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Abstract. Given a bundle of chain complexes, the algebra of functions on its shifted cotangent
bundle has a natural structure of a shifted Poisson algebra. We show that if two such bundles are
homotopy equivalent, the corresponding Poisson algebras are homotopy equivalent.
We apply this result to L∞ -algebroids to show that two homotopy equivalent bundles have the
same L∞ -algebroid structures and explore some consequences about the theory of shifted Poisson
structures.
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1. Introduction

A Lie algebroid consists of a vector bundle A over a manifold M together with a
compatible Lie algebra structure on the space of sections Γ(A) of A . More recently,
due to the application of homotopy theoretical tools to theoretical physics [19, 20]
and to differential geometry (resolution of singular foliations) [23, 24], as well as the
study of derived Poisson structures [8, 26, 27], there has been much interest in a
derived version of Lie algebroids.
In the early 90’s, T. Lada and J. Stasheff [22] introduced the notion of L∞ algebras in
the context of mathematical physics as a natural extension of differential graded Lie
algebras. In an L∞ algebra, the Jacobi identity is only satisfied up to higher coherent
homotopies given by multilinear brackets. The same approach of intertwining L∞
algebras and manifolds gives rise to the homotopical version of Lie algebroids, the
so-called L∞ algebroids [33, 34].
It is often convenient to work in the dual setting of differential graded (dg) manifolds
which are generalizations of smooth manifolds to higher geometry, in which spaces are
locally modeled by chain complexes. We recall that in [38] Voronov shows that given
a graded vector bundle E , L∞ algebroids over E are in one-to-one correspondence
with non-positive dg manifold structures on E . Given this correspondence, we call
E a split graded manifold.
Assume now that E dg vector bundle i.e., E is a sequence of vector bundles (Ei)i∈Z
endowed with a global differential d : Ei → Ei+1 squaring to zero. One of the goals of
this manuscript is to understand the behavior of the space of L∞ algebroid structures
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on E when we replace E by a homotopy equivalent split dg manifold F over the
same base manifold M .
One of our results states that two homotopy equivalent split dg manifolds have
essentially the same L∞ algebroid structures, which can be seen a a version of the
Homotopy Transfer Theorem for Lie algebroids, see [28, Theorem 2.5].

Theorem 4.1. Let E and F be homotopy equivalent split dg manifolds concentrated
in non-positive degrees. Then, there is a bijection{

L∞ algebroid
structures on E

}
/gauge eq. 1:1←→

{
L∞ algebroid

structures on F

}
/gauge eq.

This correspondence can be obtained by explicit formulas that are given by sums of
trees in the spirit of the homotopy transfer theorem [25]. The setting to prove this
result is the shifted cotangent bundle T ∗[1]E [29]. The commutative algebra of func-
tions of this space extends to a shifted Poisson algebra via Kosmann-Schwarzbach’s
big bracket [15, 16, 38].
There is an of analog of Voronov’s result stating that the space of L∞ algebroid
structures over E can be identified with the set of Maurer-Cartan elements of the
algebra of functions on T ∗[1]E , the shifted cotangent bundle of E .
This prompts us to understand how the shifted cotangent bundle behaves under
homotopy equivalence. Our main result, in the form of Theorem 3.2, states that if
E and F are two homotopy equivalent dg vector bundles, their algebras of functions
are homotopy equivalent as Poisson algebras.

Theorem. Let E and F be two homotopy equivalent split dg manifolds. Then,
there exist C∞(M)-linear ∞-quasi-isomorphisms OT ∗[1]E  OT ∗[1]F and OT ∗[1]F  
OT ∗[1]E of shifted Poisson algebras. Furthermore, this homotopy equivalence of shifted
Poisson algebras respects a natural notion of weight.
When E is concentrated in degree 0 , L∞ algebroids are precisely Lie algebroids, and
1-shifted Poisson structures [8, 27] are seen to be what is refereed to in the literature
as quasi-Lie bialgebroids [4]. In section 4 we see that under certain conditions our
result allows us to conclude that two homotopy equivalent L∞ algebroids have
equivalent spaces of shifted Poisson structures. This matches recent advances by
[3] and [32].
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Postdoc.Mobility grant number P2EZP2_174718.

Notation and conventions. Throughout this manuscript the phrase differential
graded or dg should be implicit everywhere. Concretely, unless otherwise explicit,
a vector space V is a dg vector space (i.e. a cochain complex), Lie algebras are
differential graded Lie algebras, locally ringed spaces are dg R-algebras etc. We use
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cohomological conventions, i.e. all differentials have degree +1 . In particular this
means that taking linear duals negates degrees, that is to say V ∗

i = (V−i)
∗ .

All vector spaces (such as the ones arising from dg manifolds) considered are assumed
to be finite dimensional in every degree and but not necessarily of bounded degree.
Given two differential graded vector spaces A and B , the induced differential on
the space Hom(A,B) is the commutator, denoted by [d,−] , satisfying the equation
[d, f ] = f ◦ dA + (−1)kdB ◦ f , for f ∈ Hom(A,B) of degree k .
The notation A B will be reserved for ∞-morphisms of Lie or Poisson algebras,
while A→ B will always denote a single map.
Finally, we consider the ground field to be R for concreteness but the reader will
notice that all algebraic proofs hold over any field.

Remark about degree shifts. Given a vector space V , the notation [k] denotes
a shift of degree by k units, i.e. (V [k])i = Vk+i . Throughout the text we will
encounter algebraic structures whose operations are not in degree zero. Concretely,
the functions on the shifted cotangent bundle form a 2-shifted Lie algebra or a Lie{2}
algebra, a Lie algebra whose Lie bracket has degree −2 . When it is unambiguous,
we might omit the shifts for simplicity.
As a precise definition one defines a Lie{k} algebra structure on V to be a Lie algebra
structure on V [−k] . One should notice that this means that for odd k , a Lie{k}
algebra has symmetric brackets, but when shifts are even, the defining axioms of
(including signs) stay the same.
We remark that one of the consequences of the degree shifts and the cohomological
conventions is that on a Lie{k} algebra, a Maurer-Cartan element has degree k+1 .

2. Differential graded manifolds and the shifted cotangent bundle

In this section, we intend to recall in detail the constructions and results associated
to the shifted cotangent bundle of a split dg manifold. We recommend [2, 6, 12] for
a more thorough introduction to the topics of this section.

2.1. Dg manifolds
The origins of graded geometry and dg (differential graded) geometry can be traced
back to physics, where (Z/2Z graded) manifolds give for instance a proper treatment
of ghosts in BRST deformation. Graded (resp. dg) manifolds [18] are locally modeled
by a graded (resp. dg) vector space V in the sense that a function on such a manifold
is locally given by a function on the base manifold and a polynomial function on V .

Definition 2.1. A graded manifold is a locally ringed space M = (M,OM) ,
where the base M is a smooth manifold and around every point x ∈ M there
is an open set U containing x such that the structure sheaf can be expressed as
OM(U) = C∞(U)⊗ S(V ∗) for some some graded vector space V .
A dg manifold (also called a Q-manifold) is a graded manifold equipped with a
degree +1 cohomological vector field Q , i.e., a derivation of the algebra of functions
such that Q2 = 0 .

In the present article we will be mostly interested in a subclass of dg manifolds that
originate from vector bundles.
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Example 2.2 (Dg vector bundles). Given a differential graded vector bundle E
over M , i.e., a sequence of vector bundles (Ei)i∈Z with differentials d

... Ei−1
d //

##H
HH

HH
HH

HH
Ei

��

d // Ei+1...

{{ww
ww
ww
ww

M

such that d2 = 0 , one has a naturally associated dg manifold also denoted by E , given
by its sheaf of sections E = (M,OE = Γ(S(E∗))) . Notice that d : E → E induces a
degree +1 map Q : E∗ → E∗ ⊂ S(E∗) that extends to a square zero C∞(M)-linear
derivation on Γ(S(E∗)) . Such dg manifolds are called split dg manifolds.

In fact, Batchelor’s theorem [5] (or rather, it’s N-graded version) states that every
non-negatively graded manifold originates from such a construction, even though the
vector bundle E is non-canonically determined.

2.2. Shifted cotangent bundle and the big bracket
Given a graded vector bundle E →M , one can consider its shifted cotangent bundle
T ∗[1]E = (M,OT ∗[1]E) (see [30, 2] for the constructions in the ungraded setting)1

Locally this space has coordinates

xi ∈M, ξa ∈ E, pi ∈ TM, θa ∈ E∗︸ ︷︷ ︸
momentum coordinates

.

In these coordinates, the cohomological degree in the algebra OT ∗[1]E is given by
deg(xi) = 0 , deg(pi) = 2 , deg(ξa) = d + 1 for ξa ∈ Ed and deg(θa) = −d + 1
for θa ∈ (Ed)

∗ . We will also consider a biweight w on OT ∗[1]E compatible with the
product2, where w(xi) = (0, 0) , w(pi) = (1, 1) , w(ξa) = (0, 1) and w(θa) = (1, 0) .
Notice that there are natural inclusions

C∞|M ↪→ OT ∗[1]E, and

Γ(E[−1]) � {
,,ZZZZZZZ

Γ(S(E[−1]⊕ E∗[−1])) � � // OT ∗[1]E.

Γ(E∗[−1])
# � 22dddddd

Remark 2.3. Let us choose connections ∇i on Ei for all i , and let us consider the
corresponding dual connections ∇∗

i on E∗
i . This defines a (non-canonical) inclusion

Γ(TM) ↪→ OT ∗[1]E . With this choice one has an isomorphism of algebras

OT ∗[1]E
∼=∇ S(TM [−2]⊕ E∗[−1]⊕ E[−1]).

Besides the commutative product, the space OT ∗[1]E has a natural Lie bracket
{−,−} , the so-called big bracket [16, 30] extending the natural pairing of E∗ and
E .

1 A more accurate notation for this object from the graded geometry point of view could be
T ∗(E[−1])[2] . In [2, 29] the notation T ∗ΠE is used.

2 In the sense that the product is additive with respect to the biweights.
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More concretely, the bracket has degree −2 , biweight (−1,−1) and it satisfies the
following identities on generators

{X, f} = X · f, for X ∈ Γ(TM), f ∈ C∞|M ,

{ε, e} = ⟨ε, e⟩, for e ∈ Γ(E), ε ∈ Γ(E∗),

Even though the bracket is intrinsically defined, with the choice of a connection ∇
as in Remark 2.3 we also have {X, e} = ∇X(e) and {X, ε} = ∇X(ε) .
The bracket is extended to the full algebra OT ∗[1]E by the Leibniz rule with respect
to the product of functions, making OT ∗[1]E a shifted version of a Poisson algebra,
also called a Pois3 or e3 algebra in the literature.

Remark 2.4. Since the differential has weight zero and the bracket has weight
(−1,−1) , the (shifted) Poisson algebra OT ∗[1]E can be decomposed into a direct sum
of (shifted) Lie algebras

OT ∗[1]E =
⊕
k≥0

Wk,

where the Lie algebra Wk =
⊕

n≥0W(n,n+k) is spanned by all the elements whose
biweights components have a common difference, i.e, elements of biweight (0, k) ,
(1, k+1) , (2, k+2) and so on.

Suppose now that E was a dg vector bundle with differential dE . It is easy to see
that these constructions are compatible with the differential and that in this case
OT ∗[1]E is a dg Poisson algebra.

Remark 2.5. Another way to see this is by noting that dE is a Maurer-Cartan
element of OT ∗[1]E (seen as a non-differential Poisson algebra), i.e. {dE, dE} = 0 .
Indeed, it follows from d2E = 0 that {{dE, dE}, x} = 0 for every x element of E or
E∗ . Therefore, {dE, dE} is central in S(E ⊕ E∗) but the center of this Lie algebra
is R and therefore {dE, dE} = 0 .
By twisting the (Lie part of the) Poisson algebra OT ∗[1]E by this Maurer-Cartan
element, we recover a dg Poisson algebra structure on OdE

T ∗[1]E that we will denote
by OT ∗[1]E only.

2.3. (Infinity) Algebroids
The constructions from the previous section allow us to encode neatly some classical
notions. For example, a Lie algebroid structure over M i.e., a Lie algebra bundle
E concentrated in degree zero, with a compatible anchor map ρ : E → TM , can be
expressed as a solution of the Maurer-Cartan equation on T ∗[1]E :

Proposition 2.6 ([29, 35]). Let M be a manifold and E → M a vector bundle
concentrated in degree zero. A Lie algebroid structure on E is equivalent to an
element µ ∈ OT ∗[1]E(M) of biweight (1, 2) such that {µ, µ} = 0.
The correspondence is given by ρ(X) · f = {{X,µ}, f} and [X,Y ] = {{X,µ}, Y },
for X,Y ∈ Γ(TM,M) and f ∈ C∞(M).
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The same way the homotopically correct version of a Lie algebra is an L∞ algebra,
the notion of a Lie algebroid over a manifold M can be homotopically relaxed leading
to the concept of an L∞ algebroid. In what follows we will suppose that all objects
are non-positively graded.

Definition 2.7. Let M be a smooth manifold and let (E = (Ei)i≤0, d) be a
dg vector bundle over M concentrated in non-positive degree. An L∞ algebroid
structure on E is:
1. A dg bundle map ρ : E → TM called the anchor and
2. A sequence of antisymmetric brackets lk = [. . . ]k : Γ(E

⊗k) → Γ(E) of degree
2− k , for k ≥ 2 .

such that
1. All brackets are C∞(M) linear except the binary bracket if one of the entries

is in degree 0 . If that is the case, then it behaves as a vector field in the sense
that if X ∈ Γ(E0) and e ∈ Γ(E) ,

[X, fe]2 = f [X, e]2 + (ρ(X) · f)e.

2. The anchor intertwines l2 and the bracket of vector fields

[ρ(x), ρ(y)] = ρ([x, y]),∀x, y ∈ Γ(E0).

3. These brackets satisfy the structural axioms of an L∞ algebra (5).

Remark 2.8. Some authors such as [13] consider all brackets to be symmetric and
of degree 1 (from an operadic perspective one would call these L∞{−1} algebroids)
while we follow conventions such as the ones of [6]. These are equivalent up to a
degree shift of E .

Analogous to Proposition 2.6 one can show that L∞ algebroids are also given as
solutions of the Maurer-Cartan equation.

Proposition 2.9 (Folklore). Let E → M be a split dg manifold concentrated in
non-positive degrees, finite dimensional in every degree. The set of L∞ algebroid
structures over E is in biunivocal correspondence with the space of solutions of
the Maurer-Cartan equation in OT ∗[1]E of biweight (∗, 1) such that the term in
E∗ ⊗ E = Hom(E,E) is the differential d : E → E .

Sketch of proof. Due to the assumption of finite dimension, a map of bundles
E → TM is equivalent to a section of E∗ ⊗ TM and the data of the brackets
corresponds to a section of S(E∗) ⊗ E . The degree conditions imply that these
correspond to elements of degree 3 in OT ∗[1]E .
The bracket condition its easy to verify: The Maurer-Cartan equation can be split
by left weight. On left weight 2 the terms with the differential do not exist due to
our degree restraints on E . On higher weight we find the L∞ structure equations
and so the Maurer-Cartan equation gives us the same compatibility with the anchor
as in the Lie algebroid case.
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Remark 2.10. Some authors suppose that E is a graded manifold from the start
and the L∞ algebroid structure includes the datum of the differential d as a unary
bracket l1 (see [24, Definition 1.1.6] for instance). The natural analog of the previous
proposition holds, with the differential is recovered from the E∗ ⊗ E component.
Recall that the differential dE is itself a Maurer-Cartan element of OT ∗[1]E , the two
results are related from the general fact that if g is a Lie algebra and µ ∈ MC(g) ,
then ν ∈ MC(gµ)⇔ ν + µ ∈ MC(g) .

3. Proof of the main result

The natural notion of homotopy equivalences on cochain complexes generalize nat-
urally to the setting of dg vector bundles.

Definition 3.1. Two dg vector bundles E and F are said to be homotopy equiv-
alent if there exist bundle maps f : E → F and g : F → E and homotopies
HE : E• → E•+1 and HF : F

• → F •+1 such that idE − g ◦ f = HEdE + dEHE

and idF − f ◦ g = HFdF + dFHF

E

  A
AA

AA
AA

AHE 77

f

** F

~~}}
}}
}}
}}g

jj HFgg

M

(1)

One can also consider the weaker notion of a quasi-isomorphism of dg vector bundles,
i.e., a dg vector bundle map f : E → F that induces a quasi-isomorphism on sections.
Bear in mind that in general the homology of a dg vector bundle is not a graded
vector bundle as it can shift dimensions.
Our main result states that if we take two homotopy equivalent dg vector bundles
and consider their shifted cotangent bundles, the respective algebras of functions are
homotopy equivalent as Poisson algebras.

Theorem 3.2. Let E and F be two dg vector bundles over M that are homotopy
equivalent as in the previous definition. Then, there exists a C∞(M) linear L∞{2}
quasi-isomorphism U : OT ∗[1]E  OT ∗[1]F . Furthermore, this map:

(1) is compatible with the symmetric algebra product,

(2) is compatible with the biweight in the sense that it preserves each component
Wk from Remark 2.4 (for all n ≥ 1, Un has biweight (−n+ 1,−n+ 1)),

(3) its first component U1 is the natural extension of f ⊕ g∗ : E ⊕E∗ → F ⊕ F ∗ to
a graded commutative algebra morphism.

To be more precise, by compatibility with the symmetric algebra product we mean
that every (Un)n≥2 acts as a derivation with respect to the map U1 . In particular,
this means that U actually defines a weak equivalence of shifted Poisson algebras (an
∞− Pois3 algebra quasi-isomorphism). This is the notion of morphism considered
in [3].
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3.1. The case M = ∗
In this section we prove the main Theorem 3.2 over M = ∗ a point, which reduces
to a problem in homotopical algebra. As we will see, this is the main part of
the proof, as the formulas we will obtain over a point readily extend to a more
general base. In this case, E and F are just two dg vector spaces that are quasi-
isomorphic with a prescribed homotopy. The functions on the shifted cotangent
bundle T ∗[1]E are given by the symmetric algebra S(E[−1] ⊕ E∗[−1]) . We define
a map U1 : S(E[−1] ⊕ E∗[−1]) → S(F [−1] ⊕ F ∗[−1]) by extending f : E → F and
g∗ : E∗ → F ∗ to a map of commutative algebras.
Recall that given a dg vector space V , the space S(V ) admits a bialgebra structure
given by the canonical coproduct ∆: S(V )→ S(V )⊗ S(V ) by

∆(v1 . . . vn) =
∑

p≤n, σ∈Sn

±vσ−1(1) . . . vσ−1(p) ⊗ vσ−1(p+1) . . . vσ−1(n).

Notice that under this description, the Poisson bracket on S(E[−1] ⊕ E∗[−1]) =
OT ∗[1]E has the following nice form

∆

>>
>>

>>
>>

∆

��
��
��
��

lT ∗[1]E := {−,−} = ⟨−,−⟩ ,

m

where m stands for the multiplication (in the symmetric algebra) and ⟨−,−⟩ denotes
the pairing between E∗ and E being zero otherwise. By convention, elements of E∗

will be placed on the first entry of ⟨−,−⟩ and elements of E will be placed on the
second entry. We define the operator R2 := OT ∗[1]E ⊗OT ∗[1]E → OT ∗[1]E

∆

DD
DD

DD
DD

∆

zz
zz
zz
zz

⟨−, HE−⟩ ,

m

Finally, we define U2 : OT ∗[1]E → OT ∗[1]F ṫo be U2 := U1 ◦ R2 .
Notice that besides the homotopy, all the operations involved in U2 commute with
the differentials, from which it follows that
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(2)

[d,U2] =

∆

??
??

??
??

∆

��
��
��
��

⟨−,−⟩

m

U1

−

∆

BB
BB

BB
BB

∆

||
||
||
||

⟨−, g ◦ f(−)⟩

m

U1

=: U1 ◦ lT ∗[1]E − U1 ◦ l̃T ∗[1]E

and a similar formula without the terms U1 holds if we replace U2 by R2 . One can
easily check on generators that the second term of the equation, U1 ◦ l̃T ∗[1]E is equal
to {U1(−),U1(−)}T ∗[1]E from where the case n = 2 from equation (6) follows.
Defining the higher components of the L∞ morphism requires some set-up. Let
Treen be the set of trees with n labeled vertices. To an element T ∈ Treen one can
associate a map T : O⊗n

T ∗[1]E → OT ∗[1]E of degree n−1 . The value of T (x1, x2, . . . , xn)
is obtained in the following way:
Let e1, . . . , en−1 be the set of edges of T and consider a choice of 2n − 2 elements
α1, β1, . . . , αn−1, βn−1 each one of them from either E or E∗ such that:
(1) For every k , if ek connects vertices i and j , αk is a factor of xi and βk is a

factor of xj ,
(2) There is no repetition of choices.

Given such a choice one can consider the product

⟨α1, H(β1)⟩ . . . ⟨αn−1, H(βn−1)⟩x1x2 . . . xn̂ ,

where x1x2 . . . xn̂ denotes the product of all xi ’s but with our choice of α ’s and β ’s
removed3 together with the appropriate Koszul sign corresponding to the elements
removed. Finally, the value of

T (x1, x2, . . . , xn) =
∑

choices of
α1,...,βn−1

⟨α1, H(β1)⟩ . . . ⟨αn−1, H(βn−1)⟩x1x2 . . . xn̂
is obtained by summing over all possible choices the products described.
Heuristically, to every edge of a tree we associate an application of the operator R2

to its vertices. In particular, R2 =
1 2

∈ Tree2 .

Remark 3.3. Notice that some choices regarding the ordering and orientation of
edges of T has to be done to compute T (x1, x2, . . . , xn) . Since the target OT ∗[1]E is
commutative, all choices lead to the same result up to a sign.
We fix the convention that edges are oriented from the smaller vertex to the bigger
vertex and the ordering of edges is done by comparing the smaller label and then
the bigger label. In particular it follows that the natural action of Sn permuting the
labels of the vertices produces signs.

3 Keep in mind that ⟨a, b⟩ is zero unless one of a, b is in E and the other one in E∗ .
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For all n ≥ 1 we define the operators Rn : O⊗n
T ∗[1]E → OT ∗[1]E of degree n−1 as

Rn =
∑

T∈Treen T . Notice that this definition gives R1 = idOT∗[1]E . We also define
Un := U1 ◦ Rn ◦ O⊗n

T ∗[1]E → OT ∗[1]F .

Proposition 3.4. The maps Rn satisfy the following equations, for all n ≥ 2 :

[d,Rn] =
∑

σ∈Sh−1
2,n−2

sgn(σ)(Rn−1 ◦1 lT ∗[1]E)
σ −

∑
p+q=n
σ∈Sh−1

p,q

sgn(σ)(−1)p−1l̃T ∗[1]E ◦ (Rp,Rq)
σ (3)

where ◦1 represents insertion in the first slot and l̃T ∗[1]E is the twisted bracket defined
in equation (2).

Before proving this proposition notice that by composing the equations above with
U1 and using the observation that U1 ◦ l̃T ∗[1]E = lT ∗[1]F ◦ (U1,U1) we recover exactly
the equations (6) defining an L∞ morphism.

Corollary 3.5. The maps Un defined above form an L∞ algebra morphism.

Proof of Proposition 3.4. Given a tree T ∈ Treen and e an edge of T , we
denote by T e the same tree T but with the edge e replaced by a dashed edge.
Similarly, we denote by T∼e the same edge e replaced by a wavy edge instead.

T =
1

2 3 4
5e , T e =

1

2 3 4
5 , T∼e =

1

2 3 4
5

For T ∈ Treen we define an action of these modified trees, T e, T∼e : O⊗n
T ∗[1]E → OT ∗[1]E

of degree n − 2 by the same formula as T , except that on the action of the edge
corresponding to e connecting vertices i and j , with T e we perform the pairing
⟨αi, βj⟩ and with T∼e we perform the twisted pairing ⟨αi, g ◦ f(βj)⟩ .
Notice that since the commutator with the differential [d,−] acts by derivations,
the computation of [d,Rn] produces the same kind of composition, except that it
replaces one instance of ⟨−, H−⟩ by ⟨−,−⟩ − ⟨−, g ◦ f−⟩ , just as in equation (2).
In terms of trees, we have that [d, T ] =

∑
e edge T

e − T∼e , so we can also interpret
[d,Rn] as a sum of all possible trees of n vertices with a dotted edge, minus a sum
of all trees with n vertices with a wavy edge.

1 2

3

◦1
1 2

=

1

2 3

4

+

1

2 3

4

+

1

2 3

4

+

1

2 3

4

Figure 1: An example of an insertion of the graph corresponding to lT ∗[1]E .

We claim that the summands corresponding to the terms T e correspond to the terms∑
σ∈Sh−1

2,n−2

sgn(σ)(Rn−1 ◦1 lT ∗[1]E)
σ.



Campos 11

This follows from the observation that, given a tree Γ ∈ Treen−1 , the operation
T ({x1, x2}, x3, . . . , xn) can be expressed as a sum of trees with a dotted edge. Con-
cretely, as a quick inspection shows, Γ ◦1 lT ∗[1]E is obtained by inserting a graph
1 2

on the vertex labeled by 1 of Γ and summing over all possible ways (there
exist 2valence of 1 ) of reconnecting the incident edges, followed by a shift by 1 of all
other labels. This allows us to conclude that all terms of (Rn−1◦1 lT ∗[1]E)

σ are dotted
trees. We just need to show that every dotted tree appears exactly once on the sum
over all (2, n− 2) unshuffles.
Let us consider an arbitrary dotted tree T e , where T ∈ Treen . Suppose that e
connects vertices i < j . There is a unique unshuffle τ ∈ Sh−1

2,n−2 sending i to 1 and
j to 2 . It is then clear that only (Rn−1 ◦1 lT ∗[1]E)

τ produces trees with a dotted
edge connecting vertices i and j . Conversely, if we denote by T/e ∈ Treen−1 be the
graph obtained by the contraction of the edge e one sees that we recover T e from
the insertion of lT ∗[1]E in T/e .4 To finish the proof it remains to show that∑

p+q=n
σ∈Sh−1

p,q

sgn(σ)(−1)p−1l̃T ∗[1]E ◦ (Rp,Rq)
σ =

∑
T∈Treen

∑
e edge of T

T∼e.

The proof is analogous to the other case. We start by noting that for Tp ∈ Treep
and Tq ∈ Treeq , l̃T ∗[1]E ◦ (Ti, Tq) is obtained summing over all possible ways (p× q )
of connecting Tp and Tq with a wavy edge, and shifting the labels of Tq up by p
units. It follows that l̃T ∗[1]E ◦ (Rp,Rq)

σ is a sum of elements of the form T∼e , where
T ∈ Treen . To see that every tree appears exactly once, one notices that given a tree
with a wavy edge, removing the wavy edge results in a disconnected graph composed
of two trees, one in Treep and the other one in Treen−p whose labels are uniquely
retained by an element of Sh−1

p,q .

3.2. The global case
Suppose now that E and F are split dg manifolds over an arbitrary manifold M
with maps f , g and homotopies HE and HF as in equation (1).
Suppose for the moment being that we can choose connections ∇E and ∇F that are
compatible with f and g , i.e. for all X ∈ Γ(TM), e ∈ Γ(E) and s ∈ Γ(F ) we have

f(∇E
X(e)) = ∇F

X(f(e)) and g(∇F
X(s)) = ∇E

X(g(s)). (4)

Under the identifications induced by ∇E and ∇F ,

OT ∗[1]E
∼= S(TM [−2]⊕E∗[−1]⊕E[−1]) and OT ∗[1]F

∼= S(TM [−2]⊕F ∗[−1]⊕F [−1]),

the two maps f and g induce a map U1 : OT ∗[1]E → OT ∗[1]F of commutative algebras
by extending the maps f : E → F , g∗ : E∗ → F ∗ and id : TM → TM .
Equations (4) imply that U1 intertwines the Lie brackets on OT ∗[1]E and OT ∗[1]F

whenever at least one of the elements being bracketed is a vector field.
We note that the formulas used for Un, n ≥ 2 in the previous section can be defined
over any manifold, since the homotopy HE is globaly defined on the bundle E . It

4 Notice that there is an appearance of a sign factor sgn(τ) due to the considerations from
Remark 3.3.
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follows that the natural extensions of the maps Un give a well defined L∞ quasi-
isomorphism OT ∗[1]E  OT ∗[1]F :

Un(x1, . . . , xn) :=

{
same formula as before if all xi ∈ S(E ⊕ E∗)
0 otherwise.

Even though is not true in general that we can choose connections ∇E and ∇F that
are compatible with f and g , one situation where such choice can be made is if
g ◦ f = idE . Indeed, the condition g ◦ f = idE implies that both f and g are maps
of constant rank, so their images and kernels are bundles. Identifying E = Im f , we
can decompose F = E ⊕ ker g .
We can now take an arbitrary connection on E , an arbitrary connection on ker g
and define the sum of the two connections as the connection on F . This makes
the maps f : E → F and g∗ : E∗ → F ∗ compatible with the respective connections.
Therefore, the global version of Theorem 3.2 follows from the following proposition:

Proposition 3.6. Given a homotopy equivalence of vector bundles over M

EHE 77

f
))
F

g

ii HFgg

there is a dg vector bundle C and homotopy equivalences

E

iE
))
C

pE

ii H1gg and CH2 77

pF
))
F,

iF

ii

such that pE ◦ iE = idE and pF ◦ iF = idF .

Proof. We mimic the standard mapping cylinder construction from homological
algebra, see for example [14]. We define C = E ⊕ E[1] ⊕ F with differential
d(e, e′, y) = (de− e′,−de′, dy + f(e′)) .
The second homotopy equivalence depends only on f and is given by the maps
iF (y) = (0, 0, y) , pF (e, e′, y) = f(e) + y and H2(e, e

′, y) = (0, e, 0) .
The other homotopy equivalence is given by the maps iE(e) = (e, 0, 0) , pE(e, e′, y) =
e+HE(e

′) + g(y) and H1(e, e
′, y) =−gHF (y +HFf(e

′)− gfHE(e
′)) +HEg(y +HFf(e

′)− fHE(e
′)) +HEHE(e

′)
−g(y +HFf(e

′)− fHE(e
′))−HE(e

′)
HF (y +HFf(e

′) + fHE(e
′)))

.

3.3. Remarks about the hypothesis of homotopy equivalence
The reader might be surprised that it seems that we almost did not use F (in
particular HF ) at all in the proofs in section 3, by reducing the problem to work
with Rn instead of Un . The reason for this is that one can consider a “twisted
shifted cotangent bundle” ÕT ∗[1]E given by the same base space space but with the
twisted Lie bracket l̃T ∗[1]E .
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What we have shown is that (Rn)n>1 realise an L∞ isomorphism OT ∗[1]E  ÕT ∗[1]E

extending the identity map. The result follows from the fact that U1 defines a strict
Lie quasi-isomorphism ÕT ∗[1]E → OT ∗[1]F .
However, over manifolds M different from a point, to say that T ∗[1]E and T ∗[1]F
are homotopy equivalent as locally ringed spaces we need the full homotopy data.
The reason for this is while ∞-quasi-isomorphisms are quasi-invertible over R , that
is not necessarily the case over C∞(M) .

4. Applications

4.1. Equivalence of L∞ algebroid structures
Let E and F be non-positively graded split dg manifolds that are homotopy equiv-
alent via maps f ,g , HE and HF as in the conditions of the main Theorem 3.2.
Recall from Proposition 2.9 that L∞ algebroid structures over E are the same as
Maurer-Cartan elements of OT ∗[1]E(M) of biweight (∗, 1) . Since Un has biweight
(−n + 1,−n + 1) , it sends n elements of biweight (∗, 1) to an element of biweight
(∗, 1) . It follows that U : OT ∗[1]E  OT ∗[1]F maps Maurer-Cartan elements of bi-
weight (∗, 1) to Maurer-Cartan elements of biweight (∗, 1) . It follows from the
Goldman-Millson Theorem A.7 and the main Theorem 3.2 that E and F have the
same L∞ algebroid structures.

Theorem 4.1. Let E and F be split dg manifolds concentrated in non-positive
degrees that are homotopy equivalent. Then, there is a set bijection{

L∞ algebroid
structures on E

}
/gauge eq. 1:1←→

{
L∞ algebroid

structures on F

}
/gauge eq.

This result can be compared to the similar result of Pym and Safronov [28, Theorem
2.5]. Their approach follows the classical proof of the Homotopy Transfer Theorem
[25, Theorem 10.3.9] while ours is closer to its interpretation in terms of Maurer-
Cartan elements and gauge actions as in [11].

4.2. Isotropy of L∞ algebroids
Let us consider E = (E, dE, {lEn }n≥2) , an L∞ algebroid of bounded degree over a
manifold M and let us fix a point m ∈M . It is well known that on a neighborhood
U ⊂M of m , there exists a dg vector bundle (F, dF ) which is homotopy equivalent
to E|U , such that the restriction of the differential dF to the point m is trivial
dF |m = 0 (see the proof of [23, Proposition 1.3.5]).
Using Theorem 4.1 we can transfer the L∞ algebroid structure from E|U to one in
F = (F, dF , {lFn }n≥2) . This structure restricts to an L∞ algebra on the point m ,
where we have the identification Fm = H•(Em, dE) . Notice that when considering the
cohomology of an L∞ algebroid, authors typically consider the anchor ρ : E0 → TM
as part of the cochain complex therefore changing the cohomology in degree zero5.
In that case, the identification becomes Fm ⊃ ker ρ|m = H•(Em, dE + ρ) .

5 Keep in mind that the anchor is in principle not of constant rank, which means that ker ρ ⊂ F
is not a vector bundle. This is an important point in the study of singular foliations of [23].
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Moreover, since the restricted L∞ algebra structure on Fm has zero differential,
(Fm, l

F
2 ) is a strict (graded) Lie algebra. The higher brackets {lFn }n≥3 can be seen

as Lie analogs of the Massey products [36].
Concretely, the higher brackets {lFn }n≥3 correspond to a Maurer-Cartan element in
the Chevalley-Eilenberg complex of (Fm, l

F
2 ) , denoted by CE(Fm, l

F
2 ) . Since the

differential is trivial, they actually correspond to an obstruction class living in the
Chevalley-Eilenberg cohomology [lFn ] ∈ Hn

CE(H(Em, dE), H(Em, dE)) . In fact, since
the differential is zero, for every N ≥ 3 , {lFn }3≤n≤N gives an L∞ structure on Fm

and therefore a Maurer-Cartan element in CE(Fm, l2) . In particular, we obtain

Proposition 4.2. Given an L∞ algebroid E over M and a point m ∈M , there
is a canonically associated class [l3] ∈ H3

CE(H(Em, dE), H(Em, dE)) that vanishes if
the L∞ algebroid structure is homotopically trivial.

The NMRLA (No Minimal Rank Lie Algebroid) class [23] is an example of this class.

4.3. Shifted Poisson structures
The results that we present here are certainly connected to the theory of shifted
Poisson structures [8, 27], see also [3, 7] and [32].
Let E be a split dg manifold and (E, φE) an L∞ algebroid structure on E , i.e., φE

is a Maurer-Cartan element of OT ∗[1]E , as in the last section. One can then twist
the Poisson algebra OT ∗[1]E by φE to obtain the Lie algebra

OϕE

T ∗[1]E = (OT ∗[1]E, d
E + {φE,−}, {−,−}).

We propose the following definition of a 1-shifted Poisson structure.

Definition 4.3. A 1-shifted Poisson structure over the L∞ algebroid (E, φE) is
a Maurer-Cartan element in OϕE

T ∗[1]E of biweight (∗,≥ 2) .

This is notion is very close to what in [21, 17, 4] is referred to as an L∞ quasi-
bialgebra(oid). From Theorem 3.2 and Lemma A.5, we obtain the following result.

Corollary 4.4. Let E and F be homotopy equivalent split dg manifolds. Suppose
that φE and φF are L∞ algebroid structures on E and F respectively, such that
the map U constructed in Theorem 3.2 satisfies U(φE) = φF . Then, the 1-shifted
Poisson structures over E and F are in bijection up to gauge equivalence.

Recall from [37] “Voronov’s trick” that out of a decomposition of a Lie algebra g into
two Lie sub-algebras g = h ⊕ a , where a is abelian and a Maurer-Cartan element
π ∈ MC(h) produces an L∞ structure on a[1] with higher brackets ln given by
the iterated adjoint action ln(a1, . . . , an) = pra[. . . [π, a1], . . . , an] , where pra : g → a
denotes the projection.
Consider an L∞ algebroid (E, φE) . Voronov’s trick, applied to g = OϕE

T ∗[1]E , a =

S(Γ(E∗[−1])) , h the natural complement (elements of biweight (∗,≥ 1)) and π a
1-shifted Poisson structure, yields the following proposition:

Proposition 4.5. There exists an L∞ algebra structure on S(Γ(E∗[−1])) whose
differential is the one coming from the L∞ algebroid structure.
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Due to the compatibility with the product of functions, we actually obtain that the
L∞ structure extends to a homotopy shifted Poisson structure [8, 27] that is strict
on the product. This is what is called a derived Poisson algebra in [3].
Finally, for E concentrated in degree zero, we recover the classical notion of quasi-
Lie bialgebroids (see [31] for a definition of those and, e.g. [1], for the description in
terms of big bracket).

A. Recollections about L∞ algebras and Maurer-Cartan elements
In this Appendix we recall some of the classical homotopy theory of Lie algebras and
their Maurer-Cartan elements that are used in this paper. We assume that the Lie
algebras are unshifted, i.e., the bracket has degree zero, but all statements hold for
shifted Lie algebras c.f. Section 1.
Recall that an L∞ algebra structure on the differential graded vector space (A, d)
is a family of multilinear antisymmetric maps (the multibrackets) [−, . . . ,−] =
ln : A

⊗n → A of degree |ln| = 2−n for n ≥ 2 satisfying the higher Jacobi identities:∑
p+q=n+1

p,q>1

∑
σ∈Sh−1

q,p−1

sgn(σ)(−1)(p−1)q(lp ◦1 lq)σ = [d, ln], (5)

where Sh−1
q,p−1 ⊂ Sq+p−1 denotes the (q, p− 1) unshuffles.

Most results in this section can be generalized to L∞ algebras but since they are
not necessary for us they are stated in terms of Lie algebras and L∞ morphisms for
simplicity of formulas.

Definition A.1. An L∞morphism U : A B between two Lie algebras (A, lA, dA)
and (B, lB, dB) is a sequence of maps Un : SnA → B, ∀n ≥ 1 of degree 1−n such
that U1 commutes with the differentials, i.e [d,U1] = 0 and

[d,Un] =
∑

σ∈Sh−1
2,n−2

sgn(σ)(Un−1 ◦1 lA)σ −
∑

p+q=n
σ∈Sh−1

p,q

sgn(σ)(−1)p−1lB ◦ (Up,Uq)σ (6)

Definition A.2. Let g be a differential graded Lie algebra. A Maurer-Cartan
element is an element µ ∈ g1 of degree 1 that satisfies the equation

dµ+
1

2
[µ, µ] = 0

The set of Maurer-Cartan elements of a Lie algebra g is denoted by MC(g) .

Definition A.3. A filtered Lie algebra is a Lie algebra g equipped with a complete
descending filtration F• of Lie algebras i.e. g = F1g ⊃ F2g ⊃ F2g ⊃ . . . satisfying
[F ig,F jg] ⊂ F i+jg , such that g is complete with respect to this filtration

g = lim←−
k

g/Fkg.

Let g and h be filtered Lie algebras. It is easy to check that given an L∞ morphism
U = (Uk)k≥1 : g h compatible with the filtrations 6 and a Maurer-Cartan element

6 In the sense that Uk(F i1g, . . . , F ikg) ⊂ F i1+···+ikh .
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µ ∈ g , then, the element

U(µ) :=
∞∑
n=1

1

n!
Un(µ, . . . , µ) ∈ lim←− h/Fkh = h (7)

is a Maurer-Cartan element of h . Given a Maurer-Cartan element µ of a Lie algebra
g one often consider the corresponding twisted Lie algebra gµ .

Definition A.4. Let g be a differential graded Lie algebra and µ ∈ MC(g) . We
denote by gµ the twist of g by µ , which is a differential graded Lie algebra that is
equal to g as a graded Lie algebra, with differential given by

dgµ = dg + [µ,−].

Twisting is a homotopically stable property. The following result follows from a
simple spectral sequence argument.

Proposition A.5 ([9], Proposition 1). Let g and h be Lie algebras and U : g→ h
be an L∞ morphism. If for all k , U1 : Fkg→ Fkh is a quasi-isomorphism, then for
any µ ∈ MC(g), the induced map Uµ : gµ  hU(µ) is an L∞ quasi-isomorphism.

Given a Lie algebra g and a commutative algebra A , the space g ⊗ A inherits
a natural Lie algebra structure by declaring the bracket to be A-bilinear, that is
[X⊗a,X ′⊗a′] = [X,X ′]⊗aa′ . In the case of the polynomial forms A = Ωpoly([0, 1]) =
K[t, dt] , we get a natural Lie algebra structure on g[t, dt] .

Definition A.6. Let g be a Lie algebra and µ0, µ1 ∈ MC(g) two Maurer-Cartan
elements. They are said to be gauge equivalent if there is a Maurer-Cartan element
µt ∈ g[t, dt] interpolating µ0 and µ1 .

This definition amounts to say that µt can be written for all t ∈ [0, 1] as

µt = mt + htdt

where mt can be understood as a family of Maurer-Cartan elements in g , connected
by a family of infinitesimal homotopies (gauge transformations) ht ∈ g0 . The
Maurer-Cartan equation for µt translates into the two equations

dmt +
1

2
[mt,mt] = 0, ṁt + dht + [ht,mt] = 0.

Remarkably, the Goldman-Millson theorem states that under appropriate conditions
one can identify the Maurer-Cartan spaces of quasi-isomorphic Lie algebras.

Theorem A.7 (Goldman-Millson [10]). Let U : g → h be an L∞ morphism of
filtered Lie algebras. Suppose furthermore that on the associated graded level the
map grU : gr g =

⊕
F•g/F•+1g→ gr h is a quasi-isomorphism. Then, formula (7)

induces a bijection of sets

U : MC(g)/gauge equiv.→ MC(h)/gauge equiv.
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