Sheet 6

Warm up

Exercise 1. [(8.10) in [1]]

The skew-commutativity of the Lie bracket and the Jacobi identity follow from the naturality without using any embedding in $\mathfrak{gl}(V)$:

- Deduce the skew-commutativity [X, X] = 0 from the fact that any X can be written the image of a vector by $d\rho_e$ for some homomorphism $\rho : \mathbb{R} \to G$ (a one-parameter subgroup).
- Given that the bracket is skew-commutative, verify that the Jacobi identity is equivalent to the assertion that:

$$ad = d (Ad)_e : \mathfrak{g} \to \operatorname{End}(\mathfrak{g})$$

preserves the bracket. In particular, ad is a map of Lie algebras.

Description of some groups and their Lie algebra

Exercise 2. [(8.24) in [1]]

- With Q a standard skew form, say $Q = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$, describe the group $Sp_{2n}(\mathbb{R})$ and its Lie algebra $\mathfrak{sp}_{2n}(\mathbb{R})$ (as a subgroup of $GL_{2n}(\mathbb{R})$ and a subalgebra of $\mathfrak{gl}_{2n}(\mathbb{R})$. Give the dimension of the group.
- Same with $SO_{k,l}(\mathbb{R})$.
- Same with the complex group $SO_n(\mathbb{C})$.

On the exponential map

Exercise 3. [(8.40) [1]] Show that exp is surjective for $G = GL_n(\mathbb{C})$ but not for $G = GL_n^+(\mathbb{R})$, n > 1. Note: $GL_n^+(\mathbb{R})$ is the group of invertible matrices with positive determinant.

Exercise 4. [(9.10) [1]] Let G be a Lie group and \mathfrak{g} its Lie algebra. The subgroup of G generated by exponentiating the Lie subalgebra

$$Z(\mathfrak{g}) = \{ X \in \mathfrak{g} | \forall Y \in \mathfrak{g}, [X, Y] = 0 \}$$

is the connected component of the identity in the center Z(G) of G. Prove that fact in the case where G is a linear group i.e a subgroup of $GL_n(\mathbb{R})$ using the Campbell-Hausdorff formula.

References

[1] Fulton, Harris. Representation theory: A first course. Springer 1991.