstein, who were the first to introduce it. This is the
simplest model for a financial market, yet with enough features to be representative of
more general classes.

Let (Ω,F ,P) be our working probability space. We consider only finitely many
times t = 0, 1, 2, . . . , T <∞. In this context, a discrete stochastic process (Xt)0≤t≤T is
a sequence of random variables indexed by time. Expectation under P is denoted E or
EP if the reference measure is ambiguous.

2.1 Model specification

The binomial model concerns a primary market where only two assets are quoted.

• The bond with risk free interest rate r, whose deterministic dynamic is given by:

Bt = (1 + r)t

• The stock, whose spot value St is written as a product of returns:

St = S0

t∏
i=1

ξi

We assume that, at every step, St jumps independently from its past to two possible
values uSt or dSt. Here, u stands “up” while d stands for “down”. Equivalently, the ξt
are Bernouilli random variables with:

∀t, P (ξt = u) = 1− P (ξt = d) = p

The probability p gives the entire dynamic of the model and determines P. P is refered
to as the historical probability or real-world probability.

For concreteness, one can reduce Ω to the finite set {u, d}T . Then F = P (Ω)
is all the subsets of Ω and P is the product measure P = (pδu + (1− p)δd)⊗T . If
ω ∈ Ω = {u, d}T , then:

∀t, ξt (ω) = ωt

∀t,∀a ∈ {u, d} , P (ξt = a) = P
(
ω ∈ {u, d}t−1 × {a} × {u, d}T−t

)
2.2 Filtrations, measurability and strategies

The notion of filtration: In order to decide for appropriate investment strategies,
at time t, we need to take into account all the available information. Informally, we
need a way of seeing the past increments (ξ1, . . . , ξt) as deterministic and future ones
(ξt+1, . . . , ξT ) as random. This is what filtrations naturally achieve.

Definition 2.1. A filtration F = (Ft)0≤t≤T is an increasing sequence of σ-algebras.

Here we take Ft to be the smallest σ-algebra making (ξ1, . . . , ξt) measurable, which
is denoted:

Ft = σ (ξ1, . . . , ξt)

= σ (S1, . . . , St)

An important theorem from measure theory tells us that the functions that are
measurable with respect to Ft are exactly functions of (ξ1, . . . , ξt), and therefore, the
spot dynamics up to time t. The general formulation is:
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Theorem 2.1. Let f : (E, E) → (H,H) be a measurable map and define Ef =
σ (f) = f−1 (H) to be the smallest σ-algebra so that f is Ef -measurable. Suppose
g : (E, E) → ([0, 1], Bor ([0; 1])) is a Ef -measurable map. Then there exists a measur-
able h : (H,H)→ ([0, 1], Bor ([0; 1])) such that g = h ◦ f .

Proof. Because g is numerical, we can approximate g by a gn defined as gn(x) =∑
0≤k<2n

k
2n1{g(x)∈[ k

2n
; k+1
2n

)}. Since g is Ef -measurable, every set g−1
(
[ k2n ; k+1

2n )
)

is of

the form f−1 (An,k) for a certain An,k ∈ H. Hence gn = hn ◦ f where hn =
∑ k

2n1An,k .
h = lim inf hn satisfies g = h ◦ f .

Of course, the theorem extends from [0, 1] to any measurably isomorphic set. Let
us equate an investment strategy at time t with a vector (αt, βt). This vector specifies
an amount αt of stock and an amount βt of bond to buy. Therefore, finding an optimal
investment stragegy that takes into account all the information at time t is equivalently
formulated as finding a vector that is Ft-measurable.

Measurability of processes: In a sense, most of the interesting processes unfold
in time as we discover their values as time flows. Examples are numerous: St, the
weather, the temperature or even the number of students showing up at each lecture.

Definition 2.2. A process (Xt)0≤t≤T is called

• F-adapted or Ft-adapted when for all t, Xt is Ft measurable.

• Predictable when for all t, Xt is Ft−1 measurable.

Example 2.1. The stock St is F-adapted as F is the filtration it generates. Bt is
adapted to any filtration as it is deterministic.

Trading strategies:

Definition 2.3. A trading strategy - in the primary market - is a predictable process
ϕ = (ϕt)0≤t≤T with ϕt = (αt, βt).

As before, αt is the number of shares of stock to hold during (t− 1; t] and βt is the
number of bonds to hold during that same period. Notice that αt < 0 is allowed and
refers to short-selling (or repo); while βt < 0 means borrowing money from the bank.
The predictability hypothesis is crucial, as one rebalances his portfolios with ϕt during
(t− 1; t]. During this time period the only information available is Ft−1. At exactly
time t, the investor observes the new prices and does not rebalance his portfolio, since
there is no time left.

Therefore, the value of a portfolio following the strategy ϕ is given by the process
Vt (ϕ) defined by:

V0 (ϕ) = α1S0 + β1B0

∀t ≥ 1, Vt (ϕ) = αtSt + βtBt

The class of strategies we allow are self-financing in the sense that we are only
allowed to rebalance our portfolio, keeping its value constant:

Definition 2.4 (Self-financing condition). A self-financing strategy is a strategy ϕ such
that:

∀t, αtSt + βtBt = αt+1St + βt+1Bt

This enables a formal definition of arbitrage opportunity:
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Definition 2.5 (Arbitrage opportunity). An arbitrage opportunity (in the primary
market) is a self-financing trading strategy ϕ such that:

• No initial cost:
V0 (ϕ) = 0

• Always non-negative final value:

VT (ϕ) ≥ 0 P− a.s

• With the possibility of a positive final gain:

EP (VT (ϕ)) > 0⇐⇒ P (VT (ϕ) > 0) > 0

In fact, for the binomial model is arbitrage-free under the condition d < 1 + r < u.
This will be apparent later using the tool of risk neutral measures. A better way to
introduce such objects is via the theory of pricing.

2.3 Pricing of European options

Consider a European option with final payoff ΦT . The matter of pricing is the question
“What is its fair price P?”. A true paradigm shift lies in the following answer: P would
be the initial value P = V0 (ϕ) of a self-financing portfolio such that

ΦT = VT (ϕ)

when such a stragegy ϕ exists. In such a case, if a market maker charges P to his
client for the European option, and executes the strategy ϕ, he can honor his side of
the contract without further cost. Moreover, his final gain is zero. ϕ is then called a
replicating or a hedging strategy. If such a ϕ exists, the option is called replicable. We
will be only concerned with this setting, for now.

For all of this subsection, such an answer is valid as:

Theorem 2.2. In the binomial model, under the natural conditions:

d < 1 + r < u

every European option is replicable.

The focus is on how to compute the strategy ϕ, and whether the resulting price P
gives an arbitrage-free market. As all the ideas are essentially in the one period case,
we choose to present the matter as a discussion; where we progressively discover how
pricing is made.

2.3.1 One period

Initial price: The payoff ΦT = X is an FT -measurable random variable. Therefore,
it is a deterministic function of S1. Since S1 can take only two values uS0 and dS0,
the random variable X also takes two values. We denote by Xu the value of X on the
event {ξ1 = u}, and Xd the value on {ξ1 = d}.

Let us determine a one-period replicating strategy ϕ1 = (α1, β1). Because of the
predictability assumption, ϕ is deterministic. As:

X = ΦT = αS1 + βB1
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needs to hold in all states of the universe, we obtain the linear system:{
Xu = α1S0u+ β1 (1 + r)
Xd = α1S0d+ β1 (1 + r)

Solving the linear system, one obtains:{
α1 = Xu−Xd

S0(u−d)

β1 = uXd−dXu

(1+r)(u−d)

Hence the initial price:

P = α1S0 + β1B0

=
Xu −Xd

u− d
+

uXd − dXu

(1 + r) (u− d)

=
1

(1 + r) (u− d)

(
(1 + r − d)Xu + (u− (1 + r))Xd

)
=

1

1 + r

(
p∗Xu + (1− p∗)Xd

)
where p∗ = 1+r−d

u−d . Notice that it is natural to assume d < 1 + r < u. Otherwise, we
would have a stock that always outperforms the bond (d > 1 + r) or an interest rate so
high that the bond always outperforms the stock (1 + r > u). Moreover, d < 1 + r < u
is equivalent to 0 < p∗ < 1: p∗ is a non-degenerate probability.

At this point, it is important to step back and discuss the previous computation. In
the process of finding a replicating strategy and computing its initial value, one finds
that the price P is obtained by weighting the discounted payoff X

1+r by a probability
p∗. We define a new probability Q by Q (ξ1 = u) = p∗, hence obtaining:

P = EQ
(

X

1 + r

)
Remark 2.1. • For all practical purposes, the probability Q is only a computation

device in order to find the price P . It does not yield any predictions regarding
real-world spot dynamics.

• It is called the risk neutral measure because of the following property:

EQ
(

S1

1 + r

)
= S0

Under Q, stock and bond have the same expected return, and therefore an investor
would have no preference between them.

Absence of arbitrage in the primary market: Aside from pricing, the risk neutral
measure Q has a theoretical use. If non-denegenerate, it allows to prove very easily
that there are no arbitrages in the primary market. Here we give a simple version of
what will become the first fundamental theorem of asset pricing in section 4.

Consider a trading strategy ϕ. As we are in one period, this corresponds to a
two-dimensional vector (α1, β1) where α1 and β1 are respectively the number of the
shares of stock and the amount of bonds to hold during the period (0; 1]. This quantity
is deterministic, as it is decided at time 0. If ϕ is candidate for being an arbitrage
opportunity, then:

V0 (ϕ) = α1S0 + β1 = 0

12



V1 (ϕ) = α1S1 + β1 (1 + r) ≥ 0a.s

Taking the expectation under Q, we have:

EQ (V1 (ϕ)) = α1EQ (S1) + β1 (1 + r) = V0 (ϕ) = 0

Therefore, V1 (ϕ) is a non-negative random variable with zero expectation. Hence, it
is nothing but zero. What could have been an arbitrage opportunity is just a portfolio
with zero value!

This proof is indeed remarkably simple for a result as strong as “there are no
arbitrage opportunities”. Virtually the same argument holds in the proof of theorem
2.6.

Absence of arbitrage in the extended market: Two natural questions are the

following. Suppose I quote the price of our European option P = EQ
(

X
1+r

)
making a

secondary market Bond-Stock-Option.

• In this extended market, can someone provide a better price? Perhaps by buying
the option at favorable moments and selling it at unfavorable moments? This
matter will be referred to as the question of uniqueness.

• We saw that the binomial model is arbitrage-free in the previous paragraph. But
that statement concerns the primary market only: No arbitrages provided one
trades stocks and bonds only. Now that I have introduced an option, did I break
the arbitrage free property?

Theorem 2.3 (theorem 2.2.1 in [Wil06] for T = 1 only). P = EQ
(

X
1+r

)
is the unique

arbitrage-free initial price for the European option with payoff ΦT = X.

We defer the proof to the general case. We will see that the market remaining
arbitrage free is basically caused by the option being replicable.

2.3.2 Multi-period

In order to propagate the one period analysis to multiple periods, we will use the tools
of conditional expectation and martingales given in appendix.

For any random variable X corresponding to a cash flow at time T , the actualised
value at time t corresponds to the value of that cash flow in constant dollars. It is
denoted X̃ and X̃ = X

(1+r)T−t
.

Theorem 2.4 (Theorem 2.2.1 in [Wil06]). Let ΦT be an FT -measurable random vari-
able corresponding to the payoff of a European option with maturity T . Then there
exists a self-financing replicating strategy ϕ i.e VT (ϕ) = ΦT .

Moreover, the price of the option is given by P = V0 (ϕ) = EQ
(

Φ̃T

)
.

Proof. Recall that if ϕt = (αt, βt) is a strategy, then the value process is:

Vt (ϕ) = αtSt + βtBt

We will proceed by backward induction to construct a stragegy ϕ such that:

∀t ∈ {0, 1, . . . , T}, Vt (ϕ) =
1

(1 + r)T−t
EQ (ΦT | Ft)

13



Supposing the allocation of wealth in the portfolio has been decided for times larger
than t, let us find an allocation (αt, βt) during (t− 1; t] such that:

Vt−1 (ϕ) = αtSt−1 + βtBt−1

with the target:

Vt (ϕ) = αtSt + βtBt =
1

(1 + r)T−t
EQ (ΦT | Ft) (1)

We will now refer to the previous quantity as the target random variable. Notice
this is just ΦT if t = T . Clearly, the target random variable is Ft measurable and
because of theorem 2.1, it is a function f of (S0, S1, . . . , St):

1
(1+r)T−t

EQ (ΦT | Ft) =

f (S0, . . . , St−1, St) Therefore, conditionally on Ft−1, one observes only two possible
values:

V u
t = f (S0, . . . , St−1, St−1u) ; V d

t = f (S0, . . . , St−1, St−1d) ;

Asking for equation (1) to hold in both states of the universe gives the linear system
of equations:

V u
t = αtSt−1u+ βtBt

V d
t = αtSt−1d+ βtBt

Solving the system, as in the one-period case, gives:

αt =
V u
t − V d

t

(u− d)St−1

βt =
1

(1 + r)t
uV d

t − dV u
t

(u− d)

Now, reassembling the pieces, one has:

Vt−1 (ϕ) = αtSt−1 + βtBt−1

=
V u
t − V d

t

(u− d)
+

1

(1 + r)

uV d
t − dV u

t

(u− d)

=
1

1 + r

(
p∗V u

t + (1− p∗)V d
t

)
=

1

1 + r
EQ (Vt (ϕ) | Ft−1)

=
1

1 + r
EQ

(
1

(1 + r)T−t
EQ (ΦT | Ft) | Ft−1

)
=

1

(1 + r)T−t+1
EQ (ΦT | Ft−1)

Notice that in the course of the proof, we gave a stronger result. We derived the
value of the option in all intermediate times t ∈ {0, 1, . . . , T}.

Corollary 2.1 (Corollary of the proof). For all times, the value of an option with final
payoff ΦT is:

1

(1 + r)T−t
EQ (ΦT | Ft)

In theory, this gives the price at which one could sell back his option before maturity.
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Application to the pricing of a European call option: If we denote by B the
number of “up” in a trajectory of the spot, then B is a binomial random variable with
parameters (T, p∗) under Q. Moreover:

ST = S0

T∏
j=1

ξj = S0u
BdT−B

Hence:

∀k ∈ {0, 1, . . . , T},Q
(
ST = S0u

kdT−k
)

= P (B = k) =

(
T

k

)
(p∗)k (1− p∗)T−k

In the end, the pricing formula in theorem 2.4 yields the price C0 = C(T, S0) where:

C (T, x) =
1

(1 + r)T
E
((
xuBdT−B −K

)+)
=

1

(1 + r)T

T∑
k=0

(
T

k

)
(p∗)k (1− p∗)T−k

(
xukdT−k −K

)+

A general philosophy: The goal of a reasonable pricing theory is to construct a
risk neutral measure Q under which the price of any European option with payoff ΦT

is given, at any time, by the conditional expectation under Q conditionally to Ft. As
a consequence, the discounted value of the replication portfolio satisfies:

Ṽt (ϕ) = EQ

(
ΦT

(1 + r)T
|Ft

)

which is a closed Q-martingale.
The following lemma goes in the same direction:

Lemma 2.1. The processes S̃t := 1
(1+r)tSt and Ṽt (ϕ), for any bounded self-financing

strategy ϕ, are Q-martingales.

Proof. Let us fix a time value t. For the first statement, we have EQ
(
S̃t+1|Ft

)
=

S̃tEQ
(
ξt+1

1+r

)
and EQ

(
ξt+1

1+r

)
= up∗

(1+r) + d(1−p∗)
(1+r) = 1.

For the second statement, write Ṽt (ϕ) = αtS̃t+βt which is adapted and integrable.

Then EQ
(

˜Vt+1 (ϕ)|Ft
)

= αt+1EQ
(
S̃t+1|Ft

)
+ βt+1 = αt+1St + βt+1 = αtSt + βt =

Ṽt (ϕ). The next to last step used the self financing condition.

The risk neutral measure allows to prove that the market is arbitrage-free.

Theorem 2.5. If Q is a non-denegenerate probability measure i.e 0 < p∗ < 1, then the
primary market is arbitrage-free.

This remains true even if one is allowed to trade in the option like any other asset.
The previous theorem is also implied by the following.

Theorem 2.6. Under the same assumption, the price P = EQ
(

Φ̃T

)
is the unique

arbitrage-free initial price for a European option with payoff ΦT .
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Remark 2.2. As before, the uniqueness is regarding the possibility that in an extended
(secondary) market, the price might changes if other players can replicate the option for
a lesser fee. The arbitrage-free statement regards the absence of opportunity of arbitrage
in the entire secondary market.

Proof. We will not give the uniqueness argument and refer to [Wil06]. Basically, one has
to come up with arbitrage strategies in the extended secondary market if the quoted
price is different from P . Now, for the absence of opportunities of arbitrage in the
extended market, everything boils down to a martingale argument. It is virtually the
same as in one-period in the primary market. Consider self-financing strategies in the
extended market to be predictable processes ϕext with ϕextt = (αt, βt, γt). During the
period (t− 1; t],

• αt is the number of share of stock to hold.

• βt is the amount of cash to hold.

• γt is the nominal of options to have.

The value of our portfolio at any time t is:

Vt
(
ϕext

)
= αtSt + βtBt + γtCt

where Ct is the price of the option at time t. Because the option is replicable, there
exists a trading strategy in the primary market ϕ∗t = (α∗t , β

∗
t ) such that:

Vt (ϕ∗) = Ct = α∗tSt + β∗tBt

Hence:
Vt
(
ϕext

)
= (αt + γtα

∗
t )St + (βt + γtβ

∗
t )Bt

From the fact that ϕext is self-financing, it is easy to deduce that the strategy (αt + γtα
∗
t , βt + γtβ

∗
t )

is self-financing. Therefore, thanks to lemma 2.1, the process
(
Vt
(
ϕext

))
t≤T is a Q-

martingale, hence constant in expectation:

EQ (Vt (ϕext)) = V0

(
ϕext

)
= 0

As a consequence Vt
(
ϕext

)
= 0, Q-almost surely. Moreover, the condition 0 < p∗ < 1

shows Q is non-degenerate: only the empty event has probability zero. Therefore
Vt
(
ϕext

)
= 0, without any statement on probability: No arbitrage!

3 American options

In this section, I will follow both [Wil06] and [LL08]. Recall that an American option
is an option that can be exercised at any time τ ∈ {0, 1, 2, . . . , T}. The possible payoffs
at each date are specified by (ϕt)0≤t≤T .

For modeling purposes, τ is chosen to be a stopping time. This choice is motivated
by both financial and mathematical reasons:

• The financial rationale is that the client’s choice to exercise is motivated only by
the past spot dynamic and not its future. Therefore, {τ ≤ t} should be in Ft. If
τ is not a stopping time in the natural filtration F, one could argue the investor
has access to information regarding the future of the spot, making him guilty of
insider trading.
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• We have examined in exercise class a case where we have expended the spot
filtration F to a filtration G by adding the final value of the stock. This procedure
does change the martingales and allows for arbitrage opportunities. In fact, the
same is true if one expands F thanks to a random time τ by taking G to be
smallest filtration making τ into a stopping time.

We are aware that this explanation is perhaps involved, but it can be ignored in a first
reading.

3.1 A primer in the context of the binomial model

There is an important difference between pricing methodologies of European and Amer-
ican options. In the case of European options, we have seen there is always a replicating
strategy so that a predetermined initial cost allows to cover the payoff.

In the case of an American option with payoff (ϕt)0≤t≤T , one cannot in general find
a self-financing stragegy ϕ such that:

∀t, Vt (ϕ) = Φt

Then, the next best thing to achieve would to look for a super-replicating stragegy
i.e a strategy ϕ such that:

∀t, Vt (ϕ) ≥ Φt

and postulate that the price P of the option is minimum amount of initial wealth among
super-replicating strategies:

P := inf
ϕ such that ∀t,Vt(ϕ)≥Φt

V0 (ϕ)

Notice that we are not garanteed that the minimum is reached, hence the presence
of an infinimum instead of a minimum. In the context of the binomial model, the
minimum is attained and the value process is described in the following proposition:

Proposition 3.1. Let Ut be the minimum amount of wealth to cover the payoff between
t and T :

Ut := inf
ϕ such that ∀s≥t,Vs(ϕ)≥Φs

Vt (ϕ)

Then, there is a self-financing strategy ϕ∗ such that U0 = V0 (ϕ∗). Moreover, the process
Ut satisfies the following backward recurrence:

UT = ΦT

Ut = max

(
Φt,

1

1 + r
EQ (Ut+1 | Ft)

)
Proof 1: “Quick and dirty”. Let us give a quick proof of the backward recurrence. Be-
cause UT is the minimum amount of wealth to cover ΦT , we trivially have UT = ΦT .
Now for t < T , Ut has to cover Φt in the case of immediate exercise and cover an
exercise past t + 1. If the wealth needed at time t to cover an exercise past t + 1 is
denoted Ct, we already see:

Ut = max (Φt, Ct)

The European pricing theory tells us that Ct is obtained by actualising the amount
Ut+1 and taking conditional expectation under Q:

Ct =
1

1 + r
EQ (Ut+1 | Ft)

Hence the result.

Proof 2:“Where are my stragegies?” Seen in class.
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Candidate for being an optimal stopping time Define:

τ := inf {t ≥ 0 | Ut = Φt}

As both (Ut − Φt; t ≥ 0) is an adapted process, τ is a stopping time as any hitting time.
Moreover, since that for t < τ , Ut > Φt or equivalently Ut = 1

1+rE
Q (Ut+1 | Ft). This

means that δ̃t+1 = 0: No excess of wealth!
This also tells us that for 0 ≤ t ≤ τ , Vt (ϕ∗) = Ut: the super-replication of the

minimum amount needed to cover the option is in fact a replication.

Reformulation: After discounting, we see that the discounted process Ũt is defined
by the backward recurrence:

ŨT = Φ̃T

Ũt = max

(
Φ̃t,

1

1 + r
EQ
(
Ũt+1 | Ft

))
One can study such objects in the context of optimal stopping theory.

3.2 Optimal stopping problems and Snell envelopes

Let us now consider a general setting, falling possibly outside the binomial model. As
usual let (Ω,F ,P) denote a probability space, along with a filtration F = {F0 ⊂ F1 ⊂ · · · ⊂ FT }.
In the following, it is good to have in mind the case of American options as an appli-
cation.

Definition 3.1 (Definition and theorem). Let (Φt; t ≥ 0) be an F-adapted process that
is integrable for all t. If we define:

UT = ΦT

Ut = max (Φt,E (Ut+1 | Ft))

then (Ut; t ≥ 0) is the smallest supermartingale dominating Φt. It is called the Snell
envelope of (Φt; t ≥ 0).

Remark 3.1. Because we adopt a general setting here, we dropped the tilde used for
discounting and expectation is under a generic P, instead of Q.

Proof. In order to prove that U is a supermartingale, it is enough to write:

Ut = max (Φt,E (Ut+1 | Ft)) ≥ E (Ut+1 | Ft)

In order to prove that any other supermartingale dominating Φ has to larger than U ,
let W be a supermartingale dominating Φ. Then necessarily, for all times t, we have:

Wt ≥ Φt

Wt ≥ E (Wt+1|Ft)

necessarily implying Wt ≥ max (Φt,E (Wt+1|Ft)). Then by backward induction, one
proves that Wt ≥ Ut.

The random time we had defined satisfies the following:

Proposition 3.2 ( Proposition 2.2.1 in [LL08] ). The random variable τ := inf {t ≥ 0|Ut = Φt}
is a stopping time and the stopped process U τ is a martingale.
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Proof. Both U and Φ are adapted. Therefore τ is the first hitting time of zero for
X = U − Φ. Any first hitting time is a stopping time thanks to the following:

{τ = t} = {X0 6= 0} ∩ · · · ∩ {Xt−1 6= 0} ∩ {Xt = 0}

As X is adapted, every event in this intersection is in Ft.
Now, in order to prove that U τ is a martingale, we use the same trick as in the

proof of Doob’s optional stopping theorem. We start by writing:

U τt = U0 +

t∑
s=1

U τs − U τs−1 = U0 +

t∑
s=1

1{s≤τ} (Us − Us−1)

But if s ≤ τ , Us−1 > Φs−1 and hence Us−1 = E (Us|Fs−1). This entails:

U τt = U0 +
t∑

s=1

1{s≤τ} (Us − E (Us|Fs−1))

From that, one concludes easily that U τ is a martingale.

E
(
U τt+1 − U τt |Ft

)
= E

(
1{t+1≤τ} (Ut+1 − E (Ut+1|Ft)) |Ft

)
= 0

If Tt,T is the set of all stopping times valued in {t, t + 1, . . . , T}. Then define for
every t:

τt = inf {k ≥ t | Uk = Φk} ∈ Tt,T

Corollary 3.1.
Ut = E (Φτt | Ft) = max

τ∈Tt,T
E (Φτ | Ft)

Remark 3.2. By definition τt is the earliest optimal stopping time. The financial
interpretation of this statement is as follows. The Snell envelope is the expectation
of the payoff, at its best exercise moment. Then it is only logical that under Q, this
expectation becomes the price of the American option.

Proof. Let us deal with the first equality. By adapting the proof of the previous proposi-
tion to a different starting moment t instead of 0, one sees that (U τts ; s = t, t+ 1, . . . , T )
is a martingale. Then:

Ut = U τtt = E
(
U τtT |Ft

)
= E (Uτt |Ft) = E (Φτt |Ft)

For the second equality, consider any stopping time τ ∈ Tt,T . By Doob’s optional
stopping theorem, (U τs ; s ≥ t) is a supermartingale. Hence Ut ≥ E (Uτ |Ft) = E (Φτ |Ft).
Therefore:

Ut ≥ max
τ∈Tt,T

E (Φτ | Ft)

and equality is reached for the stopping time τt.
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4 Finite market models

4.1 Definitions

Let (Ω,F ,P) be a probability space. As usual, we assume time to be discrete 1, 2, . . . , T
with T <∞. The working filtration is again denoted:

F := {F0 ⊂ F1 . . .FT }

A key assumption that allows a simple treatment of financial market is finiteness of the
state-space:

Definition 4.1. A finite market model is a model where |Ω| <∞. We label the possible
scenarios by:

Ω := {ω1, . . . , ωn}

Remark 4.1. In the context of the binomial model, Ω = {u, d}T and |Ω| = 2T .

Observables: We assume that one observes a family of discrete stochastic processes(
Sit ; 0 ≤ t ≤ T

)
with 0 ≤ i ≤ d which are adapted. They model the prices of 1 + d

assets and among them, there is a distinguished risk-free asset

S0
t = (1 + r)t

which is deterministic. We write in vector notation:

St =
(
S0
t , . . . , S

d
t

)
and we typically take for filtration Ft = σ (S0, S1, . . . , St).

Trading strategies are predictable 1 + d-dimensional processes ϕt =
(
ϕ0
t , . . . , ϕ

d
t

)
such that ϕit indicates the quantity of stock i to hold during the period (t− 1; t]. The
self-financing condition is: ∑

i

ϕitS
i
t =

∑
i

ϕit+1S
i
t

which can also be written in vector notation as an equality between scalar products in
Rd+1:

ϕt · St = ϕt+1 · St

Value process: The value of a portfolio with self-financing strategy ϕ is:

Vt (ϕ) = ϕt · St = ϕt+1 · St

Lemma 4.1.

Vt (ϕ) = V0 (ϕ) +

t∑
s=1

ϕs ·∆Ss−1

where ∆Ss−1 = Ss − Ss−1.

Remark 4.2. The previous expression is a discrete version of a stochastic integral, a
term we will loosely use. The framework of discrete time has the advantage of avoiding
all the technicalities associated to the construction of this integral.
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Proof. Using successively a telescoping sum and the self-financing condition:

Vt (ϕ) = V0 (ϕ) +
t∑

s=1

[Vs (ϕ)− Vs−1 (ϕ)]

= V0 (ϕ) +
t∑

s=1

[ϕs · Ss − ϕs · Ss−1]

= V0 (ϕ) +
t∑

s=1

ϕs · [Ss − Ss−1]

Discounted processes: For every i, the discounted asset i is given by:

S̃it =
Sit
S0
t

Clearly S̃t =
(

1, S̃1
t , . . . , S̃

d
t

)
can be viewed as d-dimensional vector and:

Ṽ (ϕ) = V0 (ϕ) +

t∑
s=1

ϕs · ∆̃Ss−1

where the scalar product involves only risky assets (∆̃S0
s−1 = 0).

Arbitrage opportunities are strategies ϕ such that

• (Zero initial cost):
V0 (ϕ)

• (Non-negative return):
VT (ϕ) ≥ 0

• (Possible positive return):

E (VT (ϕ)) > 0⇔ P (VT (ϕ) > 0) > 0

The previous equivalence is only possible because Ω is finite.

4.2 AOA and the first fundamental theorem of asset pricing

Definition 4.2. Consider two probability measures Q and Q′ on (Ω,F).

• Q is absolutely continuous w.r.t Q′ ( Q� Q′ ) if

∀A ∈ F ,Q′ (A) = 0⇒ Q′ (A) = 0

• Q and Q′ are equivalent ( Q ≈ Q′ ) if they are absolutely continuous with respect
to each other, or equivalently

∀A ∈ F ,Q′ (A) = 0⇔ Q′ (A) = 0
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Remark 4.3. Equivalence between two measures tantamounts to having the same null
sets.

Definition 4.3 (EMM or risk neutral measures). An Equivalent Martingale Measure,
or risk free measure is a probability Q on (Ω,F) such that:

• Q ≈ P i.e has the same null sets as the historical probability.

• S̃t is a Q-martingale (for the natural working filtration).

In order to lift any ambiguity, recall that in this setting the stock St is a vector and
the identity:

EQ
(
S̃t+1|Ft

)
= S̃t

giving the martingale property has to be understood component-wise. Now for the main
theorem in this subsection. It gives a particularly computable criterion for deciding
whether a market model is arbitrage-free or not.

Theorem 4.1 (First fundamental theorem of asset pricing). The finite market model
has no arbitrage if and only if there exists Q, an Equivalent Martingale Measure.

Before diving into the proof, let us give a useful lemma around martingales.

Lemma 4.2. • Discrete stochastic integrals against martingales are martingales:

If S̃t is a Q-martingale then Ṽt (ϕ) is a Q-martingale.

• Martingales are the adapted processes against which any stochastic integral is
centered: If M is an adapted process, then

M martingale ⇔

(
∀η predictable, E

(
T∑
t=1

ηt (Mt −Mt−1)

)
= 0

)

Proof. For the first point, recall that:

Ṽt (ϕ) = Ṽ0 (ϕ) +
t∑

s=1

ϕs ·∆S̃s

Hence:

E
(

˜Vt+1 (ϕ)− Ṽt (ϕ)|Ft
)

= E
(
ϕt+1 ·∆S̃t+1|Ft

)
ϕ predictable

= ϕt+1 · E
(
S̃t+1 − S̃t|Ft

)
= 0

For the second point, we need to prove an equivalence. The implication ⇐ has in fact
already been obtained. Let us now deal with ⇒. Let A ∈ Fs−1 and define

ηt :=

{
0 if s 6= t
1A if s = t

Applying the hypothesis for that η gives:

0 = E (1A (Ms −Ms−1)) ,

a statement which holds then for all A and s, whence the martingale property.
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Proof of theorem 4.1. “ ⇐′′ Let us assume the existence of a martingale measure Q.
We will use the usual martingale trick which we have already seen in the case of the
binomial model. Let ϕ be a possible arbitrage opportunity, i.e:

V0 (ϕ) = 0, VT (ϕ) ≥ 0

Thanks to the fact that Ṽ. (ϕ) is a Q-martingale, we readily obtain that:

EQ
(
ṼT (ϕ)

)
= 0

Since we are taking the expectation of a positive random variable, we deduce:

Q
(
ṼT (ϕ) > 0

)
= 0

Now recall that Q and P have the same null sets. Hence:

P (VT (ϕ) > 0) = Q (VT (ϕ) > 0) = 0

and ϕ cannot therefore be an arbitrage opportunity.
“ ⇒′′ is harder implication to prove, based on convex analysis on the space of

random variables on Ω. Since |Ω| <∞, we can list all the possible scenarios by writing
Ω = {ω1, . . . , ωn). Then the space of R-valued random variables is identified with Rn:
any random variable Y : Ω→ R can be seen as the point (Y (ω1), . . . , Y (ωn)) in Rn.

Now consider the set of attainable terminal gains, following a self-financing strategy,
with zero initial wealth:

L0 :=
{
ṼT (ϕ) | ϕ is self-financing with V0 (ϕ) = 0

}
,

which is a subset of Rn, in the identification described previously. More than that, it
is a non-empty linear subspace (0 ∈ L0 and the dependence in ϕ is linear).

It is easy to see that the market has no arbitrage opportunity if and only if L0 never
intersects (R+)n \{0}. By rescaling that possible intersection, we have that the market
is arbitrage-free if and only if

L0 ∩ F = ∅

where

F :=

{
Y ∈ (R+)n |

n∑
i=1

Yi = 1

}
The set F is compact and convex, while L0 is linear. By the separating hyperplane

theorem, these two convex bodies can be separated by a hyperplane H containing L0.
If Z 6= 0 is a vector normal to H:

H := {Y ∈ Rn | Y · Z = 0}

Without any loss of generality, one can suppose that F sits on the positive side of H
i.e ∀f ∈ F, f · Z > 0. In particular, since the canonical basis of Rn belongs to F , we
have that Zi > 0, ∀i. Therefore, the probability measure:

Q ({ωi}) =
Zi∑
j Zj

is a probability measure, equivalent to P. For a trading strategy such that V0 (ϕ) = 0,
we have:

EQ
(
ṼT (ϕ)

)
=
∑
ω∈Ω

ṼT (ϕ)(ω)Q (ω)
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=
∑
i

ṼT (ϕ)(ωi)Zi∑
Zj

=
ṼT (ϕ) · Z∑

Zj

=0

By breaking down the previous equality:

0 = EQ
(
ṼT (ϕ)

)
=

T∑
t=1

EQ
(
ϕt ·∆S̃t−1

)
Take ϕj = 0 for all j 6= i in order to obtain:

∀i,∀η predictable , 0 =
T∑
t=1

EQ
(
ηt∆S̃

i
t−1

)
Lemma 4.2 tells us that for every i, S̃i is Q-martingale. Q is indeed an Equivalent
Martingale measure.

4.3 Pricing

Suppose we are dealing with a market model with no arbitrage. The existence of an
Equivalent Martingale Measure Q proves to be very useful as a pricing tool. However
there is a little restriction on the options to be priced.

Definition 4.4 (Replicable options and completeness). A replicable option (or attain-
able claim) is a random variable X such that there exists a self-financing strategy ϕ
such that:

VT (ϕ) = X

A market is complete is all European options are replicable.

The following subsection discusses completeness and partly describes the set of
replicable options, if the market is not complete. For now, we answer the question of
pricing, provided that the option is replicable.

Theorem 4.2. • For any replicating strategy, the value process (Vt (ϕ) ; 0 ≤ t ≤ T )
is the same.

• Moreover, for any Q, equivalent martingale measure:

Ṽt (ϕ) = EQ
(
X̃|Ft

)
Proof. For the first point, one can provide two arguments.

• Financial argument: If ϕ and ϕ′ are two replicating strategies, the associated value
processes cannot deviate from each other otherwise one can form an arbitrage by
buying the cheapest and selling the more expensive one. Vt (ϕ) gives X at time
T no matter the replicating strategy ϕ.

• Mathematical argument: There is at least one Equivalent Martingale Measure Q
and Ṽt (ϕ) is a Q-martingale. Therefore

Ṽt (ϕ) = EQ
(
ṼT (ϕ)|Ft

)
= EQ

(
X̃|Ft

)
,

which does not depend on ϕ.
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The second point is given in the mathematical argument.

By interpreting the initial value of the portofolio as the value of an option, we have:

Corollary 4.1. If the market has no arbitrage and is complete, then the price of any
option at time t, with European payoff ΦT is given by:

S0
t EQ

(
Φ̃T |Ft

)
= S0

t EQ
(

ΦT

S0
T

|Ft
)

4.4 Completeness and the second fundamental theorem of asset pric-
ing

Theorem 4.3. Consider a finite market model with no arbitrage. The market is com-
plete if and only if the risk neutral measure Q is unique.

The theorem is intuitive if one recalls how the first fundamental theorem is proved.
We had seen that the risk neutral measure Q is constructed from the vector orthonormal
to the space L0 of attainable payoffs, with zero initial value. Many choices arise from
the fact the orthonormal vector is not unique, unless L0 is as big as possible ie if it is
a hyperplane itself. It is not very hard to see that L0 being a hyperplane is equivalent
to the market being complete.

Proof. “⇒′′ Consider two risk neutral measures Q and Q′, which we will now prove to
be equal. For any A ∈ FT , consider the option with payoff ΦT = 1A. By hypothesis, ΦT

is replicable. The associated value process does not depend on the replicating strategy
nor on the measure (theorem 4.2), hence:

∀0 ≤ t ≤ T, EQ
(
X̃|Ft

)
= EQ′

(
X̃|Ft

)
By discarding the discounting ( S0

T is deterministic ), and retricting time to t = 0 where
the filtration is trivial, we obtain:

EQ (1A) = EQ′ (1A) ,

whence uniqueness!
“ ⇐′′ We will proceed by contraposition: We will assume that there is a random

variable X that is not attainable, making the market incomplete and we will exhiting
“a segment” of risk neutral measures. Let L be the set of attainable random variables:

L =

{
c+

T∑
t=1

ϕt ·∆S̃t−1 | ϕ predicable , c ∈ R

}

= L0 + R


1
1
. . .
1


where L0 is the set of attainable random variables, if one starts with zero wealth (as
in the proof of the first fundamental theorem). Because X is not attainable, L is a
strict subspace of Rn - and L0 is smaller than a hyperplane. Therefore, there exists a
non-zero vector Z orthogonal to L:

∀Y = ṼT (ϕ) ∈ L,
∑
ω∈Ω

Z(ω)Y (ω) = 0
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Let Q be a risk-neutral measure. By replacing Z(ω) by Z(ω)
Q(ω) , the previous sum can be

rewritten as an expectation under Q:

∀ϕ predictable, EQ
[
ṼT (ϕ)Z

]
= 0

Of course, here we have identified Z with a random variable. Now, one can use Z to
“tilt” Q and create many other equivalent measures:

∀λ ∈ (−1, 1), Qλ (ω) := Q(ω)

(
1 + λ

Z(ω)

|Z|∞

)
The following facts prove that the family of

(
Qλ
)
λ∈(−1,1)

is made of Equivalent Mar-

tingale measures:

• Each Qλ is a probability:

Qλ (Ω) =
∑
ω∈Ω

Q (ω)

(
1 + λ

Z(ω)

|Z|∞

)
= 1 +

λ

|Z|∞
EQ (Z) = 1

as EQ (Z) = 0 because the vector with coordinates Z(ω)Q(ω) is orthogonal to the

vector


1
1
. . .
1

.

• Each Qλ is equivalent to Q: clear.

• Each Qλ is a martingale measure: Thanks to the second point in lemma 4.2, all

we have to check is that for all ϕ predictable with Ṽ0 (ϕ) = 0:

EQλ
(
ṼT (ϕ)

)
= EQλ

(
Ṽ0 (ϕ)

)
Here we have:

EQλ
(
ṼT (ϕ)

)
= EQ

((
1 + λ

Z(ω)

|Z|∞

)
ṼT (ϕ)

)
= EQ

(
ṼT (ϕ)

)
+

λ

|Z|∞
EQ
(
ZṼT (ϕ)

)
Because Q is an Equivalent martingale measure, the first term is zero. The second

term is also zero because every vector with coordinates ṼT (ϕ)(ω) is orthogonal
to the one with coordinates Q(ω)Z(ω).

Another take on the second martingale theorem can be “every martingale is a
stochastic integral”. This is called the martingale representation theorem.

Theorem 4.4. Consider a no-arbitrage finite market model with Q a risk neutral mea-
sure. The market is complete if and only if every Q-martingale has the representation:

Mt = M0 +

t∑
s=1

ϕ̃s · ∆̃s−1

with ϕ a predictable process.

Proof. Seen in exercise class. The idea is that on a finite time horizon, every martingale
M is entirely determined by the final value MT , which itself can be interpreted as a
payoff. This payoff being attainable is equivalent to writing it as a discrete stochastic
integral.
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Figure 1: A trinomial tree

S̃0 = 10

S̃1 = 6

S̃1 = 10

S̃1 = 12

4.5 A word on incomplete markets

Suppose we have a finite market model with no arbitrage, but that fails to be complete.
The simplest example consists in a one-period trinomial tree (figure 4.5).

Let p1, p2 and p3 be risk-neutral probabilities of each branch in the tree. Risk-
neutral measures are computed by asking when S is a Q martingale.{

1 = p1 + p2 + p3

10 = S̃0 = EQ
(
S̃1|S̃0

)
⇐⇒

{
1 = p1 + p2 + p3

1 = 3
5p1 + p2 + 6

5p3

The system does not have a unique solution, making the market incomplete thanks to
the 2nd fundamental theorem.

5 Panorama of continuous time modeling

This section is mainly here to give you a feeling of continuous time probability. It is
not intended to be as thorough and complete as the previous notes. Also, you are not
expected to understand it at the same level of detail.

5.1 On continuous time processes

Consider a finite time horizon T ∈ R∗+. Given a probability space (Ω,F ,P), a contin-
uous time stochastic process in Rd will be a family of random variables in Rd indexed
continuously in time:

(Xt ; 0 ≤ t ≤ T )

In this context, a filtration is a continuous family of σ-algebras (Ft; 0 ≤ t ≤ T ) such
that ∀t, s ≥ 0, Ft ⊂ Ft+s. We will assume as usual that FT = F is the entire σ-algebra
and the following usual hypotheses in the theory of stochastic processes:

Hypothesis 5.1 (“Usual hypotheses”). • (Ω,F ,P) is complete meaning that if B ∈
F , with P (B) = 0 then F contains all subsets of B. Naturally, the probability of
A ⊂ B is zero.

Recall from standard measure theory that a measure can always be extended to
the completed σ-algebra.

• F0 contains all the P-null sets.

• {Ft}0≤t≤T is right-continuous:

Ft = Ft+ := ∩s>tFs
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5.2 Brownian motion

Brownian motion was named after the biologist Brown who described the erratic motion
of pollen in water. Its relevance to physics became clear after the works of Einstein
who showed that the average displacement of a particle during a period ∆t is not v∆t,
v being the speed, but a O(

√
∆t). Mathematically, as we will see, Brownian motion

is the most natural path taken at random. Because of that, one can loosely say that
most continuous trajectories do not have a speed.

In this section, we denote by N a generic standard Gaussian random variable.

Definition 5.1. A standard Brownian motion (on R+ or [0, T ]) is a process W such
that:

• W0 = 0 P-a.s.

• W is a.s continuous.

• W has independent increments i.e for all 0 = t0 < t1 < · · · < tn <∞, Wt1−Wt0,
Wt2 −Wt1, . . . , Wtn −Wtn−1 are independent.

• For all s, t ≥ 0, Wt+s −Wt
L
= N (0, t)

L
=
√
tN .

Theorem 5.1. Brownian motion exists and is unique up to indistinguishability.

In fact, Brownian motion is quite universal and appears as the limit in law of every
reasonable random walk properly rescaled.

Theorem 5.2 (Donsker’s invariance principle). Let (ξi)i∈N i.i.d random variables, cen-
tered and having finite variance σ2. Let

BN
t :=

1√
N

bNtc∑
i=1

ξi

Then the following weak convergence holds:(
BN
t ; t ≥ 0

) L−→ (σWt; t ≥ 0)

where W is a BM.

Remark 5.1. Let 0 = t0 < t1 < · · · < tn = T be a regular subdivision of [0, T ]. Then
ti − ti−1 = T

n and:

n∑
i=1

∣∣Wti −Wti−1

∣∣ L= n∑
i=1

√
ti − ti−1 |Ni|

=
√
Tn

∑n
i=1 |Ni|
n

n→∞∼
√
TnE (|N |)

by the law of large numbers. This quantity is clearly divergent, showing that one cannot
sum the increments of Brownian motion in absolute value.
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5.3 Stochastic integrals

Classical integration: Recall that a function A : R+ → R is of finite variation (on
compact sets) if for all T > 0, the variation∑

i

∣∣Ati+1 −Ati
∣∣

is uniformly bounded for all subdivisions 0 = t0 < t1 < · · · < tn = T . Then the
supremum over all subdivisions is a finite quantity called the total variation of A over
[0, T ]. The Riemann-Stieljes integral

∫ t
0 ϕsdAs if ϕ is, say, measurable and bounded

while A has finite variation.
This construction is equivalent to the integration against signed measures, seen in

measure theory class. There is a correspondence between signed measures and finite
variation functions, which we now describe. Every σ-finite signed measure µ on R∗+ is
entirely described by the function Aµ defined as:

Aµt =

∫
)0,t]

µ(ds)

The function Aµ is necessarily of finite variation. In fact, an almost tautological state-
ment is that if |µ| is the total variation of µ i.e the positive measure

∀B ∈ Bor(R∗+), |µ| (B) = sup
B=

⊔
Bi

∑
i

|µ (Bi)|

then the total variation of Aµ is the increasing function A|µ|.
If we want to make sense of

∫ t
0 ϕsdWs, one needs a different contruction because

Brownian motion is not of finite variation (see remark 5.1).

5.3.1 Stochastic integral with respect to Brownian motion

Let W be a standard BM. The goal is to define for a large family of stochastic processes
Y , the stochastic integral (∫ t

0
YsdWs; 0 ≤ t ≤ T

)
The construction goes through a very classical approximation scheme. First, we

define the stochastic integral against simple processes. The class of simple processes
will be denoted Ls. Then, we will extend it to a class of square integrable processes L2.
Of course, Ls ⊂ Lc2 and the inclusion is dense for the Lc2 norm that is to be defined.

Morally, the same goes for the construction of integrals against Radon measures:
it defined against linear combinations of indicators of measurable sets, then extended
using the fact that every measurable function is an almost sure limit of simple functions.

Of course, one cannot hope to beyond classical integration without assuming some-
how that process Y has good measurability properties. The idea is to require that Y
does not “look into the future”, by being for example adapted. A weaker hypothesis is
the notion of progressive measurability.

Definition 5.2. A process Y is progressively measurable with respect to a filtration F
if for all T > 0, the map:

[0, T ]× Ω → R
(t, ω) 7→ Xt(ω)

is Bor ([0, T ])⊗ FT measurable.
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Our class of simple processes will be:

Ls :=

{
Yt(ω) = H0(ω)1{0}(t) +

n−1∑
i=1

Hi(ω)1)ti;ti+1](t), Hi(ω) bounded,Fti measurable

}

Basically, simple processes are step functions with random values, measurable with
respect to the filtration at the time of the jump. Then, for the purposes of this lecture,
the following family is enough for our needs

L2 :=

{
Y progressively measurable | E

(∫ T

0
Y 2
s ds

)
<∞

}
Remark 5.2. The letter L2 has a different meaning than L2.

L2 = L2 (Ω) :=
{
X F −measurable | E

(
X2
)
<∞

}
whereas L2 is a subset of

L2 ([0, T ]× Ω) :=

{
X Bor([0, T ])⊗F −measurable | E

(∫ T

0
X2
sds

)
<∞

}
Properties 5.1 (Assumed). • Every adapted process with left or right-continuous

paths is progressively measurable.

• Ls ⊂ L2 and the inclusion is dense for the norm:

|Y |L2 = E
[∫ T

0
Y 2
s ds

] 1
2

Theorem 5.3 (Construction of the stochastic integral). For any Y ∈ L2, there exists
a process: (∫ t

0
Ysds ; 0 ≤ t ≤ T

)
such that

(i)
∫ t

0 YsdWs is a continuous L2-martingale with respect to F.

(ii) Itô isometry:

∀t ∈ [0, T ] , E

((∫ t

0
YsdWs

)2
)

= E
(∫ t

0
Y 2
s ds

)

The two properties give above are the continuous analogues of the following prop-
erties, for every L2-martingale:

(i’) For every bounded ϕ predicable and bounded,

M (ϕ)t :=
t∑

s=1

ϕs (Ms −Ms−1)

is an L2-martingale.
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(ii’) The L2-decomposition

E
(

(Mt (ϕ))2
)

=
t∑

s=1

E
(
ϕs (Ms −Ms−1)2

)
Proof of discrete properties (i’) and (ii’). (i’) The fact that we have a martingale is

the first point of lemma 4.2. In order to check it is in L2, it suffices to notice that
every term is in L2, which is a vector space.

(ii’) The L2-decomposition is proven by expanding the square and keeping only the
diagonal terms. The off-diagonal terms vanish using the tower property and the
fact that M is a martingale.

Proof of theorem “Construction of stochastic integrals”. As announced, we proceed by
density. Let Y ∈ Ls be a simple process. By definition, it is of the form:

Yt = H01{0}(t) +
n−1∑
i=1

Hi1)ti;ti+1](t)

and it is natural to define the stochastic integral as:∫ t

0
YsdWs :=

n−1∑
i=1

Hi(ω)
(
Wt∧ti+1 −Wt∧ti

)
Clearly, the subdivision in time t1 < t2 < · · · < tn can be refined at will, and still yields
the same definition. Let us now prove that this construction satisfies properties (i) and
(ii), when the integrand is a simple process.

(i) for Ls The stochastic integral is an L2 martingale. It is easy to see that
∫ t

0 YsdWs ∈ L2

for all t. In order to see it is a martingale, we have to check that

E
(∫ t+s

0
YudWu|Ft

)
=

∫ t

0
YudWu

for every fixed t and s. As mentioned before, one can refine the subdivision if
necessary and suppose that t and t+ s are part of it. Therefore, we only have to
prove that the sequence

∫ ti
0 YudWu, i = 0, 1, . . . is a discrete martingale. This is

immediate, because it is a discrete stochastic integral with respect to the discrete
martingale Wti !

(ii) for Ls Thanks to exactly the same computation as the property (ii’) in discrete time

E

((∫ t

0
YsdWs

)2
)

=
n−1∑
i=1

E
(
H2
i

(
Wt∧ti+1 −Wt∧ti

)2)
=

n−1∑
i=1

E
(
H2
i E
((
Wt∧ti+1 −Wt∧ti

)2 |Fti))
=

n−1∑
i=1

E
(
H2
i (t ∧ ti+1 − t ∧ ti)

)
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=E

(
n−1∑
i=1

∫ t∧ti

t∧ti+1

Y 2
s ds

)

=E
(∫ t

0
Y 2
s ds

)
Now we use the fact that Ls ⊂ L2 and that this inclusion is dense with respect to
the norm |.|L2 . The L2-isometry tells us that the stochastic integral for fixed t is a
continuous map from L2 to L2. Therefore, it extends uniquely. However, we will need
more.

Consider a sequence Y n ∈ Ls converging to Y ∈ L2, in the |.|L2-norm. As men-
tioned, the Ito isometry tells us that for every fixed t,(∫ t

0
Y n
s dWs;n ∈ N

)
is a Cauchy sequence in L2(Ω). It therefore converges to a unique random variable.
This is what we define as

∫ t
0 YsdWs. This however sheds limited information on the

process t 7→
∫ t

0 YsdWs = I(Y )t as t varies. We still have to argue that:

• t 7→ I(Y )t is an L2 martingale as it is an L2-limit of the L2-martingales I(Y n).

• Continuity is a little tricky and is only given for the sake of completeness. It uses
tools we have not really got the chance of seeing. The idea is to extract a subse-

quence, nk such that the sequence of random functions
(
t 7→

∫ t
0 Y

nk
s dWs; 0 ≤ t ≤ T

)
converge uniformly. The limit

(
t 7→

∫ t
0 YsdWs; 0 ≤ t ≤ T

)
is therefore continuous

as a uniform limit of continuous functions. These statements are for fixed ω.

Thanks to Doob’s maximal inequality:

E

(
sup

0≤t≤T

(∫ t

0
(Y n
s − Y m

s ) dWs

)2
)
≤ 4E

(∫ T

0
(Y n
s − Y m

s )2 ds

)
which goes to zero as Y n ∈ L2 is a Cauchy sequence. One can extract a

subsequence nk such that E
(

sup0≤t≤T

(∫ t
0

(
Y
nk+1
s − Y nk

s

)
dWs

)2
)

is summable.

Hence,

∑
k

sup
0≤t≤T

(∫ t

0

(
Y
nk+1
s − Y nk

s

)
dWs

)2

=
∑
k

(
sup

0≤t≤T
I (Y nk+1)t − I (Y nk)t

)2

<∞

almost surely and therefore, t 7→ I (Y nk)t is a Cauchy sequence for the supremum
norm.

The multi-dimensional generalisation of the stochastic integral is straightforward.
If Y is a d-dimensional process with:

E
(∫ T

0
|Ys|2 ds

)
<∞

then we define the integral against a d-dimensional Brownian motion as:∫ t

0
Ys · dWs :=

d∑
i=1

∫ t

0
Y i · dW i

s
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5.3.2 Stochastic integral with respect to Ito processes

Definition 5.3. An Itô process X driven by a d-dimensional Brownian motion is a
continuous an adapted process such that:

Xt = X0 +

∫ t

0
Ys · dWs +

∫ t

0
Zsds

with Y,Z progressively measurable processes and:

Y ∈ L2 ⇐⇒ E
(∫ T

0
|Ys|2 ds

)
<∞

Z ∈ L1 ⇐⇒ E
(∫ T

0
|Zs| ds

)
<∞

Remark 5.3 (Short-hand notation). One often writes:

dXt = YtdWt + Ztdt

which is only a short-hand notation. It is reminiscent of the Leibniz notation for the
differential and not completely unrelated. Indeed, if Y = 0, then

Xt = X0 +

∫ t

0
Zsds

Hence X is differentiable and
dXt

dt
= X ′t = Zt

which can also be written
dXt = Ztdt

Proposition 5.1. The quadratic variation process 〈X,X〉t =
∫ t

0 Z
2
sds appears as the

limit in probability of ∑
i

∣∣Xti+1 −Xti

∣∣2
along subdivisions 0 = t0 < t1 < · · · < tn = t.

It is an important quantity that appears in the Ito formula. Notice that the quadraic
variation is a finite variation process and therefore the measure d〈X,X〉t exists.

Example 5.1 (Brownian motion). Clearly, Brownian motion itself is an Itô process
(Y = 1 and Z = 0) in the definition. By a simple application of the law of large
numbers, one sees that 〈W,W 〉t = t.

5.3.3 Ito formula

Although we constructed the stochastic integral, we cannot compute exactly any stochas-
tic integral without some algebraic rules. Notice that the same is true when dealing
with classical measure theory: after constructing the integral against the Lebesgue mea-
sure, one still cannot compute any integral. One first needs to prove the fundamental
theorem of analysis i.e that for every function X that is C1

Xt = X0 +

∫ t

0
X ′sds = X0 +

∫ t

0
dXs .

33



This combined with the chain rule:

F (Xt) = F (X0) +

∫ t

0
F ′(Xs)dXs

allows to compute formulas such as (Xt = t, F (x) = x2

2 ):∫ t

0
s ds =

t2

2

The Itô formula can be thought of as a generalisation of the chain rule for Ito
processes. More formally, it gives the decomposition of t 7→ F (Xt) as an Ito process,
when X is itself an Ito process.

Theorem 5.4 (Itô formula). Let X be a one dimensional Itô process. If:

F : R+ × R → R
(t, x) 7→ f(t, x)

is C1,2 (C1 in t and C2 in x) then:

F (t,Xt) = F (0, X0) +

∫ t

0

∂F

∂t
(s,Xs)ds+

∫ t

0

∂F

∂x
(s,Xs)dXs +

1

2

∫ t

0

∂2F

∂x2
(s,Xs)d〈X,X〉s

= F (0, X0) +

∫ t

0

∂F

∂t
(s,Xs)ds+

∂F

∂x
(s,Xs)Zsds+

∫ t

0

∂F

∂x
(s,Xs)YsdWs

+
1

2

∫ t

0

∂2F

∂x2
(s,Xs)Z

2
sds
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A Conditional expectation (Appendix)

Let (Ω,F ,P) be a probability space, X an integrable random variable and G ⊂ F a
σ-algebra.

Informally, the conditional expectation E (X|G) is the G-measurable random vari-
able that best approximates X. The following proposition can be thought of as a
definition:

Proposition A.1. There exists an unique (up to P-equivalence) random variable Y :=
E (X|G) such that:

• Y is G-measurable.

• Y ∈ L1 i.e E (|Y |) <∞.

• For all A ∈ G, E
(
Y 1{A}

)
= E

(
X1{A}

)
.

Proof of proposition A.1. For the uniqueness up to P-equivalence, consider Y ′ another
random variable satisfying the same properties. Then for all A ∈ G, E ((Y − Y ′)1A) =
0. Since Y −Y ′ is G-measurable, take successively A = {Y −Y ′ ≥ 0} ∈ G and A = {Y −
Y ′ < 0} ∈ G in order to obtain E

(
(Y − Y ′)1{Y−Y ′≥0}

)
= 0 and E

(
−(Y − Y ′)1{Y−Y ′<0}

)
=

0. By forming the sum, we have E (|Y − Y ′|) = 0. Hence Y = Y ′, P-almost surely.
In order to prove existence, we proceed in three steps. First, write X = X+ −X−.

By treating positive and negative parts separately, one can suppose X ≥ 0. Technically,
we have just used the linearity (property 1 in A.1) of conditional expectation, which is
a consequence of the uniqueness statement.

Second, if X ∈ L2, we perform a classical construction in convex analysis. Con-
sider the inclusion L2 (Ω,G,P) ⊂ L2 (Ω,F ,P) of Hilbert spaces for the scalar product
〈X,Y 〉 = E (XY ). This is a closed inclusion. From the general fact that there exists
an orthogonal projection on convex subsets of Hilbert spaces, we deduce there is a map
p : L2 (Ω,F ,P)→ L2 (Ω,G,P) such that:

∀ (X,Y ) ∈ L2 (Ω,F ,P)× L2 (Ω,G,P) , E ((X − p(X))Y ) = 0

If Y = 1A then p(X) satisfies the required properties.
Finally, in the general case, consider the increasing approximation Xn = min (X,n)

which are bounded, therefore in L2. The subsequent properties A.1 are therefore valid
for Xn. Yn = E (Xn|G) is also increasing as Yn+1−Yn = E (Yn + 1− Yn|G) ≥ 0, thanks
to the positivity property. Therefore, Yn converges almost surely to a limit Y . Now,
for all A ∈ G:

E (Y 1A) = limE (Yn1A) by monotone convergence

= limE (Xn1A)

= E (X1A) by dominated convergence

Moreover, conditional expectation has the following properties:

Properties A.1. 1. Linearity and positivity:

∀ (a, b) ∈ R2, E (aX + bY |G) = aE (X|G) + bE (Y |G)

X ≥ 0a.s⇒ E (X|G) ≥ 0a.s

along with E (|E (X|G)|) ≥ E (|X|).
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2. The tower property: If H ⊂ G ⊂ F is an inclusion of σ-algebras, then

E (E (X|G) |H) = E (X|H)

3. If Z is G-measurable and bounded, then:

E (ZX|G) = ZE (X|G)

4. If X is G-measurable then
E (X|G) = X

5. If X is independent of G:
E (X|G) = E (X)

Proof. 1. For linearity, let Z = aE (X|G) + bE (Y |G) be the candidate. Because
of the linearity of the usual expectation, for all A ∈ G, E (1A (aX + bY )) =
aE (1AX) + bE (1AY ) = aE (1AE (X|G)) + bE (1AE (Y |G)) = E (1AZ). As Z is
integrable and G-measurable, it must be E (aX + bY |G) by uniqueness.

For positivity, consider A = {E (X|G) < 0} ∈ G. If X is non-negative, then
0 ≤ E (1AX) = E (1AE (X|G)) = −E

(
E (X|G)−

)
. Therefore E (X|G)− = 0

almost surely and the result holds.

For the control on the L1 norm, introduce B = {E (X|G) ≥ 0} ∈ G. We have that
E (|E (X|G)|) = E (1BE (X|G)− 1AE (X|G)) = E (1BX − 1AX) ≤ E (|X|).

2. Very good exercise.

3. The statement is easy when Z is an indicator function, for example 1B with
B ∈ G. Then use a standard approximation argument.

4. Consequence of 3) if X bounded, or simply by checking that the random variable
X satisfies the required hypotheses and invoking uniqueness once again.

5. Because of independence, for all A ∈ G, E (1AX) = P (A)E (X) = E (1AE(X)).
Therefore, the constant random variable E(X) satisfies all the hypotheses.
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B Martingales (Appendix)

Let (Ω,F ,P) be a probability space along with a filtration:

F = {F0 ⊂ F1 ⊂ · · · ⊂ FT = F}

Then (Ω,F ,F,P) is a filtered probability space. Loosely speaking, a martingale is the
mathematical formalisation of a “fair gain” process or a process that is constant on
average, conditionally. For the purposes of the class, only the definition is required:

Definition B.1. A martingale (Mt)t∈N (resp. a super-martingale or sub-martingale)
is a process such that:

• ∀t ∈ N, Mt is integrable.

• (Mt)t∈N is F-adapted.

• ∀s ≥ 0,E (Mt+s | Ft) = Mt (resp. ≥,≤)

Because of the tower property, the last statement in the definition of a martingale
can be replaced by:

∀t ∈ N,E (Mt+1|Ft) = Mt

An immediate consequence of the definition is that the expectation of a martingale is
constant. Also, a simple class of martingales is given by closed martingales, which are
of the form:

Mt = E (X|Ft)

for any integrable random variable X. In a finite time horizon, all martingales are
closed.

Remark B.1. If the choice of underlying filtration or measure is ambiguous, one lifts
the ambiguity by saying that M is an F-martingale and a P-martingale.

There are classical theorems concerning martingales such as Doob’s inequality or
convergence theorems. These are left for a real class on the subject. Nevertheless, the
good behavior of martingales regarding stopping times will be needed in the modeling
of American options.

Definition B.2. A discrete stopping time is a random variable τ : Ω→ {0, 1, 2, . . . , T}t
{∞} such that one of the following three equivalent conditions hold:

• ∀t, {τ = t} ∈ Ft

• ∀t, {τ ≤ t} ∈ Ft

• ∀t, {τ > t} ∈ Ft

These three conditions are seen to be equivalent using the fact that F is a filtration
and the stability of σ-algebras with respect to union, intersection and complement.

Properties B.1. • Deterministic times are stopping times.

• If τ and τ ′ are stopping times, then the same goes for their maximum τ ∨ τ ′ and
their minimum τ ∧ τ ′.
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Proof. If τ is deterministic, then {τ = t} is either empty or all of Ω, and therefore
belongs to any sigma algebra. For the second property, we will consider only the
maximum, as the minimum is treated in a similar fashion. For fixed t ∈ N, we write
{τ ∧ τ ′ ≤ t} = {τ ≤ t} ∪ {τ ′ ≤ t} ∈ Ft.

The σ-algebra generated by a stopping time τ is defined as the set of events whose
trace on {τ = t} is in Ft.

Definition B.3.
Fτ := {A ∈ F | ∀t =, A ∩ {τ = t} ∈ Ft}

Exercise B.1. Prove this is a σ-algebra.

For a process X, let us denote by Xτ the process X stopped at τ i.e:

∀t, Xτ
t := Xτ∧t

The reason why stopping times are important is embodied by the following theorem

Theorem B.1 (Doob’s optional stopping theorem). • If τ is a stopping time and
M is a martingale (resp. a super or sub-martingale), then so is M τ .

• If τ is bounded almost surely ( ∃c > 0, τ ≤ c a.s ) then

Proof. For the first statement, notice that for all t ≥ 0, M τ
t+1−M τ

t = 1{τ>t} (Mt+1 −Mt).
Then, because {τ > t} ∈ Ft, we have E

(
M τ
t+1 −M τ

t |Ft
)

= 1{τ>t}E (Mt+1 −Mt|Ft) =
0 (resp. ≥ 0, ≤ 0).

For the second statement, let us suppose for example that M is a martingale.
Thanks to Doob’s optional stopping theorem, M τ is also a martingale. Then E (M τ ) =
E (Mτ∧c) = E (M τ

c ) = E (M0).

Remark B.2. The typical counter-example to the second statement in Doob’s optional
stopping theorem consists in doubling strategies. Consider a fair coin-flip game, where
player bets a certain amount and wins double. If the player doubles his bet everytime
he looses, we will end up winning his initial bet at a certain stopping time τ . Clearly,
τ is a geometric random variable, hence not bounded. The gain process (Gt)t∈N is a
martingale. But Gτ is the initial bet.
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