# KMAS9AA1 – Algebraic Topology

## Exercise Sheet 4

#### 1. Computation of Homologies

1) Let (M, m) and (N, n) be two pointed spaces with open neighbour-hoods deformation retracting to the respective points. Show that  $H_d(M \vee N, *) = H_d(M, n) \oplus H_d(N, n)$ .

Remark: This condition is satisfied by manifolds, but also by CW complexes.

Pick  $U \subset M \vee N$  the union of M with the small open neighbourhood (this is open in  $M \vee N$ ) and similarly for V. The Mayer–Vietoris LES simplifies to

$$0 \to \tilde{H}_k(M) \oplus \tilde{H}_k(N) \to \tilde{H}_k(M \vee N) \to 0$$

2) The connected sum M#N of two connected manifolds M and N of the same dimension n is obtained by removing a small neighborhood of a point<sup>1</sup> formed by an open disc from each, and gluing the resulting manifolds along the two spheres  $S^{n-1}$  that appear. For example,  $\Sigma_g \#\Sigma_{g'} = \Sigma_{g+g'}$ , where  $\Sigma_g$  is the oriented surface of genus g.

Show that for  $i \neq n-1, n$ , we have  $\tilde{H}_i(M \# N) = \tilde{H}_i(M) \oplus \tilde{H}_i(N)$ . Show that if R is a field, the dimension of  $\tilde{H}_i(M \# N)$  and  $\tilde{H}_i(M) \oplus \tilde{H}_i(N)$  differ by at most 1. The same strategy as before applies, but now the intersection  $U \cap V \sim S^{n-1}$ , so the isomorphism can't be obtained in the relevant dimensions.

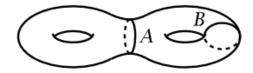
Another way to get to this result is to realise that  $M \vee N$  is a quotient of M # N and use the previous exercise.

Taking  $N = S^n$  we have M # N = M, which provides a counter example for additivity of homology in degree n.

See also: https://math.stackexchange.com/questions/187413/computing-the-homology

<sup>&</sup>lt;sup>1</sup>Up to homeomorphism it doesn't matter which point we choose.

- 3) Compute the homology of the torus, seeing it as square identified opposite edges. This can be done by taking the Mayer–Vietoris sequence on U being a small disc inside the square and V being a thickening of the complement of U, in such a way that  $U \cap V \sim S^1$ .
- 4) Compute the homology of Σ<sub>2</sub>. This can be done using the strategy of the last exercise, but also seeing Σ<sub>2</sub> = Σ<sub>1</sub>#Σ<sub>1</sub>. Can use Mayer-Vietoris splitting Σ<sub>2</sub> into two opens that are each homotopy equivalent to the torus minus one point, which in turn is homotopy equivalent to a wedge of two circles. Alternatively, cellular homology works.
- 5) Let  $R = \mathbb{Z}$ . Suppose that a topological space is written as a union of two open subspaces  $X = U \cup V$  and consider the associated Mayer–Vietoris long exact sequence. Assuming that  $U \cap V$  is path connected, use the explicit construction of the connecting morphism  $\delta \colon H_1(X) \to H_0(U \cap V)$  to show that is the zero map.
- 6) Compute the homology of  $S^n \times S^m$ . Use Mayer? Vietoris removing one point from each factor.
- 7) Compute the homology  $H(\Sigma_2, A)$  and  $H(\Sigma_2, B)$ , where A and B are the following circles<sup>2</sup>:



See the solutions from [H, Exercise 2.1.17]

#### 2. Products, coproducts, pullbacks and pushouts

Let  $\mathcal{C}$  be a category.

- 1) Recall the notions in the title of this exercise and show that if they exist they are unique up to unique isomorphism.
- 2) Show that the category of fields does not have all coproducts.

  There are no maps between fields of different characteristic so a coproduct of two such fields cannot exist.
- 3) Show that in the category of unital commutative rings, the coproduct of R and S is given by  $R \otimes S$  with the maps  $R \to R \otimes S, r \mapsto r \otimes 1$  and  $S \to R \otimes S, s \mapsto 1 \otimes s$ .
- 4) We say that  $I \in \mathcal{C}$  is an *initial* object if for any object  $X \in \mathcal{C}$ , there is a unique morphism  $I \to X$ . Similarly,  $T \in \mathcal{C}$  is *terminal* if there is a unique morphism from any  $X \to T$ .

<sup>&</sup>lt;sup>2</sup>Drawing from [H, Exercise 2.1.17]

- a. Show that if such objects exist, they are unique.
- b. Show that if an initial object exists, any coproduct can be written as a pushout. Similarly, if a terminal object exists, a product is a pullback.

The pushout of  $X \leftarrow I \rightarrow Y$  is the same as  $X \sqcup Y$ . Similarly, the pullback of  $X \rightarrow T \leftarrow Y$  is the product  $X \times Y$ .

- c. Determine the initial and terminal object in the categories  $\mathbf{Top}, \mathbf{Top}_*, \mathbf{Groups}, R \mathbf{Mod}.$   $(\emptyset, *), (*, *), (\{e\}, \{e\}), (0, 0)$
- 5) In **Set**, show that the pullback of  $f: X \to Z$  and  $g: Y \to Z$  is given by the set of pairs  $X \times_Z Y = \{(x,y) | x \in X, y \in Y, f(x) = g(y)\}.$

### 3. CW Complexes

- 1) Show that a single cell attachment is a pushout along the attachment map.
- 2) Let X, Y be CW complexes containing finitely many cells. Show that  $X \times Y$  is a CW complex with d-cells given by products of k and d-k cells.

We use that  $D^n \times D^m$  is homeomorphic to  $D^{n+m}$  and under this identification the boundary is given by  $\partial D^n \times D^m \cup D^n \times \partial D^m$ . Then, the "inclusion" of the cell in the product  $X \times Y$  is given by the product of the two maps  $\phi_1 \times \phi_2 : D^n \times D^m \to X \times Y$ . See [H, Theorem A.6] for a solution with no finiteness assumptions.

3) Let X, Y be CW complexes, A a subcomplex of X and  $f: A \to Y$  a cellular map. Show that the pushout of f along the inclusion  $A \hookrightarrow X$  is a CW complex with the cells of Y and of X - A as cells. You can assume for convenience that all CW complexes have finitely many cells (and therefore it is enough to consider the case of a single cell attachment)

See Theorem 4.14 of https://www.mat.univie.ac.at/~kriegl/Skripten/2011WS.pdf for a solution with no finiteness assumptions

- 4) We constructed in class a cellular structure on  $\mathbb{RP}^n$  as the quotient of a cellular structure on  $S^n$ . Describe with precise formulas for the attaching maps the cellular structure of  $\mathbb{RP}^2$ , without using quotients at any point.
- 5) Let  $\Gamma$  be a finite graph with e edges, v vertices and c connected components.

Compute  $H_{\bullet}(\Gamma; \mathbb{Z})$  in terms of e, v and c.

Hint: Use the fact that given a CW-complex X and A a contractible subcomplex  $X \to X/A$  is a homotopy equivalence.

Suppose the graph is connected. We can contract every edge whose endpoints are distinct and end up with a single vertex and a bouquet of circles. How many circles? For every contraction we reduce the vertices and edges by one  $(e, v) \mapsto (e - 1, v - 1)$ , each and we stop at v = 1, i.e. at (e - v + 1, 1). It follows that  $H_1(\Gamma) = \mathbb{Z}^{e-v+1}$ .

The non-connected case follows from  $H_{\bullet}(X \sqcup Y) = H_{\bullet}(X) \oplus H_{\bullet}(Y)$ . In principle the result should depend on  $v_1, \ldots v_c$ , the number of vertices of each connected component, rather than just their sum  $v = \sum v_i$ , but writing everything out we see that this just depends on the total number of vertices.

Instead of doing that, let us give an alternative proof using the Euler characteristic:

By contracting every edge with different end points, we already know that this is a dijoint union of c bouquets of circles. So in particular the only non-zero homologies are in degrees 0 and 1 and these are free  $\mathbb{Z}$ -modules:  $H_0(\Gamma) = \mathbb{Z}^x, H_1(\Gamma) = \mathbb{Z}^y$ . We know that x = c, the number of connected components, we just need to determine y. We can tensor with  $\mathbb{Q}$  to be able to talk about the Euler characteristic of the complex, which is the same as the Euler characteristic of its homology. It follows

$$x - y = \chi(\Gamma) = v - e,$$

and therefore y = c - v + e.

- **4. Chain Complexes** [This exercise was supposed to appear on an earlier exercise sheet, but didn't by mistake]
  - 1) Show that the kernel, image, and cokernel of a chain complex morphism  $f: C \to D$  are chain complexes. Show that if  $H(\ker f) = 0 = H(\operatorname{coker} f)$ , then f induces an isomorphism in homology.
  - 2) Show that the direct sum of chain complexes is a chain complex, and compare  $H(A \oplus B)$  with  $H(A) \oplus H(B)$ .
  - 3) Compute the homology of the complex

$$0 \to R \overset{\times 2}{\to} R \to 0$$

for  $R = \mathbb{Z}$  and R a field (pay attention to the characteristic). [Important to retain from this: The ring we are working with changes a lot the result. Hatcher only works with  $\mathbb{Z}$  which does not allow us to see such differences later on.]

4) Show that the dual of a chain complex  $C^{\vee}_{\bullet} = \{\operatorname{Hom}_{R}(C_{-i}, R)\}_{i \in \mathbb{Z}}$  is a chain complex with boundary map given by the dual of the original one. Prove that over  $\mathbb{Z}$ , the dual of the homology of C is not isomorphic to the homology of the dual of C.

Hint: The subexercise just above.