KMAS9AA1 – Algebraic Topology

Exercise Sheet 6

1. Tor

- 1) Check carefully that the fundamental theorem of homological algebra implies that for any two resolutions of the *R*-module $M, F_{\bullet} \to M$ and $F'_{\bullet} \to M$, we have that $H_n(F_{\bullet} \otimes B)$ is canonically isomorphic to $H_n(F'_{\bullet} \otimes B)$.
- 2) Show that $\operatorname{Tor}_{i}^{r}(A \oplus B, C) = \operatorname{Tor}(A, C) \oplus \operatorname{Tor}(B, C)$.

Recall that given an exact sequence $0 \to A \to B \to C \to 0$, there is a long exact sequence of Tor functors given by tensoring the short exact sequence with F_{\bullet} , a resolution of M. From now on, assume that R is a PID.

3) Take a free resolution $E_{\bullet} \to C$ such that $E_i = 0$ for $i \ge 2$. Consider the long exact sequence associated to

$$0 \to E_1 \otimes F_{\bullet} \to E_0 \otimes F_{\bullet} \to C \otimes F_{\bullet} \to 0$$

to conclude that $\operatorname{Tor}_1(C, M) = \operatorname{Tor}_1(M, C)$.

- 4) Assume that $H_n(X; \mathbb{Z})$ and $H_{n-1}(X; \mathbb{Z})$ are finitely generated. Show that for any prime p, $H_n(X; \mathbb{Z}/p\mathbb{Z})$ consists of:
 - i. A $\mathbb{Z}/p\mathbb{Z}$ summand for each \mathbb{Z} summand of $H_n(X;\mathbb{Z})$,
 - ii. A $\mathbb{Z}/p\mathbb{Z}$ summand for each $\mathbb{Z}/p^k\mathbb{Z}$ summand of $H_n(X;\mathbb{Z})$,
 - iii. A $\mathbb{Z}/p\mathbb{Z}$ summand for each $\mathbb{Z}/p^k\mathbb{Z}$ summand of $H_{n-1}(X;\mathbb{Z})$,
- 5) Use the universal coefficient theorem to show that if $H_*(X;\mathbb{Z})$ is finitely generated, so the Euler characteristic

$$\chi(X) = \sum_{n} (-1)^{n} \operatorname{rank} H_{n}(X; \mathbb{Z})$$

is defined, then for any coefficient field \mathbb{F} we have $\chi(X) = \sum_{n} (-1)^n \dim H_n(X; \mathbb{F}).$

2. Torsion-free I claimed in class that while \mathbb{Q} is not free, it is torsion-free and therefore $\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Q}, C) = 0, \forall C \in R - Mod$. Let us show this.

Let G be an abelian group.

- 1) Show that any element of $G \otimes \mathbb{Q}$ is of the form $g \otimes \frac{1}{n}$.
- 2) Show that if G is a torsion group, then $\mathbb{Q} \otimes G = 0$.
- 3) Show that if G is torsion free, then $g \otimes \frac{1}{n} = g' \otimes \frac{1}{n'}$ is equivalent to gn' = ng'.
- 4) Take a free resolution $F_1 \to F_0$ of G. Show that $F_1 \otimes \mathbb{Q} \to F_0 \otimes \mathbb{Q}$ is injective and conclude that $\operatorname{Tor}_1^{\mathbb{Z}}(\mathbb{Q}, G) = 0$.
- 3. Ext
 - 1) Show if $A \to B \to C \to 0$ is exact, then $\operatorname{Hom}(A, N) \leftarrow \operatorname{Hom}(B, N) \leftarrow \operatorname{Hom}(C, N) \leftarrow 0$ is exact.

[This is what is used to conclude that $\operatorname{Ext}^0_R(M, N) = \operatorname{Hom}_R(M, N)!$]

- 2) Show that $\operatorname{Ext}_{R}^{i}(A \oplus B, N) = \operatorname{Ext}_{R}^{i}(A, N) \oplus \operatorname{Ext}_{R}^{i}(B, N)$ and $\operatorname{Ext}_{R}^{i}(R^{7}, N) = 0.$
- 3) Show that $\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z}/n\mathbb{Z}, N) = N/nN.$
- 4) Show that $\operatorname{Ext}_{R}^{1}(M, -)$ is a covariant functor and that $\operatorname{Ext}^{1}(-, N)$ is a contravariant functor.
- 5) Show that $\operatorname{Ext}_{\mathbb{Z}/4\mathbb{Z}}^{n}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}.$

4. Cup product

- 1) Show that $H^{\bullet}(X \sqcup Y; R)$ and $H^{\bullet}(X; R) \oplus H^{\bullet}(Y; R)$ are isomorphic as graded commutative *R*-algebras. Deduce a similar statement for the wedge product (assuming that the basepoints are deformation retracts of open neighbourhoods).
- 2) Let X be a CW complex with one 0-cell, one 5-cell, one 7-cell and one 10-cell. What is the cohomology ring structure of X with coefficients in Q?

The cohomology of the torus with coefficients in \mathbb{F}_2 is spanned by **degree 0:** 1, **degree 1:** α, β and **degree 2:** γ .

- 3) Use the same strategy that we used in class for \mathbb{RP}^2 to show that $\alpha \cup \beta = \gamma$.
- 4) Show that $\alpha \cup \alpha = 0$.