Sheet 2

Warm up

Exercise 1. [(2.5) in [1]]
Let G be a finite group acting on a set X and consider V the associated permutation representation. Prove that for $g \in G$ the character $\chi_{V}(g)$ is given by the number of fixed points of g acting on X.
Application: Give the character of the (left-)regular representation of G.
Solution of exercise 1. Let $g \in G$. In the basis $\left\{e_{x}, x \in X\right\}$, the matrix $\rho_{V}(g)$ has a one on the diagonal only when $g \cdot x=x$, which corresponds to a fixed point. Therefore, the character $\chi_{V}(g)=\operatorname{Tr}\left(\rho_{V}(g)\right)$ is exactly the number of fixed points for the action of g.
In the case of the regular representation, no element has fixed points except the identity $e \in G$, which fixes the entire group. Therefore:

$$
\chi_{R}(g)=\left\{\begin{array}{rc}
|G| & \text { if } g=e \\
0 & \text { otherwise }
\end{array}\right.
$$

On the symmetric group S_{3}

Recall that S_{3}, the symmetric group acting on 3 elements, has three irreducible representations known as:
a) $V($ triv $)$: The trivial representation.
b) $V($ alt $)$: The alternate representation.
c) $V(s t)$: The standard representation.

Exercise 2. [(2.7) in [1]]
Decompose the representation $V(s t)^{\otimes n}$ into irreducibles.
Solution of exercise 2. For shorter notations, write $V=V(s t)^{\otimes n}$. If:

$$
V=a_{1} V(\text { triv }) \oplus a_{2} V(\text { alt }) \oplus a_{3} V(s t)
$$

Then, the character on the different conjugation classes (of the identity, transpositions and three-cycles) is given by:

$$
\chi_{V}=\left(2^{n}, 0,(-1)^{n}\right)
$$

And:

$$
\begin{gathered}
a_{1}=\frac{1}{3}\left(2^{n-1}+(-1)^{n}\right) \\
a_{2}=\frac{1}{3}\left(2^{n-1}+(-1)^{n}\right) \\
a_{3}=\frac{1}{3}\left(2^{n}-(-1)^{n}\right)
\end{gathered}
$$

Exercise 3.

Decompose the following representations into irreducibles:

- $V_{1}=\operatorname{Sym}^{2}(V(s t))$
- $V_{2}=\Lambda^{2}(V(s t))$
- $V_{3}=\left(S y m^{2}(V(s t)) \oplus V(\right.$ triv $\left.)\right) \otimes V($ alt $)$
- $V_{4}=\left(S y m^{2}(V(s t)) \oplus V(t r i v)\right) \otimes V(s t)$

Solution of exercise 3. The characters are:

- $\chi_{V_{1}}=(3,1,0)$
- $\chi_{V_{2}}=(1,-1,1)$
- $\chi_{V_{3}}=(4,-2,1)$
- $\chi_{V_{4}}=(8,0,-1)$

Hence, up to isomorphism:

- $V_{1} \approx V(t r i v) \oplus V(s t)$
- $V_{2} \approx V(a l t)$
- $V_{3} \approx 2 V(a l t) \oplus V(s t)$
- $V_{4} \approx V(t r i v) \oplus V(a l t) \oplus 3 V(s t)$

References

[1] Fulton, Harris. Representation theory: A first course. Springer 1991.

