
Introduction to mathematical finance HS 2013

Correction of final examination

Exercise 1 (Lesson question - 3 points)
See course.

Exercise 2 (On some stochastic processes - 8 points)
In this exercise, all stochastic integrals with respect to Brownian motion will be assumed to be real
martingales. Let Wt be a real standard Brownian motion.

A martingale
At least three proofs are possible. Either use the Ito formula to see that M is a stochastic integral
with respect to Brownian motion:

dMt = e−
1
2
λ2t sinh(λWt)λdWt

or notice that:

Mt =
1

2
(E(λW )t + E(−λW )t)

where

E(X)t = exp

(
Xt −

1

2
〈X,X〉t

)
is the exponential martingale associated to the martingale X. A sum of two martingales is a
martingale.
A third proof might consist in checking directly the martingale property, which basically tanta-
mounts to reproving that the exponential martingale of Brownian motion is a martingale.

On a certain affine process
Define the stochastic process Xt to be the unique process starting at X0 and solution to the following
SDE (stochastic differential equation):

dXt = (a− bXt) dt+ σ
√
XtdWt

with b > 0 and σ > 0. Existence and uniqueness are assumed.

1. Rewrite the SDE in integral form:

Xt = X0 +

∫ t

0
(a− bXs) ds+ σ

∫ t

0

√
XsdWs

Taking the expectation and applying Fubini yields:

f(t) =X0 + at− bE
(∫ t

0
Xsds

)
=X0 + at− b

∫ t

0
E (Xs) ds

=X0 + at− b
∫ t

0
f(s)ds

This shows f is smooth. Moreover, it is the integral form of the ODE.

2. Such an ODE has solution:
f(t) =

(
X0 −

a

b

)
e−bt +

a

b
Notice the asymptotic mean:

E (Xt)
t→∞−→ a

b
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3.

X2
t = X2

0 + 2

∫ t

0
Xs (a− bXs) ds+ 2σ

∫ t

0
Xs

√
XsdWs + σ2

∫ t

0
Xsds

4. Again, take the expectation of the previous equation, and apply Fubini:

g(t) =E
(
X2
t

)
− f(t)2

=X2
0 + E

(
2

∫ t

0
Xs (a− bXs) ds+ σ2

∫ t

0
Xsds

)
− f(t)2

=X2
0 + 2

∫ t

0
ds
(
af(s)− bE(X2

s )
)

+ σ2
∫ t

0
f(s)ds− f(t)2

=X2
0 + 2

∫ t

0
ds
(
af(s)− bg(s)− bf(s)2

)
+ σ2

∫ t

0
f(s)ds− f(t)2

Because of the ODE satisfied by f :

f(t)2 = X2
0 + 2

∫ t

0
f(s) (a− bf(s)) ds

Hence the simplification:

g(t) = −2b

∫ t

0
g(s)ds+ σ2

∫ t

0
f(s)ds

5. The constant C2 concerns the vector space of homogenous solutions and is determined by the
initial condition 0. We can therefore just focus on when C0 + C1e

−bt is particular solution of
our ODE. Identifying terms shows that:

C0 =
aσ2

2b2

C1 =
σ2
(
X0 − a

b

)
b

Finally, using the initial condition:

C2 = −C1 − C0

Notice that the asymptotic variance is C0 = aσ2

2b2
.

Exercise 3 ( Spread option - 5 points)
For the sake of making things more interesting, we will consider a possibly random interest rate
process rt, t ∈ {0, 1, . . . , T}. The filtration generated by both r and S is:

Ft = σ (S0, S1, S2, . . . , St)
∨
σ (r0, r1, r2, . . . , rt)

Because we assumed completeness and absence of arbitrage in a finite market model, there is a
unique risk neutral measure Q. Hence the price of our option at time 0 is the discounted payoff
conditionally to F0 under Q:

P0 = EQ

(∏
s=1

(1 + rs)
−1 ΦT |F0

)

1. It is easy to see that the payoff is bounded K2−K1. Then the result follows. The mathematical
justification consists in invoking the positivity of conditional expectation:

P0 ≤ EQ

(∏
s=1

(1 + rs)
−1 |F0

)
(K2 −K1) = B0

T (K2 −K1)
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The last equality comes from the fact that the price of a zero coupon is obtained by discounting
the value 1$.

The financial arguments consists in exhibiting an arbitrage if P0 > B0
T (K2 −K1). Simply sell

a spread and buy a nominal of (K2 −K1) in zero coupons. The balance of this operation is
positive. At maturity, you have to pay ΦT ≤ (K2 −K1). The net balance is:

(K2 −K1)− ΦT +
(
P0 −B0

T (K2 −K1)
)
BT > 0

with B the bond.

2. The mathematical derivation of this result consists of invoking the linearity of conditional
expectation. The financial justification consists in contructing a replicating portfolio made of
a long position in a call with strike K1 and a short position in a call with strike K2.

3. A spread is desirable for an investor if he expects the stock S to increase beyond K1, but not
beyond K2. Because it is cheaper than the call with strike K1, it also allows a much bigger
position with a smaller cash investment.

This last argument is also valid from the point of view of the bank: it is a cheaper financial
product than the call, and therefore can be sold more easily. Moreover, the downside risk is
smaller: if the stock increases too much, the payoff remains bounded.

Exercise 4 (Bullet option - 8 points)
Consider a binomial model with one stock S and a bond B.

St = S0

t∏
i=0

ξi

Bt = (1 + r)t

where the ξi are independent and identically distributed. r is the interest rate. The natural filtration
of S is denoted:

Ft = σ (S0, S1, S2, . . . , St)

Under the risk neutral measure Q:

Q (ξi = u) = p = 1−Q (ξi = d)

The “bullet option” with strikes K1 < K2 is an option with payoff at time t:

Φt = 1{K1≤St≤K2}

General question:

d < 1 + r < u

This condition is equivalent to:

0 < p =
1 + r − d
u− d

< 1

which is the necessary condition for the existence of an equivalent martingale measure. The financial
meaning of such an inequality is clear: it is financially absurd to have an interest rate always more
profitable or always less profitable than the stock.
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Pricing and hedging of the European option:

The European option with payoff ΦT at time T is called the European bullet option.

1. The price of the option at time t of the European bullet option is:

Pt =
1

(1 + r)T−t
EQ (

1{K1≤ST≤K2}|Ft
)

Moreover:

ST = St

T∏
i=t+1

ξi

Because the random variables ξi for i ≥ t+ 1 are independent from Ft, we have Pt = P (t, x)
with:

P (t, x) =
1

(1 + r)T−t
Q

(
K1 ≤ x

T∏
i=t+1

ξi ≤ K2

)
Then the result follows by using the equality in law under Q:

T∏
i=t+1

ξi = uBin(T−t,p)dT−t−Bin(T−t,p)

2. As done in the class, a replicating (or hedging) φt = (αt, βt) , t = 1, 2, . . . , T should satisfy:

αtSt + βtBt = P (t, St−1ξt)

whether ξt = u or ξt = d. Hence the system of linear equations in α and β:

αtSt−1u+ βtBt = P (t, St−1u)

αtSt−1d+ βtBt = P (t, St−1d)

Solving it leads to:

αt =
P (t, St−1u)− P (t, St−1d)

St−1u− St−1d

The American option:

1. The price of the American option is obtained by computing the Snell envelope of Φt, which is
given by:

P amT = 1{K1≤ST≤K2}

P amt = max

(
1{K1≤St≤K2},

1

1 + r
E
(
P amt+1|Ft

))
By backward recurrence, one sees that there is a function f such that P amt = f(t, St). That
is a consequence of the Markovian behavior of our stock process. This function must satisfy
the discrete Hamilton-Jacobi-Bellman equation:

f(T, x) = 1{K1≤x≤K2}

f(t, x) = max

(
1{K1≤x≤K2},

p

1 + r
f(t+ 1, xu) +

1− p
1 + r

f(t+ 1, xd)

)
In order to put the final equation under the required form, we notice that (by backward
recurrence or financial common sense):

0 ≤ f(t, x) ≤ 1

With r > 0, the maximum concerns the right hand side only if x < K1 or x > K2.
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2. Notice that if the spot at t is below K1/u
T−t or higher than K2/d

T−t, the payoff will always
be zero. Therefore, any stopping time is an optimal stopping time. The earliest is right away
and latest is at maturity. Let us call this the degenerate case.

However, as intuition suggests, one should exercise the option as soon as the spot is between
K1 and K2. In any other case, it is better to wait. That is validated by the theorem seen in
class the smallest optimal stopping time τ is the first time when P amt = Φt. There is no other
one, unless we fall in the degenerate case.

Exercise 5 ( 4 points )
Notice that there are only two paths giving a non-zero payoff:

6, 5, 4, 8

6, 9, 8, 9

If the risk neutral probabilities of these two paths are p1 and p2, then the price is:

P = p1 + 2p2

The computation of these probabilities gives:

p1 =
3

4

2

3

1

3
=

1

6

p2 =
1

4

2

3

1

2
=

1

12

Then:

P =
1

3
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