
KMAS9AA1 – Algebraic Topology

Exercise Sheet 5

1. Degree of a map Sn → Sn See [Hatcher, Beginning of Section 2.2]

Given a continuous map f : Sn → Sn, we consider the induced map
Hn(f) : Z → Z. The degree of f , deg f is defined to be Hn(f)(1). In
other words, Hn(f) is multiplication by deg f . In this exercise we will
prove some properties of the degree of a map.

1) Show that if f is not surjective, then deg f = 0.

2) Given f ′ : Sn → Sn, show that deg f ◦ f ′ = deg f · deg f ′. Conclude
that if f is a homotopy equivalence, then deg f = ±1.

3) Let r1 : S1 → S1 be the reflection along the vertical axis, i.e. r1(x0, x1) =
(−x0, x1). Show that deg r1 = −1.

4) Let r : Sn → Sn be a reflection along some hyperplane. Show that
deg r = −1.

Hint: By change of coordinates we can suppose r = rn(x0, . . . , xn) =
(−x0, . . . , xn). One can use Mayer–Vietoris to show that deg rn =
deg rn−1.

5) Show that the degree of the antipodal map x 7→ −x is (−1)n+1.

6) Suppose that f has no fixed points. Construct a homotopy between
f and the antipodal map and conclude that deg f = (−1)n+1.

Hint: A formula such as (1 − t)f(x) − tx almost does the trick, but
this does not land in the Sn...

2. Actions on spheres

1) Let n be an even number. Suppose that a group G acts freely on the
sphere Sn. Use the previous exercise to deduce that either G = {e}
or G = Z/2Z.
See [Hatcher, 2.29]

2) Find one infinite group that acts freely on all spheres of odd dimen-
sion.
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Identify S2n−1 = {(z1, . . . , zn) ∈ Cn||(z1, . . . , zn)| = 1}. The circle
acts freely by rotating every coordinate: eiπθ·(z1, . . . , zn) = (eiπθz1, . . . , e

iπθzn).

3. Homology of projective space

Recall that RPn has a cellular structure with one cell in each dimension
up to n and its k skeleton is RPk.

1) Show that there exists a commutative diagram as follows

Hn(RPn,RPn−1) Hn−1(RPn−1) Hn−1(RPn−1,RPn−2)

Hn(D
n, Sn−1) Hn−1(S

n−1) Hn−1(D
n−1/Sn−2, ∗)

δ

∼=∼=
∼= f∗

The top row corresponds to the construction of dCW = i∗δ and this
exercise will help us expressing this cellular differential in more explicit
terms.

The left square of the diagram is horizontally given by the respective
long exact sequences of pairs. We know from class (contractibility of
Dn) that the bottom connecting morphism is an isomorphism. The
leftmost vertical map is given by attaching the n-cell of RPn and the
middle vertical map is induced by the quotient by the Z/2Z action.
This square commutes because of the naturality of the LES.

The rightmost vertical map is the usual one we get from excision.
This forces the remaining two maps (the diagonal one and f∗) if we
require commutativity of the triangles.

2) Check that f∗ is the map induced by the composite of the commuting
diagram

Sn−1 RPn−1 Dn−1/Sn−2 ∼= Sn−1

Sn−1/Sn−2 ∼= Sn−1 ∨ Sn−1

quotient pinch RP2

where one of the maps from the wedge is the identity and the other
is the antipodal map.

It is clear from the construction of f∗ in the previous exercise that
it is induced by the map f = pinch RP2 ◦ quotient. To see that
the square commutes, one needs to realise that when we write the
isomorphism Sn−1/Sn−2 ∼= Sn−1 ∨ Sn−1, the wedge product is a bit
misleading because the glueing isn’t being done at the same basepoint.
Concretely, for the first Sn−1 the basepoint is the south pole and
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fort the second Sn−1 the basepoint is the northpole, so when we’re
mapping both of them to a single Sn−1 one of them is upside-down,
so we need to reverse it, hence the antipodal map.

3) Conclude that the cellular complex of RPn is

deg −1 0 1 · · · n n+ 1 · · ·

0 R R · · · R 0 · · ·
0 ×2 2 or 0

It follows that the cellular boundary is multiplication by dCW = 1 +
deg(antipode). From exercise 1.5 in this sheet, this is therefore equal
to 0 or 2, alternating.

4) Compute explicitly (for both parities of n) and check that the homol-
ogy gives very different results for

a. R = Z.
b. A field of characteristic 2 (or in fact any ring in which 2 = 0).

c. A field of characteristic ̸= 2 (or in fact any ring in which the
endomorphism ×2 is invertible.)

d. R = Z/8Z.
See https://topospaces.subwiki.org/wiki/Homology_of_real_projective_
space

4. Leftovers from class

1) Construct the CW structure on CPn that has one cell of each even
dimension up to 2n. This is a recursive construction in which we get
CPn from a single 2n cell attachment on CPn−1

This can be done in the following way: Recall that elements of the
complex projective space can be expressed in homogeneous coordi-
nates as [z1 : · · · : zn+1], where zi ∈ C, there is at least one non-zero
zi and we have the identification [z1 : · · · : zn+1] = [λz1 : · · · : λzn+1].
Under this identification, what is CPn−1 ⊂ CPn?

Under this identification, CPn−1 is given by setting zn+1 = 0. There-
fore we can identify its complement with Cn which is homeomorphic
to the interior of D2n.

See also https://en.wikipedia.org/wiki/Complex_projective_space

2) Recall that a short exact sequence of R-modules

0 −→ A
i−→ B

p−→ C −→ 0

is said to be split if it satisfies any (and hence all) of the equivalent
conditions below.
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a) There exists a homomorphism s : C → B such that p ◦ s = idC (a
section of p).

b) There exists a homomorphism r : B → A such that r ◦ i = idA (a
retraction of i).

c) The module B is isomorphic to the direct sum A ⊕ C, and the
maps i, p correspond to the canonical inclusion and projection.

Prove that the three formulations above are equivalent.

(1) ⇒ (3): Given a section s : C → B, define

ϕ : A⊕ C −→ B, ϕ(a, c) = i(a) + s(c).

Then p◦ϕ(a, c) = p(i(a))+p(s(c)) = 0+c = c, and ϕ is an isomorphism
with inverse

b 7−→ (r(b), p(b)),

where r(b) is defined as the unique a ∈ A such that b− i(a) ∈ im(s).
Hence B ∼= A⊕ C.

(3) ⇒ (1): If B ∼= A ⊕ C, take p to be projection onto the second
factor and s the inclusion of C. Then p ◦ s = idC , so the sequence
splits.

(1) ⇔ (2): If s is a section of p, define r = idB − s ◦ p : B → B. Then
r(B) ⊆ i(A) and r ◦ i = idA, giving a retraction. Conversely, given a
retraction r, set s(b) = b− i(r(b)); this satisfies p ◦ s = idC . Thus the
two formulations are equivalent.

https://en.wikipedia.org/wiki/Split_exact_sequence

3) Check carefully that the fundamental theorem of homological algebra
implies that for any two resolutions of the R-module M , F• → M
and F ′

• → M , we have that Hn(F• ⊗ B) is canonically isomorphic to
Hn(F

′
• ⊗B).
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