Sheet 5

On Lie groups preserving certain structures

Exercise 1. [(7.3) in [1]]
Let $V \approx \mathbb{C}^{n}$ a complex vector space, and $H: V \times V \rightarrow \mathbb{C}$ a Hermitian form on V. Now, view $V \approx \mathbb{R}^{2 n}$ as a real vector space. The multiplication by $i=\sqrt{-1}$ is then seen as an involutive automorphism on $\mathbb{R}^{2 n}$, and elements in $G L_{n}(\mathbb{C})$ are seen as linear maps on $\mathbb{R}^{2 n}$ commuting with the complex conjugation.

- Show that $R e(H)$, the real part of H is a symmetric form on the underlying real vector space, and that $\operatorname{Im}(H)$ the imaginary part of H is skew-symmetric. They are related by:

$$
C(v, w)=R(i v, w)
$$

- Prove the invariance under i :

$$
\begin{aligned}
& R(v, w)=R(i v, i w) \\
& C(v, w)=C(i v, i w)
\end{aligned}
$$

- Conversely, prove that every such R is the real part of a unique Hermitian form H.
- If H is the standard Hermitian form:

$$
\forall(v, w) \in\left(\mathbb{C}^{n}\right)^{2}, H(v, w)=\sum_{i} \bar{v}_{i} w_{i}
$$

Then R is standard, $R=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $C=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$

- Finally, deduce that the unitary group is a subgroup of $G L_{2 n}(\mathbb{R})$:

$$
U(n)=O_{2 n}(\mathbb{R}) \cap S p_{2 n}(\mathbb{R})
$$

Exercise 2. [(7.4) in [1] - Optional]
Let \mathbb{H} be the field of quaternions. One can consider the group of \mathbb{H}-linear automorphisms of $\mathbb{H}^{n} \approx \mathbb{C}^{2 n}$ (as \mathbb{C}-vector spaces), giving rise to $G L_{n}(\mathbb{H}) \subset G L_{2 n}(\mathbb{C})$.
Then, one can ask the question of describing the subgroup of transformations leaving invariant a quaternionic Hermitian form.

On converings

Exercise 3. [(7.16) [1]] Let $M_{2}(\mathbb{C})=\mathbb{C}^{4}$ be the space of 2×2 matrices, with symmetric form $Q(A, B)=\frac{1}{2} \operatorname{Trace}\left(A B^{\natural}\right)$, where $B^{\natural}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ is the adjoint of the matrix $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. In fact, the quadratic form associated to Q is simply the determinant. Define the mapping:

$$
\begin{array}{ccc}
\varphi: \quad S L_{2}(\mathbb{C}) \times S L_{2}(\mathbb{C}) & \rightarrow & S O_{4}(\mathbb{C}) \\
(g, h) & \mapsto & \left(A \mapsto g A h^{-1}\right)
\end{array}
$$

Prove that φ is a 2:1 covering and therefore realizes the universal cover of $S O_{4}(\mathbb{C})$, since $S L_{2}(\mathbb{C})$ is simply connected.

Exercise 4. [(7.17) [1]] Identify \mathbb{C}^{3} with the space of traceless matrices in $M_{2}(\mathbb{C})$, and endow it with the non-degenerate symmetric bilinear form $Q(A, B)=\operatorname{Trace}(A B)$. Define the mapping:

$$
\begin{array}{ccc}
\varphi: S L_{2}(\mathbb{C}) & \rightarrow & S O_{3}(\mathbb{C}) \\
g & \mapsto & \left(A \mapsto g A g^{-1}\right)
\end{array}
$$

Same question as before.

References

[1] Fulton, Harris. Representation theory: A first course. Springer 1991.

