
Pitman’s theorem, curvature and quantum SL2

Reda CHHAIBI
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Statement (Discrete version)

Theorem (Pitman (1975))

Let (Xt ; t ∈ N) be a standard simple random walk on Z. Then:

Λt = Xt − 2 inf
0≤s≤t

Xs

is a Markov chain on N with transitions:

Q(λ, λ+ 1) =
1

2

λ+ 2

λ+ 1
Q(λ, λ− 1) =

1

2

λ

λ+ 1

Comments
Strange as − inf0≤s≤t Xs is a typical example of non-Markovian behavior.

Strong rigidity: only 2 and 1 work - and 0 obviously.

Relationship to the representation theory of SL2: 2 = α1(α∨1 ) and

V (λ)⊗ C2 = V (λ+ 1)⊕ V (λ− 1) .
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Statement (Continuous version)

Via Donsker’s invariance principle, Brownian motion is nothing but a very long
simple random walk.

Theorem (Pitman (1975))

Let (Xt ; t ∈ R) be a Brownian motion on R. Then:

Λt = Xt − 2 inf
0≤s≤t

Xs

is Markov process. In law, it is a Bessel 3 process i.e it has the same statistical
properties as (

Λ0
t :=

√
X 2
t + Y 2

t + Z 2
t ; t ≥ 0

)
,

where (Xt ,Yt ,Zt) are three independent Brownian motions.
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Zoology of proofs

There are many proofs:

Pitman’s original proof (1975) via combinatorial counting arguments.

The Brownian proof of Rogers and Pitman (1981) using intertwinings of
Markov kernels.

The proof of Bougerol-Jeulin (2000) via curvature deformation inside the
symmetric space SL2(C)/SU2. If r is the scalar curvature:

r : 0←→∞

After Biane worked on quantum walks with Uq=1(sl2) (90s),
Biane-Bougerol-O’Connell recognized in Pitman’s theorem the (crystalline)
rep. theory of Uq=0(sl2) (2005).

q : 1←→ 0

 I would like to joint these two last proofs into a single global picture.
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Setting

Consider G = SL2(C), K = SU2. The associated hyperbolic space is
H3 = G/K ≈ NA via Gram-Schmidt.

Rescale the Lie bracket of NA by r  Rescales the curvature tensor by r2.

Bougerol and Jeulin consider (g r
t ; t ≥ 0), ”a Brownian motion” on G/K with

curvature r > 0. It is obtained by solving:

dg r
t =

(
1
2 rdXt 0

r(dYt + iZt) − 1
2 rdXt

)
◦ g r

t ,

where (X ,Y ,Z ) are independent Brownian motions, each on R.

Solving the differential equation yields:

g r
t =

(
e

1
2 rXt 0

re
1
2 rXt

∫ t

0
e−rXsd(Ys + iZs) e−

1
2 rXt

)
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The result of Bougerol-Jeulin

Let Λr
t be the radial part of g r

t ∈ K

(
e

1
2 Λr

t 0

0 e−
1
2 Λr

t

)
K . With Argch := cosh−1

|[0,∞),

a simple computation shows that:

Λr
t =

1

r
Argch

[
2r2

∣∣∣∣e 1
2 rXt

∫ t

0

e−2 1
2 rXs (dYs + idZs)

∣∣∣∣2 + cosh(rXt)

]
.

Theorem

A norm process on R3 (Bessel 3):

Λr=0
t =

√
X 2
t + Y 2

t + Z 2
t ,

The Pitman transform of X :

Λr=∞
t = Xt − 2 inf

0≤s≤t
Xs .

The distribution of Λr does not depend on r .

Important: The Pitman transform shows up in infinite curvature, the norm of R3

in flat curvature.
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Some notations

Lie algebras / Invariant differential operators of order 1:

su2 = TeSU2 = SpanR (X ,Y ,Z )

(X ,Y ,Z ) basis of anti-Hermitian matrices:

X =

(
i 0
0 −i

)
;Y =

(
0 i
i 0

)
;Z =

(
0 1
−1 0

)
.

su2 is the compact form of sl2 = C⊗ su2 = TeSL2(C) = SpanC (H,E ,F )
where

H =

(
1 0
0 −1

)
;E =

(
0 1
0 0

)
;F =

(
0 0
1 0

)
.

Universal enveloping algebra / Invariant differential operators:

U (sl2) := T (sl2) /{x ⊗ y − y ⊗ x − [x , y ]} .
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Biane’s quantum walks

Imagine a particle moving in a non-commutative phase space. The algebra of
observables is chosen to be U(sl2). Not commutative in the spirit of quantum
mechanics.

At every time t, consider the representation (C2)⊗t ≡ ”Hilbert space of
wave-functions”.

(Xt ,Yt ,Zt) are measuring operators in that representation.

Λt :=
√

1
2 + X 2

t + Y 2
t + Z 2

t Casimir element which acts as a constant on

irreducible components of (C2)⊗t .  ”Measures which quantum
sphere/irrep we are at, at time t”.

Important: Λ is nothing but ”the Euclidean norm inside of quantified R3”

The dynamic of Λt follows the Clebsch-Gordan rule:

V (λ)⊗ V (1) ≈ V (λ+ 1)⊕ V (λ− 1) .

Problem: (Λt ,Xt ; t ∈ N) have separately the same dynamics as in Pitman’s
theorem. But there are not related via the Pitman transform. (Biane 90s)

Reda Chhaibi (Institut de Mathématiques de Toulouse, France)Pitman’s theorem, curvature and quantum SL2

12th April 2019 - Queen’s University (Kingston) 11
/ 23



Where is the Pitman transform?

The Jimbo-Drinfeld quantum group is generally defined as the algebra:

Uq (sl2) := 〈K = qH ,K−1,E ,F 〉/R ,

where q = eh, and R is the two-sided ideal of relations:

KEK−1 = q2E , KFK−1 = q−2F , EF − FE =
K − K−1

q − q−1
.

The relations R deform the relations induced by the classical commutator
[·, ·] of sl2:

“U (sl2) = lim
q→1
Uq (sl2)′′

Message

We already knew that Uq (sl2) is not a group. The goal of this talk is to show
that it not a quantum deformation of U (sl2) either!
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Where is the Pitman transform? (II)

We need to consider Uq=0(sl2) as the Pitman transform

P : π 7→ π(t)− 2 inf
0≤s≤t

π(s)

has a special interpretation of rep. theory of Uq(sl2) as q → 0.

For the sake of simplicity: let Vq(1) = C2 be the standard representation of
Uq(sl2).

Observing the simple random walk Xt corresponds to following the dynamic
of a weight vector inside Vq(1)⊗t .

At q = 0, there is a deterministic relation between Xt and the value of the
Casimir.

This relation is exactly the Pitman transform. Transition are indeed given by
the Clebsch-Gordan rule:

V (λ)⊗ V (1) ≈ V (λ+ 1)⊕ V (λ− 1)

as structure constants do not change with q!
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The question

Message

The Pitman transform is understood to be intimately related to crystals, which
appear at the representation theory of Uq(sl2) at q = 0. Why would there be
crystal-like phenomenons by taking curvature r →∞ in a symmetric space
SL2(C)/SU2 ≈ NA?

 Single global picture? Interplay between both the representation of Uq(sl2), as
q > 0 varies, and the geometry of the symmetric space SL2(C)/SU2 with varying
curvatures r > 0.
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A commutative diagram

Proposition (RC, F. Chapon)

Set q = e−r . There exist a presentation of the Jimbo-Drinfeld quantum group
U~
q (sl2) such that the following diagram (between Hopf algebras) commutes:

U~
q (sl2) C [(SU2)∗r ]

U~(sl2) C [su∗2 ]

r→0

~→0

r→0

~→0

Here (SU2)∗r is the Poisson-Lie group dual to SU2 and with curvature r :

(SU2)∗r :=

{(
1
2a 0
b − 1

2a

)
| a ∈ R, b ∈ C

}
,

∀X ,Y ∈ (SU2)∗r , X ∗r Y :=
1

r
log
(
erX erY

)
.

Fact: The curvature tensor of this Lie group is

R(X ,Y ,Z ) = r2[X , [Y ,Z ]] .
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An implementation of the orbit method

We also have a convergence of quantum observables to classical observables for all
r > 0. In fact, as vector spaces:

U~
q (sl2) ≈ C [(SU2)∗r ] [[~]] .

and:
C [(SU2)∗r ] ≈ U~

q (sl2) mod ~.

Theorem (RC, F. Chapon)

Let π := mod ~ be the quotient map, Or (λ) “the curved orbit” of

(
λ 0
0 −λ

)
in

(SU2)∗r . Then for all F ∈ U~
q (sl2):

TrVq(λ/~)(F )
~→0−→

∫
Or (λ)

π(F )(p)ω(dp) ,

TrVq(λ/~)⊗Vq(µ/~)(F )
~→0−→

∫
Or (λ)×Or (µ)

π(F )(p ∗r q)ω(dp)ω(dq) .
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Random walks / Convolution dynamics

Finally, Chapon and I have built tensor/convolution dynamics such that

Λn

xn
Quantum random walks

on U~
q (sl2)

Λr
t(

e
1
2 rXt 0

re
1
2 rXt

∫ t

0
e−rXsd(Ys + iZs) e−

1
2 rXt

)
The convolution dynamic of

Bougerol-Jeulin

Λn =
√

1
2 + X 2

n + Y 2
n + Z 2

n

(Xn,Yn,Zn)
Biane’s quantum random walks

on U~(sl2)

Λt =
√
X 2
t + Y 2

t + Z 2
t(

1
2Xt 0

Yt + iZt − 1
2Xt

)
Convolution dynamic/

Flat BM on su∗2

r→0

~→0

r→0

~→0

the above convergences are in law.
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Summary
Starting point:

Pitman’s theorem (1975) is a result in probability theory with the rep. theory
of “Uq=0(sl2)′′ (Crystals) lurking in the background.

There is a proof of Bougerol-Jeulin (2000) by taking a curvature parameter r
to r =∞.

Result:

There is a presentation of the quantum group U~
q (sl2), which isolates the

role of the Planck constant ~ and that of the parameter q.

Its semi-classical limit is Poisson-Lie group with curvature r .

Since q = e−r , we have:

Crystals (q = 0)←→ Infinite curvature (r =∞).

Message

Uq(sl2) is quantum because U(sl2) is already quantum (really)! Not a quantum
deformation, but a deformation via curvature.
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Progress

(Done) The SL2 case. Draft on the arxiv: 1st of April.

(Close future) Higher rank case, finite type - substantial progress but not
worked out completely.

(Further down the road) Large span of litterature relating classical integrable
systems and crystals (Gelfand-Tstetlin patterns by Guillemin-Sternberg,
Harada, Kaveh). I would like to relate this work to integrable systems.
Ingredient: Natural/explicit Ginzburg-Weinstein isomorphisms, in the spirit of
the work of Alekseev-Meinrenken.
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End

Thank you for your attention!

Reda Chhaibi (Institut de Mathématiques de Toulouse, France)Pitman’s theorem, curvature and quantum SL2

12th April 2019 - Queen’s University (Kingston) 23
/ 23


	Pitman's theorem (1975)
	Proof by Bougerol-Jeulin (2000) using curvature deformation
	Quantum walks on quantum groups
	Definitions
	Philippe Biane's quantum walks
	Quantum groups and crystals

	The question
	Uq( sl2 ) with q = e-r, r curvature and  Planck constant.
	Conclusion

