Sheet 7

On one-parameter subgroups

Exercise 1. [(8.31) [1]] Show that if $\rho : \mathbb{R} \to G$ is a homomorphism from $(\mathbb{R}, +)$ to (G, \cdot) , then it is of the form φ_X with $X = \rho'(0)$

Exercise 2. Let $(X, Y) \in \mathfrak{g}^2$ be two elements in the Lie algebra of G, a Lie group.

• Show that:

 $\forall g \in G, \forall t \in \mathbb{R}, g\varphi_X(t)g^{-1} = \varphi_{Ad(g)(X)}(t)$

• Prove that for every $Y \in \mathfrak{g}$:

 $t \mapsto Ad\left(\varphi_Y(t)\right)$

is a one-parameter subgroup in $GL(\mathfrak{g})$.

• Deduce that, if [X, Y] = 0, then the one-parameter subgroups φ_X and φ_Y commute:

$$\forall (s,t) \in \mathbb{R}^2, \varphi_X(s)\varphi_Y(t) = \varphi_Y(t)\varphi_X(s)$$

On the exponential map

Exercise 3. [(9.10) [1]] Let G be a Lie group and \mathfrak{g} its Lie algebra. The subgroup of G generated by exponentiating the Lie subalgebra

$$Z(\mathfrak{g}) = \{ X \in \mathfrak{g} | \forall Y \in \mathfrak{g}, [X, Y] = 0 \}$$

is the connected component of the identity in the center Z(G) of G.

- Prove that fact in the case where G is a linear group i.e a subgroup of $GL_n(\mathbb{R})$ using the Campbell-Hausdorff formula.
- Give an intrinsic proof, using the previous exercise.

References

[1] Fulton, Harris. Representation theory: A first course. Springer 1991.