Final examination (3h)

- Only exercise 2 is in continuous time.
- In exercises 3 and 4, the candidate will be asked at certain questions to provide both a mathematical answer and a financial answer. Typically, a mathematical answer consists in invoking tools from mathematical finance such as the risk neutral measure. A financial answer requires exhibiting an arbitrage or hedging strategy.
- Exercises can be done in any order. Therefore, it is advised that you read all the subject before starting.
- You will not get the correction if you leave earlier.
- You are specifically asked to write with a black or blue pen. No pencils or red pen.
- For identification purposes, please display your ID card on the corner of the table.

> Good luck! - and happy Valentine's day...

Exercise 1 (Lesson question - 3 points)
Consider a finite market model i.e finite time horizon and finite Ω. Define equivalent martingale measures and then state as clearly as possible the two fundamental theorems of asset pricing.

Exercise 2 (On some stochastic processes - 8 points)
In this exercise, all stochastic integrals with respect to Brownian motion will be assumed to be real martingales. Let W_{t} be a real standard Brownian motion.

A martingale

Let $\lambda \in \mathbb{R}$ and

$$
M_{t}:=e^{-\frac{1}{2} \lambda^{2} t} \cosh \left(\lambda W_{t}\right)
$$

where cosh is the hyperbolic cosine:

$$
\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

Prove M is a martingale.

On a certain affine process
Let $X_{0} \in \mathbb{R}$ be a deterministic value. Define the stochastic process X_{t} to be the unique process starting at X_{0} and solution to the following SDE (stochastic differential equation):

$$
d X_{t}=\left(a-b X_{t}\right) d t+\sigma \sqrt{X_{t}} d W_{t}
$$

with $b>0$ and $\sigma>0$. Existence and uniqueness are assumed.

1. Let $f(t)=\mathbb{E}\left(X_{t}\right)$ be the expectation at time t of our process. Show that f is a smooth function solving the ODE (ordinary differential equation):

$$
f^{\prime}(t)=a-b f(t)
$$

2. Compute $\mathbb{E}\left(X_{t}\right)$ as a function of X_{0}, a, b and time t.
3. Thanks to the Itô formula, give the decomposition of X_{t}^{2} as an Itô process.
4. Let $g(t)=\operatorname{Var}\left(X_{t}\right)$ be the variance of our process at time t. Prove that it solves the ODE:

$$
g^{\prime}(t)=-2 b g(t)+\sigma^{2} f(t)
$$

5. Solve the ODE. One can look for a solution of the form:

$$
g(t)=C_{0}+C_{1} e^{-b t}+C_{2} e^{-2 b t}
$$

Remark 0.1. For your own culture, such processes are part of the so-called "affine processes" and are often used in order to model short-term interest rates or default intensities.
These are tailored to have a mean-reverting property. For example, in the exercise, you see that $\mathbb{E}\left(X_{t}\right)$ and $\operatorname{Var}\left(X_{t}\right)$ converge to a long term value, independent of X_{0}.

Exercise 3 (Spread option - 5 points)
Consider a complete finite market model with absence of opportunity of arbitrage. It has a single stock S. Its natural filtration is:

$$
\mathcal{F}_{t}=\sigma\left(S_{0}, S_{1}, S_{2}, \ldots, S_{t}\right)
$$

Time is discrete with finite time horizon $t \in\{0,1,2, \ldots, T\}$. Interest rate is r.
The spread option on the stock S, with maturity T and strikes $K_{1}<K_{2}$ has payoff:

$$
\Phi_{T}=\left(S_{T}-K_{1}\right)^{+}-\left(S_{T}-K_{2}\right)^{+}
$$

1. Prove that the price of this option is bounded by $B_{T}^{0}\left(K_{2}-K_{1}\right)$, where B_{T}^{0} is a zero coupon with maturity T. Give both a mathematical and a financial argument. Recall that the zero coupon is the amount that insures a payoff of $1 \$$ at maturity.
2. If $C(T, K)$ is the price of a call option with maturity T and strike K, prove that the price of the spread option is given by:

$$
C\left(T, K_{1}\right)-C\left(T, K_{2}\right)
$$

Again, give both a mathematical and financial derivation of this result.
3. Describe situations where the spread option is desirable for an investor, and for the bank selling it.

Exercise 4 (Bullet option - 8 points)
Consider a binomial model with one stock S and a bond B.

$$
\begin{aligned}
S_{t} & =S_{0} \prod_{i=0}^{t} \xi_{i} \\
B_{t} & =(1+r)^{t}
\end{aligned}
$$

where the ξ_{i} are independent and identically distributed. r is the interest rate. The natural filtration of S is denoted:

$$
\mathcal{F}_{t}=\sigma\left(S_{0}, S_{1}, S_{2}, \ldots, S_{t}\right)
$$

Under the risk neutral measure \mathbb{Q} :

$$
\mathbb{Q}\left(\xi_{i}=u\right)=p=1-\mathbb{Q}\left(\xi_{i}=d\right)
$$

The "bullet option" with strikes $K_{1}<K_{2}$ is an option with payoff at time t :

$$
\Phi_{t}=\mathbb{1}_{\left\{K_{1} \leq S_{t} \leq K_{2}\right\}}
$$

General question

Describe the condition for absence of opportunity of arbitrage in terms of r, u and d. Give both a financial and mathematical argument for this inequality.
Pricing and hedging of the European option
The European option with payoff Φ_{T} at time T is called the European bullet option.

1. Prove that the price of the option at time t of the European bullet option is $P_{t}=P\left(t, S_{t}\right)$ where:

$$
P(t, x)=\frac{1}{(1+r)^{T-t}} \mathbb{P}\left(\frac{\log \left(\frac{K_{1}}{x d^{T-t}}\right)}{\log (u / d)} \leq \operatorname{Bin}(T-t, p) \leq \frac{\log \left(\frac{K_{2}}{x d^{T-t}}\right)}{\log (u / d)}\right)
$$

with $\operatorname{Bin}(n, p)$ being a binomial random variable with parameters $n \in \mathbb{N}$ and $0<p<1$.
2. Describe a replicating (or hedging) strategy in terms of a predictable process $\phi_{t}=\left(\alpha_{t}, \beta_{t}\right), t=$ $1,2, \ldots, T$ such that:

$$
\begin{aligned}
& \alpha_{t}=\alpha\left(t, S_{t-1}\right) \\
& \beta_{t}=\beta\left(t, S_{t-1}\right)
\end{aligned}
$$

The American option

1. We assume $r>0$. Let the price at time t of the American bullet option be $P_{t}^{a m}=f\left(t, S_{t}\right)$. Prove that it satisfies the backward equation:

$$
\begin{gathered}
f(T, x)=\mathbb{1}_{\left\{K_{1} \leq x \leq K_{2}\right\}} \\
f(t, x)=\mathbb{1}_{\left\{K_{1} \leq x \leq K_{2}\right\}}+\mathbb{1}_{\left\{x<K_{1} \text { or } x>K_{2}\right\}}\left(\frac{p}{1+r} f(t+1, x u)+\frac{1-p}{1+r} f(t+1, x d)\right)
\end{gathered}
$$

2. Describe the optimal stopping times for exercising the option, and discuss uniqueness.

Exercise 5 (4 points)

We consider a three-period arbitrage-free financial market model consisting of a bond and a stock with discounted price process $S^{*}=\left(S_{0}^{*}, S_{1}^{*}, S_{2}^{*}, S_{3}^{*}\right)$. We consider the call option with up and out barrier at $10 \$$ and strike $7 \$$:

$$
\Phi^{*}=\left(S_{3}^{*}-7\right)^{+} \mathbb{1}_{\left\{\max _{t=0,1,2,3} S_{t}^{*} \leq 10\right\}}
$$

Assume that the processes evolve according to the following binomial tree, where each scenario has positive probability:

Compute the risk-neutral probability transitions and the price of the option.

