
KMAS9AA1 – Algebraic Topology

Exercise Sheet 1

Topology

1. Quotient topology, spheres, and discs

LetX be a topological space and A ⊂ X. We denote byX/A the quotient
of X by the equivalence relation

x ∼ y ⇐⇒ x = y or x, y ∈ A

equipped with the quotient topology.

1. Let Dn := {x ∈ Rn | ∥x∥ ≤ 1} be the closed n-dimensional disc, and
Sn−1 := {x ∈ Rn | ∥x∥ = 1} ⊂ Dn the (n − 1)-dimensional sphere.
Show that Dn/Sn−1 is homeomorphic to Sn.

This answer can come with a varied amount of details depending on
how many formulas we want to write down (also other definitions
of the sphere are reasonable..). A minimalistic acceptable argument
would be to claim that Sn minus a point is homeomorphic to Rn and so
is the interior of Dn. By the universal property of the quotient, this
homeomorphism extends to a continuous bijection Dn/Sn−1 → Sn.
Since both the source and target are compact Hausdorff, this is a
homeomorphism.

Rule of thumb: An argument with low levels of rigour is acceptable if
it is relatively clear that it could be given complete rigour if the writer
has enough patience.

2. Given a topological space X, the cone of X is the quotient topological
space C(X) := X × [0, 1]/X ×{0}. Show that C(Sn−1) is homeomor-
phic to Dn.

Using the presentation above, can construct the map Sn−1 × [0, 1] →
Dn sending (x, t) to tx. Check that this map passes to the quotient
and is a homeomorphism.

3. Show that the cone of a non-empty topological space is contractible.

An explicit deformation retract into the vertex of the cone is given by
ht(x, s) = (x, ts).
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2. Path-connected components

1. Reprove that, up to isomorphism, the fundamental group π1(X,x)
only depends on the path-connected component of x ∈ X. More
precisely, if γ is a path between x and y ∈ X, then

ϕγ : π1(X,x) → π1(X, y)

[α] 7→ [γ · α · γ]

is a group isomorphism.

2. If δ is another path joining x to y, then the isomorphisms ϕγ and ϕδ are
conjugate. Deduce that if π1(X,x) is abelian, then this isomorphism
is canonical.

3. Homotopy

1. Show that the homotopy equivalence relation is indeed an equivalence
relation. Convince yourself that the same is not true for deformation
retracts.

2. Show that f ∼ f ′ and g ∼ g′ imply f ◦ g ∼ f ′ ◦ g′.
3. Show with explicit formulas that any convex subset of Rn is con-

tractible.

Pick an arbitrary point x ∈ X. The homotopy ht(y) = x + t(y − x),
sending y linearly to x is continuous and is fully contained in X due
to convexity.

4. Fundamental Group

1. Simple connectedness: Let X be a path-connected topological
space. Show that the following assertions are equivalent:

a. π1(X,x) is trivial for any x ∈ X.

b. There exists x0 ∈ X such that π1(X,x0) is trivial.

c. Any map f : S1 → X extends to a map D2 → X.
f is given equivalently by a map I → X sending the endpoints to
the same point. If f is a contractible loop, there is a homotopy
starting from I × I... The key observation is that I × I ∼= D2.

d. There exist x0, x1 ∈ X such that all paths from x0 to x1 are homo-
topic.

e. For any x0, x1 ∈ X, all paths from x0 to x1 are homotopic.

2. An abelian π1: Let x, y be two points in a path-connected topological
space. Show that the following assertions are equivalent:

a. π1(X,x) is abelian.

b. For any paths α, β from x to y, the induced homomorphisms given
by Exercise 2 from π1(X,x) to π1(X, y) are the same.
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Homological algebra

5. Chain Complexes

1) Show that homotopy of morphisms of chain complexes is an equiv-
alence relation. Also show that homotopy equivalence between two
chain complexes (i.e., there exist morphisms in both directions such
that their compositions are homotopic to the identity) is an equiva-
lence relation. Show that f ∼ f ′ and g ∼ g′, then if the composites
are defined f ◦ f ′ ∼ g ◦ g′.

2) Show that any short exact sequence is isomorphic to a short exact
sequence of the form

0 → A → B → B/A → 0

where A is an R-module and B is a submodule of A.

If we have a SES 0 → B → A
p→ C → 0, we can define a map

f : C → A/B by defining f(c) = [a] ,where p(a) = c. We check that
this is a well defined linear map. We can conclude by showing that
there is a well defined map A/B → C which is a both sided inverse
to f.

Alternatively, we can use the Five Lemma to argue that f is an iso-
morphism.

6. Deformation Retraction

Let C and A be two chain complexes over R. A deformation retraction of
C onto A is a triple (r, i, h) with r : C → A and i : A → C chain complex
morphisms satisfying r ◦ i = idA, and h : C• → C•+1 is a homotopy
between i ◦ r and idC (i.e., ir − idC = h∂ + ∂h).

1) Show that over a field, any chain complex retracts by deformation
onto its homology.

Hint: Over a field you can write Ci = ker ∂i ⊕ Ii, for some Ii.

Let us write Ci = ker ∂i⊕Ii, where Ii is an arbitrary choice of comple-
ment of ker ∂i (which exists since we are working over a field). Let us
further decompose ker ∂i = Im(∂i+1)⊕Hi, where Hi is a chosen com-
plement. Notice that that Hi

∼= Hi(C). Under this decomposition,
we can write for all degrees C = H ⊕ Im(∂) ⊕ I, where on the right
hand side the only non-trivial part of the differential is ∂I → Im(∂)
and this restriction is an isomorphism.

Now, one can check that there is a deformation rectraction given by
projecting (resp. including) C to H (resp. H in C) and the homotopy
can be taken to be the inverse of ∂I → Im(∂).
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2) Show that this is not true in general. A counterexample can be found
for R = Z with C0 = C1 = Z and Ci̸=0,1 = 0.

Taking C = [Z 2→ Z], there is no map fromH(C) = Z/2Z to C besides
the zero map.

3) Show that a morphism of chain complexes that admits a left inverse (a
“retract”) is injective and induces an injective morphism in homology.
Show that the converse is true over a field.

For one implication just take the homology of r ◦ i = idA.

For the other implication, take f : C → D. We do the decomposition
for C = HC ⊕ Im(∂C)⊕IC of the previous exercise and then similarly
for D, but in a way that is compatible with f , namely we pick HD

such thatH(f)(HC) ⊂ HD. Now we can define g : D → C component
by component. Using injectivity in homology we define g in HD and
the injectivity of f helps us defining g in the other components.

7. Euler Characteristic

Let C be a chain complex over a field such that for all i, Ci is finite-
dimensional, and for i ≫ 0 and i ≪ 0, Ci = 0. The Euler characteristic
of C is

χ(C) =
∑
i∈Z

(−1)i dim(Ci).

Show that the Euler characteristic depends only on the homology of C.

This follows from the rank nullity theorem: dimker ∂i + dim Im∂i =
dimCi plus the fact that dimHi(C) = dimker ∂i − dim Im∂i+1

8. Five Lemma

Consider the following commutative diagram of R-modules:

A B C D E

A′ B′ C ′ D′ E′

Assume that the rows are exact at B,C,D,B′, C ′, D′, and that all vertical
maps except the middle one are isomorphisms. Prove that the map
C → C ′ is also an isomorphism.

This was done in class, but I’m recommending again the gif from the
Wikipedia page.
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