KMAS9AAT — Algebraic Topology

Exercise Sheet 4

1. Computation of Homologies

1) Let (M,m) and (IN,n) be two pointed spaces with open neighbour-
hoods deformation retracting to the respective points. Show that
Hy(M V N,x) = Hqg(M,n) ® Hq(N,n).

Remark: This condition is satisfied by manifolds, but also by CW
complexes.

Pick U € M V N the union of M with the small open neighbourhood
(this is open in M V N) and similarly for V. The Mayer—Vietoris LES
simplifies to

0 — Hy(M)® Hy(N) = Hy(MVN)—=0

2) The connected sum M+#N of two connected manifolds M and N of the
same dimension n is obtained by removing a small neighborhood of
a pointﬂ formed by an open disc from each, and gluing the resulting
manifolds along the two spheres S™ ! that appear. For example,
Yy#Xy = Xgiy, where X, is the oriented surface of genus g.

Show that for i # n — 1,n, we have H;(M#N) = H;(M) @ H;(N).

Show that if R is a field, the dimension of H;(M#N) and H;(M) @

H;(N) differ by at most 1. The same strategy as before applies, but

now the intersection U NV ~ 8”1 so the isomorphism can’t be

obtained in the relevant dimensions.

Another way to get to this result is to realise that M V N is a quotient

of M+#N and use the previous exercise.

Taking N = S" we have M#N = M, which provides a counter

example for additivity of homology in degree n.

See also: https://math.stackexchange.com/questions/187413/computing-the-homology

1Up to homeomorphism it doesn’t matter which point we choose.


https://math.stackexchange.com/questions/187413/computing-the-homology-and-cohomology-of-connected-sum

3) Compute the homology of the torus, seeing it as square identified op-
posite edges. This can be done by taking the Mayer—Vietoris sequence
on U being a small disc inside the square and V being a thickening of
the complement of U, in such a way that U NV ~ S1.

4) Compute the homology of ¥5. This can be done using the strategy of

the last exercise, but also seeing Yo = ¥1#3;.
Can use Mayer—Vietoris splitting > into two opens that are each
homotopy equivalent to the torus minus one point, which in turn is
homotopy equivalent to a wedge of two circles. Alternatively, cellular
homology works.

5) Let R = Z. Suppose that a topological space is written as a union of
two open subspaces X = U UV and consider the associated Mayer—
Vietoris long exact sequence. Assuming that UNV is path connected,
use the explicit construction of the connecting morphism §: H;(X) —
Hy(UNV) to show that is the zero map.

6) Compute the homology of S™ x S™.

Use Mayer?Vietoris removing one point from each factor.

7) Compute the homology H (X2, A) and H(X3, B), where A and B are

the following circle

See the solutions from [H, Exercise 2.1.17]

2. Products, coproducts, pullbacks and pushouts
Let C be a category.

1) Recall the notions in the title of this exercise and show that if they
exist they are unique up to unique isomorphism.

2) Show that the category of fields does not have all coproducts.

There are no maps between fields of different characteristic so a co-
product of two such fields cannot exist.

3) Show that in the category of unital commutative rings, the coproduct
of R and S is given by R ® S with the maps R - RQ S,r —r®1
and S - R®S5,s—= 1®s.

4) We say that I € C is an initial object if for any object X € C, there
is a unique morphism I — X. Similarly, T' € C is terminal if there is
a unique morphism from any X — T.

*Drawing from [H, Exercise 2.1.17]
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a. Show that if such objects exist, they are unique.

b. Show that if an initial object exists, any coproduct can be written
as a pushout. Similarly, if a terminal object exists, a product is a
pullback.

The pushout of X <— I — Y is the same as X UY. Similarly, the
pullback of X — T <Y is the product X x Y.

¢. Determine the initial and terminal object in the categories
Top, Top,, Groups, R — Mod.

(@, %), (%), ({e}, {e}), (0,0)
5) In Set, show that the pullback of f: X — Z and ¢g: Y — Z is given
by the set of pairs X xzY = {(z,y)lz € X,y €Y, f(z) = g(y)}.

3. CW Complexes

1) Show that a single cell attachment is a pushout along the attachment
map.

2) Let X,Y be CW complexes containing finitely many cells. Show that

X xY is a CW complex with d-cells given by products of k and d — k
cells.
We use that D™ x D™ is homeomorphic to D"t and under this
identification the boundary is given by 0D"™ x DU D" x 9D™. Then,
the “inclusion” of the cell in the product X xY is given by the product
of the two maps ¢1 X ¢ : D" x D™ — X x Y. See [H, Theorem A.6]
for a solution with no finiteness assumptions.

3) Let X,Y be CW complexes, A a subcomplex of X and f: A =Y a
cellular map. Show that the pushout of f along the inclusion A — X
is a CW complex with the cells of Y and of X — A as cells. You can
assume for convenience that all CW complexes have finitely many
cells (and therefore it is enough to consider the case of a single cell
attachment)
See Theorem 4.14 of https://www.mat.univie.ac.at/~kriegl/Skripten/
2011WS.pdf| for a solution with no finiteness assumptions

4) We constructed in class a cellular structure on RP™ as the quotient
of a cellular structure on S™. Describe with precise formulas for the
attaching maps the cellular structure of RP?, without using quotients
at any point.

5) Let T be a finite graph with e edges, v vertices and ¢ connected
components.

Compute Ho(I';Z) in terms of e, v and c.
Hint: Use the fact that given a CW-complex X and A a contractible
subcomplex X — X/A is a homotopy equivalence.
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https://www.mat.univie.ac.at/~kriegl/Skripten/2011WS.pdf
https://www.mat.univie.ac.at/~kriegl/Skripten/2011WS.pdf

Suppose the graph is connected. We can contract every edge whose
endpoints are distinct and end up with a single vertex and a bouquet
of circles. How many circles? For every contraction we reduce the
vertices and edges by one (e,v) — (e — 1,v — 1), each and we stop at
v=1,ie. at (e —v+1,1). It follows that Hy(I') = Z¢ v+l

The non-connected case follows from He(XUY) = He(X)D He(Y). In
principle the result should depend on vy, ... v., the number of vertices
of each connected component, rather than just their sum v = > v;,
but writing everything out we see that this just depends on the total
number of vertices.

Instead of doing that, let us give an alternative proof using the Euler
characteristic:

By contracting every edge with different end points, we already know
that this is a dijoint union of ¢ bouquets of circles. So in particular
the only non-zero homologies are in degrees 0 and 1 and these are
free Z-modules: Hy(I') = Z%, Hi(I") = ZY. We know that x = ¢, the
number of connected components, we just need to determine y. We
can tensor with @Q to be able to talk about the Euler characteristic
of the complex, which is the same as the Euler characteristic of its
homology. It follows

r—y=x(T)=v—e,

and therefore y =c—v +e.

4. Chain Complexes [This exercise was supposed to appear on an earlier
exercise sheet, but didn’t by mistake]

1)

Show that the kernel, image, and cokernel of a chain complex mor-
phism f: C — D are chain complexes. Show that if H(ker f) =0 =
H (cokerf), then f induces an isomorphism in homology.

Show that the direct sum of chain complexes is a chain complex, and
compare H(A @ B) with H(A) @ H(B).

Compute the homology of the complex

05R3¥R-0

for R = Z and R a field (pay attention to the characteristic). [Impor-
tant to retain from this: The ring we are working with changes a lot
the result. Hatcher only works with Z which does not allow us to see
such differences later on.]

Show that the dual of a chain complex C{ = {Homp(C_;, R)}icz is
a chain complex with boundary map given by the dual of the orig-
inal one. Prove that over Z, the dual of the homology of C' is not
isomorphic to the homology of the dual of C.
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Hint: The subexercise just above.
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