
KMAS9AA1 – Algebraic Topology

Exercise Sheet 3

1) Long Exact Sequence

1. Use the long exact sequence of a short exact sequence of complexes
to give new proofs of exercises 5.1, 5.4, and 7 of Exercise Sheet 2.

2. Let R = Z. Consider the short exact sequence of chain complexes
complexes

0 → A•
f→ B• → C• → 0,

where all complexes are concentrated in degrees 0 or 1. The boundary

maps are: A1 = Z ×5→ Z = A0, B1 = Z⊕ Z→B0 = Z sends (1, 0) 7→ 2
and (0, 1) 7→ 3, C1 = Z and C0 = 0.

The map f is the diagonal in degree 1, f1(x) = (x, x) and the identity
in degree 0, f0 = idZ.

Give a possible formula for the remaining map, show that this is in-
deed a short exact sequence and describe the long exact sequence asso-
ciated, including a description of the connecting morphisms δ : H1(C•) →
H0(A•).

We are given complexes concentrated in degrees 1 and 0 with differ-
entials

dA : A1 = Z ×5−−→ A0 = Z, dB : B1 = Z⊕Z (2 3)−−−→ B0 = Z, dC : C1 = Z 0−→ C0 = 0.

The map f is specified by f1(x) = (x, x) and f0 = idZ. We must give
the remaining map g1 : B1 → C1, since g0 : B0 → C0 = 0 must be 0.

Choose
g1 : Z⊕ Z −→ Z, g1(a, b) = a− b,

Let us check exactness degreewise:

� In degree 1: ker g1 = {(a, b) | a − b = 0} = {(x, x) | x ∈ Z} =

im f1, so 0 → A1
f1→ B1

g1→ C1 → 0 is exact.

� In degree 0: f0 = id : Z → Z is an isomorphism, so exactness
holds there as well.
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We must check compatibility with differentials (so we indeed have a
short exact sequence of chain complexes). Compute

f0 ◦ dA(x) = id(5x) = 5x, dB ◦ f1(x) = dB(x, x) = 2x+ 3x = 5x,

so f0dA = dBf1. Also dC ◦ g1 = 0 and g0 ◦ dB = 0, so the squares
commute. Thus we have a short exact sequence of chain complexes.

Homology of each complex.

Compute H∗ degreewise.

For A: dA = ×5, so

H1(A) = ker(dA) = ker(×5 : Z → Z) = 0, H0(A) = coker(dA) = Z/5Z.

For B: dB(a, b) = 2a+ 3b. So

ker dB = {(a, b) ∈ Z2 | 2a+ 3b = 0}.

A Z-basis for ker dB is spanned by (3,−2) (since 2 · 3 + 3 · (−2) = 0).
In particular ker dB ∼= Z and

H1(B) = ker dB ∼= Z.

For H0(B) = cokerdB = Z/ im(dB) and im(dB) = (2, 3) · Z2 ∼=
gcd(2, 3)Z = Z, so H0(B) = 0. If you are not used to this sort of
computation just notice that 1 = 3 − 2 is in the image of dB and
therefore dB is surjective.

For C: dC = 0 and C0 = 0, so

H1(C) = Z, H0(C) = 0.

Long exact sequence and the connecting map δ.

The LES of homology for 0 → A → B → C → 0 in the relevant range
is

H1(A)
f∗−→ H1(B)

g∗−→ H1(C)
δ−→ H0(A)

f∗−→ H0(B)
g∗−→ H0(C).

Plugging in the computed groups:

0 −→ ⟨(−3, 2)⟩ g∗−→ Z δ−→ Z/5Z −→ 0 −→ 0.

Let us give an explicit formula for δ. The usual definition: for [c] ∈
H1(C) take a cycle representative c ∈ C1, lift to b ∈ B1 with g1(b) = c,
then dB(b) ∈ B0 maps to zero in C0 so dB(b) = f0(a) for a unique
a ∈ A0, and δ([c]) = [a] ∈ H0(A).
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Apply to the generator 1 ∈ H1(C) = Z. Lift 1 ∈ C1 to b = (1, 0) ∈ B1.
Then

dB(1, 0) = 2 ∈ B0 = Z.

Since f0 = id, a = 2 ∈ A0 = Z, hence

δ(1) = [2] ∈ H0(A) = Z/5Z.

Thus the connecting homomorphism δ : Z → Z/5Z is the reduction
map k 7→ 2k (mod 5).

Finally, one checks that the map g∗ : H1(B) → H1(C) sends the gen-
erator (3,−2) to g1(3,−2) = 5 ∈ Z, and in particular im g∗ = 5Z =
ker δ, as required by exactness.

2) Leftovers from Lecture 6

1) Find A ⊂ Rn − 0 such that

H•(Rn,Rn − {0}) ̸= H•(Rn −A, (Rn − {0})−A).

Take A=Rn − {0}.
2) Show that (Rn,Rn−{0}) does not deformation retract into (Rn, Sn−1).

Suppose that was the case. Restricting to the subspaces, in particular
this would give a retract of Dn − {0} into Sn−1 which would extend
to a map Dn → Sn−1 ∪ {f(0)}. But Sn−1 is closed, so f(0) must
necessarily be sent to Sn−1, which gives a retract of Dn into Sn−1

which we know to be impossible (by exercise 4 of this exercise sheet).

3) Cone and Suspension of a Topological Space

Let X be a topological space. The suspension of X is the topological
space

SX = X × [−1, 1]/(x,−1) ∼ (x′,−1); (x, 1) ∼ (x′, 1) ∀x, y ∈ X.

The cone of X is the subspace of SX

CX = X × [0, 1]/(x, 1) ∼ (x′, 1).

1) Describe an explicit homeomorphism SX ∼= CX/X × 0.

Choose a monotonic homeomorphism ϕ : [−1, 1] → [0, 1]. For instance
ϕ(t) = (t+ 1)/2.

Then, define Φ : SX −→ CX/(X × {0}) defined by Phi(x, t) =
(x, ϕ(t)). This is well defined on the quotients and it is indeed a
homemorphism whose inverse is Φ−1(x, t) = (x, ϕ−1(t)).
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2) Compute H•(CX).

As we saw on the first exercise sheet, CX is contractible. It follows
that H•(CX) = H0(CX) = R.

3) Show that Hn+1(SX) ∼= Hn(X) for n ≥ 1 and that if X is path-
connected, H1(SX) = 0.

Consider the long exact sequence of the pair CX,X × 0. Notice that
X × 0 is a deformation retract of a neighbourhood X × [0, ϵ), so the
relative homology is a homology of the quotient which is SX by the
first exercise.

4) Brouwer Fixed-Point Theorem

1) Show that the boundary of the disk ∂Dn is not a deformation retract
of Dn.

2) Use the previous point to show that every continuous map Dn → Dn

has a fixed point.

5) Local Homology

Let X be a topological space and x ∈ X. Recall from class that the local
homology of X at x is defined as

Hn(X,X − {x}) for n ≥ 0.

We will assume all points are closed in X.

1) Show that if V ⊂ X is an open set containing x, then

Hn(X,X − {x}) ∼= Hn(V, V − {x}).

2) Show that if f : X → Y is a local homeomorphism, then it induces
isomorphisms at the level of local homology for all x ∈ X.

Let f : X → Y be a local homeomorphism and fix x ∈ X. There

exists an open U ∋ x such that f |U : U
∼=→ f(U) is a homeomorphism.

Using part 1) we have

Hn(X,X−{x}) ∼= Hn(U,U−{x})
∼=−→ Hn(f(U), f(U)−{f(x)}) ∼= Hn(Y, Y−{f(x)}),

where the middle isomorphism is induced by the homeomorphism f |U .
Hence f induces isomorphisms on local homology at corresponding
points.

3) Show that the f above does not induce necessarily an isomorphism
H•(X) → H•(Y ).

Consider the projection f : R → S1, seeing S1 = R/Z.
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