KMAS9AA1 – Algebraic Topology

Exercise Sheet 3

1) Long Exact Sequence

- 1. Use the long exact sequence of a short exact sequence of complexes to give new proofs of exercises 5.1, 5.4, and 7 of Exercise Sheet 2.
- 2. Let $R = \mathbb{Z}$. Consider the short exact sequence of chain complexes complexes

$$0 \to A_{\bullet} \xrightarrow{f} B_{\bullet} \to C_{\bullet} \to 0,$$

where all complexes are concentrated in degrees 0 or 1. The boundary maps are: $A_1 = \mathbb{Z} \stackrel{\times 5}{\to} \mathbb{Z} = A_0, B_1 = \mathbb{Z} \oplus \mathbb{Z} \to B_0 = \mathbb{Z}$ sends $(1,0) \mapsto 2$ and $(0,1) \mapsto 3, C_1 = \mathbb{Z}$ and $C_0 = 0$.

The map f is the diagonal in degree 1, $f_1x = (x, x)$ and the identity in degree 0, $f_0 = id_{\mathbb{Z}}$.

Give a possible formula for the remaining map, show that this is indeed a short exact sequence and describe the long exact sequence associated, including a description of the connecting morphisms $\delta \colon H_1(C_{\bullet}) \to H_0(A_{\bullet})$.

2) Leftovers from Lecture 6

1) Find $A \subset \mathbb{R}^n - 0$ such that

$$H_{\bullet}(\mathbb{R}^n, \mathbb{R}^n - \{0\}) \neq H_{\bullet}(\mathbb{R}^n - A, (\mathbb{R}^n - \{0\}) - A).$$

2) Show that $(\mathbb{R}^n, \mathbb{R}^n - \{0\})$ does not deformation retract into (\mathbb{R}^n, S^{n-1}) .

3) Cone and Suspension of a Topological Space

Let X be a topological space. The suspension of X is the topological space

$$SX = X \times [-1, 1]/(x, -1) \sim (x', -1); \ (x, 1) \sim (x', 1) \ \forall x, y \in X.$$

The *cone* of X is the subspace of SX

$$CX = X \times [0,1]/(x,1) \sim (x',1).$$

- 1) Describe an explicit homeomorphism $SX \simeq CX/X \times 0$.
- 2) Compute $H_{\bullet}(CX)$.
- 3) Show that $H_{n+1}(SX) \simeq H_n(X)$ for $n \geq 1$ and that if X is path-connected, $H_1(SX) = 0$.

4) Brouwer Fixed-Point Theorem

- 1) Show that the boundary of the disk ∂D^n is not a deformation retract of D^n .
- 2) Use the previous point to show that every continuous map $D^n \to D^n$ has a fixed point.

5) Local Homology

Let X be a topological space and $x \in X$. Recall from class that the *local homology* of X at x is defined as

$$H_n(X, X - \{x\})$$
 for $n \ge 0$.

We will assume all points are closed in X.

1) Show that if $V \subset X$ is an open set containing x, then

$$H_n(X, X - \{x\}) \cong H_n(V, V - \{x\}).$$

- 2) Show that if $f: X \to Y$ is a local homeomorphism, then it induces isomorphisms at the level of local homology for all $x \in X$.
- 3) Show that the f above does not induce necessarily an isomorphism $H_{\bullet}(X) \to H_{\bullet}(Y)$.