
KMAS9AA1 – Algebraic Topology

Exercise Sheet 6

1. Tor

1) Assume that Hn(X;Z) and Hn−1(X;Z) are finitely generated. Show
that for any prime p, Hn(X;Z/pZ) consists of:
i. A Z/pZ summand for each Z summand of Hn(X;Z),
ii. A Z/pZ summand for each Z/pkZ summand of Hn(X;Z),
iii. A Z/pZ summand for each Z/pkZ summand of Hn−1(X;Z),
This problem is a direct application of the Universal Coefficient The-
orem (UCT) for homology. The theorem states that for a topological
space X and an abelian group G, there exists a natural short exact
sequence 1:

0→ Hn(X;Z)⊗Z G→ Hn(X;G)→ TorZ1 (Hn−1(X;Z), G)→ 0

Furthermore, this sequence splits (though not naturally), yielding an
isomorphism:

Hn(X;G) ∼= (Hn(X;Z)⊗Z G)⊕ TorZ1 (Hn−1(X;Z), G)

We are given G = Z/pZ for a prime p, and that Hn(X;Z) and
Hn−1(X;Z) are finitely generated. By the classification of finitely
generated abelian groups, we can decompose them into a free part
and a torsion part. Specifically, the torsion part can be decomposed
into its q-primary components for all primes q.

Hk(X;Z) ∼= Zβk ⊕

⊕
j

Z/pejZ

⊕
⊕

q ̸=p

⊕
i

Z/qkiZ


Here, βk is the rank (the number of Z summands), and the sums rep-
resent the p-torsion and non-p-torsion components. Let tk(p) be the
number of Z/pkZ summands in Hk(X;Z).We analyze the two terms
of the UCT isomorphism separately.
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Term 1: The Tensor Product Hn(X;Z)⊗ Z/pZ.
Since the tensor product distributes over direct sums, we analyze each
type of summand:

Z summands: Z ⊗ Z/pZ ∼= Z/pZ. Each of the βn summands of Z in
Hn contributes one Z/pZ summand. This accounts for item i.

Z/pkZ summands: Z/pkZ ⊗ Z/pZ ∼= Z/ gcd(pk, p)Z ∼= Z/pZ. Each
Z/pkZ summand in Hn contributes one Z/pZ summand. This ac-
counts for item ii.

Z/qkZ summands (q ̸= p): Z/qkZ⊗Z/pZ ∼= Z/ gcd(qk, p)Z ∼= Z/1Z ∼=
0. Summands with torsion prime q different from p are eliminated.
Thus, (Hn(X;Z)⊗ Z/pZ) ∼= (Z/pZ)βn+tn(p).

Term 2: The Tor Functor TorZ1 (Hn−1(X;Z),Z/pZ). Tor1 also dis-
tributes over direct sums.

Z summands: TorZ1 (Z,Z/pZ) = 0, because Z is a free module.

Z/pkZ summands:

As we can deduce from the Tor formula we saw in class,

TorZ1 (Z/pkZ,Z/pZ) ∼= Z/ gcd(pk, p)Z ∼= Z/pZ

Each Z/pkZ summand in Hn−1 contributes one Z/pZ summand to
Hn(X;Z/pZ). This accounts for item iii.

Z/qkZ summands (q ̸= p):

TorZ1 (Z/qkZ,Z/pZ) ∼= Z/ gcd(qk, p)Z ∼= 0.

Thus, TorZ1 (Hn−1(X;Z),Z/pZ) ∼= (Z/pZ)tn−1(p).

2) Use the universal coefficient theorem to show that if H∗(X;Z) is
finitely generated, so the Euler characteristic

χ(X) =
∑
n

(−1)nrank Hn(X;Z)

is defined, then for any coefficient field F we have χ(X) =
∑

n(−1)n dimHn(X;F).
This is [Hatcher,3A.1.1.]

The Euler characteristic with integer coefficients is χ(X) =
∑

n(−1)nβn,
where βn = rank(Hn(X;Z)). We wish to show this equals

χF(X) =
∑
n

(−1)n dimFHn(X;F)

for any field F. From the UCT, we have

dimFHn(X;F) = dimF(Hn ⊗ F) + dimF(Tor1(Hn−1,F)).
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Let Hn(X;Z) ∼= Zβn ⊕ Tn, where Tn is the torsion subgroup.

dim(Hn(X;F)) = dim(Zβn⊗F)+dim(Tn⊗F)+dim(Tor1(Zβn−1 ,F))+dim(Tor1(Tn−1,F))

We analyze this based on the characteristic of F.
Case 1: char(F) = 0. Then F contains Q and therefore we can assume
F = Q, since for bigger fields extensions the homology corresponds to
just tensoring over Q with F.
We know that dim(Zβn⊗Q) = dim(Qβn) = βn, that dim(Tn⊗Q) = 0
and I claimed in class (next exercise) that Q is flat, and therefore
dim(Tor1(Tn−1,Q)) = 0.

Thus, dim(Hn(X;Q)) = βn.

χQ(X) =
∑
n

(−1)n dim(Hn(X;Q)) =
∑
n

(−1)nβn = χ(X)

Case 2: char(F) = p > 0 In this case, F is a Z/pZ-vector space.
As ⊗ and Tor commute with direct sums, it suffices to compute for
F = Fp = Z/pZ.
From the analysis in 1.1), let tk(p) be the number of p-torsion sum-

mands in Hk(X;Z). dim(Zβn⊗Fp) = dim(Fβn
p ) = βn. dim(Tn⊗Fp) =

tn(p). dim(Tor1(Zβn−1 ,Fp)) = 0. dim(Tor1(Tn−1,Fp)) = tn−1(p). So,
dimFp(Hn(X;Fp)) = βn + tn(p) + tn−1(p). Now we compute the al-
ternating sum:

χFp(X) =
∑

n(−1)n dim(Hn(X;Fp)) =
∑

n(−1)n(βn+tn(p)+tn−1(p))

χFp(X) =
∑

n(−1)nβn +
∑
n

(−1)ntn(p) +
∑
n

(−1)ntn−1(p)

The first term is χ(X). The second two sums cancel each other out
in a telescoping fashion. Therefore,

χFp(X) = χ(X) +
(∑

n(−1)ntn(p)
)
−

(∑
n

(−1)ntn(p)

)
= χ(X)

2. Torsion-free I claimed in class that while Q is not free, it is torsion-free
and therefore TorZ1 (Q, C) = 0,∀C ∈ R−Mod. Let us show this.

Let G be an abelian group.

1) Show that any element of G⊗Q is of the form g ⊗ 1
n .

Any element of the tensor product is a finite sum of pure tensors, so
it suffices to show that any sum of two pure tensors can be written a
single pure tensor. Indeed
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g⊗a

b
+g′⊗a′

b′
= ag⊗1

b
+a′g′⊗ 1

b′
= ab′g⊗ 1

bb′
+a′bg′⊗ 1

bb′
= (ab′g+a′bg′)⊗ 1

bb′
.

2) Show that if G is a torsion group, then Q⊗G = 0.

Suppose mg = 0, for m ∈ Z and g ∈ G. Then

b⊗ g = m
b

m
⊗ g =

b

m
⊗mg = 0.

3) Show that if G is torsion free, then g ⊗ 1
n = g′ ⊗ 1

n′ is equivalent to
gn′ = ng′.

g ⊗ 1
n = g′ ⊗ 1

n′ ⇒ (n′g − g′n)⊗ 1
nn′ = 0. We’re done if we show that

x⊗ 1/k = 0⇒ x = 0.

Let us more generally give a complete characterisation of G⊗Q. Let
us define the rationalization of G to be E, the set of formal symbols
g/n, where g ∈ G and n ∈ Z− 0. We define the equivalence relation
g/n = g′/n′ if n′g = ng′ (this is only an equivalence relation since G is
torsion free!). There is an obvious addition that can be defined making
E into an abelian group. There is a bilinear map G×Q→ E, sending
(g, a/b) to ag/b, which thus induces a map f : G⊗Q→ E. We already
see from this that if x ̸= 0, then f(x⊗ 1/k) ̸= 0, which concludes the
proof. But furthermore, we can see that f is an isomorphism, by
defining the inverse f−1(g/n) = g ⊗ 1

n and checking that it is indeed
well defined and an inverse.

4) Take a free resolution F1 → F0 of G. Show that F1 ⊗Q→ F0 ⊗Q is
injective and conclude that TorZ1 (Q, G) = 0.

The question as stated might seem mildly incorrect. We need to take a
free resolution such that the map F1 → F0 is injective, which we know
to exist1. We know this exists since we can take F0 to be generated by
G as a set, and F1 to be the kernel of the morphism F0 → G. Then,
by the question above F1⊗Q→ F0⊗Q has trivial kernel. But in fact
this kernel is by definition TorZ1 (Q, G), using F• as a resolution.

3. Ext

1) Show if A→ B → C → 0 is exact, then Hom(A,N)← Hom(B,N)←
Hom(C,N)← 0 is exact.

[This is what is used to conclude that Ext0R(M,N) = HomR(M,N)!]

1In fact, it is not incorrect. Even if we weren’t over a PID, if there is a two step
resolution, then we know that ∂1 : F1 → F0 must be injective. This is the case since
0 = H1(F•) = ker ∂1/Im∂2 = ker ∂1. But being over a PID guarantees that a two step
resolution always exists.
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2) Show that ExtiR(A⊕B,N) = ExtiR(A,N)⊕ ExtiR(B,N) and

ExtiR(R
7, N) = 0.

Not a typo. It’s really just that R7 is free.

3) Show that Ext1Z(Z/nZ, N) = N/nN.

4) Show that Ext1R(M,−) is a covariant functor and that Ext1(−, N) is
a contravariant functor.

5) Show that for n ≥ 0, ExtnZ/4Z(Z/2Z,Z/2Z) = Z/2Z.
There is a (Z/4Z)-free resolution of Z/2Z given by

...→ Z/4Z ×2→ Z/4Z ×2→ Z/4Z ×2→ Z/4Z

which we can use to compute the Ext functors. Notice that in par-
ticular we deduce that there is no finite free resolution of Z/2Z over
Z/4Z, otherwise ExtnZ/4Z(Z/2Z,Z/2Z) = 0 for n≫ 0.

4. Cup product

1) Show that H•(X ⊔Y ;R) and H•(X;R)⊕H•(Y ;R) are isomorphic as
graded commutative R-algebras. Deduce a similar statement for the
wedge product (assuming that the basepoints are deformation retracts
of open neighbourhoods).

2) Let X be a CW complex with one 0-cell, one 5-cell, one 7-cell and one
10-cell. What is the cohomology ring structure of X with coefficients
in Q?

The cohomology of the torus with coefficients in F2 is spanned by
degree 0: 1, degree 1: α, β and degree 2: γ.

3) Use the same strategy that we used in class for RP2 to show that
α ∪ β = γ.

4) Show that α ∪ α = 0.

5. Eckmann–Hilton argument

The way I presented the group structure on higher homotopy groups, it
seems that the first coordinate plays a privileged role, when compared to
the other ones. In fact, with an argument not so different from the proof
of commutativity, one can show that the product defined similarly but
with other coordinates ends up giving the same result. Here, we present
a purely algebraic proof of a much more general result.

1) Let × and • be two unital binary operations on a set X. Suppose

(a× b) • (c× d) = (a • c)× (b • d)

for all a, b, c, d ∈ X. Then × and • are in fact the same operation,
and are commutative and associative.
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2) Consider the usual product on higher homotopy groups

(f × g)(t1, . . . , tn) =

{
f(2t1, t2, . . . , tn) t1 ∈ [0, 1/2]

g(2t1 − 1, t2, . . . , tn) t1 ∈ [1/2, 1].

and define as well

(f • g)(t1, . . . , tn) =

{
f(t1, 2t2, . . . , tn) t1 ∈ [0, 1/2]

g(t1, 2t2 − 1, . . . , tn) t1 ∈ [1/2, 1].

Show that these operations satisfy the conditions from the previous
exercise.

https://en.wikipedia.org/wiki/Eckmann%E2%80%93Hilton_argument
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