Pitman's theorem, curvature and quantum $S L_{2}$

Reda CHHAIBI

Institut de Mathématiques de Toulouse, France
12th April 2019-Queen's University (Kingston)

Sommaire

(1) Pitman's theorem (1975)
(2) Proof by Bougerol-Jeulin (2000) using curvature deformation
(3) Quantum walks on quantum groups

- Definitions
- Philippe Biane's quantum walks
- Quantum groups and crystals

4 The question
(5) $\mathcal{U}_{q}^{\hbar}(\mathfrak{s} / 2)$ with $q=e^{-r}, r$ curvature and \hbar Planck constant.
(6) Conclusion

Statement (Discrete version)

Theorem (Pitman (1975))
Let $\left(X_{t} ; t \in \mathbb{N}\right)$ be a standard simple random walk on \mathbb{Z}. Then:

$$
\Lambda_{t}=X_{t}-2 \inf _{0 \leq s \leq t} X_{s}
$$

is a Markov chain on \mathbb{N} with transitions:

$$
Q(\lambda, \lambda+1)=\frac{1}{2} \frac{\lambda+2}{\lambda+1} \quad Q(\lambda, \lambda-1)=\frac{1}{2} \frac{\lambda}{\lambda+1}
$$

Comments

- Strange as $-\inf _{0 \leq s \leq t} X_{s}$ is a typical example of non-Markovian behavior.
- Strong rigidity: only 2 and 1 work - and 0 obviously.
- Relationship to the representation theory of $S L_{2}: 2=\alpha_{1}\left(\alpha_{1}^{\vee}\right)$ and

$$
V(\lambda) \otimes \mathbb{C}^{2}=V(\lambda+1) \oplus V(\lambda-1)
$$

Statement (Continuous version)

Via Donsker's invariance principle, Brownian motion is nothing but a very long simple random walk.

Theorem (Pitman (1975))
Let $\left(X_{t} ; t \in \mathbb{R}\right)$ be a Brownian motion on \mathbb{R}. Then:

$$
\Lambda_{t}=X_{t}-2 \inf _{0 \leq s \leq t} X_{s}
$$

is Markov process. In law, it is a Bessel 3 process i.e it has the same statistical properties as

$$
\left(\Lambda_{t}^{0}:=\sqrt{X_{t}^{2}+Y_{t}^{2}+Z_{t}^{2}} ; t \geq 0\right)
$$

where $\left(X_{t}, Y_{t}, Z_{t}\right)$ are three independent Brownian motions.

Zoology of proofs

There are many proofs:

- Pitman's original proof (1975) via combinatorial counting arguments.
- The Brownian proof of Rogers and Pitman (1981) using intertwinings of Markov kernels.
- The proof of Bougerol-Jeulin (2000) via curvature deformation inside the symmetric space $S L_{2}(\mathbb{C}) / S U_{2}$. If r is the scalar curvature:

$$
r: 0 \longleftrightarrow \infty
$$

- After Biane worked on quantum walks with $\mathcal{U}_{q=1}\left(\mathfrak{s} /_{2}\right)(90 \mathrm{~s})$, Biane-Bougerol-O'Connell recognized in Pitman's theorem the (crystalline) rep. theory of $\mathcal{U}_{q=0}\left(\mathfrak{s} /_{2}\right)$ (2005).

$$
q: 1 \longleftrightarrow 0
$$

\rightsquigarrow I would like to joint these two last proofs into a single global picture.

Sommaire

(1) Pitman's theorem (1975)
(2) Proof by Bougerol-Jeulin (2000) using curvature deformation
(3) Quantum walks on quantum groups

- Definitions
- Philippe Biane's quantum walks
- Quantum groups and crystals

4. The question
(5) $\mathcal{U}_{q}^{\hbar}(\mathfrak{s} / 2)$ with $q=e^{-r}, r$ curvature and \hbar Planck constant.
(6) Conclusion

Setting

- Consider $G=S L_{2}(\mathbb{C}), K=S U_{2}$. The associated hyperbolic space is $\mathbb{H}^{3}=G / K \approx N A$ via Gram-Schmidt.
- Rescale the Lie bracket of $N A$ by $r \rightsquigarrow$ Rescales the curvature tensor by r^{2}.
- Bougerol and Jeulin consider ($g_{t}^{r} ; t \geq 0$), "a Brownian motion" on G / K with curvature $r>0$. It is obtained by solving:

$$
d g_{t}^{r}=\left(\begin{array}{cc}
\frac{1}{2} r d X_{t} & 0 \\
r\left(d Y_{t}+i Z_{t}\right) & -\frac{1}{2} r d X_{t}
\end{array}\right) \circ g_{t}^{r},
$$

where (X, Y, Z) are independent Brownian motions, each on \mathbb{R}.

- Solving the differential equation yields:

$$
g_{t}^{r}=\left(\begin{array}{cc}
e^{\frac{1}{2} r X_{t}} & 0 \\
r e^{\frac{1}{2} r X_{t}} \int_{0}^{t} e^{-r X_{s}} d\left(Y_{s}+i Z_{s}\right) & e^{-\frac{1}{2} r X_{t}}
\end{array}\right)
$$

The result of Bougerol-Jeulin

Let Λ_{t}^{r} be the radial part of $g_{t}^{r} \in K\left(\begin{array}{cc}e^{\frac{1}{2} \Lambda_{t}^{r}} & 0 \\ 0 & e^{-\frac{1}{2} \Lambda_{t}^{r}}\end{array}\right) K$. With Argch $:=\cosh _{[[0, \infty)}^{-1}$, a simple computation shows that:

$$
\Lambda_{t}^{r}=\frac{1}{r} \operatorname{Argch}\left[2 r^{2}\left|e^{\frac{1}{2} r X_{t}} \int_{0}^{t} e^{-2 \frac{1}{2} r X_{s}}\left(d Y_{s}+i d Z_{s}\right)\right|^{2}+\cosh \left(r X_{t}\right)\right]
$$

Theorem

- A norm process on \mathbb{R}^{3} (Bessel 3):

$$
\Lambda_{t}^{r=0}=\sqrt{X_{t}^{2}+Y_{t}^{2}+Z_{t}^{2}}
$$

- The Pitman transform of X :

$$
\Lambda_{t}^{r=\infty}=X_{t}-2 \inf _{0 \leq s \leq t} X_{s} .
$$

- The distribution of \wedge^{r} does not depend on r.

Important: The Pitman transform shows up in infinite curvature, the norm of \mathbb{R}^{3} in flat curvature.

Sommaire

(1) Pitman's theorem (1975)
(2) Proof by Bougerol-Jeulin (2000) using curvature deformation
(3) Quantum walks on quantum groups

- Definitions
- Philippe Biane's quantum walks
- Quantum groups and crystals

4. The question
(5) $\mathcal{U}_{q}^{\hbar}(\mathfrak{s} / 2)$ with $q=e^{-r}, r$ curvature and \hbar Planck constant.

Some notations

Lie algebras / Invariant differential operators of order 1:

- $\mathfrak{s} U_{2}=T_{e} S U_{2}=S p a n_{\mathbb{R}}(X, Y, Z)$
- (X, Y, Z) basis of anti-Hermitian matrices:

$$
X=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) ; Y=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) ; Z=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

- $\mathfrak{s u} u_{2}$ is the compact form of $\mathfrak{s} /_{2}=\mathbb{C} \otimes \mathfrak{s} u_{2}=T_{e} S L_{2}(\mathbb{C})=\operatorname{Span}_{\mathbb{C}}(H, E, F)$ where

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) ; E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) ; F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Universal enveloping algebra / Invariant differential operators:

$$
\mathcal{U}\left(\mathfrak{s} /_{2}\right):=T\left(\mathfrak{s} /_{2}\right) /\{x \otimes y-y \otimes x-[x, y]\} .
$$

Biane's quantum walks

Imagine a particle moving in a non-commutative phase space. The algebra of observables is chosen to be $\mathcal{U}(\mathfrak{s} / 2)$. Not commutative in the spirit of quantum mechanics.

- At every time t, consider the representation $\left(\mathbb{C}^{2}\right)^{\otimes t} \equiv$ "Hilbert space of wave-functions".
- $\left(X_{t}, Y_{t}, Z_{t}\right)$ are measuring operators in that representation.
- $\Lambda_{t}:=\sqrt{\frac{1}{2}+X_{t}^{2}+Y_{t}^{2}+Z_{t}^{2}}$ Casimir element which acts as a constant on irreducible components of $\left(\mathbb{C}^{2}\right)^{\otimes t} . \rightsquigarrow$ "Measures which quantum sphere/irrep we are at, at time $t^{\prime \prime}$.
Important: Λ is nothing but "the Euclidean norm inside of quantified $\mathbb{R}^{3 "}$
- The dynamic of Λ_{t} follows the Clebsch-Gordan rule:

$$
V(\lambda) \otimes V(1) \approx V(\lambda+1) \oplus V(\lambda-1)
$$

Problem: $\left(\Lambda_{t}, X_{t} ; t \in \mathbb{N}\right)$ have separately the same dynamics as in Pitman's theorem. But there are not related via the Pitman transform. (Biane 90s)

Where is the Pitman transform?

- The Jimbo-Drinfeld quantum group is generally defined as the algebra:

$$
\mathcal{U}_{q}\left(\mathfrak{s} /_{2}\right):=\left\langle K=q^{H}, K^{-1}, E, F\right\rangle / \mathcal{R}
$$

where $q=e^{h}$, and \mathcal{R} is the two-sided ideal of relations:

$$
K E K^{-1}=q^{2} E, K F K^{-1}=q^{-2} F, E F-F E=\frac{K-K^{-1}}{q-q^{-1}}
$$

- The relations \mathcal{R} deform the relations induced by the classical commutator $[\cdot, \cdot]$ of $\mathfrak{s} /_{2}$:

$$
" \mathcal{U}\left(\mathfrak{s} /_{2}\right)=\lim _{q \rightarrow 1} \mathcal{U}_{q}(\mathfrak{s} / 2)^{\prime \prime}
$$

Message

We already knew that $\mathcal{U}_{q}(\mathfrak{s} / 2)$ is not a group. The goal of this talk is to show that it not a quantum deformation of $\mathcal{U}(\mathfrak{s} / 2)$ either!

Where is the Pitman transform? (II)

We need to consider $\mathcal{U}_{q=0}(\mathfrak{s} / 2)$ as the Pitman transform

$$
\mathcal{P}: \pi \mapsto \pi(t)-2 \inf _{0 \leq s \leq t} \pi(s)
$$

has a special interpretation of rep. theory of $\mathcal{U}_{q}\left(\mathfrak{s}_{2}\right)$ as $q \rightarrow 0$.
For the sake of simplicity: let $V_{q}(1)=\mathbb{C}^{2}$ be the standard representation of $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$.

- Observing the simple random walk X_{t} corresponds to following the dynamic of a weight vector inside $V_{q}(1)^{\otimes t}$.
- At $q=0$, there is a deterministic relation between X_{t} and the value of the Casimir.
- This relation is exactly the Pitman transform. Transition are indeed given by the Clebsch-Gordan rule:

$$
V(\lambda) \otimes V(1) \approx V(\lambda+1) \oplus V(\lambda-1)
$$

as structure constants do not change with q !

Sommaire

(1) Pitman's theorem (1975)
(2) Proof by Bougerol-Jeulin (2000) using curvature deformation
(3) Quantum walks on quantum groups

- Definitions
- Philippe Biane's quantum walks
- Quantum groups and crystals

4 The question
(5) $\mathcal{U}_{q}^{\hbar}(\mathfrak{s} / 2)$ with $q=e^{-r}, r$ curvature and \hbar Planck constant.
(6) Conclusion

The question

Message

The Pitman transform is understood to be intimately related to crystals, which appear at the representation theory of $\mathcal{U}_{q}\left(\mathfrak{s}_{2}\right)$ at $q=0$. Why would there be crystal-like phenomenons by taking curvature $r \rightarrow \infty$ in a symmetric space $S L_{2}(\mathbb{C}) / S U_{2} \approx N A$?

\rightsquigarrow Single global picture? Interplay between both the representation of $\mathcal{U}_{q}\left(\mathfrak{s} I_{2}\right)$, as $q>0$ varies, and the geometry of the symmetric space $S L_{2}(\mathbb{C}) / S U_{2}$ with varying curvatures $r>0$.

Sommaire

(1) Pitman's theorem (1975)
(2) Proof by Bougerol-Jeulin (2000) using curvature deformation
(3) Quantum walks on quantum groups

- Definitions
- Philippe Biane's quantum walks
- Quantum groups and crystals

4. The question
(5) $\mathcal{U}_{q}^{\hbar}(\mathfrak{s} / 2)$ with $q=e^{-r}, r$ curvature and \hbar Planck constant.
(6) Conclusion

A commutative diagram

Proposition (RC, F. Chapon)

Set $q=e^{-r}$. There exist a presentation of the Jimbo-Drinfeld quantum group $\mathcal{U}_{q}^{\hbar}(\mathfrak{s} / 2)$ such that the following diagram (between Hopf algebras) commutes:

$$
\begin{gathered}
\mathcal{U}_{q}^{\hbar}\left(\mathfrak{s} I_{2}\right) \xrightarrow{\hbar \rightarrow 0} \mathbb{C}\left[\left(S U_{2}\right)_{r}^{*}\right] \\
\downarrow^{\downarrow \rightarrow 0} \\
\mathfrak{U}^{\hbar}\left(\mathfrak{s} l_{2}\right) \xrightarrow{\hbar \rightarrow 0} \mathbb{C}\left[\mathfrak{s} u_{2}^{*}\right]
\end{gathered}
$$

Here $\left(S U_{2}\right)_{r}^{*}$ is the Poisson-Lie group dual to $S U_{2}$ and with curvature r :

$$
\begin{aligned}
& \left(S U_{2}\right)_{r}^{*}:=\left\{\left.\left(\begin{array}{cc}
\frac{1}{2} a & 0 \\
b & -\frac{1}{2} a
\end{array}\right) \right\rvert\, a \in \mathbb{R}, b \in \mathbb{C}\right\} \\
& \forall X, Y \in\left(S U_{2}\right)_{r}^{*}, X *_{r} Y:=\frac{1}{r} \log \left(e^{r X} e^{r Y}\right)
\end{aligned}
$$

Fact: The curvature tensor of this Lie group is

$$
R(X, Y, Z)=r^{2}[X,[Y, Z]]
$$

An implementation of the orbit method

We also have a convergence of quantum observables to classical observables for all $r>0$. In fact, as vector spaces:

$$
\mathcal{U}_{q}^{\hbar}\left(\mathfrak{s} I_{2}\right) \approx \mathbb{C}\left[\left(S U_{2}\right)_{r}^{*}\right][[\hbar]] .
$$

and:

$$
\mathbb{C}\left[\left(S U_{2}\right)_{r}^{*}\right] \approx \mathcal{U}_{q}^{\hbar}\left(\mathfrak{s} /_{2}\right) \quad \bmod \hbar
$$

Theorem (RC, F. Chapon)

Let $\pi:=\bmod \hbar$ be the quotient map, $\mathcal{O}_{r}(\lambda)$ "the curved orbit" of $\left(\begin{array}{cc}\lambda & 0 \\ 0 & -\lambda\end{array}\right)$ in $\left(S U_{2}\right)_{r}^{*}$. Then for all $F \in \mathcal{U}_{q}^{\hbar}\left(\mathfrak{s} /_{2}\right)$:

$$
\begin{array}{ccc}
\operatorname{Tr}_{V_{q}(\lambda / \hbar)}(F) & \stackrel{\hbar \rightarrow 0}{\longrightarrow} & \int_{\mathcal{O}_{r}(\lambda)} \pi(F)(p) \omega(d p), \\
\operatorname{Tr}_{V_{q}(\lambda / \hbar) \otimes V_{q}(\mu / \hbar)}(F) & \xrightarrow{\hbar \rightarrow 0} & \int_{\mathcal{O}_{r}(\lambda) \times \mathcal{O}_{r}(\mu)} \pi(F)\left(p *_{r} q\right) \omega(d p) \omega(d q) .
\end{array}
$$

Random walks / Convolution dynamics

Finally, Chapon and I have built tensor/convolution dynamics such that

The convolution dynamic of
Bougerol-Jeulin

$$
\downarrow^{r \rightarrow 0}
$$

$$
\begin{gathered}
\Lambda_{t}=\sqrt{X_{t}^{2}+Y_{t}^{2}+Z_{t}^{2}} \\
\left(\begin{array}{cc}
\frac{1}{2} X_{t} & 0 \\
Y_{t}+i Z_{t} & -\frac{1}{2} X_{t}
\end{array}\right)^{2}
\end{gathered}
$$

Convolution dynamic/
Flat BM on $\mathfrak{s u _ { 2 } ^ { * }}$
the above convergences are in law.

Sommaire

(1) Pitman's theorem (1975)
(2) Proof by Bougerol-Jeulin (2000) using curvature deformation
(3) Quantum walks on quantum groups

- Definitions
- Philippe Biane's quantum walks
- Quantum groups and crystals
(4) The question
(5) $\mathcal{U}_{q}^{\hbar}(\mathfrak{s} / 2)$ with $q=e^{-r}, r$ curvature and \hbar Planck constant.

6 Conclusion

Summary

Starting point:

- Pitman's theorem (1975) is a result in probability theory with the rep. theory of " $\mathcal{U}_{q=0}\left(\mathfrak{s} /_{2}\right)^{\prime \prime}$ (Crystals) lurking in the background.
- There is a proof of Bougerol-Jeulin (2000) by taking a curvature parameter r to $r=\infty$.

Result:

- There is a presentation of the quantum group $\mathcal{U}_{q}^{\hbar}\left(\mathfrak{s} /_{2}\right)$, which isolates the role of the Planck constant \hbar and that of the parameter q.
- Its semi-classical limit is Poisson-Lie group with curvature r.
- Since $q=e^{-r}$, we have:

Crystals $(q=0) \longleftrightarrow$ Infinite curvature $(r=\infty)$.

Message

$\mathcal{U}_{q}\left(\mathfrak{s} I_{2}\right)$ is quantum because $\mathcal{U}\left(\mathfrak{s} /_{2}\right)$ is already quantum (really)! Not a quantum deformation, but a deformation via curvature.

Progress

- (Done) The $S L_{2}$ case. Draft on the arxiv: 1 st of April.
- (Close future) Higher rank case, finite type - substantial progress but not worked out completely.
- (Further down the road) Large span of litterature relating classical integrable systems and crystals (Gelfand-Tstetlin patterns by Guillemin-Sternberg, Harada, Kaveh). I would like to relate this work to integrable systems. Ingredient: Natural/explicit Ginzburg-Weinstein isomorphisms, in the spirit of the work of Alekseev-Meinrenken.

Thank you for your attention!

