Sheet 1

Exercise 1. Find all the one dimensional representations of the S_{n}, the symmetric group acting on n elements.

Exercise 2. [1.3 in the book by Fulton and Harris] Let $\rho: G \rightarrow G L(V)$ be any representation of a finite group G, V being n-dimensional. Moreover, suppose that for every $g \in G, \rho(g)$ has determinant 1. Show that the spaces $\wedge^{k} V$ and $\left(\wedge^{n-k} V\right)^{*}$ are isomorphic as representations of G.

Bonus : How would you modify the statement in order to get rid of the hypothesis "all $\operatorname{det}(\rho(g))$ have determinant 1 "?

Exercise 3. [The (left)-regular representation of S_{3}] Recall that for every finite group G, the regular representation R corresponds to the action of G on its space of functions $\operatorname{Fun}(G, \mathbb{C}) \approx \mathbb{C}^{|G|}$ by left translations. More precisely, when $g \in G$ acts on $\varphi \in \operatorname{Fun}(G, \mathbb{C})$, it gives the function :

$$
\begin{array}{rllc}
R(g)(\varphi)=g \cdot \varphi: & G & \longrightarrow & \mathbb{C} \\
& h & \mapsto
\end{array}\left(g^{-1} h\right)
$$

In the following, consider $G=S_{3}$ the symmetric group acting on 3 elements.
a) Give the matrices of $R(g), g \in S_{3}$ in the basis $\left(\delta_{g}\right)_{g \in S_{3}}$ where :

$$
\delta_{g}(h)=\left\{\begin{array}{cc}
1 & \text { if } g=h \\
0 & \text { otherwise }
\end{array}\right.
$$

b) Give the spectrum of $R(g), g \in S_{3}$.
c) Knowing that the irreducible representations of S_{3} are (up to isomorphism) $\rho_{\text {trivial }}, \rho_{\text {alternate }}$ and $\rho_{\text {standard }}$; give the decomposition of the regular representation into irreducibles. You are asked to specify a basis adapted to this decomposition.

