KMAS9AAT — Algebraic Topology

Exercise Sheet 6

1. Tor

1) Assume that H,(X;Z) and H,,_1(X;Z) are finitely generated. Show
that for any prime p, H, (X;Z/pZ) consists of:
i. A Z/pZ summand for each Z summand of H, (X;Z),
ii. A Z/pZ summand for each Z/p*Z summand of H,,(X;7Z),
iii. A Z/pZ summand for each Z/p*Z summand of H,_1(X;Z),
This problem is a direct application of the Universal Coefficient The-
orem (UCT) for homology. The theorem states that for a topological

space X and an abelian group G, there exists a natural short exact
sequence 1:

0— Hy(X;Z)®7 G — Hy(X;G) — Tork (H,_1(X;Z),G) = 0

Furthermore, this sequence splits (though not naturally), yielding an
isomorphism:

H,(X;G) = (Hu(X;2) @2 G) @ Tor{ (Hp—1(X;Z), G)

We are given G = 7Z/pZ for a prime p, and that H,(X;Z) and
H, 1(X;Z) are finitely generated. By the classification of finitely
generated abelian groups, we can decompose them into a free part
and a torsion part. Specifically, the torsion part can be decomposed
into its ¢-primary components for all primes q.

Hy(X;7) = 7P & @Z/peJZ o | PPz

q#p i

Here, By, is the rank (the number of Z summands), and the sums rep-
resent the p-torsion and non-p-torsion components. Let ¢x(p) be the
number of Z/pF7Z summands in Hy(X;Z).We analyze the two terms
of the UCT isomorphism separately.



Term 1: The Tensor Product H,(X;Z) ® Z/pZ.

Since the tensor product distributes over direct sums, we analyze each
type of summand:

Z summands: Z ® Z/pZ = 7Z/pZ. Each of the (3, summands of Z in
H,, contributes one Z/pZ summand. This accounts for item i.
Z/p*Z summands: Z/p*Z @ Z/pZ = 7] ged(p*, p)Z = 7./pZ. Each
Z/p*Z summand in H, contributes one Z/pZ summand. This ac-
counts for item ii.

7./q*7 summands (q # p): Z/¢"Z®Z/pZ = 7. gcd(qF, p)Z = 7./17 =
0. Summands with torsion prime ¢ different from p are eliminated.
Thus, (H,(X;7Z) ® Z/pZ) = (Z./pZ)P+tn®),

Term 2: The Tor Functor Tor?(H,_1(X;Z),Z/pZ). Tor; also dis-
tributes over direct sums.

Z summands: Tor?(Z,7/pZ) = 0, because Z is a free module.
Z./p*Z summands:
As we can deduce from the Tor formula we saw in class,

TorZ(Z/p"Z, 2./pZ) = 7] ged (", p)Z = 7,/ pZ.

Each Z/p*Z summand in H, 1 contributes one Z/pZ summand to
H,(X;Z/pZ). This accounts for item iii.
7./q*7Z summands (q # p):

Tor?(Z/q"Z, Z/pZ) = 7] ged(¢", p)Z = 0.

Thus, Tor?(H,_1(X;Z),Z/pZ) = (Z./pZ)t»—1(P).

2) Use the universal coefficient theorem to show that if H,(X;Z) is
finitely generated, so the Euler characteristic

X(X) = (=1)"rank H,(X;Z)

n

is defined, then for any coefficient field F we have x(X) = >, (—1)" dim H, (X;F).
This is [Hatcher,3A.1.1.]

The Euler characteristic with integer coefficients is x (X) = >, (—1)" 5,
where 3,, = rank(H,(X;Z)). We wish to show this equals

Xp(X) =) (~1)" dimp H,(X;F)

n

for any field F. From the UCT, we have

dimp H, (X; F) = dimp(H,, ® F) + dimp(Tor,(H,—1,F)).
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Let H,(X;Z) = ZP" & T, where T, is the torsion subgroup.
dim(H, (X;F)) = dim(Z° ®F)+dim(T,,@F)+dim(Tor; (Z°~1, F))+dim(Tor, (T, 1, F))

We analyze this based on the characteristic of F.

Case 1: char(F) = 0. Then FF contains Q and therefore we can assume
F = Q, since for bigger fields extensions the homology corresponds to
just tensoring over Q with F.

We know that dim(Z°» ® Q) = dim(Q"") = 3, that dim(7T}, ® Q) = 0
and I claimed in class (next exercise) that Q is flat, and therefore
dim(Tory(7,-1,Q)) = 0.

Thus, dim(H,(X;Q)) = Sy.

Xo(X) =) (-1)"dim(H,(X;Q)) = > (~1)"B, = x(X)

n n

Case 2: char(F) = p > 0 In this case, F is a Z/pZ-vector space.
As ® and Tor commute with direct sums, it suffices to compute for
F=TF,=Z/pZ.

From the analysis in 1.1), let ¢(p) be the number of p-torsion sum-
mands in Hy(X;Z). dim(Z%@F,) = dim(Fg”) = By. dim(T;, ®F,) =
tn(p). dim(Tory(ZP»-1,F,)) = 0. dim(Tory(T,—1,Fp)) = tn—1(p). So,
dimg, (H,(X;Fp)) = Bn + ta(p) + tn—1(p). Now we compute the al-
ternating sum:

Yep(X) = 3 n(=1)" dim(Ho(X3Fp)) = 37 n(=1)" (Ba-tta(p)+tn1 (0))
e (X) = 3 n(=1)"B0 + S (1)) + 3 (=) 01 ()

The first term is x(X). The second two sums cancel each other out
in a telescoping fashion. Therefore,

xep(X) = X(X) + (3 n(-1)"ta(p)) - (Zu)”tn(m) = X(X)

n

2. Torsion-free I claimed in class that while Q is not free, it is torsion-free
and therefore Tor?(Q,C) = 0,VC € R — Mod. Let us show this.

Let G be an abelian group.

1) Show that any element of G ® Q is of the form g ® %

Any element of the tensor product is a finite sum of pure tensors, so
it suffices to show that any sum of two pure tensors can be written a
single pure tensor. Indeed
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a , d 1 ,,.1 ,
IR -+ R— = ag®—+a'g'®—- = ab' g®

b b b b

2) Show that if G is a torsion group, then Q ® G = 0.
Suppose mg = 0, for m € Z and g € G. Then

b b
b@g=m—®g=—@mg=0.
m m

3) Show that if G is torsion free, then g ® % =9 ® % is equivalent to
gn’ =ng'.
gLt =g oL = (ng—g¢n)® L =0. We're done if we show that
xr®1/k=0=2=0.
Let us more generally give a complete characterisation of G ® Q. Let
us define the rationalization of G to be E, the set of formal symbols
g/n, where g € G and n € Z — 0. We define the equivalence relation
g/n=g'/n if n’g =ng' (this is only an equivalence relation since G is
torsion free!). There is an obvious addition that can be defined making
F into an abelian group. There is a bilinear map G x Q — E, sending
(g,a/b) to ag/b, which thus induces a map f: GRQ — E. We already
see from this that if z # 0, then f(z ® 1/k) # 0, which concludes the
proof. But furthermore, we can see that f is an isomorphism, by
defining the inverse f~!(g/n) = g ® % and checking that it is indeed
well defined and an inverse.

4) Take a free resolution F} — Fy of G. Show that F; ® Q — Fy® Q is
injective and conclude that Tor?(Q, G) = 0.
The question as stated might seem mildly incorrect. We need to take a
free resolution such that the map Fy — Fp is injective, which we know
to existﬂ We know this exists since we can take Fy to be generated by
G as a set, and F] to be the kernel of the morphism Fy — G. Then,
by the question above F1 ® Q — Fy®Q has trivial kernel. But in fact
this kernel is by definition Tor?(Q, G), using F, as a resolution.

3. Ext

1) Show if A - B — C — 0 is exact, then Hom(A, N) <- Hom(B, N) «
Hom(C, N) «+ 0 is exact.

[This is what is used to conclude that Ext% (M, N) = Homg(M, N)!]

1n fact, it is not incorrect. Even if we weren’t over a PID, if there is a two step
resolution, then we know that 01: Fi — Fp must be injective. This is the case since
0 = Hi(F.) = ker 91 /Imd2 = ker 91. But being over a PID guarantees that a two step
resolution always exists.
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2) Show that Ext’% (A @ B, N) = Extl,(A, N) @ Extiz(B, N) and
Extiz(R7,N) = 0.
Not a typo. It’s really just that R” is free.

3) Show that Ext}(Z/nZ, N) = N/nN.

4) Show that Exth(M, —) is a covariant functor and that Ext!(—, N) is
a contravariant functor.

5) Show that for n > 0, Exty ,,(Z/2Z,Z/2Z) = Z/2L.
There is a (Z/47)-free resolution of Z/27Z given by

o o LJAZ S 74T 53 7,47 53 7/47.

which we can use to compute the Ext functors. Notice that in par-
ticular we deduce that there is no finite free resolution of Z/2Z over
ZJAZ, otherwise Exty ,;(Z/2Z,7/2Z) = 0 for n > 0.

4. Cup product

1) Show that H*(XUY; R) and H*(X; R)® H*(Y; R) are isomorphic as
graded commutative R-algebras. Deduce a similar statement for the
wedge product (assuming that the basepoints are deformation retracts
of open neighbourhoods).

2) Let X be a CW complex with one 0-cell, one 5-cell, one 7-cell and one
10-cell. What is the cohomology ring structure of X with coefficients

in Q7

The cohomology of the torus with coefficients in Fy is spanned by
degree 0: 1, degree 1: o, 3 and degree 2: ~.

3) Use the same strategy that we used in class for RP? to show that
aUp=nr.
4) Show that a Ua = 0.

5. Eckmann—Hilton argument

The way I presented the group structure on higher homotopy groups, it
seems that the first coordinate plays a privileged role, when compared to
the other ones. In fact, with an argument not so different from the proof
of commutativity, one can show that the product defined similarly but
with other coordinates ends up giving the same result. Here, we present
a purely algebraic proof of a much more general result.

1) Let x and e be two unital binary operations on a set X. Suppose
(axb)e(cxd) = (aec)x (bed)
for all a,b,c,d € X. Then x and e are in fact the same operation,

and are commutative and associative.
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2) Consider the usual product on higher homotopy groups

fQ2t,t, .. 1) t1 €[0,1/2]

(fxg)t1,... tn) = {g(2t1 — 1, to, ... ty) t1 €[1/2,1].

and define as well

f(t1,2t2,... 1) t1 €[0,1/2]

(fog)ty,....ta) = {g(tl,QtQ —1,.0t) tr€[1/2,1].

Show that these operations satisfy the conditions from the previous
exercise.
https://en.wikipedia.org/wiki/Eckmann/E2%80%93Hilton_argument
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