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Sommaire

@ Pitman’s theorem (1975)



Statement (Discrete version)

Theorem (Pitman (1975))

Let (X;; t € N) be a standard simple random walk on Z. Then:

/\t:Xt_2 inf Xs

0<s<t
is a Markov chain on N with transitions:
1A+2 1 A
1 = - — — 1 = ——
QLA+ =537 QA1 =5577

Comments

o Strange as —info<s<: X; is a typical example of non-Markovian behavior.
@ Strong rigidity: only 2 and 1 work - and 0 obviously.

@ Relationship to the representation theory of SLy: 2 = a3 (y) and

V) ®C*=VQA+1)aV(A-1).




Statement (Continuous version)

Via Donsker's invariance principle, Brownian motion is nothing but a very long
simple random walk.

Theorem (Pitman (1975))
Let (X:; t € R) be a Brownian motion on R. Then:

/\t = Xt — 20%2fgtxs

is Markov process. In law, it is a Bessel 3 process i.e it has the same statistical

properties as
(A‘g = e e T 0) ,

O
®)x )

where (X, Yy, Z;) are three independent Brownian motions. 2




Zoology of proofs

There are many proofs:
@ Pitman’s original proof (1975) via combinatorial counting arguments.

@ The Brownian proof of Rogers and Pitman (1981) using intertwinings of
Markov kernels.

@ The proof of Bougerol-Jeulin (2000) via curvature deformation inside the
symmetric space SLy(C)/SUs. If r is the scalar curvature:

r:0+— o0

o After Biane worked on quantum walks with Uy—1(s/2) (90s),
Biane-Bougerol-O'Connell recognized in Pitman's theorem the (crystalline)
rep. theory of Ug=o(s/2) (2005).

g:1<—0

~> | would like to joint these two last proofs into a single global picture.
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© Proof by Bougerol-Jeulin (2000) using curvature deformation



Setting

e Consider G = SL,(C), K = SU,. The associated hyperbolic space is
H3 = G/K =~ NA via Gram-Schmidt.

@ Rescale the Lie bracket of NA by r ~+ Rescales the curvature tensor by r?,

@ Bougerol and Jeulin consider (g{; t > 0), "a Brownian motion” on G/K with
curvature r > 0. It is obtained by solving:

gor [ X 0o\,
& = \r(dYe +iz) —krdx,) "8

where (X, Y, Z) are independent Brownian motions, each on R.

@ Solving the differential equation yields:

. erXe 0
8t =\ reirxe fot e~ X d(Y, + iZ;) e 2%

(&



The result of Bougerol-Jeulin

l/\;
Let AL be the radial part of g/ € K <eo

a simple computation shows that:

2

fArgch + cosh(rX;)

t
ez / e 227%(dY, + idZ,)
0

Theorem

e A norm process on R® (Bessel 3):

ArO /X2+Y2+Zt2,

@ The Pitman transform of X:
r=oco __ _ 2
A; = X; 20£nsf§th.

@ The distribution of A" does not depend on r.

0 . _
§/\§> K. With Argch := coshl[&oo),

Important: The Pitman transform shows up in infinite curvature, the norm of R3

in flat curvature.
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© Quantum walks on quantum groups
@ Definitions
@ Philippe Biane's quantum walks
@ Quantum groups and crystals



Some notations

Lie algebras / Invariant differential operators of order 1:
@ suy = T.SU, = Spang (X, Y, Z)
e (X,Y,Z) basis of anti-Hermitian matrices:

N RSN ES G

@ sup is the compact form of s/, = C ® suy = T.SLy(C) = Spanc (H, E, F)

where
1 0 01 0 0
1= 5) = o) 7= (1 0)-

Universal enveloping algebra / Invariant differential operators:

U(sh) =T(sh)/{xey—yex—[xy]}.



Biane's quantum walks

Imagine a particle moving in a non-commutative phase space. The algebra of

observables is chosen to be U(s/2). Not commutative in the spirit of quantum
mechanics.

@ At every time t, consider the representation (C?)®t = "Hilbert space of
wave-functions”.

o (X:, Y, Z;) are measuring operators in that representation.

o A= \/% + X2 + Y2 + Z? Casimir element which acts as a constant on

irreducible components of (C2)®*. ~- " Measures which quantum
sphere/irrep we are at, at time t".

Important: A is nothing but "the Euclidean norm inside of quantified R®"
@ The dynamic of A; follows the Clebsch-Gordan rule:

Ve V1)~ VOA+1)aeV(A-1).

Problem: (A¢, Xi; t € N) have separately the same dynamics as in Pitman's
theorem. But there are not related via the Pitman transform. (Biane 90s)



Where is the Pitman transform?

@ The Jimbo-Drinfeld quantum group is generally defined as the algebra:
Uy (slh) = (K=q" KL E,F)/R ,

where g = e, and R is the two-sided ideal of relations:

-1 2 -1 -2 K-—K!
KEK™' = ¢°E, KFK™' = q 2F, EF — FE= ———.
q—q
@ The relations R deform the relations induced by the classical commutator
[, ] of sla:
U (sla) = lim Uy (s12)"
qg—1
Message

We already knew that Ug (sl2) is not a group. The goal of this talk is to show
that it not a quantum deformation of U (sl,) either!




Where is the Pitman transform? (11)

We need to consider Uy—(s/2) as the Pitman transform

Pw—m(t) f2oér;1;t7r(s)

has a special interpretation of rep. theory of U,(s/2) as g — 0.

For the sake of simplicity: let V,(1) = C? be the standard representation of
I/{q(ﬁlg).

@ Observing the simple random walk X; corresponds to following the dynamic
of a weight vector inside V,(1)®*.

@ At g = 0, there is a deterministic relation between X; and the value of the
Casimir.

@ This relation is exactly the Pitman transform. Transition are indeed given by
the Clebsch-Gordan rule:

V) @ V(1) ~ VA +1) @ V(A —1)

as structure constants do not change with q!
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@ The question



The question

Message

The Pitman transform is understood to be intimately related to crystals, which
appear at the representation theory of Uy(sl>) at g = 0. Why would there be
crystal-like phenomenons by taking curvature r — oo in a symmetric space
SLy(C)/SU, = NA?

~+ Single global picture? Interplay between both the representation of Uy(s/2), as
g > 0 varies, and the geometry of the symmetric space SLy(C)/SU, with varying
curvatures r > 0.
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(5 ) sz (s/2) with g = e ", r curvature and % Planck constant.



A commutative diagram

Proposition (RC, F. Chapon)

Set g = e~ ". There exist a of the Jimbo-Drinfeld quantum group
U] (s12) such that the following diagram (between Hopf algebras) commutes:

Ul(sly) =% C[(SUs)]

lr—>0 lr—>0

UM(sly) —2=% Csu]

Here (SU)¥ is the Poisson-Lie group dual to SU, and with curvature r:

(suz):‘::{(éba 02) |aeR, beC}

1
VXY € (SUa);, X, Y 1= " log (e™e™) .
Fact: The curvature tensor of this Lie group is

R(X,Y,Z)=r[X,[Y,Z]].



An implementation of the orbit method

We also have a convergence of quantum observables to classical observables for all
r > 0. In fact, as vector spaces:

Uy (s12) = C[(SU2);111A]] -
and:

C[(SU)r] = (5/2) mod 7.
Theorem (RC, F. Chapon)

Let m := mod & be the quotient map, O,(\) “the curved orbit” of (3 _O)\> in
(SU);. Then for all F € U] (sl>):

h—0

1

Tryv,(n/m)(F) — Jo, T(F)(p)w(dp) ,
h—0
Try, o meveium(F) = fo,(x)xo,(#)ﬂ(F)(P*r q)w(dp)w(dq) -




Random walks / Convolution dynamics

Finally, Chapon and | have built tensor/convolution dynamics such that

/\r
. e 0.)
n h—0 N Lexe (t o—rXs H —1rx;
Quantum random walks re2 [l e d(Ys + iZs) e
on U"(sl5) The convolution dynamic of
q

Bougerol-Jeulin

Jr_)() lr—)O
— 2 2 2
An:\/%+X3+Yn2+Zn2 Ne= VXEHYE+ 2

%Xt 0
SN (X, Yo, Z,) —= Ye + iz _%Xt
Biane’s quantum random walks Convolution dynamic/

h
on U"(sl2) Flat BM on su}

the above convergences are in law.



Sommaire

@ Conclusion



Summary
Starting point:

@ Pitman’s theorem (1975) is a result in probability theory with the rep. theory
of “Ug=0(s/2)" (Crystals) lurking in the background.

@ There is a proof of Bougerol-Jeulin (2000) by taking a curvature parameter r
to r = o0.
Result:

@ There is a presentation of the quantum group Z/lc’;’ (s/2), which isolates the
role of the Planck constant A and that of the parameter gq.

@ Its semi-classical limit is Poisson-Lie group with curvature r.

@ Since g = e, we have:

Crystals (¢ = 0) +— Infinite curvature (r = c0).

Message

Uq(sl2) is quantum because U(sly) is already quantum (really)! Not a quantum
deformation, but a deformation via curvature.




Progress

@ (Done) The SL;, case. Draft on the arxiv: 1st of April.

@ (Close future) Higher rank case, finite type - substantial progress but not
worked out completely.

o (Further down the road) Large span of litterature relating classical integrable
systems and crystals (Gelfand-Tstetlin patterns by Guillemin-Sternberg,
Harada, Kaveh). | would like to relate this work to integrable systems.
Ingredient: Natural/explicit Ginzburg-Weinstein isomorphisms, in the spirit of
the work of Alekseev-Meinrenken.



End

Thank you for your attention!
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