Sheet 3

Standard facts

Exercise 1. [The unitary trick - (1.14) in [1]] Let V be an irreducible representation of the finite group G. Show that, up to scalars, there is a unique Hermitian inner product \langle,$\rangle on V$ invariant under G :

$$
\forall g \in G, \forall(x, y) \in V^{2},\langle g \cdot x, g \cdot y\rangle=\langle x, y\rangle
$$

Solution of exercise 1.
The existence of an invariant scalar product \langle,$\rangle is given by the usual unitary trick, i.e by averaging$ any scalar product \langle,\rangle_{0} :

$$
\forall(x, y) \in V^{2},\langle x, y\rangle:=\frac{1}{|G|} \sum_{g \in G}\langle g \cdot x, g \cdot y\rangle_{0}
$$

Now for the uniqueness part: two invariant scalar products \langle,$\rangle and ($,$) give rise to G$-isomorphisms:

$$
\begin{array}{rlll}
\varphi: & V & \rightarrow & V^{*} \\
x & \mapsto & \langle x, .\rangle \\
\psi: & V & \rightarrow & V^{*} \\
x & \mapsto & (x, .)
\end{array}
$$

Therefore $\psi^{-1} \circ \varphi$ is a G-automorphism of V, which by Schur's lemma must be a multiple of the identity $\lambda i d$. This can be rewritten:

$$
\forall(x, y) \in V^{2},\langle x, y\rangle=\lambda(x, y)
$$

Exercise 2. [(2.34) in [1]] Let V and W be irreducible representations of G and $L_{0}: V \rightarrow W$ be any linear mapping. Define $L: V \rightarrow W$ by:

$$
L(v)=\frac{1}{|G|} \sum_{g \in G} g^{-1} \cdot L_{0}(g \cdot v)
$$

Show that $L=0$ if V and W are not isomorphic, and that L is a multiplication by $\frac{\operatorname{trace}\left(L_{0}\right)}{\operatorname{dim} V}$ if $W=V$.

Solution of exercise 2. It is easy to check that L is G-linear. Since V and W are irreducible, we can apply Schur's lemma.

- If V and W are not isomorphic, $L=0$.
- If $V=W, L=\lambda i d$ with:

$$
\begin{aligned}
\lambda & =\frac{\operatorname{Tr}(L)}{\operatorname{dim} V} \\
& =\frac{1}{|G|} \frac{\sum_{g} \operatorname{Tr}\left(g L_{0} g^{-1}\right)}{\operatorname{dim} V} \\
& =\frac{\operatorname{Tr}\left(L_{0}\right)}{\operatorname{dim} V}
\end{aligned}
$$

On the dihedral group

Exercise 3. [(3.7) and (3.8) in [1]] The dihedral group $G=D_{2 n}$ is the group of isometries of a regular n-gon in the plane. It is made of n rotations and n reflections. The purpose of this exercise is to understand the representation theory of this group.

- Method 1: Consider an arbitrary representation V. Notice that Γ, the subgroup of rotations is abelian. The space V breaks up into eigenspaces for the action of Γ. Analyze the action of reflections on these eigenspaces, and explain how to decompose the representation V.
- Method 2: Using character theory, give a character table.

Solution of exercise 3 . Let $\omega=e^{\frac{2 i \pi}{n}}$ and denote by r rotation of angle $\frac{2 i \pi}{n}$ and s a reflection. Clearly:

$$
D_{2 n}=\langle r, s\rangle
$$

More precisely, $D_{2 n}$ can be presented as the group generated by r and s subject to the relations:

$$
\begin{gathered}
r^{n}=1 \\
s^{2}=1 \\
s r s=r^{-1}
\end{gathered}
$$

- Method 1: Let $\rho: G \rightarrow G L(V)$ be a representation. As Γ is abelian, the elements in $\varrho(\Gamma) \subset$ $G L(V)$ can be simultaneously diagonalized, breaking V into a direct of eigenspaces for say r :

$$
V=\oplus_{k=0}^{n-1} E\left(\omega^{k}\right)
$$

Now notice that if $x \in E\left(\omega^{k}\right)$ meaning that $r x=\omega^{k} x$, then let $y=s x$ and:

$$
r y=r s x=s r^{-1} x=\omega^{-k} y
$$

Hence the two cases:
$-\omega^{2 k} \neq 1:(x, s x)$ is free and generate an irreducible subrepresentation of V. In this representation, we can write:

$$
\begin{gathered}
\rho(r)=\left(\begin{array}{cc}
\omega^{k} & 0 \\
0 & \omega^{-k}
\end{array}\right) \\
\rho(r)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

$-\omega^{2 k}=1$: If $\omega^{k}=1$, either $(x, s x)$ is free and generates an invariant subspace isomorphic to a sum of trivial and determinant representations; either $(x, s x)$ is not free and generates already one of those representations depending on $s x= \pm x$.
If $\omega^{k}=-1$, which is possible only when n is even, the space generated by $(x, s x)$ if two dimensional breaks into one dimensional spaces. Two representations are possible, depending on whether s acts as 1 or -1 .

- Method 2:
$-n=2 p+1$ odd: All reflections are conjugate and rotations with opposite angles are in the same conjugacy class. Hence $p+2$ conjugacy classes.
The irreducible representations are the trivial one, the determinant and the p two-dimensional representations described in "Method 1" where the character of r is $\omega^{k}+\omega^{-k}$.
- $n=2 p$ even: $i d$ and $-i d$ form two conjugation classes. Reflections break into two conjugacy classes. Add to this $p-1$ classes of two rotations with opposite (different) angles. Hence $p+3$ conjugacy classes.
The irreducible representations are four one dimensional ones, and $p-1$ two dimensional ones (also described in in "Method 1").

That is sufficient to draw a character table, while using character theory to back-check our results.

References

[1] Fulton, Harris. Representation theory: A first course. Springer 1991.

