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Abstract

Infinitesimal deformations are governed by partition Lie algebras. In charac-
teristic 0, these higher categorical structures are modelled by differential graded Lie
algebras, but in characteristic p, they are more subtle.

We give explicit models for partition Lie algebras over general coherent rings,
both in the setting of spectral and derived algebraic geometry. For the spectral
case, we refine operadic Koszul duality to a functor from operads to divided power
operads, by taking ‘refined linear duals’ of Σn-representations. The derived case
requires a further refinement of Koszul duality to a more genuine setting.
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CHAPTER 1

Introduction

Infinitesimal deformations over a field k of characteristic zero are governed by
differential graded Lie algebras. This paradigm, which was formalised by Lurie
[DAG X] and Pridham [Pri10], was recently generalised to arbitrary fields, cf.
[BM19].

Over E∞-rings, formal moduli are equivalent to spectral partition Lie algebras.
These are chain complexes with extra structure, which is parametrised by a sifted-
colimit-preserving monad Lieπk,E∞ satisfying the following formula on coconnective
V :

(1.1) Lieπk,E∞(V ) =
⊕
r

(
C̃•(Σ|Πr|�, k)⊗ V ⊗r

)
hΣr .

Here C̃•(Σ|Πr|�, k) denotes cochains on the doubly suspended rth partition com-
plex.

While useful for conceptual arguments as in [BW20], this abstract definition
can be somewhat elusive in concrete instances of deformation theory. In this work,
we construct concrete models for spectral partition Lie algebras over general (co-
herent) rings R, complementing the familiar differential graded Lie algebra models
in characteristic zero. To this end, we introduce an operad in the ordinary category
of chain complexes:

LieπR,E∞
:= LiesR ⊗ Sur∨R.

Here LiesR is the usual (shifted) R-linear Lie operad with LiesR(r) concentrated in
degree 1 − r, where it is spanned by the Lie words in r letters x1, . . . , xr which
involve each letter exactly once, modulo antisymmetry and the Jacobi identity.

The PD surjections operad Sur∨R is the operad of (nonunital) E∞-R-algebras
with divided powers which is inspired by the surjections operad of McClure–Smith
[MS03]. In homological degree −d ≤ 0, Sur∨R(r) is given by a free R-module
spanned by exhaustive sequences (u1, . . . , ur+d) of elements in {1, . . . , r} satisfying
uj �= uj+1 for all j.

The category of LieπR,E∞ -algebras in chain complexes comes with a notion of
‘tame weak equivalence’, finer than the usual notion of a quasi-isomorphism; invert-
ing these gives the ∞-category of spectral partition Lie algebras. This is surprising
as algebras over operads are defined using orbits, whereas the spectral partition Lie
algebra monad involves homotopy fixed points.

In the setting of simplicial commutative rings, formal moduli are equivalent to
derived partition Lie algebras, which are parametrised by a sifted-colimit-preserving
monad Lieπk,Δ satisfying a similar formula to (1.1), but with strict fixed points.

Modelling derived partition Lie algebras is slightly more involved than in the
spectral setting. First, we construct an operad LieπR,Δ in cosimplicial R-modules.

1
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The component LieπR,Δ(r)
d is given by R-valued functions on the set P (r)d of pairs

(σ, S) = ([σ0 < . . . < σt] , S0 ⊆ . . . ⊆ Sd) ,

where [σ0 < . . . < σt] is a strictly increasing chain of partitions of r = {1, . . . , r}
with σ0 = 1 2 3 . . . r and σt = 123 . . . r , and S0 ⊆ . . . ⊆ Sd = {0, . . . , t} is an

increasing chain of subsets. Here, we also allow the case t = −1. One can think of
(σ, S) as a levelled tree, together with a nested collection of sets of marked levels.

To equip a cosimplicial R-module g• with a restricted LieπR,Δ-algebra structure,

we must specify an element {a1, . . . , ar}(σ,S) ∈ gd for any tuple a = (a1, . . . , ar) of

elements in gd and all pairs (σ, S) ∈ P (r)d. But there is more: we must also specify
an element γ(σ,S)(a1, . . . , ar) with

|Σa,σ| · γ(σ,S)(a1, . . . , ar) = {a1, . . . , ar}γ(σ,S),

where Σa,σ ⊂ Σr is the group of symmetries of a fixing the chain of partitions σ.
These operations satisfy compatibility properties, which we will describe in detail.

Simplicial-cosimplicial restricted LieπR,Δ-algebras come with a notion of ‘tame
weak equivalence’; inverting these gives the ∞-category of derived partition Lie
algebras.

Spectral partition Lie algebras and derived partition Lie algebras do not arise
as algebras over an R-linear ∞-operad. Because of this, our constructions require
a twofold refinement of operadic Koszul duality, which is of independent interest.
First, we introduce a divided power refinement of ∞-operads, which we call ‘divided
power (PD) ∞-operads’. These allow us to take ‘continuous duals’ of the Σn-
representations appearing in an ∞-operad. Second, we study Koszul duality for
‘derived ∞-operads’; here, the group actions are more genuine, which lets us treat
structures like simplicial commutative rings.

Throughout, we rely on the formalism pro-coherent sheaves, which originated
in Deligne’s [Har66, Appendix] and is closely related to the theory of ind-coherent
sheaves [Gai13].

1.1. Statement of Results

Before stating our main results, we will briefly recall the formalism of pro-
coherent modules.

1.1.1. Pro-coherent modules. Any finite-dimensional k-vector space V can
be recovered from its linear dual MapVectk(V, k); if dim(V ) = ∞, this is no longer
true. However, we can take ‘continuous duals’ and send V to the pro-finite k-vector
space lim←−W⊂V f.d.

MapVectk(W,k); this induces an equivalence

Vectk
∼−→ Pro(Vectfink )op.

More generally, fix a coherent E∞-ring R (cf. [HA, Proposition 7.2.4.18]) and
write ModR for the ∞-category of R-module spectra. We can then refine the above
construction and assign to every R-module a pro-coherent R-module. This gives
a functor ι : ModR −→ QC∨

R to the stable ∞-category of pro-coherent R-modules
which we recall in Definition 2.16. We state several key properties of QC∨

R:

(1) QC∨
R admits a closed symmetric monoidal structure;
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(2) The functor ι : ModR → QC∨
R is a symmetric monoidal left adjoint, which

is fully faithful on connective R-modules. If R is eventually coconnective,
then ι is in fact fully faithful on all of ModR, and it is an equivalence when R
is a discrete regular Noetherian ring;

(3) The essential image of ι is not closed under taking duals. In fact, QC∨
R is

compactly generated by all ‘continuous duals’ M∨ := MapQC∨
R
(ι(M), R) of

coherent R-module spectra M .

If R is discrete, then ModR can be obtained from the category of ChR of chain
complexes by inverting quasi-isomorphisms. On the other hand, QC∨

R is modelled
by ChR with its tame model structure (cf. [Bec14]). It has more cofibrations, but
fewer weak equivalences, than the usual model structure on ChR. Indeed, a map
of complexes f : M → N is a tame weak equivalence precisely if for all (possibly
unbounded) complexes P of finitely generated free R-modules, the induced map of
complexes Hom(P,M) → Hom(P,N) is a quasi-isomorphism.

1.1.2. Pro-coherent symmetric sequences. Classically, the Koszul dual
KD(O) of an augmented ∞-operad O over R is formed in two steps: first, we form
the bar construction Bar(1,O, 1), then we take the R-linear dual to obtain KD(O).

We refine the second step by taking ‘continuous duals’ of symmetric sequences.
For this, we introduce the ∞-category sSeq∨R of pro-coherent symmetric sequences
in Definition 3.17, which is the home of continuous linear duals of symmetric se-
quences.

The nth term of a pro-coherent symmetric sequence is a pro-coherent R[Σn]-
module. In particular, pro-coherent modules are just pro-coherent symmetric se-
quences concentrated in arity 0.

If R is an ordinary ring, we will model sSeq∨R by equipping the category sSeqR

of symmetric sequences in ChR with the tame model structure in Definition 4.22.

Warning 1.1. Note that sSeq∨R is usually not equivalent to symmetric se-
quences in QC∨

R, as the spaces BΣn have infinite homological dimension.

1.1.3. Pro-coherent composition. Let OpaugR denote the ∞-category of
augmented ∞-operads, i.e. augmented algebra objects in (sSeqR, ◦), the monoidal
∞-category of symmetric sequences equipped with the usual composition product ◦.

For O ∈ OpaugR , the bar construction 1 ◦O 1 = Bar(1,O, 1) admits a coherently
coassociative comultiplication (cf. [DAG X, Section 4.3] or Section 3.4), which is
informally given by

1 ◦O 1 
 1 ◦O O ◦O 1 → 1 ◦O 1 ◦O 1 
 (1 ◦O 1) ◦ (1 ◦O 1).

To continuously dualise this map, we construct a monoidal product on sSeq∨R and
prove in Propositions 3.18 and 3.19:

Proposition 1.2 (Pro-coherent composition product). Let R be a coherent
E∞-ring. Then sSeq∨R admits a monoidal structure ◦, the pro-coherent composition
product, which preserves small colimits in the first and sifted colimits in the second
variable.

If X,Y are ‘continuous duals’ of symmetric sequences that are almost perfect,
we have

(1.2) X ◦ Y 

⊕
n

(
Xn ⊗ Y ⊗n

)
hΣn .
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Remark 1.3. If Y ∈ sSeq∨R is concentrated in degree zero, then so is X ◦ Y for
anyX∈sSeq∨R. Hence QC∨

R is left-tensored over (sSeq∨R, ◦
)
; the action

(
sSeq∨R, ◦

)
�

QC∨
R preserves sifted colimits.

For R a discrete coherent ring, we will give an explicit model for this composi-
tion product:

Theorem 4.31 (Point-set model for pro-coherent ◦ ). The composition product

(1.3) X ◦ Y =
⊕
n

(
Xn ⊗ Y ⊗n

)
Σn

on the model category sSeqR induces a monoidal structure on its ∞-categorical
localisation. The resulting monoidal ∞-category is equivalent to sSeq∨R with the
monoidal structure ◦ of (1.2).

Remark 1.4. It is somewhat surprising that formula (1.3) agrees with formula
(1.2) on continuous duals of suitably finite symmetric sequences, as (1.3) involves
strict orbits while (1.2) involves homotopy fixed points. This phenomenon relies on
two facts: first, invariants and coinvariants agree on projective R[Σn]-modules via
the norm; second, on bounded above complexes of finite projective R[Σn]-modules,
invariants and homotopy fixed points are equivalent.

1.1.4. Divided power operads and their algebras. We define a new no-
tion of ∞-operad:

Definition 1.5 (Divided power operads). Let R be a coherent E∞-ring. A

PD ∞-operad is an algebra object in (sSeq∨R, ◦). Write OppdR and Opaug,pdR for the
∞-categories of PD ∞-operads and augmented PD ∞-operads, respectively.

If R is discrete, consider the category OpR of ordinary operads in chain com-
plexes over R; these are often called dg-operads. In Theorem 4.36, we prove that

inverting tame weak equivalences in OpR gives the ∞-category OppdR .
In Theorem 4.38, we show that if P ∈ OpR is a dg-operad with tamely cofibrant

underlying symmetric sequence, then the ∞-category AlgP(QC∨
R) of pro-coherent

algebras over the corresponding PD ∞-operad P can be obtained from P-algebras
in chain complexes by inverting tame weak equivalences.

1.1.5. Refined Koszul Duality. Using that the continuous R-linear duality
functor (sSeqR, ◦)op → (sSeq∨R, ◦) is lax monoidal, we offer a refinement of the clas-
sical operadic Koszul duality construction of Ginzburg–Kapranov [GK95], Fresse
[Fre04], Salvatore [Sal98], and Ching [Chi05]:

Theorem 3.49 (Refined Koszul duality for operads). Let R be a coherent E∞-ring
spectrum. Then there is a commuting diagram of ∞-categories

Oppd,augR Oppd,aug,opR

OpaugR Opaug,opR

KDpd

υ

KD

ι

where the bottom functor sends an augmented ∞-operad to its classical Koszul dual
∞-operad, given by the Spanier–Whitehead dual of its bar construction.
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Example 1.6 (Partition Lie algebras). Over a field R = k, the refined Koszul
dual of the nonunital E∞-operad Enu

∞,k is a divided power ∞-operad Lieπk,E∞ =

KDpd(Enu
∞,k) which induces the spectral partition Lie algebra monad of [BM19,

Construction 1.20] on QC∨
k 
 Modk. In fact, our setup gives a definition of spectral

partition Lie algebras over any coherent E∞-ring; their relation to deformation
theory is the subject of future work.

We also offer a divided power refinement of Koszul duality for algebras:

Theorem 3.51 (Refined Koszul duality for algebras). Let R be a coherent E∞-ring
and P an augmented ∞-operad over R. There is a commuting diagram

AlgP(QC∨
R) AlgKDpd(P)(QC∨

R)
op

AlgP(ModR) AlgKD(P)(ModR)
op

KDpd

υ

KD

ι

where the bottom functor sends a P-algebra A to its classical Koszul dual algebra,
given by the Spanier–Whitehead dual of its bar construction.

Given a dg-operad P over a coherent ring R, one can construct a new dg-operad
KD(P) via the chain-level bar construction, cf. Construction 4.41. This generali-
sation of quadratic duality is due to Ginzburg–Kapranov [GK95] and studied in
depth by Getzler–Jones [GJ94] and Fresse [Fre04] (see also [LV12] for a textbook
account).

Theorem 4.42 (Chain models for Koszul duality). Fix a coherent ring R. Let
P be an augmented dg-operad over R with tamely cofibrant underlying symmetric
sequence and let P denote the corresponding PD ∞-operad.

Then the chain-level dual operad KD(P) is a model for the Koszul dual PD

∞-operad KDpd(P). Furthermore, inverting tame weak equivalences gives rise to a
commuting square of ∞-categories in which the vertical functors are equivalences

AlgP[W
−1
tame] AlgKD(P)[W

−1
tame]

op

AlgP(QC∨
R) AlgKDpd(P)(QC∨

R)
op.

KDP

� �
KDpd

P

1.1.6. Explicit Models for Spectral Partition Lie Algebras. Theo-
rem 4.42 lets us give explicit models for spectral partition Lie algebras, using the
following notation:

Notation 1.7 (Nondegenerate sequences). Given r ≥ 1, a nondegenerate se-
quence in r is an (ordered) sequence u = (u1, . . . , ur+d) of elements in r = {1, . . . , r}
such that each 1, . . . , r appears in the sequence and uα �= uα+1 for all α. If u does
not exhaust all of r or if uα = uα+1 for some α, then u is said to be degenerate.

For the sake of exposition, we suppress signs; they are specified in the main
text:

Definition 4.46 (Spectral partition L∞-algebra). Let R be a discrete coherent
ring. A spectral partition L∞-algebra is a chain complex of R-modules g, together
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with the following algebraic structure: given r ≥ 2 and a nondegenerate sequence
u = (u1, . . . , ur+d), there is an operation

{−, . . . ,−}u : g⊗r g

of homological degree −1− d. Furthermore, these operations satisfy:

(a) Equivariance. For every σ ∈ Σr, let σ(u) =
(
σ(u1), . . . , σ(ur+d)

)
. Then

{x1, . . . , xr}σ(u) = ±{xσ−1(1), . . . , xσ−1(r)}u
(b) Differential. For each nondegenerate sequence u = (u1, . . . , ur+d) in r and

each tuple x1, . . . , xr ∈ g, we have

∂{x1, . . . , xr}u =

r∑
i=1

±{x1, . . . , ∂(xi), . . . , xr}u

+

r+d+1∑
α=1

r∑
v=1

v 	=uα−1,uα

±{x1, . . . , xr}u+=(u1,...,uα−1,v,uα,...,ur+d)

+
r−2∑
k=2

∑
σ∈UnShu(k,r−k)

±
{
{xσ(1), . . . , xσ(k)}v(k,σ), xσ(k+1), . . . , xσ(r)

}
w(k,σ)

In the third row, we sum over the set UnShu(k, r− k) of (k, r− k)-unshuffles
σ which are compatible with u in the following sense: if we decompose the
subsequence of u consisting of all ui ∈ {σ(1), . . . , σ(k)} into intervals

u1 =
(
uα(1), uα(1)+1, . . . , uα(1)+β(1)

)
, . . . ,

un =
(
uα(n), uα(n)+1, . . . , uα(n)+β(n)

)
separated in u by elements in {σ(k + 1), . . . , σ(r)}, then uα(i)+β(i) = uα(i+1)

for all i.
Define v(k, σ) to be the sequence in k given by applying σ−1 to the se-

quence(
uα(1), . . . , uα(1)+β(1)−1, uα(2), . . . , uα(i)+β(i)−1, uα(i), . . . , uα(n)+β(n)

)
.

Define w(k, σ) as the sequence of elements of r − k + 1 obtained from u by
replacing each σ(k + i) (for i = 1, . . . , r − k) by 1 + i and replacing each of
the intervals u1, . . . ,un by a single copy of 1.

If v(k, σ) or w(k, σ) is degenerate, the corresponding term is zero.

Theorem 4.47 (Chain models for spectral partition Lie algebras I). Inverting tame
weak equivalences on the category of spectral partition L∞-algebras gives the ∞-
category AlgLieπR,E∞

(QC∨
R). In particular, when R = k is a field, localising spectral

partition L∞-algebras at the weak equivalences gives the ∞-category of partition Lie
algebras from [BM19, Definition 5.32].

We also provide a second model as algebras over a certain dg-operad LieπR,E∞
with tamely cofibrant underlying symmetric sequence. Two ingredients are needed:

(1) The usual (shifted) Lie operad LiesR;

(2) The PD surjections operad Sur∨R.
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The dg-operad LiesR is familiar. In weight r, LiesR(r) sits in homological degree
1−r, where it is generated by Lie words w(c1, . . . , cr) in r letters involving each letter
exactly once, modulo Jacobi identity and antisymmetry. For example, LiesR(3) is
a free R-module generated by the Lie words [c1, [c2, c3]], [c3, [c1, c2]] in degree −2.

The dg-operad Sur∨R constructed in Appendix A is an analogue of the Barratt–
Eccles operad (and the surjections operad [MS03]) for (nonunital) E∞-R-algebras
with divided powers. The Koszul dual of Sur∨R is the shifted Lie operad, see
Theorem A.14. Here Sur∨R(r) is a coconnective chain complex, which in homological
degree −d is a free R-module spanned by all nondegenerate sequences (u1, . . . , ur+d)
in r.

Example 1.8. Let k be a field. Then each Sur∨R(r) is a chain complex of
finitely generated free k[Σr]-modules. For any bounded above chain complex V , we
have

Sur∨R ◦V =
⊕
r

(
Sur∨R(r)⊗ V ⊗r

)
Σr

∼=
⊕
r

(
Sur∨R(r)⊗ V ⊗r

)Σr 

⊕
r

(V ⊗r)hΣr

The second isomorphism uses that the norm map is an isomorphism on finitely
generated free k[Σr]-modules, and the third that Sur∨R(r)⊗ V ⊗r is Σr-fibrant.

We then define the dg-operad LieπR,E∞ as a levelwise tensor product:

LieπR,E∞
:= LiesR ⊗lev Sur

∨
R .

We spell out the resulting structure of a LieπR,E∞ -algebra in Corollary 4.56, and
deduce:

Theorem 1.9 (Chain models for spectral partition Lie algebras II, cf. The-
orem 4.53). Inverting tame weak equivalences on the category of dg-algebras over
LieπR,E∞ gives an equivalence

AlgLieπ
R,E∞

[W−1
tame] 
 AlgLieπR,E∞

(QC∨
R).

In particular, when R = k is a field, localising Lieπk,E∞-algebras at weak equivalences
gives the ∞-category of partition Lie algebras from [BM19, Definition 5.32].

1.1.7. The Derived Setting. There is a second, more algebraic, generalisa-
tion of classical algebraic geometry based on simplicial commutative rings (rather
than connective E∞-rings). Here, formal moduli are controlled by derived partition
Lie algebras. To construct point-set models for these objects, we implement the
above programme in a more genuine setting. We briefly outline our main results,
but will leave detailed statements to the main text.

Let R be a coherent commutative ring. Given n ≥ 0, write R for the constant
Σn-Mackey functor corresponding to R, thought of as a genuine Σn-spectrum, and
consider the ∞-category ModΣn

R of R-modules in SpΣn .
In Definition 3.56, we assemble these into the ∞-category of derived symmetric

sequences sSeqgenR , which admits a composition product ◦, cf. Construction 3.63.

Passing to algebra objects leads to the ∞-category OpgenR of derived ∞-operads over
R. Identifying ModR with derived sequences in degree zero, we see that ModR is
left-tensored over sSeqgenR ; for any derived ∞-operad O, we obtain an ∞-category

of O-algebras AlgO(ModR).
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The bar construction of an augmented derived ∞-operad O is again equipped
with a comultiplication. To dualise it ‘continuously’, we introduce the ∞-category
sSeqgen,∨R of pro-coherent derived symmetric sequences in Definition 3.72.

Definition 3.76 gives sSeqgen,∨R a sifted-colimit-preserving product ◦ satisfying

X ◦ Y 

⊕
r

(
X(r)⊗ Y ⊗r

)
Σr .

Writing Opgen,pdR = Alg(sSeqgen,∨R , ◦) for the ∞-category of derived divided power
operads, we construct a Koszul duality functor

KDpd : Opgen,augR → Opgen,pd,aug,opR

in Definition 3.84, and give a version for algebras in Definition 3.85.
Using symmetric sequences in simplicial-cosimplicial R-modules, we construct

point-set models for the monoidal ∞-categories (sSeqgenR , ◦) and (sSeqgen,∨R , ◦) in

Theorem 5.22. This allows us to model derived (PD) ∞-operads in Theorem 5.26,
and their algebras in Theorem 5.27 and Remark 5.28.

Example 1.10 (Derived commutative rings). The unique operad Com in sets
with Com(r) = ∗ for all r gives rise to a derived ∞-operad ComR such that
AlgComR

(ModR)≥0 is the ∞-category of simplicial commutative (i.e. animated)

R-algebras. The ∞-category AlgComR
(ModR) is equivalent to the ∞-category of

derived R-algebras, which was also studied by Bhatt–Mathew, Raksit [Rak20]
and others, using the technique of extending monads via Goodwillie calculus from
[BM19, Section 3]. Our rectification result immediately implies that derived R-
algebras are modelled by simplicial-cosimplicial R-algebras (cf. Corollary 5.29).
These have appeared in the literature much earlier, for instance in the work of
Illusie [Ill71, Section I-4] and Kaledin [Kal15, Section 3].

Example 1.11. The non-unital version of Com is denoted Comnu; it differs
from Com in that Comnu(0) = ∅. For k a field, KDpd(Comnu

k ) defines derived
partition Lie algebras in the sense of [BM19, Construction 1.10].

We then give an explicit construction of the refined Koszul duality functor for
derived ∞-operads in Theorem 5.52. In Definition 5.40, we construct a cosimplicial
restricted operad

LieπR,Δ.

that models KDpd(Comnu
k ). Here LieπR,Δ(r)

d is dual to the set of nested chains of
partitions of r of length d, i.e. the set of pairs(

σ, S
)
=

(
[0̂ = x0 < · · · < xt = 1̂], S0 ⊆ · · · ⊆ Sd

)
where σ is a nondegenerate chain of partitions of r and S0 ⊆ · · · ⊆ Sd = {0, . . . , t}
is an increasing set of subsets. We allow t = −1 in this definition.

The explicit description of derived Koszul duality allows us to construct explicit
point-set models for derived partition Lie algebras in Theorem 5.42 of the main text:

Theorem 1.12 (Simplicial-cosimplicial models for partition Lie algebras). In-
verting tame weak equivalences on the category of simplicial-cosimplicial restricted
LieπR,Δ-algebras induces an equivalence of ∞-categories

Algsc,res
Lieπ

R,Δ
[W−1

tame] Alggen,pdLieπR,Δ
(QC∨

R).
�
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Hence when R = k is a field, the localisation of the category of simplicial-cosimplicial
restricted algebras over Lieπk,Δ at the weak equivalences is equivalent to the ∞-
category of partition Lie algebras from [BM19, Definition 5.47].

In Construction 5.43, we describe simplicial-cosimplicial restricted LieπR,Δ-
algebras over a field R = k as simplicial-cosimplicial modules with explicit op-
erations satisfying relations we specify.

1.2. Outline

We provide a brief outline of the structure of the paper. In the first half, we
give an ∞-categorical treatment of (derived) PD ∞-operads and their algebras;
in particular, we define the (derived) PD ∞-operad whose algebras are spectral
(derived) partition Lie algebras. The second half of the paper provides explicit
point-set models for these ∞-categorical objects.

We will start by collecting some results on ∞-categories of pro-coherent mod-
ules in Chapter 2. Most importantly, we show that a polynomial functor between
(coherent) additive ∞-categories admits a natural extension to a sifted-colimit-
preserving functor between the corresponding ∞-categories of pro-coherent mod-
ules.

In Chapter 3, we use this machinery to develop the theory of PD ∞-operads
and their algebras. In particular, this leads to a refinement of the usual Koszul
duality for operads (Section 3.4). In Section 3.4 we also provide a few more details
on the ∞-categorical bar construction, to fill in some gaps in the literature (as
pointed out in [DCH22]). Section 3.5 discusses the derived analogues of∞-operads
and PD ∞-operads over a simplicial commutative ring.

Chapter 4 provides chain models for PD ∞-operads over a discrete coherent
ring. In particular, we describe the tame homotopy theory of chain complexes
that is used to present the ∞-categories of pro-coherent modules and symmetric
sequences. Using this, we give chain complex models for spectral partition Lie
algebras.

Similarly, the ∞-categories of derived PD ∞-operads and their algebras admit
concrete models in terms of simplicial-cosimplicial R-modules, which are discussed
in Chapter 5. This allows for an explicit description of derived partition Lie
algebras in terms of simplicial-cosimplicial algebras with divided power operations.

Finally, Appendix A gives a detailed construction of the PD surjections op-
erad; this is used in Section 4 to provide a chain model for the spectral partition Lie
PD ∞-operad and also to produce a cofibrant model for the Lie operad. Appendix
B describes free algebras in monoidal ∞-categories where the tensor product does
not preserve colimits in the second variable (such as the composition product).

1.3. Acknowledgments

The authors wish to thank Nathan Adlam, Damien Calaque, Jacob Lurie,
Zhouhang Mao, Denis Nardin, Pelle Steffens, and Bruno Vallette for helpful con-
versations related to this paper, and the anonymous referee for their valuable sug-
gestions.

The first author would also like to thank Merton College and the Mathemat-
ical Institute at Oxford University for their support, as well as the Royal Society
(University Research Fellowship URF\R1\211075) and the Centre national de la



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

10 1. INTRODUCTION

recherche scientifique (CNRS). The second author acknowledges support by the
grant ANR-20-CE40-0016 HighAGT. The third author has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 768679).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAPTER 2

Functors on pro-coherent modules

The main goal of this chapter is to study sifted-colimit-preserving functors on
pro-coherent modules, which will be a key ingredient for our subsequent treatment
of refined Koszul duality via divided power ∞-operads.

2.1. Pro-coherent modules

We begin by discussing pro-coherent modules over additive ∞-categories. This
general framework will allow us to give a uniform treatment of several examples of
interest, including pro-coherent modules over a ring and pro-coherent symmetric
sequences. First, we recall several preliminary definitions.

An ∞-category A is additive if it admits finite products and coproducts and hA
is an additive category, cf. [SAG, Definition C.1.5.1]. This implies that products
and coproducts agree; we call them ‘direct sums’ and denote them by ⊕.

Definition 2.1 (Modules over additive ∞-categories). Given a small additive
∞-category A, the ∞-category of (left) A-modules is the initial presentable stable
∞-category receiving a functor from A that preserves finite direct sums:

(2.1) A ModA .

Stabilising [HTT, Proposition 5.3.6.2], we can identify ModA with the full sub-
category of Fun(Aop, Sp) spanned by the functors M : Aop −→ Sp preserving finite
direct sums. The fully faithful universal functor (2.1) then arises from the Yoneda
embedding, using that all mapping spaces in A are grouplike E∞-spaces in an es-
sentially unique way, cf. [SAG, Section C.1.5].

Example 2.2. Let R be a connective E1-ring spectrum in the sense of [HA,
Definition 7.2.4.16] and consider the additive∞-category VectωR of finitely generated
free left R-modules of the form R⊕n. The inclusion VectωR ↪→ ModVectωR can then
be identified with the usual inclusion VectωR ↪→ ModR into the ∞-category of left
R-modules. For a general additive ∞-category A, we will therefore refer to objects
in A as finitely generated free A-modules.

Remark 2.3. Our formalism is not well adapted to non-connective rings, as
we only remember the mapping spaces (not spectra) between objects in VectωR.

Example 2.4. Let Ai be a set of small additive categories and write
⊕

i Ai ⊆∏
i Ai for the full subcategory spanned by tuples of objects Vi ∈ Ai such that almost

all Vi are the zero object. Then
⊕

i Ai is additive and Mod⊕
i Ai



∏

iModAi
.

Definition 2.5 ((Co)connective modules). An A-module is said to be
(co)connective if the corresponding functor Aop −→ Sp takes values in
(co)connective spectra. In particular, the essential image of A ↪→ ModA consists of
connective A-modules. This defines a t-structure (ModA,≥0,ModA,≤0) on ModA.

11
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Example 2.6 (Opposite ∞-category). If A is an additive ∞-category, then
so is Aop. We write V ∨ ∈ Aop for the object corresponding to V ∈ A. One can
identify ModAop with the dual stable presentable ∞-category of ModA, i.e. the full
subcategory of Fun(ModA, Sp) spanned by the left adjoints. We will denote the
induced pairing between left and right A-modules by

−⊗A − : ModAop ×ModA −→ Sp .

For V ∨ ∈ Aop and W ∈ A, the spectrum V ∨ ⊗A W is simply the spectrum corre-
sponding to the grouplike E∞-space MapA(V,W ). In these terms, a right A-module
M is connective if and only if M ⊗A − is a right t-exact functor.

We introduce several standard finiteness conditions in this generalised setting:

Definition 2.7 (Finiteness conditions). Let A be a small additive ∞-category.
An A-module M is said to be:

(1) perfect if it is a compact object in ModA;

(2) almost perfect if for each n, there exists a perfect A-module N and a map
N −→ M with n-connective cofibre;

(3) coherent if it is almost perfect and eventually coconnective, which means that
M belongs to ModA,≤N for some N � 0.

We will denote the full subcategories of ModA spanned by the perfect, almost
perfect and coherent A-modules by PerfA, APerfA and CohA respectively.

Remark 2.8. The full subcategory PerfA,≥0 ⊆ ModA of connective perfect A-
modules is the smallest subcategory of ModA that contains A and is closed under
finite colimits and retracts. Similarly, the full subcategory APerfA,≥0 ⊆ ModA of
connective almost perfect A-modules is the smallest subcategory that contains A

and is closed under geometric realisations. In fact, every connective almost perfect
A-module X can be obtained as the geometric realisation of a simplicial object X•
in A, and the cofibre of the natural map X0 → |X•| 
 X is always 1-connective.

Definition 2.9 (Coherence). An additive ∞-category A is said to be left co-
herent if the t-structure on ModA restricts to a t-structure on APerfA. We will say
that A is coherent if both A and Aop are left coherent.

Example 2.10 (Coherent En-rings). If R is a connective En-ring spectrum as
in Example 2.2, then VectωR is (left) coherent if and only if R is a (left) coherent
E1-ring spectrum in the sense of [HA, Proposition 7.2.4.18].

Lemma 2.11. Let f : A0 −→ A be an additive functor between additive ∞-
categories and let f! : ModA0

� ModA : f∗ be the induced adjoint pair. If f∗

detects equivalences and f∗(A) ⊆ APerfA0
, then X ∈ ModA is almost perfect if

and only if f∗(X) ∈ ModA0
is almost perfect. Since f∗ commutes with truncation,

it then follows that A is coherent if A0 is coherent.

Proof. The functor f∗ sends almost perfect A-modules to almost perfect A0-
modules, because it preserves realisations and sends A into APerfA0

. On the other
hand, note that f! sends APerfA0

to APerfA. If f
∗(X) belongs to APerfA0

, we can
write X as a colimit of a simplicial diagram Bar•(f!f

∗, f!f
∗, X), which belongs to

APerfA. �
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Example 2.12 (Genuine equivariant spectra). LetG be a finite group and write
A(G) for its spectral Burnside ∞-category, with objects given by finite G-sets and
morphism spaces MapA(G)(X,Y ) given by the group completions of the E∞-spaces

of spans X ←− Z −→ Y of G-sets (with disjoint union). Note that ModA(G) 
 SpG

is the ∞-category of spectral Mackey functors [Bar17], or equivalently, genuine G-
spectra [GM11,Nar16]. Then A(G) is a coherent additive ∞-category. Indeed,
this follows by applying Lemma 2.11 where A0 is the free additive ∞-category
on the set of orbits {G/H} and f∗ : ModA(G) −→ ModA0

=
∏

H<G Sp simply
evaluates a spectral Mackey functor at G/H. The condition of Lemma 2.11 follows
from the fact that each MapA(G)(X,Y ) is an almost perfect spectrum (as it has

finitely generated homotopy groups).

The following example is of key significance in our treatment of derived ∞-
operads:

Notation 2.13 (Constant Mackey functors). Given a finite group G and an

abelian group A, let A ∈ SpG be the Eilenberg–Mac Lane spectrum corresponding
to the constant Mackey functor on A. Recall that this constant Mackey functor
sends a finite G-set X to the abelian group Map(X,A)G ∼= Map(X/G,A) consisting
of G-invariant functions X → A; restriction maps correspond to precomposition
and transfers to summation over fibres. In particular, A sends all orbits G/H
to the Eilenberg–Mac Lane spectrum of A. This assignment sends direct sums
of abelian groups to direct sums in SpG, so taking its sifted-colimit-preserving
extension provides a colimit-preserving functor ModZ,≥0 −→ SpG;A �−→ A defined
on connective Z-module spectra.

Lemma 2.14. The functor ModZ,≥0 −→ SpG;A �−→ A has a lax symmetric

monoidal structure, where the symmetric monoidal structure on SpG is given by
Day convolution.

Proof. Recall that for any ∞-category C and a presentable ∞-category V,
left Kan extension along the inclusion i : C −→ PΣ(C) into the sifted-colimit com-
pletion of C defines a fully faithful functor i! : Fun(C,V) −→ Fun(PΣ(C),V), whose
essential image consists of those functors that preserve sifted colimits. If C is sym-
metric monoidal and V is closed symmetric monoidal, then i! becomes a symmetric
monoidal functor with respect to Day convolution. In particular, i! preserves E∞-
algebras, i.e. if F : C −→ V is a lax symmetric monoidal functor, then its sifted-
colimit preserving extension i!(F ) is lax symmetric monoidal as well.

Applying this to ModZ,≥0 = PΣ(Vect
ω
Z), it remains to verify that VectωZ −→

SpG;A �−→ A is lax symmetric monoidal. This functor admits a factorisation

VectωZ SpG,♥ SpG

over the heart of SpG, i.e. the category of Mackey functors A(G) −→ Ab with

values in (discrete) abelian groups. The inclusion SpG,♥ ↪→ SpG is lax symmetric
monoidal and one readily verifies that sending A to the corresponding constant
Mackey functor is lax symmetric monoidal. �

Example 2.15 (Cohomological Mackey functors). If R is a connective E1-ring

spectrum over Z, then R defines an associative algebra in SpG, and we let ModGR =

ModR(Sp
G) denote the corresponding category of left modules. Let us point out
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that R differs from the E1-algebra denoted trivG(R) in [PSW22, Example 3.7],
whose modules are the (R-linear) derived Mackey functors A(G) −→ ModR of

Kaledin. The t-structure on SpG induces a left and right complete t-structure
on ModGR, in which an object M is (co)connective if and only if each M(X) is a
(co)connective spectrum for any finite G-set X.

Write R[OG] ⊆ ModGR,≥0 for the full (additive) subcategory spanned by the free
R-modules generated by finite G-sets X, i.e. of R-modules of the form R ⊗ Σ∞

+ X.

The objects of R[OG] are compact projective generators for ModGR,≥0, which implies
that there is an equivalence

ModR[OG] ModGR = ModR(Sp
G).∼

We then use Lemma 2.11 (as in Example 2.12) to show that R[OG] is a coherent
additive ∞-category if R is a coherent E1-ring spectrum over Z.

When R is a discrete ring, the objects in R[OG] are all contained in the heart
of the t-structure, i.e. they correspond to R-modules in the (ordinary) category of
Mackey functors A(G) −→ Ab with values in discrete abelian groups. Indeed, since

all suspension spectra of finite G-sets are dualisable in SpG, we have that

(
R⊗ Σ∞

+ X
)
(Y ) 
 HomSpG

(
Σ∞

+ Y,R ⊗ Σ∞
+ X

)

 HomSpG

(
Σ∞

+ (X × Y ), R
)

 R(X × Y )

so that R⊗ Σ∞
+ X corresponds to the Mackey functor Y �→ Map(X × Y,R)G.

Following Yoshida [Yos83], the category R[OG] can then be identified explic-

itly as follows: it is the full subcategory of the (ordinary) category Mod♥R[G] of

discrete R[G]-modules spanned by the R[G]-modules obtained as R-linearisations
of finite G-sets. We will denote such an R-linearisation of a G-set X by R[X]. This

identification of R[OG] is then induced by the functor evG : R[OG] −→ Mod♥R[G]

evaluating at the free G-set G ∈ A(G). Indeed, this functor sends R ⊗ Σ∞
+ X to

R[X] and one readily verifies that it is fully faithful, using that

MapR[OG]

(
R⊗ Σ∞

+ X,R⊗ Σ∞
+ Y

)

 MapSpG

(
Σ∞

+ (X), R⊗ Σ∞
+ Y

)

 R(X × Y ) = R[X × Y ]G

and likewise that MapR[G]

(
R[X], R[Y ]

)

 MapSetG(X,R[Y ]) 
 R[X × Y ]G.

After these recollections, we can now turn to the main topic of this subsection:

Definition 2.16 (Pro-coherent modules). Let A be a coherent additive ∞-
category. We define the ∞-category of pro-coherent (left) A-modules as

QC∨
A = Ind

(
CohopAop

)
.

More explicitly, one can identify QC∨
A with the ∞-category Funex(CohAop , Sp) of

exact functors M : CohAop −→ Sp.

Coherent modules are generally not preserved by (nonabelian) left derived func-
tors such as tensor products. It will therefore be convenient to give a slightly
different presentation of pro-coherent modules in terms of almost perfect modules.
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Definition 2.17 (Convergent functors). Let C be a stable ∞-category with a
left complete t-structure. If V is an ∞-category with sequential limits, a functor
F : C −→ V is said to be convergent if for any object X ∈ C, the natural map

F (X)
�−→ lim

m
F (τ≤mX)

is an equivalence. Write Funconv(C,V) ⊆ Fun(C,V) for the full subcategory spanned
by the convergent functors.

Remark 2.18. Note that a functor F : C −→ V as above is convergent if and
only if it preserves limits of all towers . . . −→ X1 −→ X0 in C with the property
that for each m ≥ 0, the tower . . . −→ τ≤mX1 −→ τ≤mX0 is eventually constant.

Lemma 2.19. Let C be a small stable ∞-category equipped with a left complete
t-structure, and write C+ ⊂ C for the full subcategory of eventually coconnective
objects. Given another ∞-category V with small limits, restriction determines an
equivalence Funconv(C,V) 
 Fun(C+,V), with inverse given by right Kan extension.

Proof. Since right Kan extension along the fully faithful inclusion C+ ↪→ V

defines a fully faithful functor Fun(C+,V) −→ Fun(C,V), it suffices to verify that a
functor is convergent if and only if it is right Kan extended from C+. This follows
from Remark 2.18 and the fact that for any X ∈ C, its Postnikov tower defines a
right cofinal functor N −→ C+

X/. �

Since CohAop 
 APerf+Aop , we obtain a new characterisation of coherent mod-
ules:

Corollary 2.20. Let A be a coherent additive ∞-category. Then there is an
equivalence QC∨

A 
 Funex,conv(APerfAop , Sp).

Remark 2.21. The exact functors CohAop −→ Sp and APerfAop −→ Sp are
determined by their restriction to connective objects, as all objects are eventually
connective.

Definition 2.22 (Dually almost perfect modules). We say that a pro-coherent
A-module M is dually almost perfect if the corresponding convergent exact functor
M : APerfAop −→ Sp is corepresentable by an almost perfect Aop-module. Write
APerf∨A ⊆ QC∨

A for the full subcategory spanned by these objects, and observe that
there is a (formal) equivalence of ∞-categories

(−)∨ : APerfopAop APerf∨A .�

We will now describe the relation between the ∞-categories of A-modules and
pro-coherent A-modules, their difference being controlled by t-structures. We start
by endowing pro-coherent modules with a t-structure.

Lemma 2.23 (Pro-coherent t-structure). Let A be a coherent additive
∞-category. Then QC∨

A carries a left complete, accessible t-structure such that
a pro-coherent module M is connective if and only if M : CohAop −→ Sp is right
t-exact.

Proof. The existence of the desired t-structure follows immediately from [HA,
Proposition 1.4.4.11]. It is left complete because the connective objects are closed
under products and the intersection

⋂
n QC∨

A,≥n contains only the zero object [HA,
Proposition 1.2.1.19]. �
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Remark 2.24. Note that a pro-coherent module M is connective if and only
if the associated exact convergent functor M : APerfAop −→ Sp is right t-exact.
Indeed, for each X ∈ APerfAop,≥0 the spectrum M(X) arises as the limit of a
tower of connective spectra M(τ≤nX) with connective fibres.

Remark 2.25 (Relation to ind-coherent modules). Let R be a coherent com-
mutative ring with dualising complex ωR. Then Serre duality gives an equivalence
QC∨

R 
 Ind(CohR). However, this equivalence does not identify the t-structure of
Lemma 2.23 with the t-structure on ind-coherent sheaves from [GR17, Proposi-
tion 1.2.2]. Instead, the induced t-structure on Ind(CohR) has connective objects
generated by ωR under colimits and extensions.

Using the pairing ModAop ×ModA −→ Sp from Example 2.6, every left A-
module M determines an exact functor (−) ⊗A M : CohAop −→ Sp. We obtain a
functor ι from A-modules to pro-coherent A-modules, which is part of an adjunction

ι : ModA QC∨
A : υ .

Observe that ι : ModA −→ QC∨
A is the unique colimit-preserving extension of its

restriction to A. In terms of Corollary 2.20, this restriction sends each V to the
convergent functor APerfAop −→ Sp corepresented by V , which we view as an
object in Aop.

Proposition 2.26. Let A be a coherent additive ∞-category. Then ι exhibits
ModA as the right completion of QC∨

A.

Proof. If M is a connective A-module, then (−) ⊗A M : CohAop −→ Sp is
right t-exact, and so ι is a right t-exact functor. To verify that ι restricts to an

equivalence ModA,≥0
�−−→ QC∨

A,≥0, first note that we can identify

ModA,≥0 ⊆ Fun(Aop, Sp≥0) and QC∨
A,≥0 ⊆ Fun(APerfAop,≥0, Sp≥0)

with the full subcategories spanned by additive functors and right exact convergent
functors, respectively, using Remark 2.24. In fact, note that every right exact
functor F : APerfAop,≥0 −→ Sp≥0 is automatically convergent, because the cofibre

of each F (X) −→ F (τ≤mX) is the (m+ 2)-connective spectrum F
(
τ≥m+1X[1]

)
.

Unravelling the definitions, we can identify the functor ι : ModA,≥0 −→ QC∨
A,≥0

with the functor taking left Kan extension along Aop −→ APerfAop

Fun⊕(A
op, Sp≥0) Funrex(APerfAop,≥0, Sp≥0).

In particular, ι is fully faithful, so it only remains to check that restriction along
Aop −→ APerfAop detects equivalences. This holds as any right exact functor
F : APerfAop,≥0 −→ Sp≥0 preserves geometric realisations as for any simplicial

diagram X• in APerfAop,≥0 and each m ≥ 0, the natural map |skmF (X•)| �−→
F |skm(X•)| −→ F |X•| has an (m+ 1)-connective cofibre. �

Remark 2.27 (The bounded case). Let A be a coherent additive ∞-category
such that there is an n such that HomA(V,W ) is n-coconnective for all V,W ∈ A.
Then there are inclusions of full subcategories Aop ⊆ CohAop ⊆ ModAop , and ι can
then be identified with the functor Fun⊕(A

op, Sp) −→ Funex(CohAop , Sp) taking
left Kan extension. Hence ι is fully faithful and preserves compact objects.
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Example 2.28. If R is a coherent connective E1-ring as in Example 2.2, set
QC∨

R := QC∨
VectωR

. Then ι is fully faithful if and only if R is eventually coconnective.

One implication follows directly from Remark 2.27. For the converse, unravelling
the definitions shows that for any connective E1-ring R and a left module M ∈
ModR, the unit map M −→ υ(ι(M)) can be identified with

M limn→∞
(
τ≤nR ⊗R M

)
.

Applying this to M =
⊕

k≥0R[−k] shows that R is eventually coconnective if ι is
fully faithful.

If R is furthermore Noetherian and E∞, then ι is an equivalence if and only if
R is discrete regular Noetherian, as in this case, any finitely generated R-module

admits a finite free resolution and the inclusion PerfRop
�−→ CohRop is an equiva-

lence.

Finally, let us mention the following condition that is somewhat dual to being
connective in the t-structure from Lemma 2.23:

Definition 2.29. We will say that a pro-coherent A-module M is of tor-
amplitude ≤ d if M : CohAop −→ Sp is left t-exact up to a shift by d, i.e. it
sends CohAop,≤0 to CohAop,≤d. Let us write QC∨

A,� d for the full subcategory of
pro-coherent modules of tor-amplitude ≤ d.

Example 2.30. Let R be a coherent connective E1-ring andM a left R-module.
Then the pro-coherent R-module ι(M) is of tor-amplitude ≤ d if and only if M
is of tor-amplitude ≤ d in the usual sense, i.e. for each discrete right R-module
N ∈ Mod♥Rop , the tensor product N ⊗R M is d-coconnective.

Example 2.31. Let A be a coherent additive∞-category andM ∈ APerf(Aop).
Then the dually almost perfect module M∨ ∈ QC∨

A from Definition 2.22 has tor-
amplitude ≤ d if and only if M is (−d)-connective.

2.2. Extended functors

We will now consider sifted-colimit-preserving functors QC∨
A −→ QC∨

B between
categories of pro-coherent modules. Our aim is to construct such functors as ex-
tensions of functors A −→ B, thereby generalising a method of the first author and
Mathew [BM19, Section 3.2], which is related to the work of Illusie [Ill71, Section
I-4] and Kaledin [Kal15, Section 3].

Notation 2.32. If C,V are two∞-categories with sifted colimits, let FunΣ(C,V)
be the full subcategory of Fun(C,V) spanned by the sifted-colimit-preserving func-
tors.

We start by recalling that for any small additive∞-category A, the objects in A

form compact projective generators for ModA,≥0. Given another∞-category V with
sifted colimits, restriction along A ↪→ ModA,≥0 therefore defines an equivalence
[HTT, Proposition 5.5.8.15]

(2.2) FunΣ
(
ModA,≥0,V

)
Fun

(
A,V

)
.�

The inverse is given by left Kan extension, and sends a functor F : A −→ V to its
nonabelian left derived functor.
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When A is a small coherent additive ∞-category, there is a similar method for
producing functors out of pro-coherent modules, where on the right hand side of
(2.2), we need to enlarge A to also include some non-connective objects.

We will use the following notion from [SAG, Appendix C]:

Definition 2.33 (op-prestable ∞-categories). An ∞-category C is said to be
op-prestable if Cop is a prestable ∞-category in the sense of [SAG, Definition
C.1.2.1]. In other words, C is op-prestable if there is a fully faithful embedding
ι : C ↪→ D into a stable ∞-category, with essential image closed under finite limits
and extensions. If ι is initial among such embeddings, we call D the stable envelope
of C; this is the case precisely if every object in D is an iterated suspension of
objects in C.

Definition 2.34 (The ∞-category APerf∨A,� 0). Let APerf∨A,� 0 ⊆ APerf∨A be
the full subcategory of dually almost perfect modules of tor-amplitude ≤ 0. By
Example 2.31, this is equivalent to the full subcategory spanned by the modules
M∨ with M ∈ APerfAop,≥0 connective. Note that APerf∨A,� 0 is an op-prestable

∞-category with stable envelope APerf∨A.
Likewise, let PerfA,� 0 ⊆ PerfA be the full subcategory of perfect A-modules

of tor-amplitude ≤ 0, or equivalently, of perfect A-modules with connective dual
Aop-module. Then PerfA is the stable envelope of PerfA,� 0.

Remark 2.35. Note that APerf∨A,� 0 is generally different from APerfA,≤0, the
full subcategory of almost perfect modules which are coconnective in the t-structure
considered in Lemma 2.23. For example, take A = Vectωk[ε] as in Example 2.2. The

augmentation k[ε] → k induces a functor QC∨
k[ε] → QC∨

k 
 Modk which preserves

(dually) almost perfect objects. In QC∨
k 
 Modk, these are just complexes bounded

below (above) with finite-dimensional homotopy groups. The discrete k[ε]-module
k is connective almost perfect, and so k∨ belongs to APerf∨A,� 0. However, k∨ is
not almost perfect, as k is not dually almost perfect since k ⊗k[ε] k does not have
bounded above homotopy.

Note also that APerf∨A,� 0 can be different from APerf∨A,≤0, the full subcategory
of dually almost perfect modules which are coconnective. For example, take k[ε1]
the trivial square-zero extension of k by a class in degree 1. Then k[ε1]

∨ = k[ε1]
belongs to APerf∨A,� 0, but is not coconnective as there is a nonzero map Σk[ε1] →
k[ε1].

Recall that a simplicial object in an ∞-category is called m-skeletal if it is the
left Kan extension of its restriction to Δop

≤m.

Notation 2.36 (Finite stable geometric realisations). If C is an op-prestable
∞-category and V admits geometric realisations, then a functor F : C −→ V is said
to preserve finite stable geometric realisations if the following condition holds: if X•
is a simplicial object in C such that the image in the stable envelope of C ism-skeletal
for some m and has its geometric realisation contained in C, then the natural map
|F (X•)| −→ F (|X•|) is an equivalence. We write Funσ(C,V) ⊆ Fun(C,V) for the full
subcategory spanned by the functors preserving finite stable geometric realisations.

Remark 2.37. If C is already stable, we will also refer to finite stable geometric
realisations as finite geometric realisations.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2.2. EXTENDED FUNCTORS 19

Definition 2.38 (Regular functors). Let A be a coherent additive ∞-category.
If V is an ∞-category with sequential colimits, then a functor F : APerf∨A −→ V is
said to be regular if the composite

APerfAop
�−→ (APerf∨A)

op −→ Vop, V �→ F (V ∨)

is convergent in the sense of Definition 2.17. Write

Funreg
(
APerf∨A,V

)
⊆ Fun

(
APerf∨A,V

)
for the full subcategory spanned by the regular functors.

We begin by restricting from pro-coherent to dually almost perfect modules:

Proposition 2.39. Let A be a coherent additive ∞-category and V a pre-
sentable ∞-category. Restriction determines an equivalence of ∞-categories

FunΣ
(
QC∨

A,V
)

Funσ,reg
(
APerf∨A,V

)
,�

the inverse of which is given by left Kan extension.

Proof. Recall that each QC∨
A is compactly generated by CohopAop . The proof

of [BM19, Proposition 3.9] then shows that restriction and left Kan extension
determine an adjoint equivalence Funσ

(
CohopAop ,V

)
� FunΣ

(
QC∨

A,V
)
, where the

domain is the full subcategory of functors preserving finite geometric realisations.
Hence, it suffices to verify that restriction and left Kan extension determine an
adjoint equivalence Funσ

(
CohopAop ,V

)
� Funσ,reg

(
APerf∨A,V

)
. This follows from

(the opposite of) Lemma 2.19 and the fact that given an m-skeletal simplicial
diagram X∨

• in APerf∨A, there is a sequence of m-skeletal diagrams (τ≤nX•)
∨ in

CohopAop with colimit X∨
• . �

In a second step, we restrict even further from APerf∨A to the ∞-category
APerf∨A,� 0 of dually almost perfect modules of tor-amplitude ≤ 0 (cf. Defini-
tion 2.34):

Proposition 2.40. Let A be an additive ∞-category and V an ∞-category with
sifted colimits. Then restriction determines an equivalence of ∞-categories

FunΣ
(
ModA,V

)
Funσ

(
PerfA,� 0,V

)�

with inverse given by left Kan extension. If A is furthermore coherent, this extends
to a commuting square

FunΣ
(
QC∨

A,V
)

Funσ,reg
(
APerf∨A,� 0,V

)

FunΣ
(
ModA,V

)
Funσ

(
PerfA,� 0,V

)

�

ι∗

�

where the horizontal equivalences are given by restriction, with inverses given by
left Kan extension.

The assertion about sifted-colimit preserving functors out of ModA follows from
exactly the same argument as [BM19, Proposition 3.14]. For the second assertion
in Proposition 2.40, we will need two auxiliary observations.
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Lemma 2.41. Let A be an additive ∞-category and M ∈ APerfA,≥n. There is a
right cofinal functor Δ −→ (APerfA,≥n+1)M/ such that the underlying cosimplicial
diagram is 1-coskeletal and the above diagram exhibits M as its limit.

Proof. Since M is almost perfect and n-connective, there exists a cofibre
sequence V [n] −→ M −→ M0 of A-modules with V ∈ A and M0 ∈ APerfA,≥n+1,

cf. Remark 2.8. Let M• be the ‘Čech conerve’ of the map M −→ M0. This
determines a functor φ : Δ −→ (APerfA,≥n+1)M/ with the desired two properties.
It remains to verify that φ is right cofinal. To this end, letN be an (n+1)-connective
almost perfect module equipped with a map f : M −→ N . We have to show that
the over-category Δ/f is contractible. Note that the projection Δ/f −→ Δ is the
right fibration classifying the simplicial space

Δop S; [n] Map(Mn, N)×Map(M,N) {f}.

We have to check that the geometric realisation of this simplicial space is con-
tractible, for which it suffices to show that the natural map |Map(M•, N)| −→
Map(M,N) is an equivalence. Since M• is the Čech conerve of M −→ M0, the
above diagram is the Čech nerve of the map Map(M0, N) −→ Map(M,N). It
therefore suffices to verify that this map of spaces induces a surjection on π0. In
other words, for any map g : M −→ N , we need to provide a null-homotopy of the
composition V [n] −→ M −→ N . This follows immediately from the assumption
that N was (n + 1)-connective and that Hom(V,−) : ModA −→ Sp is t-exact for
all V ∈ A. �

Lemma 2.42. Let A be a coherent additive ∞-category and V an ∞-category
with sifted colimits. For any functor F : APerf∨A −→ V, the following are equivalent:

(1) F preserves finite geometric realisations.

(2) F is left Kan extended from its restriction to APerf∨A,� 0, which preserves finite
stable geometric realisations.

Proof. Set X = APerf∨A. Given m ≥ 0, write Xm = APerf∨A,≥−m ⊆ X for
the full subcategory spanned by those dually almost perfect modules with (−m)-
connective duals. Note that each Xm is op-prestable, with stable envelope X, and
there is a colimit sequence of∞-categories X0 X1 X2 . . . X.

Arguing as in [BM19, Proposition 3.11], it suffices to verify inductively that for
all m, the functor F

∣∣
Xm

preserves finite stable geometric realisations if and only if it

is right Kan extended from Xm−1 and the restriction F
∣∣
Xm−1

preserves finite stable

geometric realisations. First, if F
∣∣
Xm

preserves finite stable geometric realisations,

we have to prove that for every M ∈ Xm, the map colimMα∈(Xm−1)/M F (Mα) →
F (M) is an equivalence in V. Using the opposite of Lemma 2.41, we can replace
the colimit in the domain by a finite stable geometric realisation; the result then
follows from the assumption that F preserves such geometric realisations.

For the converse, let M• be a finite simplicial diagram in Xm with M−1 =
|M•| contained in Xm as well. There exists a fibre sequence in X of the form
M−1,0 −→ M−1 −→ V [m], with V ∈ A and M−1,0 ∈ Xm−1. For all p ≥ 0, the
composite Mp −→ M−1 −→ V [m] has fibre Mp,0 in Xm−1 as well. Let M•,• be

the bisimplicial diagram arising as the Čech nerve of the natural transformation
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M•,0 −→ M•, so that Mp = colimq Mp,q. We then have a commuting square

F (M−1) = F (colimp,q Mp,q) colimp F (colimq Mp,q) = colimp F (Mp)

colimq F (colimq Mp,q) colimp,q F (Mp,q).

Assuming that F
∣∣Xm is left Kan extended from Xm−1, the two vertical maps are

equivalences by the opposite of (the proof of) Lemma 2.41. For each q ≥ 0, |M•,q| is
the finite stable geometric realisation of a simplicial diagram in Xm−1. Since F

∣∣
Xm−1

preserves such geometric realisations by assumption, the bottom horizontal map is
an equivalence. This implies that the top horizontal map is an equivalence, i.e.
F

∣∣
Xm

preserves finite stable geometric realisations. �

Proof (of Proposition 2.40). The first equivalence follows in exactly the
same way as [BM19, Proposition 3.14]. Alternatively, it follows by substituting
perfect A-modules for almost perfect A-modules in Lemma 2.41 and Lemma 2.42.
For the top equivalence when A is coherent, it suffices by Proposition 2.39 to verify
that restriction and left Kan extension define an adjoint equivalence

Funσ,reg
(
APerf∨A,V

)
Funσ,reg

(
APerf∨A,� 0,V

)
.�

It suffices to verify that F : APerf∨A −→ V is regular and preserves finite geometric
realisations if and only if it is left Kan extended from APerf∨A,� 0 and its restriction

to APerf∨A,� 0 is regular and preserves finite stable geometric realisations. This
follows from Lemma 2.42 by unravelling the regularity conditions in (1) and (2). �

We will now use Proposition 2.40 to construct functors QC∨
A −→ V, respectively

ModA −→ V from functors A −→ V, thereby generalising [BM19, Section 3.2] to
coherent rings:

Definition 2.43 (Right extendable functors). LetA be an additive∞-category
and V an ∞-category with small limits and colimits. A functor F : A −→ V is:

(1) right extendable if its right Kan extension FR : PerfA,� 0 −→ V along the
inclusion A ↪→ PerfA,� 0 preserves finite stable geometric realisations.

(2) if A is coherent: coherently right extendable if its right Kan extension
FR : APerf∨A,� 0 −→ V along the inclusion A ↪→ APerf∨A,� 0 is regular and
preserves finite stable geometric realisations.

Construction 2.44 (Right-left extension). Given a right-extendable functor
F as in Definition 2.43 (1), the right-left derived functor of F is given by the
sifted-colimit-preserving functor FRL : QCA −→ V provided by Proposition 2.40.

If A is coherent and F is coherently right-extendable, the coherent right-left de-
rived functor of F is the sifted-colimit-preserving functor FRL : QC∨

A → V provided
by Proposition 2.40.

Note that a coherently right extendable functor is in particular right extendable.

Remark 2.45. In the setting of Definition 2.43, restriction along A −→ ModA
defines an equivalence between the full subcategory of Fun(A,V) spanned by the
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right extendable functors and the full subcategory of Fun(ModA,V) on those func-
tors that preserve sifted colimits and also finite totalisations of diagrams in A, by
Proposition 2.40 and Remark 2.8.

Likewise, restriction along A −→ QC∨
A defines an equivalence between the full

subcategory of Fun(A,V) on the coherently right extendable functors and the full
subcategory of Fun(QC∨

A,V) on those functors that preserve all sifted colimits and
also totalisations of cosimplicial diagrams in A.

Generalising [BM19, Theorem 3.27], our main source of examples comes from
functors of finite degree [EML54], or a mild generalisation thereof:

Proposition 2.46. Let A be a (coherent) additive ∞-category and V a stable
∞-category with small limits and colimits, equipped with a right complete t-structure
such that V≤0 is closed under countable direct sums. Then:

(1) Let F : A −→ V be a functor of finite degree with values in V≤0. Then F is
(coherently) right extendable.

(2) More generally, let F1 −→ F2 −→ . . . be a countable sequence of functors
Fi : A −→ V as in (1). Then F := colimi Fi is (coherently) right extendable
and the natural map colimi

(
FRL
i

)
−→ FRL is an equivalence.

Proof. We will only deal with the coherent case, the non-coherent case being
similar but easier.

For (1), consider the opposite functor F op : Aop → Vop, which is also a func-
tor of finite degree r. As in [BM19, Proposition 3.35], the left Kan extension
F ′ : ModAop,≥0 → Vop preserves sifted colimits and is r-excisive. Theorem 3.36 and
Proposition 3.37 in [BM19] together imply that F ′ preserves finite stable totalisa-
tions. It also preserves limits of Postnikov towers: indeed, since F op : Aop → Vop

takes values in connective objects, each map F ′(M) → F ′(τ≤nM) has (n + 1)-
connective fibres, so that the tower for M converges by left completeness of the
t-structure on Vop. We conclude that the restriction of F ′ to APerfAop is conver-
gent and preserves finite stable totalisations. Passing to opposite categories, we see
that FR : APerf∨A → V is regular and preserves finite stable geometric realisations.

For (2), the previous argument gives a functor F ′ := limi F
′
i : APerfAop,≥0 →

Vop which preserves finite stable totalisations and limits of Postnikov towers. We
claim that F ′ is the left Kan extension of F op : Aop → Vop; dually, this means that
FR 
 colimi F

R
i , which implies assertion (2). For the claim, note that F ′ agrees

with F op on Aop, so that it suffices to show that F ′ preserves geometric realisations.
For any simplicial diagram M• in APerfA, we have

|F ′(M•)| =
∣∣ limi F

′
i (M•)

∣∣ limi

∣∣F ′
i (M•)

∣∣ limi F
′
i

(
|M•|

)
= F ′(|M•|

)
.� �

The first equivalence uses that geometric realisations commute with limits of towers
of connective objects in Vop; this in turn follows from the fact that geometric reali-
sations commute with countable products, since Vop is left complete and connective
objects are closed under products. The second equivalence follows because each F ′

i

preserves sifted colimits by construction. Passing to opposite categories, we deduce
that the functors FR

i , FR : APerf∨A → V have the desired properties. �

Proposition 2.46 lets us extend certain functors between additive ∞-categories:
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Definition 2.47. Let A,B be additive ∞-categories. A functor F : A → B is
called locally polynomial if it arises as the colimit of a sequence F1 → F2 → . . . of
functors from A to B, such that:

(1) For each X ∈ A, the sequence F1(X) → F2(X) → . . . is eventually constant.

(2) Each Fi : A → B → Perf(B) is a functor of finite degree, i.e. there exists an
r ≥ 0 such that the cross-effect crr+1 : A

×r+1 → Perf(B) vanishes.

The composition of two locally polynomial functors is again locally polynomial.

Notation 2.48. Write Addcoh,poly for the (non-full) subcategory of Cat∞
spanned by coherent additive∞-categories and locally polynomial functors between
them.

Corollary 2.49. Let F : A → B be a locally polynomial functor between
coherent additive ∞-categories. Then the following diagram admits a unique ex-
tension as indicated

(2.3)

A ModA QC∨
A

B ModB QC∨
B

F

ι

F ′ F ′′

ι

such that F ′ preserves sifted colimits and finite totalisations and F ′′ preserves sifted
colimits and all totalisations of cosimplicial diagrams in A.

Proof. Uniqueness follows immediately from Remark 2.45. For existence,
we may assume without restriction that F has finite degree r. Indeed, if F is a
sequential colimit of finite degree functors Fi, we can simply take the sequential
colimit of the extensions F ′

i and F ′′
i , which has the desired properties by Proposition

2.46.
For the existence of F ′′, we will apply Proposition 2.46. Indeed, note that

QC∨
B = Ind

(
CohopBop

)
admits a second, right complete t-structure, such that F

takes values in coconnective objects: the connective part of this t-structure is the
ind-completion of (CohBop,≤0)

op, and its coconnective part is the ind-completion
of (CohBop,≥0)

op. We will not use this second t-structure elsewhere.
For the existence of F ′, it suffices to show that F ′′ maps PerfA,� 0 into PerfB,� 0;

the desired extension F ′ is then the left Kan extension of the following composite:

PerfA,� 0 PerfB,� 0 ModB .F ′′

To see that F ′′ preserves the duals of perfect connective objects, we observe that
the functor F ′′ : APerf∨A,� 0 → APerf∨B,� 0 is opposite to an r-excisive functor
APerfAop,≥0 → APerfBop,≥0 sending Aop to Bop.

Such functors preserve perfect objects. Indeed, write E ⊂ APerfAop,≥0 for
the full subcategory of all M for which F ′′(M) perfect. Given a cofibre sequence
X → V → C with X ∈ E and V ∈ Aop, we form the strongly coCartesian cube with
‘initial legs’ X → V . Its colimit V ⊕X . . .⊕XV can be identified with V ⊕C⊕. . .⊕C.
Hence F (C) perfect, as it is a retract of the perfect module F (V ⊕ C ⊕ . . . ⊕ C).
As E also contains 0 and is closed under retracts, we conclude PerfAop,≥0 ⊂ E. �

Example 2.50 (Divided orbits). Given a coherent E1-ring R and a finite group
G, we will write R[G] = R ⊗ Σ∞

+ G for the associated group ring, which is again
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coherent. The evident map R[G] → R induces a limit-preserving functor ModR →
ModR[G]. Restricting its left adjoint induces an additive functor

(−)hG : PerfR[G] → PerfR,

which on underlying spectra takes homotopy orbits. We right-left extend using
Corollary 2.49 to obtain a functor

(−)dG : QC∨
R[G] −→ QC∨

R .

The functor (−)dG behaves like a mix between homotopy orbits and fixed points.
Indeed, if V ∈ APerfR[G],≥0 is almost perfect and connective, we can write

V = |V•| as a realisation of a simplicial diagram in VectR[G] and compute

VdG 
 |(V•)hG| 
 VhG.

If, on the other hand, we have V ∈ APerf∨R[G],� 0, then we can find a cosimplicial

diagram V • in VectR[G] with V 
 Tot(V •). As the norm is an equivalence on objects

in VectR[G], we compute VdG 
 Tot(V •
hG) 
 Tot((V •)hG) 
 Tot(V •)hG 
 V hG. In

fact, since the functors (−)dG, (−)hG, and (−)hG are exact, we obtain identifications
VdG 
 VhG for all V ∈ APerfR[G] and VdG 
 V hG for all V ∈ APerf∨R[G].

Example 2.51 (Derived orbits and genuine fixed points). For a coherent E1-

ring spectrum R over Z and a finite group G, let ModGR = ModR(Sp
G) be the ∞-

category from Example 2.15. Recall that taking genuine G-fixed points defines a
functor (−)G : ModGR −→ ModR that preserves both limits and colimits; in terms of
spectral Mackey functors, this simply evaluates at the trivial G-orbit G/G ∈ A(G).
Its left adjoint is the functor

trivG : ModR ModGR; M R⊗R M

where R ⊗R M denotes the spectral Mackey functor given by (R ⊗R M)(X) =
R(X)⊗R M . One can think of this as an R-linearised version of endowing M with
the trivial G-action.

The constant spectral Mackey functor R has the rather special feature that
trivG also preserves limits: indeed, since the genuine H-fixed points jointly detect
limits, this follows from the fact that trivG(M)H = R(G/H)⊗R M 
 M . We will

denote by (−)G : ModGR −→ ModR the corresponding left adjoint to trivG.
These three functors restrict to (adjoint) functors between finitely generated

free objects

(−)G : R[OG] −→ VectωR, trivG : VectωR −→ R[OG], (−)G : R[OG] −→ VectωR .

Indeed, one readily verifies that (R⊗Σ∞
+ (G/H))G and (R⊗Σ∞

+ (G/H))G are both
equivalent to R. When R is a discrete ring, Example 2.15 identifies R[OG] with the
ordinary category of R[G]-modules R[X] induced by finite G-sets, and the above
three functors coincide with taking (strict) G-coinvariants, trivial G-modules and
G-invariants, respectively.

Using Corollary 2.49, we then obtain colimit-preserving functors

(−)G : QC∨
R[OG] −→ QC∨

R (−)G : QC∨
R[OG] −→ QC∨

R

taking derived orbits and derived genuine fixed points. Note that the derived genuine
fixed points functor (−)G behaves as expected on dually almost perfect objects: for
any cosimplicial diagram V • in R[OG] one has that Tot(V •)G 
 Tot((V •)G).
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2.3. Monoidal structures

Corollary 2.49 provides the main source of functors between categories of pro-
coherent modules for us. To express the functoriality of these derived functors, let
PrSt,Σ ⊂ Cat∞ be the (non-full) subcategory of (large) ∞-categories on the sta-
ble presentable ∞-categories with sifted-colimit-preserving functors between them.
Both PrSt,Σ and Addcoh,poly are closed under finite products.

Theorem 2.52. There is a natural transformation of symmetric monoidal func-
tors

Addcoh,poly PrSt,Σ

Mod

QC∨

ι

sending each coherent additive ∞-category A to QC∨
A and each locally polynomial

functor to its (right-left) derived functor.

Proof. The entire diagram can be described as a single product-preserving
functor F : Addcoh,poly → Ar

(
PrSt,Σ

)
to the arrow category. To construct F ,

consider the subcategory X ⊆ Fun(Δ[2],Cat∞) consisting of sequences of the form
A → ModA → QC∨

A, with maps between them given by natural diagrams as in
(2.3), where F is polynomial and F ′ (respectively F ′′) preserves sifted colimits and
totalisations of coskeletal (respectively all) cosimplicial diagrams in A. The functor

F then arises from the zig-zag Addcoh,poly
�←− X → Ar

(
PrSt,Σ

)
, where the left

functor is an equivalence by Corollary 2.49.
To see that F preserves finite products, it suffices to verify that the natural

maps A×B → ModA ×ModB and A×B → QC∨
A ×QC∨

B extend to equivalences

ModA×B 
 ModA ×ModB QC∨
A×B 
 QC∨

A ×QC∨
B .

The first equivalence follows from ModA×B,≥0 
 ModA,≥0 ×ModB,≥0, which holds
because both ∞-categories have A × B as compact projective generators. This
implies that the natural map CohAop×Bop → CohAop ×CohBop is an equivalence as
well, and the second equivalence follows by ind-completing. �

Remark 2.53. If F :
⊕

i Ai → B is a polynomial functor which is additive in
the k-th variable, then its extension FRL :

∏
i QC∨(Ai) → QC∨

B preserves sifted
colimits in each variable and small colimits in the k-th variable.

Example 2.54 (Monoidal structure on pro-coherent modules). Let R be a
coherent En+1-algebra. Then the En-monoidal structure ⊗R on ModR restricts to
a tensor product on the additive ∞-category VectR. Since this is linear in each
variable, this determines an En-algebra in Addcoh,poly. By Theorem 2.52, QC∨

R

inherits an En-monoidal structure, which preserves colimits in each variable by
Remark 2.53, and the functor ι : ModR → QC∨

R is En-monoidal. More explicitly,
Proposition 2.40 can be used to realise QC∨

R as an En-monoidal localisation of
Fun(APerfRop,� 0, Sp), equipped with the Day convolution product.

In the presence of a symmetric monoidal structure on QC∨
A satisfying mild con-

ditions, dually almost perfect modules and almost perfect modules are related by
duality:
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Proposition 2.55. Let A be a coherent additive ∞-category equipped with
a nonunital symmetric monoidal structure ⊗ which preserves finite sums in each
variable, and moreover satisfies the following conditions:

(1) The nonunital closed monoidal structure on QC∨
A, constructed as in Exam-

ple 2.54, admits a unit 1, which is eventually connective.

(2) Every object in A is dualisable, with dual contained in A.

Then taking duals determines an equivalence

(−)∨ := Hom(−,1) : APerfA (APerf∨A)
op.�

Proof. It suffices to show that (−)∨ : QC∨
A → (QC∨

A)
op preserves totalisations

of cosimplicial objects in A. This will imply the result because (−)∨ restricts to an
equivalence on A by (1) and preserves small colimits.

So letM• be a cosimplicial diagram inA. As QC∨
A ⊂ Fun((APerf∨A,� 0)

op, Sp) is

a reflective subcategory, it is enough to prove that for any object N ∈ APerf∨A,� 0,

the natural map
∣∣Hom

(
N, (M•)∨

)∣∣ Hom
(
N,Tot(M•)∨

)
is an equivalence;

this implies that Tot(M•)∨ is the geometric realisation of (M•)∨. We can identify
the above map with the composite map

∣∣Hom
(
N ⊗M•,1

)∣∣ Hom
(
Tot(N ⊗M•),1

)
Hom

(
N ⊗ Tot(M•),1

)
.

The second map is an equivalence since ⊗ preserves totalisations of cosimplicial
diagrams in A by Corollary 2.49, and the first map is an equivalence because
Hom(−,1) : APerf∨A,� 0 → Sp is right t-exact up to a shift, by our assumption
that 1 is eventually connective (cf. Remark 2.24). �

Remark 2.56. Of course, Corollary 2.49 and Theorem 2.52 have analogues
for additive ∞-categories that are not coherent (with the same proofs): there is

a symmetric monoidal functor Mod: Addpoly −→ PrSt,Σ sending each additive ∞-
category A to ModA and each locally polynomial functor F to its right-left derived
functor.

2.4. O-monoidal structures

Given a (coloured) ∞-operad O⊗ → N(Fin∗), which we informally also call
O, Theorem 2.52 shows that O-monoidal structures on A and B induce canonical
O-monoidal structures on QC∨

A and QC∨
B, respectively. We have seen that the

right-left extension of a strong monoidal polynomial functor A → B is again strong
monoidal, and will now establish a refinement to (op)lax O-monoidal functors, which
is needed for our treatment of PD operads:

Proposition 2.57. Let A,B be O-algebras in Addcoh,poly and let F : A → B be
an (op)lax O-monoidal functor with Fx : Ax → Bx of finite degree for each colour
x ∈ O. Then FRL : QC∨

A → QC∨
B admits a natural (op)lax O-monoidal structure.

The proof relies on two observations concerning Kan extensions of lax O-
monoidal functors along O-monoidal functors: namely, there is a canonical lax
O-monoidal structure on the right Kan extension, and in good cases also on the
left Kan extension.

Lemma 2.58. Let φ : C0 → C be an O-monoidal functor. If F : C0 → D is a lax
O-monoidal functor, then the following two assertions are equivalent:



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2.4. O-MONOIDAL STRUCTURES 27

(1) For every colour x ∈ O, there exists a functor Gx : Cx → Dx and a natural
transformation Fx → Gx ◦ φx exhibiting Gx as the right Kan extension of
Fx : C0,x → Dx along φx : C0,x → Cx.

(2) There exists a lax O-monoidal functor G : C⊗ → D⊗ and a natural transfor-
mation F → G ◦ φ over O⊗ exhibiting G as the right Kan extension (relative
to O⊗) of F : C⊗

0 → D⊗ along φ : C⊗
0 → C⊗.

In this case, the fibre of the natural transformation G → F ◦φ over a colour x ∈ O
exhibits a right Kan extension of Fx along φx.

We make use of the Day convolution product, cf. [Gla16] and [HA, Section
2.2.6]: recall that for any small O-monoidal ∞-category C and any presentably O-
monoidal ∞-category D ∈ AlgO(Pr

L), there is another presentably O-monoidal ∞-
category Fun(C,D) such that O-algebras in Fun(C,D) are lax O-monoidal functors
C → D, with fibre over x ∈ O given by Fun(C,D)x = Fun(Cx,Dx).

We will apply this in particular when the target is spaces, and the O-monoidal
structure arises from the cartesian product.

Proof. Unravelling the definitions, we have to verify that the map

AlgC⊗(D)×Alg
C
⊗
0

(D) Alg
C
⊗
0
(D)F/

∏
x∈O

Fun(Cx,Dx)×Fun(C0,x,Dx)Fun(C0,x,Dx)Fx/

preserves and detects terminal objects. As the Yoneda embedding D → P(D)
is O-monoidal for the Day convolution product on P(D), the above map is the
pullback of the same map with D replaced by P(D), along a fully faithful functor.
Since the Yoneda embedding preserves limits, it then suffices to verify that the
corresponding map for P(D) preserves and detects terminal objects. Consequently,
we may assume that D ∈ AlgO(Pr

L) is an O-monoidal presentable ∞-category.
In this situation, consider the O-monoidal categories Fun(C0,D) and Fun(C,D)
given by Day convolution. Since F is an O-algebra in Fun(C0,D), we can form the
pullback of O-monoidal ∞-categories

Fun(C,D)⊗F/ = Fun(C,D)⊗ ×Fun(C0,D)⊗ Fun(C0,D)⊗F/

where Fun(C0,D)⊗F/ is the O-monoidal ∞-category from [HA, Theorem 2.2.2.4].

The above map can then be identified with the map

AlgO
(
Fun(C,D)F/

)
→

∏
x∈O

(
Fun(C,D)F/

)
x
.

This map preserves and detects terminal objects by [HA, Corollary 3.2.2.3]. �

Lemma 2.59. Let O be an operad and let φ : C0 → C be an O-monoidal functor.
Let F : C0 → D be a lax O-monoidal functor between O-monoidal ∞-categories with
the following property: for every colour x ∈ O and every c ∈ Cx, the diagram

(2.4) (C0,x)/c = C0,x ×Cx
(Cx)/c C0,x Dx

F

admits a colimit, which is preserved by each ψ(d1, . . . , dn,−) : Dx → Dy for ψ ∈
O(y1, . . . , yn, x; y) and di ∈ Dyi

. In this case, the left Kan extension of F along φ
exists and is lax O-monoidal.

Proof. This is essentially a consequence of [HA, Proposition 3.1.3.3]; we in-
clude an argument for the reader’s convenience. We can endow P(D) with the Day
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convolution O-monoidal structure and let V be the left Bousfield localisation of
P(D) at the natural maps from the colimits of (2.4), computed in P(D), to the
representable presheaf on their colimit in D. Our assumptions imply that V is an
O-monoidal localisation of P(D) and that the Yoneda embedding h : D ↪→ V is a
fully faithful O-monoidal functor preserving the colimits (2.4). As V ∈ AlgO(Pr

L),
we can equip Fun(C,V) with the Day convolution O-monoidal structure, so that
left Kan extension defines an O-monoidal functor Lanφ : Fun(C0,V) → Fun(C,V).

As O-algebras for the Day convolution product can be identified with lax O-
monoidal functors, it follows that the left Kan extension of h ◦ F : C0 → V along φ
carries a canonical lax O-monoidal structure. Since the Yoneda embedding h : D ↪→
V is O-monoidal and preserves the colimits (2.4), we have that Lanφ(h ◦ F ) 

h ◦ Lanφ(F ), so that Lanφ(F ) inherits a lax O-monoidal structure. �

Proof (of Proposition 2.57). We first treat the case where F : A → B is
lax O-monoidal. The construction of the lax monoidal structure on FRL : QC∨

A →
QC∨

B then proceeds in two steps: first taking a right Kan extension and then a left
Kan extension, we obtain a diagram

A APerf∨A,� 0 QC∨
A

B APerf∨B,� 0 QC∨
B .

F FR FRL

The horizontal functors are all (strong) O-monoidal by Theorem 2.52. Lemma
2.58 implies that the right Kan extension FR is lax O-monoidal. Next, we note
that for every M ∈ QC∨

A, the over-category (APerf∨A,� 0)/M is sifted (it admits

finite sums) and that the O-monoidal structure on QC∨
B preserves sifted colimits

in each variable. Lemma 2.59 shows that the left Kan extension FRL of FR is lax
O-monoidal.

For the oplax O-monoidal case, one instead uses (the opposite of) Lemma 2.59
to show that FR is oplax O-monoidal, using that for any M ∈ APerf∨A,� 0, the
under-category AM/ admits a right cofinal functor from Δ and that the tensor

product on APerf∨B preserves totalisations. Next, (the opposite of) Lemma 2.58
shows that the left Kan extension FRL of FR is oplax O-monoidal. �

Remark 2.60. The exact same proof shows that if F : A −→ B is a lax
O-monoidal functor between additive ∞-categories, the left-right derived functor
FRL : ModA → ModB is (op)lax O-monoidal. If A and B are coherent, then there
is an equivalence FRL ◦ ι 
 ι ◦ FRL of lax O-monoidal functors ModA → QC∨

B.
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CHAPTER 3

PD operads and refined Koszul duality

We proceed to the main abstract contribution of this paper: a twofold refine-
ment of classical operadic Koszul duality. First, we show that the Koszul dual of
an augmented ∞-operad O is not just an ∞-operad, but a divided power (‘PD’)

∞-operad KDpd(O), which controls Koszul duals of O-algebras. In a second, orthog-
onal, step, we replace ∞-operads O by derived ∞-operads : here, the group actions
are ‘more genuine’, which means that derived operads can parametrise structures
like simplicial commutative rings. We then set up a refined Koszul duality in this
setting.

3.1. A reminder on ∞-operads

To set the stage, let us recall a definition of ∞-operads as algebras in the
category of symmetric sequences with the composition product. We follow the
discussion in [Bra17, Section 4.1.2], which generalises a 1-categorical construction
of Kelly [Kel05] and Trimble [Tri] to the higher categorical setting. An alternative
approach has been proposed by Haugseng in [Hau17].

Notation 3.1. Recall that the∞-category PrL of presentable∞-categories and
colimit-preserving functors admits the structure of a closed symmetric monoidal ∞-
category by [HA, Proposition 4.8.1.15]. The ∞-category of presentably symmetric
monoidal ∞-categories is given by CAlg(PrL), and can be identified with the ∞-
category of commutative algebras in PrL.

Explicitly, a presentably symmetric monoidal ∞-category V is a symmetric
monoidal ∞-category with presentable underlying ∞-category and a product ⊗
which distributes over colimits.

Let R be an E∞-ring and consider the presentably symmetric monoidal ∞-
category

(
ModR,⊗R

)
of R-modules. The ∞-category CAlgR(Pr

L) of presentably
symmetric monoidal R-linear ∞-categories is given by the under-category
CAlg(PrL)(ModR,⊗R)/.

Definition 3.2 (Symmetric sequences). LetR be an E∞-ring. The∞-category
sSeqR of R-linear symmetric sequences is the free symmetric monoidal R-linear ∞-
category generated by an object 1. The universal symmetric monoidal structure
on sSeqR will be denoted by ⊗.

The ∞-category sSeqR can be described more explicitly as follows (cf. [Bra17,
Section 4.1.2]). Write BΣ for the (nerve of the) category Fin

∼= of finite sets and
bijections. The disjoint union of finite sets makes (BΣ,�) the free symmetric
monoidal ∞-category generated by the object 1 (cf. [HA, Proposition 2.2.4.9]).
We can then identify (sSeqR,⊗) with Fun(BΣ,ModR), equipped with the Day
convolution product of ⊗R and � (cf. [HA, Corollary 4.8.1.12]).

29
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Notation 3.3 (Symmetric sequences in arity r). For each r, let BΣr denote
the groupoid of finite sets of cardinality r and bijections between them; up to
equivalence, it has one object with automorphism group Σr. There is an adjoint pair
ιr : Fun(BΣr,ModR) � sSeqR : evr given by restriction and left Kan extension,
respectively. The left adjoint ιr is fully faithful and a symmetric sequence is said
to be concentrated in arity r if it is contained in its essential image. The above
adjunction then induces an equivalence between symmetric sequences concentrated
in arity r and modules over the group ring R[Σr]. Under this identification, the
symmetric sequence 1⊗r corresponds to the free R[Σr]-module of rank 1. If X is a
symmetric sequence, we will denote its arity r piece by X(r).

The universal property of sSeqR asserts that for any V ∈ CAlgR(Pr
L), evalua-

tion at 1 defines an equivalence

ev1 : FunL,⊗R (sSeqR,V)
�−−→ V,

where the domain is the ∞-category of symmetric monoidal R-linear colimit-
preserving functors sSeqR → V. Setting V = sSeqR gives an equivalence

EndL,⊗R (sSeqR)
�−−→ sSeqR,

which categorifies the well-known identity MapRings(Z[t],Z[t]) ∼= Z[t].

Definition 3.4 (Composition product). The composition product ◦ on sSeqR
is the monoidal structure corresponding to the opposite of the evident monoidal

structure on EndL,⊗R (sSeqR) under the above equivalence. The unit of ◦ is the
object 1.

Remark 3.5. The definition of the composition product implies that the inverse
of

EndL,⊗R (sSeqR)
�−−→ sSeqR

sends Y to (−) ◦ Y . In particular, the composition product preserves colimits in
the first variable. Similarly, for any symmetric sequence X, there are functors

EndL,⊗R (sSeqR) EndLR(sSeqR) sSeqR
evX

preserving sifted colimits and finite sifted limits. Here the first functor forgets the
monoidal structure and the second evaluates at X. This implies that ◦ preserves
sifted colimits and finite sifted limits in its second variable.

Remark 3.6 (Explicit formula for composition product). Let X and Y be
symmetric sequences. Unravelling the definitions, one sees that for each r, there is
an R-linear left adjoint functor

ModR[Σr] 
 Fun(BΣr,ModR) sSeqR sSeqR
ιr (−)◦Y

sending the generating object R[Σr] to the r-fold Day convolution product 1⊗r◦Y 

Y ⊗r. This implies that for each r, there is a natural equivalence X(r) ◦ Y 

X(r)⊗Σr

Y ⊗r. Since every symmetric sequence X can naturally be decomposed as
X 


⊕
r X(r), we then obtain

(3.1) X ◦ Y 

⊕
r

X(r)⊗Σr
Y ⊗r,

which reproduces the classical 1-categorical formula for the composition product of
symmetric sequences (see for instance [Fre09, Section 2.2.2]).
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For any symmetric sequence X, the functor X ◦ (−) preserves symmetric se-
quences concentrated in arity 0. Consequently, there is a (left) action

◦ : sSeqR ×ModR ModR

of
(
sSeqR, ◦

)
on ModR, preserving sifted colimits and finite totalisations.

Definition 3.7 (∞-operads and cooperads). An ∞-operad P over an E∞-ring
R is an associative algebra object in sSeqR with respect to the composition product
◦. A P-algebra is a left P-module in ModR, equipped with the sSeqR-tensored
structure described above. We will write OpR for the ∞-category of R-linear ∞-
operads and AlgP for the ∞-category of P-algebras.

Dually, an ∞-cooperad C is a coassociative coalgebra in sSeqR with respect to
the composition product, and a (conilpotent) C-coalgebra is a left C-comodule in
ModR. We will write CoopR for the ∞-category of ∞-cooperads.

Remark 3.8. The ∞-operads in Definition 3.7 are often referred to as ∞-
operads with one colour. Note that OpR is compactly generated by Theorem B.2.

3.2. The levelwise tensor product

The category of symmetric sequences can be equipped with yet another sym-
metric monoidal structure ⊗lev – the levelwise tensor product. Its unit is the con-
stant symmetric sequence on R, i.e. the R-linearisation of the E∞-operad. This
tensor product is compatible with the composition product in the following sense:

Proposition 3.9. The functor ⊗lev : (sSeqR × sSeqR, ◦ × ◦) → (sSeqR, ◦) has
both a natural lax and oplax monoidal structure with respect to the composition
product. In particular, for all A,B,C,D ∈ sSeqR, there are natural morphisms

(A ◦B)⊗lev (C ◦D) → (A⊗lev C) ◦ (B ⊗lev D)

(A⊗lev C) ◦ (B ⊗lev D) → (A ◦B)⊗lev (C ◦D).

In particular, this implies that the levelwise tensor product of two ∞-operads
is again an ∞-operad, and a similar statement holds for ∞-cooperads. The proof
requires a preliminary observation:

Lemma 3.10. Let F : C � D : G be an adjunction between ∞-categories. Then
the induced functor between endomorphism categories End(D) → End(C); T �→
GTF inherits a lax monoidal structure.

Proof. Let π : M → Δ1 denote the correspondence classifying the adjoint
pair (F,G) [HTT, Section 5.2.2] and let End/Δ1(M) denote the category of endo-

functors of M compatible with the projection to Δ1. Restricting such endofunctors
to the fibre C over 0, respectively D over 1, defines monoidal functors End(C) ←−
End/Δ1(M) → End(D) with respect to composition. The right functor admits a

right adjoint, given by relative right Kan extension over Δ1. Since right adjoints to
monoidal functors are lax monoidal [HA, Corollary 7.3.2.7], we obtain a composite
lax monoidal functor End(D) → End/Δ1(M) → End(C).

To see that this functor indeed sends T to G ◦ T ◦ F , let X ∈ C ⊆ M. By
(the opposite of) [HTT, Proposition 4.3.1.9], the relative right Kan extension of
T : D → D → M, restricted to C, can be computed by the right Kan extension of

C×Fun({0},M) Fun(Δ
1,M)×Fun({1},M) D D D C

π T G
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along the projection q : C ×Fun({0},M) Fun(Δ
1,M) ×Fun({1},M) D. Note that q is a

cartesian fibration; its fibre over X ∈ C is given by MX/×MD. Each of these fibres
has an initial object, given by the coCartesian arrow uX : X → F (X), so that q
admits a left adjoint section sending X to uX . The right Kan extension along q is
then equivalent to the restriction along this left adjoint; this is precisely GTF , as
desired (this argument also shows that the relative Kan extension exists). �

Proof of Proposition 3.9. Write bisSeqR for the free R-linear symmetric
monoidal ∞-category on two objects 1L and 1R. Explicitly, this is the ∞-category
of functors BΣ×BΣ → ModR, with the Day convolution product. There are three
natural fully faithful R-linear symmetric monoidal functors ιL, ιR,Δ! : sSeqR ↪→
bisSeqR, determined by ιL(1) = 1L, ιR(1) = 1R and Δ!(1) = 1L ⊗ 1R. Write Δ∗

for the functor restricting along the diagonal Δ: BΣ → BΣ×2. Then Δ∗ is right
adjoint to Δ!, and also left adjoint (via the norm [HA, Proposition 6.1.6.12]).

Let E ⊆ End⊗,L
R (bisSeqR) be the full monoidal subcategory of symmetric

monoidal R-linear endofunctors which furthermore preserve the essential images
of ιL and ιR. Evaluation at 1L and 1R then determines an equivalence E 
 sSeq×2

R .
The inverse sends a pair (X,Y ) to the endofunctor of bisymmetric sequences

(3.2) Z �−→
⊕
p,q

Z(p, q)⊗Σp×Σq
ιL(X)⊗p ⊗ ιR(Y )⊗q.

Note that the equivalence E 
 sSeq×2
R identifies composition in E with the opposite

of the composition product on each of the factors of sSeq×2
R . We now consider

Δ∗ as the right adjoint to Δ!; since Δ! is symmetric monoidal, Δ∗ inherits a lax
symmetric monoidal structure, so that conjugation by Δ! and Δ∗ sends symmetric
monoidal functors to lax symmetric monoidal functors:

sSeq×2
R 
 E Endlax−⊗

R (sSeqR).
T �→Δ∗TΔ!

Using Equation (3.2), one sees that the above functor sends (X,Y ) simply to the
endofunctor (−) ◦ (X ⊗lev Y ). In particular, it takes values in the full subcategory

End⊗,L
R (sSeqR) of strong monoidal endofunctors. Applying Lemma 3.10 shows that

the above functor is lax monoidal with respect to composition, so that ⊗lev is indeed
lax monoidal for the composition product. Viewing Δ∗ instead as the left adjoint to
Δ!, the opposite of Lemma 3.10 provides the desired oplax monoidal structure. �

We will now consider symmetric sequences and the composition product in the
context of extended functors, cf. Section 2.2.

Definition 3.11. A symmetric sequence of sets X : BΣ → Set is said to be
finite if each X(r) is a finite set, which is empty for all but finitely many r ≥ 0. It
is said to be Σ-free if each X(r) is a (possibly empty) free Σr-set.

Definition 3.12 (Finitely generated free symmetric sequences). Let R be a
connective E∞-ring spectrum. An R-linear symmetric sequence is said to be finitely
generated free if it arises as the R-linearisation of a finite Σ-free sequence of sets.
Write R[Σ] ⊆ sSeqR for the full subcategory of finitely generated free symmetric
sequences. One can identify R[Σ] with the smallest full subcategory of sSeqR which
is closed under finite direct sums and contains all objects 1⊗r.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3.3. PRO-COHERENT SYMMETRIC SEQUENCES AND PD OPERADS 33

Remark 3.13. The additive ∞-category R[Σ] can be identified with the direct
sum

⊕
r≥0VectR[Σr] of the additive categories of finitely generated free R[Σr]-

modules.

The objects in R[Σ] are compact generators of sSeqR. Consequently, the fully
faithful inclusion R[Σ] → sSeqR induces an equivalence ModR[Σ] 
 sSeqR.

Remark 3.14 (Almost perfect symmetric sequences). The equivalence
ModR[Σ] 
 sSeqR identifies almost perfect R[Σ]-modules with symmetric sequences
X that are almost perfect in the sense that each X(r) is an almost perfect R[Σr]-
module and for each m ≥ 0, τ≤mX(r) is trivial for all but finitely many r.

Lemma 3.15. The full subcategory R[Σ] ↪→ sSeqR is closed under the Day
tensor product ⊗, the levelwise tensor product ⊗lev and the composition product ◦.
Furthermore, ⊗ and ⊗lev are additive in each variable and ◦ : R[Σ]×R[Σ] → R[Σ]
is locally polynomial and additive in the first variable.

Note that R[Σ] contains the monoidal unit for ⊗ and ◦, but not for ⊗lev.

Proof. It is clear that R[Σ] is closed under ⊗ and ⊗lev, and since both tensor
products preserve colimits in each variable, their restrictions are additive in each
variable. Equation (3.1) then implies that R[Σ] is closed under the composition
product as well. Furthermore, we can write the composition product functor ◦ as a
filtered colimit X ◦ Y = colimn Fn(X,Y ), where Fn(X,Y ) =

⊕
r≤nX(r)⊗Σr

Y ⊗r.

Since each functor Y �→ Y ⊗r is of degree r, it follows that Fn is of degree n.
On the other hand, the sequence of Fn(X,Y ) stabilises since every X ∈ R[Σ] is
concentrated in finitely many arities. �

Combining Lemma 3.15 and Corollary 2.49, we can deduce:

Corollary 3.16. All three tensor products ⊗,⊗lev, ◦ are the right-left exten-
sion of their restriction to R[Σ].

3.3. Pro-coherent symmetric sequences and PD operads

Using Definition 3.12, we can introduce a refined version of symmetric se-
quences; linear duals of ordinary symmetric sequences are naturally equipped with
this structure.

Definition 3.17 (Pro-coherent symmetric sequences). Let R be a coherent
(connective) E∞-ring spectrum. A pro-coherent symmetric sequence over R is a
pro-coherent module over the coherent additive ∞-category R[Σ]. We will write
sSeq∨R for the ∞-category of pro-coherent symmetric sequences over R.

Proposition 3.18. Let R be a coherent E∞-ring spectrum. Then the ∞-
category of pro-coherent symmetric sequences can be equipped with

(1) a closed symmetric monoidal structure ⊗;

(2) a composition product ◦ preserving sifted colimits in each variable and small
colimits in the first variable;

(3) a sifted-colimit-preserving action ◦ : sSeq∨R ×QC∨
R → QC∨

R of
(
sSeq∨R, ◦

)
;

(4) a closed symmetric monoidal structure ⊗lev, together with a lax and oplax
monoidal structure on ⊗lev : sSeq∨R × sSeq∨R → sSeq∨R with respect to the com-
position product;
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which are right-left extended from the corresponding functors on the ∞-category
R[Σ]. Furthermore, the natural functors sSeqR → sSeq∨R and ModR → QC∨

R inter-
twine all of these monoidal structures.

Proof. Almost all assertions follow from Theorem 2.52 and Lemma 3.15. To
see that ⊗lev is (op)lax monoidal with respect with the composition product, we
use Proposition 2.57 and Proposition 3.9. Finally, note that ⊗lev a priori only
defines a nonunital symmetric monoidal structure on sSeq∨R (because it does not
have a monoidal unit contained in R[Σ]). However, the image ι(E∞,R) is easily seen
to provide a (connective) unit: indeed, ι(E∞,R) ⊗lev (−) is the right-left extended
functor of its restriction to R[Σ], which is the identity since E∞,R serves as the unit
for ⊗lev in the ∞-category of symmetric sequences. �

The composition product ◦ on sSeq∨R coincides with the usual composition
product on ordinary symmetric sequences. Surprisingly, there are many other pro-
coherent symmetric sequences on which ◦ acts like a restricted composition product :

Proposition 3.19. Given X,Y ∈ sSeq∨R, there is a natural map

ν : X ◦ Y
⊕

r≥0

(
X(r)⊗ Y ⊗r

)hΣr

which is an equivalence whenever X and Y are dually almost perfect (cf. Defini-
tion 2.22 for A = R[Σ]). If R is eventually coconnective, it is furthermore an equiv-
alence when both X and Y are the colimits of filtered diagrams in APerf∨R[Σ],�m :=

(APerfR[Σ],≥m)∨, for some m.

Proof. Since the composition product is obtained by right-left extension, it
suffices to describe ν when X and Y are contained in APerf∨R[Σ],� 0. In turn,
the domain and codomain of ν are both functors that are right Kan extended
from R[Σ] to APerf∨R[Σ],� 0. It therefore remains to describe ν when X and Y are
finitely generated free. In this case, the norm map provides a natural equivalence

ν : X ◦ Y �−−→
⊕

r≥0

(
X(r)⊗ Y ⊗r

)
hΣr , because X(r) is Σr-free.

In particular, this implies that the resulting map ν is an equivalence for all X,Y
in APerf∨R[Σ],� 0. As both domain and codomain preserve geometric realisations of
skeletal diagrams, ν is an equivalence whenever X and Y are dually almost perfect.

Finally, suppose that X,Y are colimits of filtered diagrams in APerf∨R[Σ],�m.

Then eachX(r)⊗Y ⊗r is a filtered colimit of objects in APerf∨R[Σ],�m as well. Under

the assumption that R is n-coconnective, R[Σ] is also n-coconnective and one finds
that X(r)⊗ Y ⊗r is a filtered colimit of n′-coconnective objects for some n′. Tak-
ing homotopy fixed points commutes with such filtered colimits of n′-coconnective
objects, so that ν is an equivalence for X and Y as well. �

Definition 3.20 (PD ∞-operads). Let R be a coherent E∞-ring spectrum. A
PD ∞-operad P over R is an associative algebra in the ∞-category of pro-coherent

symmetric sequences, with respect to the composition product. We will write OppdR
for the ∞-category of PD ∞-operads.

An algebra over a PD ∞-operad P is a pro-coherent R-module A equipped with
a left P-module structure with respect to the composition action. We will denote
the ∞-category of (pro-coherent) P-algebras by AlgP(QC∨

R).
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Example 3.21 (Underlying operads). Every ordinary ∞-operad gives rise to a
PD ∞-operad via the functor ι : sSeqR −→ sSeq∨R. Conversely, every PD ∞-operad
has an underlying ∞-operad, via the right adjoint υ : sSeq∨R −→ sSeqR.

Remark 3.22. The action of pro-coherent symmetric sequences on QC∨
R defines

a sifted-colimit-preserving monoidal functor sSeq∨R → EndΣ(QC∨
R) with respect

to the composition product. Using Lemma 3.10, conjugating by the adjoint pair
ι : ModR � QC∨

R : υ yields a lax monoidal functor sSeq∨R → End(ModR). In
particular, every PD ∞-operad P determines a monad TP on ModR. This monad
differs from the monad induced by the underlying ∞-operad of P. When R is
eventually coconnective, υ preserves colimits (Remark 2.27) so that TP preserves
sifted colimits.

Example 3.23. Let k be a field, so that QC∨
k 
 Modk (Example 2.28). Suppose

that P is a PD ∞-operad over k which is dually almost perfect. By Proposition
3.19, P determines a monad on Modk which preserves sifted colimits and is given
on eventually coconnective k-modules by

FreeP(V ) =
⊕
r≥0

(
P(r)⊗ V ⊗r

)hΣr .

We will produce examples of these kinds of ∞-operads by Koszul duality.

3.4. Refined Koszul duality

We will now discuss a refinement of the classical operadic Koszul duality functor
[GK95,Fre04, Sal98,Chi05] to the setting of PD ∞-operads. Recall that the
classical Koszul duality functor is defined in two steps. First, every augmented
∞-operad gives rise to an ∞-cooperad by the bar construction. One then takes the
Spanier–Whitehead dual of the bar construction to obtain an ∞-operad, usually
referred to as the (classical) Koszul dual ∞-operad. We will refine each of these two
steps to the setting of PD ∞-operads.

The bar construction for PD operads. Recall that for any monoidal ∞-
category C with geometric realisations and totalisations, there is an adjoint pair

Bar: Algaug(C) coAlgaug(C) = Algaug(Cop)op : coBar

given by the ∞-categorical bar construction and cobar construction [HA, Section
5.2.2]. If A is an augmented algebra in C, the underlying object of Bar(A) can
be identified with the relative tensor product 1⊗A 1, computed as the realisation
of the two-sided simplicial bar construction Bar•(1, A,1). We will give a more
rigorous account of the bar construction below (see in particular Corollary 3.41),
including a few arguments that are not completely worked out in [HA, Section
5.2.2] (as pointed out in [DCH22]). For now, specialising to the case where C is
the ∞-category of pro-coherent symmetric sequences, we obtain:

Definition 3.24 (Bar construction for PD operads). Let R be a coherent

E∞-ring spectrum. We will write Bar: Oppd,augR � coOppd,augR : coBar for the ∞-
categorical bar and cobar construction in the ∞-category sSeq∨R of pro-coherent
symmetric sequences, with respect to the composition product ◦.
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Our next goal will be to relate algebras over an augmented PD ∞-operad P to
coalgebras over its bar construction Bar(P). To do this, we will need a variant of
the ∞-categorical bar construction of [HA, Section 5.2.2] for left modules and left
comodules.

Notation 3.25 (Bimodule ∞-categories). Recall that a bimodule ∞-category
is a triple (C−,Cm,C+) consisting of monoidal ∞-categories C− and C+, together
with commuting left and right actions C− � Cm � C+; more precisely, it is an
algebra in Cat∞ over the coloured operad BM from [HA, Definition 4.3.1.1].

A left module in Cm is given by a tuple (A,M) consisting of an associative
algebra A ∈ Alg(C−) and a left A-module M ∈ LModA(Cm). We will write
LMod(Cm) for the ∞-category of left modules in Cm. The canonical projection
π : LMod(Cm) −→ Alg(C−) is a cartesian fibration [HA, Corollary 4.2.3.2]. Fur-
thermore, π is a map of right C+-module categories, where C+ acts trivially on
Alg(C−) [HA, Proposition 4.3.2.5, Proposition 4.3.2.6]. On underlying objects, the
tensoring of a left A-module M in Cm with X ∈ C+ is given by the left A-module
M ⊗X.

Theorem 3.26. Let (C−,Cm,C+) be a bimodule ∞-category such that C−,Cm

and C+ all admit geometric realisations and totalisations, and such that the units
1C− and 1C+

are both terminal and initial. Then there is a commuting diagram

LMod(Cm) LComod(Cm) = LMod(Cop
m )op

Alg(C−) coAlg(C−) = Alg(Cop
− )op

π

Bar

π

coBar

Bar

coBar

where the rows are adjunctions. Furthermore, the following assertions hold:

(1) The functor Bar: LMod(Cm) −→ LComod(Cm) preserves coCartesian arrows.

(2) If the action Cm × C+ −→ Cm preserves geometric realisations in the first
variable, then Bar: LMod(Cm) −→ LComod(Cm) is a right C+-linear functor.

Remark 3.27. Given an associative algebra A in C−, we obtain a functor
BarA : LModA(Cm) −→ LComodBar(A)(Cm) between fibres. This admits a right ad-
joint, which first applies the functor coBar: LComodBar(A)(Cm) −→
LModcoBar(Bar(A))(Cm) and then restricts scalars along the unit map
A −→ coBar(Bar(A)).

We postpone the proof of Theorem 3.26 to the end of this section and first
discuss some applications. To start, suppose that A is an associative algebra in C−
with augmentation ε : A −→ 1. Restriction and induction along ε define an adjoint
pair (cf. the proof of [HA, Proposition 5.2.2.5])

ε! : LModA(Cm) LMod1(Cm) 
 Cm : ε∗.

Explicitly, ε! sends each left A-module M to the geometric realisation of the simpli-
cial bar construction Bar•(1, A,M). Considering Theorem 3.26 in the case where
C+ = ∗ then yields:

Proposition 3.28. Let (C−,Cm) be a left module ∞-category as in Theo-
rem 3.26 and suppose that the left action C− × Cm −→ Cm preserves geometric
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realisations in the first variable. For any associative algebra A ∈ Alg(C−), there is
an equivalence of comonads on Cm

ε! ◦ ε∗ 
 Bar(A)⊗ (−).

Proof. Part (1) of Theorem 3.26 provides a commuting triangle of left adjoints

LModA(Cm) LComodBar(A)(Cm)

Cm.
ε!

BarA

forget

By [Hau20, Corollary 5.8, Corollary 8.9], this induces a natural map of comonads
μ : ε! ◦ ε∗ −→ Bar(A) ⊗ (−). It remains to verify that the underlying map of
endofunctors of Cm is an equivalence. For each M ∈ Cm, the map μ can be identified
with the natural map |Bar•(1, A, ε∗M)| −→ |Bar•(1, A,1)| ⊗M . This map is an
equivalence by the assumption that the left action of C− on Cm preserves geometric
realisations in C−. �

Notation 3.29 (Trivial algebras and cotangent fibre). Let P be an augmented
PD ∞-operad with augmentation ε : P −→ 1. We denote by

cotP : AlgP � ModR : trivP

the adjoint pair induced by the augmentation ε. We will refer to these functors as
taking cotangent fibre, respectively trivial P-algebra.

Corollary 3.30. Let P be an augmented PD ∞-operad. Then there is a
commuting diagram of left adjoint functors

AlgP coAlgBar(P)

ModR

BarP

cotP forget

and an equivalence of comonads cotP ◦ triv 
 Bar(P).

Proof. Apply Proposition 3.28 where C+ = ∗ and C− is the ∞-category
sSeq1//1 of augmented symmetric sequences with the composition product, acting
from the left on ModR. �

As another application of Theorem 3.26, we shall give another possible defini-
tion of the bar construction of an associative algebra, due to Lurie [HL+18]; it is
more convenient for later purposes.

Definition 3.31 (Coendomorphisms object). Let C− be a monoidal
∞-category, Cm a left C−-module ∞-category and M an object in Cm. Consider
an object X ∈ C− together with a map λ : M −→ X ⊗M in Cm. We will say that
λ exhibits X as a coendomorphism object of M if for every object Y in C−, the
natural map

MapC−(X,Y ) MapCm
(X ⊗M,Y ⊗M) MapCm

(M,Y ⊗M)λ∗

is an equivalence. Similarly, let C ∈ Coalg(C−) be a coassociative coalgebra in
C− and denote by LComodC(M) = LComodC(Cm) ×Cm

{M} the space of left
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C-comodule structures on M . Then λ ∈ LComodC(M) exhibits C as a coendomor-
phism coalgebra of M if for each coalgebra D, the natural map which corestricts
the coaction of C on M to a coaction of D on M is an equivalence:

MapcoAlg(C−)(C,D) LComodD(M); f (f ⊗ id) ◦ λ∼

Lemma 3.32 (cf. [HL+18, Proposition 7]). Let (C−,Cm) be a left module ∞-
category and M ∈ Cm. Then the following assertions hold:

(1) Let λ ∈ LComodC(M). Then λ exhibits C as a coendomorphism coalgebra of
M if and only if the underlying map M −→ C ⊗M exhibits C as a coendo-
morphism object of M .

(2) Suppose that M admits a coendomorphism object X. Then M admits a coen-
domorphism coalgebra.

Proof. By the dual of [HA, Theorem 4.7.1.34], there exists a monoidal ∞-
category C−[M ] with objects given by tuples of objects X ∈ C− and maps M −→
X⊗M in Cm, such that coAlg(C−[M ]) is equivalent to the ∞-category of coalgebras
together with a left comodule structure on M . By definition, a coendomorphism
object of M is an initial object of C−[M ], while a coendomorphism coalgebra of
M is an initial object of coAlg(C−[M ]). The assertions then follow from the fact
that the forgetful functor coAlg(C−[M ]) −→ C−[M ] preserves and detects initial
objects. �

Construction 3.33 (Koszul complex). Let C be a monoidal ∞-category such
that the tensor product preserves geometric realisations in the first variable and
the monoidal unit 1 is both initial and terminal. We consider C as a bimodule
∞-category over itself. If A is an associative algebra in C, then Theorem 3.26
provides a right C-linear functor BarA : LModA(C) −→ LComodBar(A)(C). Write
K(A) for the value of this functor on the free left A-module A; it follows from part
(1) of Theorem 3.26 this is simply given by the trivial comodule 1. Since the free
A-module A has a commuting right A-module structure, we obtain a natural object

K(A) ∈ RModA
(
LComodBar(A)(C)

)

 LComodBar(A)

(
RModA(C)

)
such that the underlying right A-module is the terminal object 1. We will refer to
K(A) as the Koszul complex of A.

Proposition 3.34. Let C be a monoidal ∞-category such that the tensor prod-
uct preserves geometric realisations in the first variable and the monoidal unit
1 is both initial and terminal. Then the left Bar(A)-comodule structure on the
Koszul complex K(A) 
 1 exhibits Bar(A) as the coendomorphism coalgebra of
1 ∈ RModA(C).

Proof. By Lemma 3.32, it suffices to verify that the right A-linear map 1 −→
Bar(A) ⊗ 1 exhibits Bar(A) as a coendomorphism object of the trivial right A-
module 1, i.e. for every object Y ∈ C, the map

MapC

(
Bar(A), Y

)
MapRModA(C)

(
Bar(A)⊗ 1, Y ⊗ 1

)
MapRModA(C)

(
1, Y ⊗ 1

)

is an equivalence. To see this, using Proposition 3.28 and writing ε : A −→ 1 for
the augmentation, the above map can be identified with the composite

MapC

(
ε!ε

∗(1), Y
)

MapRModA(C)

(
ε∗ε!ε∗(1), ε∗Y

)
MapRModA(C)

(
ε∗(1), ε∗Y

)
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where the first map applies ε∗ and the second map restricts along the unit ε∗(1) −→
ε∗ε!ε

∗(1). This composite is an equivalence since (ε!, ε
∗) is an adjoint pair. �

Finally, we turn to the proof of Theorem 3.26. The argument, which we learned
from Lurie, is a direct modification of the construction of the bar-cobar adjunction
in [HA, Section 5.2.2]. We start by recalling some terminology from loc. cit.

Notation 3.35 (Pairings). Recall that a pairing of ∞-categories C and D is a
right fibration λ : M −→ C×D. An object M ∈ M with image (C,D) is called left
universal if it is terminal in {C} ×C M. The pairing λ is called left representable
if every C ∈ C is the image of a left universal object. We denote by CPair ⊆
Fun(Λ0[2],Cat∞) the full subcategory spanned by the pairings of ∞-categories, and

by CPairL the subcategory of CPair on the left representable pairings and maps of
pairings preserving left universal objects. Both CPair and CPairL are closed under
the cartesian product in Fun(Λ0[2],Cat∞).

There is an equivalence of ∞-categories PairL 
 Fun([1],Cat∞) [LB15, Propo-
sition 2.2]. By [HA, Construction 5.2.1.9], this equivalence sends a left repre-
sentable pairing λ : M −→ C × D to the unique functor Fλ : C −→ Dop which
admits a natural equivalence

λ−1(C,D) 
 MapDop

(
Fλ(C), D

)
.

Example 3.36. Let C be a bimodule ∞-category, given by C− � Cm � C+.
Because taking twisted arrow ∞-categories preserves products, one obtains a bi-
module object Tw(C) in the ∞-category of left (and right) representable pairings
of the form

Tw(C−) Tw(Cm) Tw(C+)

C− × C
op
− Cm × C

op
m C+ × C

op
+ .

Taking left module objects, we then obtain a map of pairings LMod(Tw(Cm)) −→
Alg(Tw(C−)), together with a fibrewise right action of Tw(C+) on LMod(Tw(Cm))
[HA, Proposition 4.3.2.5, Proposition 4.3.2.6].

Lemma 3.37. Let λ : (M−,Mm,M+) −→ (C−,Cm,C+) × (D−,Dm,D+) be a
bimodule object in the ∞-category Pair of pairings and let

A1 ∈ Alg(M−)×Alg(D−) {1} and B1 ∈ Alg(M+)×Alg(D+) {1}
be two algebras with images (A,1) and (B,1) in Alg(C−)×Alg(D−) and Alg(C+)×
Alg(D+). Consider the induced pairing between categories of bimodules

λA,B : A1
BModB1

(Mm) −→ ABModB(Cm)×Dm

(where we identify 1BMod1(Dm) 
 Dm). Then the following assertions hold:

(1) If λ is left representable and the ∞-category Dm admits totalisations of cosim-
plicial objects, then λA,B is left representable.

(2) Suppose that the pairing λ : Mm −→ Cm ×Dm is right representable and that
there exist augmentations A1 −→ 1 and B1 −→ 1 in Alg(M−) and Alg(M+).
Then λA,B is right representable and the associated functor can be identified
with

GλA,B
: Dm Cm ABModB(Cm)

Gλ triv
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where the second functor is the restriction along the induced augmentations
A −→ 1 and B −→ 1 in Alg(C−) and Alg(C+).

Remark 3.38. Suppose we are in the situation of Lemma 3.37 and fix an object
D ∈ Dm. Then the actions M− � Mm � M+ restrict to actions

M− ×D− {1} � Mm ×Dm
{D} � M+ ×D+

{1}
and there is a natural equivalence

A1
BModB1

(
Mm ×Dm

{D}
)

A1
BModB1

(Mm)×Dm
{D}.∼

Proof. Part (1) follows from the following adaptation of
[HA, Lemma 5.2.2.40]. For a bimodule M ∈ ABModB(Cm), we have to show
that induced right fibration

EM = {M} ×
ABModB(Cm) A1

BModB1
(Mm) Dm

is representable (i.e. EM admits a terminal object). To do this, we will proceed in
two steps.

First, let us suppose that M = A ⊗ V ⊗ B is the free A-B-bimodule on an
object V ∈ Cm. In this case, the right fibration EM −→ Dm is representable by
the same argument as [HA, Lemma 5.2.2.32]: taking a left representable object

Ṽ ∈ {V }×Cm
Mm, the free bimodule A1⊗ Ṽ ⊗B1 is a terminal object in EA⊗V⊗B.

For a general bimoduleM , letM• = A⊗•+1⊗M⊗B⊗1+• be its bar construction,
so that M = |M•|. Let χM : Dop

m −→ S be the presheaf classified by the right
fibration EM −→ Dm. We claim that χM 
 limχM• . Assuming this, it follows that
χM is representable, because it is a totalisation of representable presheaves and Dm

admits totalisations.
It suffices to verify the claim at each point D ∈ Dm. To do this, consider the

commuting diagram

FD = A1
BModB1

(Mm)×Dm
{D} Mm ×Dm

{D}

ABModB(Cm) Cm

g

q p

g′

where the horizontal functors forget the bimodule structure. By [HA, Corollary
5.2.2.39], it now suffices to check that for every simplicial object N• : Δ

op −→ FD

lifting M•, there exists a geometric realisation in FD that is preserved by q. For
any such N•, the image g(N•) is a lift of the image g′(M•) of the simplicial bar
construction, which is split. By [HA, Corollary 4.7.2.11], g(N•) is a split simplicial
object as well. Remark 3.38 now implies that N• admits a realisation in FB (by
monadicity). To see that this realisation is preserved by q, let N+

• : Δop
+ −→ FB

denote the resulting colimiting cocone. Then g(N+
• ) is split and hence q(N+

• ) is
sent to a split augmented simplicial object by the forgetful functor g′. Again by
monadicity, this implies that q(N+

• ) is a colimiting cocone in ABModB(Cm), as
desired.

Part (2) follows from follows from the fact that restriction along the augmen-
tations A1 −→ 1 and B1 −→ 1 yields a functor

(3.3) Mm 
 1BMod1(Mm) A1
BModB1

(Mm)
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that preserves right representable objects (by [HA, Proposition 5.2.1.17]). By
definition, such representable objects are the terminal objects in the fibres over
each D ∈ Dm. Remark 3.38 now identifies the functor between fibres with the
functor

Mm ×Dm
{M} A1

BModB1

(
Mm ×Dm

{M}
)

restricting along the augmentations of A1 and B1. This functor preserves terminal
objects. �

The pairing from Lemma 3.37 has some additional structure in the case where
each bimodule category arises from the natural two-sided action of a monoidal
category on itself:

Notation 3.39. If C is a monoidal ∞-category and A ∈ Alg(C) is an associa-
tive algebra in C, then the category ABModA(C) is the underlying category of a
nonsymmetric ∞-operad (see [HA, Theorem 3.3.3.9, Theorem 4.4.1.28])

ModAssoc
A (C)⊗ Assoc⊗

with the property that Alg(ModAssoc
A

(
C)

)

 Alg(C)A/.

Now suppose that λ : M −→ C ×D is a pairing of monoidal ∞-categories and
let A1 ∈ Alg(M) be an algebra with image (A,1) in Alg(C) × Alg(D). We obtain
a pairing of nonsymmetric ∞-operads

λ⊗
A : ModAssoc

A1
(M)⊗ ModAssoc

A (C)⊗ ×Assoc⊗ D⊗

where we identify ModAssoc
1 (D)⊗ 
 D⊗ [HA, Proposition 3.4.2.1]. Since A can be

considered as an associative algebra in ModAssoc
A (C)⊗, we can consider the nonsym-

metric ∞-operad E⊗
A defined as the fibre product

E⊗
A ModAssoc

A1
(M)⊗

Assoc⊗ ModAssoc
A (C)⊗.A

Lemma 3.40. In the above situation, suppose that λ : M −→ C × D is left
representable and that D admits totalisations. Then E⊗

A is a lax monoidal ∞-

category, i.e. the map E⊗
A −→ Assoc⊗ is a locally cocartesian fibration.

Proof. Consider the map of correspondences

C M D

P(C) P(M) P(D).

Endowing all presheaf categories with the monoidal structure given by Day convo-
lution [HA, Corollary 4.8.1.12], this gives a diagram of monoidal ∞-categories and
monoidal functors.

Considering A and A1 as associative algebras in P(C) and P(M) under the
Yoneda embedding, we can form a similar nonsymmetric ∞-operad

Ê⊗
A = Assoc⊗ ×ModAssoc

A (P(C))⊗ ModAssoc
A1

(
P(M)

)⊗
.
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Since the Day convolution product preserves colimits in each argument, this is
a fibre product of monoidal ∞-categories and monoidal functors between them

[HA, Theorem 3.4.4.2]. Consequently, Ê⊗
A is a monoidal ∞-category and we obtain

a diagram

E⊗
A Ê⊗

A

Assoc⊗
p q

where the top map is fully faithful and q is a cocartesian fibration. We will use this
to prove that p is a locally cocartesian fibration.

To this end, note that the map of ∞-operads E⊗
A −→ Assoc⊗ is a locally

cocartesian fibration if each active morphism α : 〈n〉 −→ 〈1〉 in Assoc⊗ (there are
n! of these) admits locally cocartesian lifts. Let us therefore pick an active morphism
α : 〈n〉 −→ 〈1〉 in Assoc⊗ and n objects M1, . . . ,Mn in(

E⊗
A

)
〈1〉 
 {A} ×

ABModA(C) A1
BModA1

(M).

There exists a q-cocartesian lift of α in Ê⊗
A of the form (up to a permutation of the

Mi)

α̃ :
(
M1, . . . ,Mn

)
M1 ⊗ÊA

· · · ⊗
ÊA

Mn

where the target denotes the tensor product of ÊA. To see that α admits a locally
p-cocartesian lift, it suffices to verify that there is an initial object in the full

subcategory (E⊗
A)〈1〉 ⊆ (Ê⊗

A)〈1〉 that receives a map from the tensor product M1⊗ÊA

· · · ⊗
ÊA

Mn.

To prove this, let us consider the image ofM1⊗ÊA
· · ·⊗

ÊA
Mn in BModA1

(P(M)),
which is given by the n-fold relative tensor product

M1⊗̂A1
. . . ⊗̂A1

Mn.

Here we abuse notation by identifying each Mi with its image in BModA1
(M) ⊆

BModA1
(P(M)), and we write ⊗̂A1

to indicate that the relative tensor product is
computed at the presheaf level. Explicitly, this relative tensor product is given by
the geometric realisation in BModA1

(P(M)) of the simplicial diagram

Q• : Δ
op BModA1

(M);

[k] M1 ⊗A⊗k
1 ⊗M2 ⊗A⊗k

1 ⊗ · · · ⊗A⊗k
1 ⊗Mn.

We will show that this diagram also has a colimit in BModA1
(M). First, note

that the image of Q• in D 
 BMod1(D) is essentially constant on a certain object
D ∈ D. It therefore lifts to a diagram of the form

Δop FD = BModA1
(M)×D {D} M×D {D}

BModA(C) C

Q• g

g′

Next, note that the image ofQ• in BModA(C) is the diagram A⊗A⊗k⊗· · ·⊗A⊗k⊗A.
This diagram has A as a colimit and the embedding BModA(C) ↪→ BModA(P(C))
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preserves the colimit: this follows from the fact that the underlying diagram in C

is split.
We can now repeat the argument used in the proof of Lemma 3.37. The image

g(Q•) lifts a split object in C and is therefore split, so that Q• admits a colimit in
FD by Remark 3.38. Because BModA1

(M) −→ D is a cartesian fibration, the fibre
inclusion FD ↪→ BModA1

(M) preserves colimits. We conclude that Q• admits a
colimit in BModA1

(M), which is furthermore preserved by the functors

BModA1
(M) BModA(C) BModA(P(C)).

All in all, we therefore obtain a canonical map in BModA1
(P(M)) of the form

β : M1⊗̂A1
. . . ⊗̂A1

Mn =
∣∣Q•

∣∣
P(M)

∣∣Q•
∣∣
M

from the geometric realisation computed in BModA1
(P(M)) to the geometric real-

isation computed in BModA1
(M). By definition, the map β exhibits |Q•|M as the

initial object in M which receives a map from M1⊗̂A1
. . . ⊗̂A1

Mn.
Since the image of β in BModA(P(C)) is (equivalent to) the identity on A, the

map β determines an arrow in the fibre (Ê⊗
A)〈1〉 of the form

βA : M1 ⊗ÊA
· · · ⊗

ÊA
Mn −→ X

Now recall that the fully faithful inclusion
(
E⊗
A

)
〈1〉 ⊆

(
Ê⊗
A

)
〈1〉 is the base change of

the inclusion BModA1
(M) ⊆ BModA1

(P(M)). Consequently, the map βA exhibits
X as the initial object in (E⊗

A)〈1〉 receiving a map fromM1⊗ÊA
· · ·⊗

ÊA
Mn. The com-

posite βA ◦ α̃ : (M1, . . . ,Mn) −→ X then provides the desired locally p-cocartesian
lift of α, as desired. �

Corollary 3.41 ([HA, Proposition 5.2.2.27]). Let λ : M −→ C × D be a
pairing of monoidal ∞-categories such that the following conditions hold:

(1) The unit 1 ∈ D is an initial object and the functor M ×D {1} −→ C is an
equivalence.

(2) The pairing λ is left representable.

(3) The ∞-category D admits totalisations of cosimplicial objects.

Then the induced pairing Alg(λ) : Alg(M) −→ Alg(C)×Alg(D) is left representable.

Proof. Given A ∈ Alg(C), we have to show that the fibre {A}×Alg(C)Alg(M)
admits a terminal object. To this end, let us start by noting that there exists a
unique lift A1 ∈ {A} ×Alg(C) Alg(M) ×Alg(D) {1}; this follows from the monoidal
equivalence M×D {1} 
 C. Since the functor

{A} ×Alg(C)A/
Alg(M)A1/ {A} ×Alg(C) Alg(M)

preserves terminal objects [HA, Proposition 5.2.2.30], it suffices to verify that the
domain has a terminal object. But now we can identify

{A} ×Alg(C)A/
Alg(M)A1/ = {A} ×Alg(ModAssoc

A (C)) Alg
(
ModAssoc

A1
(M)

)

 Alg(E⊗

A).

Because E⊗
A is a lax monoidal ∞-category with a terminal object, its category of

associative algebras admits a terminal object as well by [HA, Proposition 3.2.2.1]:
indeed, if A is an ∞-category with a lax monoidal structure, then a terminal object
in A also determines a p-terminal object for p : A⊗ −→ Assoc⊗. �
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The technical heart of Theorem 3.26 is the following analogue of Corollary 3.41:

Proposition 3.42. Let λ : (M−,Mm) −→ (C−,Cm)×(D−,Dm) be a left module
object in the ∞-category Pair of pairings, such that the following conditions hold:

(1) The unit 1 ∈ D− is an initial object and the functor M− ×D− {1} −→ C− is
an equivalence.

(2) The pairings M− −→ C− × D− and Mm −→ Cm × Dm are both left repre-
sentable.

(3) The ∞-categories D− and Dm both admit totalisations of cosimplicial objects.

In this case, the pairing LMod(Mm) −→ LMod(Cm) × LMod(Dm) is left repre-
sentable and the forgetful functor LMod(Mm) −→ Alg(M−) preserves left repre-
sentable objects.

Proof. The proof of this result follows the lines of the proof of [HA, Proposi-
tion 5.2.2.27]. Let (A,M) ∈ LMod(Cm) be a tuple of an associative algebra A in C−
and a left A-module M in Cm. Consider the cartesian fibration taking underlying
algebras

π : LMod(Mm)×LMod(Cm) {(A,M)} Alg(M−)×Alg(C−) {A} = Alg(M−)A

The target admits a terminal (i.e. left universal) object AL by [HA, Proposition
5.2.2.27] or Corollary 3.41. We have to prove that the domain admits a terminal
object of the form (AL,ML). We will do this by proving that each fibre of π admits
a terminal object and that the change-of-fibre functors preserve these terminal
objects. Then π admits a fully faithful right adjoint; its value on AL is the desired
(AL,ML).

To see this, note that Alg(M−)A −→ Alg(D−) is a right fibration represented
by Bar(A) [HA, Proposition 5.2.2.27]. In particular, Alg(M−)A admits an initial
object A1; its image in Alg(D−) is the initial object 1. Let A′ ∈ Alg(M−)A be
any other lift of A and let f : A1 −→ A′ denote the unique map in Alg(M−)A. By
Lemma 3.43 below, restriction of modules along f defines a right adjoint functor

f∗ : LModA′(Mm)×LModA(Cm) {M} LModA1
(Mm)×LModA(Cm) {M}.

In particular, this implies that the functor f∗ preserves and detects terminal objects.
The codomain LModA1

(Mm)×LModA(Cm){M} admits a terminal object by a similar,
but easier argument as in Lemma 3.37 or [HA, Lemma 5.2.2.40]. Consequently,
each fibre of π admits a terminal object, which is preserved by all change-of-fibre
functors. �

Lemma 3.43. Consider the setting of Proposition 3.42 and let A ∈ Alg(C−) be
an associative algebra. Let f : A1 −→ A′ be a map in the fibre Alg(M−)×Alg(C−){A}
with domain given by the initial object. Then the restriction functor f∗ between ∞-
categories of modules is the right adjoint in a relative adjunction

LModA1
(Mm) LModA′(Mm)

LModA(Cm).

f!

f∗
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Proof. Let N ∈ LModA1
(Mm) and consider the bar construction

Bar•(A
′, A1, N). If the geometric realisation of Bar•(A

′, A1, N) in LModA′(Mm)
exists, then it computes the value of the putative left adjoint f! on N . It there-
fore suffices to verify that each Bar•(A

′, A1, N) admits a geometric realisation in
LModA′(Mm). Since LModA′(Mm) is monadic over Mm, it suffices to verify that
the underlying simplicial diagram in Mm is split.

To see this, note that the image of Bar•(A
′, A1, N) under the projection

p : Mm −→ Dm is given by Bar•(p(A
′),1, p(N)). This simplicial diagram is constant

on X = p(A′)⊗ p(N), so that we can think of Bar•(A
′, A1, N) as a simplicial dia-

gram in the fibre Mm ×Dm
X. Now consider the right fibration q : Mm ×Dm

X −→
Cm. By [HA, Corollary 4.7.2.11], it suffices to verify that image of Bar•(A

′, A1, N)
in Cm is a split simplicial diagram. This image is simply the split simplicial diagram
Bar•(A,A, q(N)). We conclude that f∗ indeed admits a left adjoint f!. Further-
more, the image of f!(N) in LModA(Cm) agrees with |Bar•(A,A, q(N))| 
 q(N),
so that f! and f∗ form a relative adjunction over LModA(Cm). �

Proof of Theorem 3.26. The commuting square of adjunctions is an imme-
diate consequence of Proposition 3.42, applied to the pairing Tw(C−) −→ C−×C

op
−

and Tw(Cm) −→ Cm × C
op
m (and its opposite for the cobar functors).

For assertion (1), an inspection of the proof of Proposition 3.42 and [HA,
Lemma 5.2.2.40] shows that Bar: LMod(Cm) −→ LComod(Cm) sends (A,M) to a
tuple of a coalgebra and a comodule, with underlying objects given by the inductions
ε!(1) and ε!(M) along the augmentation ε : A −→ 1. Consider a coCartesian arrow
in LMod(Cm) of the form (A,M) −→ (B, f!(M)), where f : A −→ B is a map of
algebras. Denoting the augmentation maps of A and B by εA and εB respectively,
the image of this arrow under the bar construction is given on underlying objects
by the natural map(

εA!(1), εA!(M)
) (

εB!(1), εB!(f!(M))
)
.

This map is coCartesian as soon as the natural map εA!(M) −→ εB!(f!(M)) is an
equivalence, which follows from transitivity of extension of scalars and the fact that
εA 
 εB ◦ f .

For assertion (2) about right C+-linearity of the bar construction, it suffices
to verify that the right action LMod(Tw(Cm))×Tw(C+) −→ LMod(Tw(Cm)) pre-
serves left universal arrows (see Notation 3.35). Since Tw(C+) classifies the identity
functor on C+, this comes down to the assertion that for any object X ∈ C+, the
natural map Bar(A,M ⊗X) −→ Bar(A,M)⊗X is an equivalence. This map can
be identified with the canonical map

(
ε!(1), ε!(M ⊗ X)

)
−→

(
ε!(1), ε!(M) ⊗ X

)
.

The map

ε!(M ⊗X) =
∣∣Bar•(1, A,M)⊗X

∣∣ ∣∣Bar•(1, A,M)
∣∣ ⊗X = ε!(M)⊗X

is now an equivalence because (−)⊗X preserves geometric realisations. �

Refined Koszul Duality. The Koszul dual of an augmented PD ∞-operad
P now arises from the bar construction Bar(P) by linear duality.

Notation 3.44 (Linear dual symmetric sequences). Let R be a coherent E∞-
ring spectrum and recall that the ∞-category sSeq∨R comes equipped with the lev-
elwise tensor product ⊗lev; its unit is the E∞-operad. If X is a pro-coherent
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symmetric sequence, we will write X∨ for its dual with respect to the levelwise
tensor product and refer to it as the linear dual of X.

Remark 3.45 (Refined linear duality). The pro-coherent linear duality de-
scribed above refines the usual operation of taking R-linear dual symmetric se-
quences, in the sense that there is a commuting diagram

sSeq∨,op
R sSeq∨R

sSeqopR sSeqR .

(−)∨

υ

(−)∨

ι

The bottom functor is the usual functor taking the levelwise linear dual X∨(r) =
HomR(X(r), R). If X is an ordinary symmetric sequence, then its dual in sSeq∨R
crucially need not arise from a symmetric sequence, i.e. need not be contained in
the essential image of ι.

Informally, X∨ is the pro-coherent symmetric sequence given in each arity r
by the continous R-linear dual of X(r). This is substantiated by the following
observation:

Proposition 3.46. Let R be a coherent E∞-ring spectrum. Then
(−)∨ : sSeq∨R −→ sSeq∨,op

R is the right-left extension of the functor R[Σ] −→ R[Σ]op

sending a finite type free symmetric sequence X to the R-linear dual symmetric se-
quence X∨(r) = HomR(X(r), R). Furthermore, it restricts to an equivalence

(−)∨ : APerf∨R[Σ] APerfopR[Σ] .
�

Proof. When X is finitely generated free, X∨(r) = HomR(X(r), R) indeed
defines an object in R[Σ]. Furthermore, there are canonical maps in the ∞-category
of symmetric sequences E∞ −→ X⊗levX

∨ and X∨⊗levX −→ E∞ exhibiting X∨ as
the dual ofX. Consequently, they remain dual in pro-coherent symmetric sequences
as well. The result now follows from (the proof of) Proposition 2.55. �

Proposition 3.47. Let R be a coherent E∞-ring spectrum. Then (−)∨ :
sSeq∨,op

R −→ sSeq∨R is lax monoidal with respect to the extended composition prod-
uct ◦. Furthermore, it restricts to a (strong) monoidal equivalence APerf∨R[Σ],� 0 

APerfopR[Σ],≥0.

In particular, (continuous) linear duality sends PD ∞-cooperads to PD ∞-
operads and restricts to an equivalence between the ∞-categories of almost perfect
PD ∞-cooperads and dually almost perfect PD ∞-operads.

Proof. Consider the functor F : sSeq∨,op
R −→ Fun(sSeq∨,op

R , Slarge) sending
each pro-coherent symmetric sequenceX to the (large) presheaf Map(X⊗lev−,E∞).
This takes values in the essential image of the Yoneda embedding, and the corre-
sponding functor precisely sends X �→ X∨. We endow the (large) presheaf category
Fun

(
sSeq∨,op

R , Slarge
)
with the Day convolution product with respect to ◦. Since

the Yoneda embedding is a fully faithful monoidal functor, it suffices to endow the
functor F with a lax monoidal structure. By the universal property of Day con-
volution [HA, Section 2.2.6], such a lax monoidal structure is equivalent to a lax
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monoidal structure on the functor adjoint to F

sSeq∨,op
R × sSeq∨,op

R sSeq∨,op
R S .

⊗lev Map(−,E∞)

The first functor is lax monoidal by Proposition 3.18 and the second functor is lax
monoidal since E∞ is an algebra with respect to ◦ (and the Yoneda embedding
C −→ Fun(Cop, S) is monoidal for the Day convolution product).

For the final assertion, we have to verify that the natural map μ : X∨ ◦Y ∨ −→
(X ◦Y )∨ is an equivalence when X,Y ∈ APerf∨R[Σ],� 0. Using furthermore that both

functors preserve totalisations of diagrams in R[Σ], we can reduce to the case where
X and Y are contained in R[Σ]. In this case the result follows by inspection. �

Definition 3.48 (Koszul dual PD operad). Let R be a coherent E∞-ring. If P

is an augmented PD ∞-operad, we define its Koszul dual PD ∞-operad KDpd(P) =
Bar(P)∨ to be the linear dual of the bar construction.

Theorem 3.49 (Refined Koszul duality for operads). Let R be a coherent E∞-
ring spectrum. Then there is a commuting diagram of ∞-categories

Oppd,augR Oppd,aug,opR

OpaugR Opaug,opR

KDpd

υ

KD

ι

where the bottom functor sends an augmented ∞-operad to its classical Koszul dual
∞-operad, given by the Spanier–Whitehead dual of its bar construction.

Proof. The functor ι is monoidal with respect to the composition product
and preserves geometric realisations. Consequently, it commutes with the bar con-
struction. The result then follows from the fact that linear duality in pro-coherent
symmetric sequences provides a lax monoidal refinement of Spanier–Whitehead du-
ality of ordinary symmetric sequences (Remark 3.45). �

Since linear duality preserves pro-coherent symmetric sequences concentrated
in arity 0, it furthermore sends coalgebras over ∞-cooperads to algebras over ∞-
operads:

Definition 3.50 (Koszul dual algebra). Let R be a coherent E∞-ring and P an

augmented R-linear PD ∞-operad, with Koszul dual KDpd(P). If A is a P-algebra,
we define its Koszul dual KD(P)-algebra to be the linear dual of its bar construction

KDpd(A) = BarP(A)∨ (Corollary 3.30).

Theorem 3.51. Let R be a coherent E∞-ring spectrum and P an augmented
∞-operad over R. Then there is a commuting diagram of ∞-categories

AlgP(QC∨
R) AlgKDpd(P)(QC∨

R)
op

AlgP(ModR) AlgKD(P)(ModR)
op

KDpd

υ

KD

ι

where the bottom functor sends a P-algebra A to its classical Koszul dual algebra,
given by the Spanier–Whitehead dual of its bar construction.
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Proof. The proof of Theorem 3.49 carries over, using instead that ι commutes
with the bar construction of Theorem 3.26. �

We will now illustrate how Theorem 3.49 and Theorem 3.51 concretely refine
the usual Koszul duality for ∞-operads and their algebras.

Definition 3.52 (Almost finitely presented∞-operads). Let R be a connective
E∞-ring spectrum. An augmented ∞-operad P is said to be connective if each P(r)
is a connective spectrum. A connective augmented operad P is almost of finite
presentation if it defines an almost compact object in the compactly generated ∞-
category OpaugR,≥0 of connective augmented operads, in the sense of [HA, Definition

7.2.4.8]: this means τ≤mP is a compact object in the ∞-category OpaugR,≥0,≤m of
augmented ∞-operads that are connective and m-coconnective, for each m ≥ 0.

Proposition 3.53. Let R be a coherent E∞-ring spectrum and let P be a
connective augmented ∞-operad over R which is almost of finite presentation. Then
the Koszul dual PD ∞-operad KDpd(P) is dually almost perfect. The induced monad

KDpd(P) : QC∨
R −→ QC∨

R preserves sifted colimits and dually almost perfect objects
of tor-amplitude ≤ 0, and the resulting monad on APerf∨R,� 0 can be identified with

KDpd(P)(V ) 

⊕
r

(
KD(P)pd(r)⊗ V ⊗r

)hΣr 

(
cotP ◦ trivP(V ∨)

)∨
.

Notice that the above differs from the free algebra over the classical Koszul
dual KD(P), even for finitely generated free R-modules.

Proof. Note that the bar construction restricts to a functor Bar: OpaugR,≥0 −→
sSeqR,≥0 from connective augmented operads to connective symmetric sequences
(indeed, this is simply the bar construction for augmented algebras in the monoidal
∞-category sSeqR,≥0). This functor preserves colimits and sends a free augmented
∞-operad Free(X) to X, so that it preserves almost compact objects for formal
reasons.

It follows that the bar construction of an almost finitely presented connective
augmented∞-operad P is almost perfect as a symmetric sequence, so that its Koszul
dual is dually almost perfect. The dually almost perfect symmetric sequences are
closed under the composition product, so that the free KDpd(P)-algebra functor
preserves dually almost perfect objects. Since linear duality is an equivalence on
dually almost perfect symmetric sequences (Proposition 3.47), there is an equiva-

lence of monads KDpd(P) 
 (−)∨ ◦ Bar(P) ◦ (−)∨. The formulas for the monad

KDpd(P) then follow from Proposition 3.19 and Corollary 3.30. �

One can verify that the nonunital E∞-operad is almost finitely presented. In
particular, its bar construction is the symmetric sequence

Bar(Enu
∞,R)(r) 
 R ∧ Σ|Πr|�

of reduced-unreduced suspensions of the partition complex; this is indeed an almost
perfect symmetric sequence (which is all we need). We will write Hom(Σ|Πr|�, R) ∈
QC∨

R[Σr] for its pro-coherent R-linear dual.

Definition 3.54 (The spectral Lie PD operad). The spectral partition Lie PD

∞-operad is the PD Koszul dual LieπR,E∞ = KDpd(Enu
∞).
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Corollary 3.55. The monad associated to the spectral partition Lie PD ∞-
operad agrees (over a field k) with the spectral partition Lie monad from [BM19,
Definition 5.32] and is given on dually almost perfect objects by

LieπR,E∞(V ) =
⊕
r

(
Hom(Σ|Πr|�, R)⊗ V ⊗r

)
hΣr .

3.5. Derived operads and derived PD operads

In this section, we will describe a derived refinement of the notion of ∞-operad
and PD ∞-operad over a coherent simplicial commutative ring, which also accounts
(in a rather strict way) for the genuine equivariant homotopy theory of the symmet-
ric group actions. We will first discuss the derived version of classical ∞-operads
and then turn to the pro-coherent setting.

Derived operads. Recall that the ∞-category of symmetric sequences over R
is generated by free Σr-modules, for various r. We will now introduce an∞-category
of derived symmetric sequences over R that will be generated by Σr-orbits.

Definition 3.56 (Derived symmetric sequences). Let R be a simplicial com-
mutative ring. We define the ∞-category of derived symmetric sequences to be

sSeqgenR 

∏
r≥0

ModΣr

R

where ModΣr

R is the ∞-category from Example 2.15. In other words, a derived
symmetric sequence over R has an arity r component given by a module over the
constant cohomological Mackey functor R in the ∞-category of genuine Σr-spectra.

Let us point out that the definition of the ∞-category sSeqgenR also makes sense

when R is an E∞-algebra (or even an E1-algebra) over Z. However, we will only
be interested in the case where R is a simplicial commutative ring, because in that
case we can endow sSeqgenR with a strict version of the composition product (see

Construction 3.63, which proceeds by induction from the case of a discrete ring R).

Notation 3.57. Recall from Example 2.15 that each ModΣr

R 
 ModR[OΣr ]

can be obtained as the ∞-category of modules over the full additive subcategory
R[OΣr

] ⊆ ModΣr

R spanned by the free R-modules on finite Σr-sets.

Write R[OΣ] :=
⊕

r≥0 R[OΣr
] for the sum of all of these additive ∞-categories

(Example 2.4). One can identify R[OΣ] ⊆ sSeqgenR with the full subcategory spanned

by the R-linearisations R[X] of finite symmetric sequences of sets (Definition 3.11)
and Example 2.4 shows that

sSeqgenR 
 ModR[OΣ]

coincides with the ∞-category of modules over the additive ∞-category ModR[OΣ].
Example 2.15 shows that R[OΣ] is coherent if R is a coherent simplicial ring.

Example 3.58. Let R be a discrete commutative ring and let sSeq♥R denote the
(ordinary) category of symmetric sequences of discrete R-modules. This can also
be identified with the heart of the t-structure on sSeqR provided by Definition 2.5.
It follows from Example 2.15 that R[OΣ] can be identified with the full subcategory

of the category sSeq♥R of symmetric sequences of discrete R-modules, spanned by
the symmetric sequences R[X] with X a finite symmetric sequence of sets.
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Lemma 3.59. There is a natural sifted-colimit-preserving functor SCR −→ Add
sending R �→ R[OΣ].

Proof. It suffices to show that in each individual arity r, the assignment
R �→ R[OΣr

] extends to a functor SCR −→ Add preserving sifted colimits. To

see this, notice that ModΣr

R = ModR(Sp
Σr) depends functorially on the simplicial

commutative ring R, via

F : SCR CAlg(ModZ,≥0) CAlg(SpΣr) PrL.
R �→R Mod

Here the first functor sends a simplicial commutative rings to the corresponding
E∞-ring spectrum over Z, the second functor sends this to the corresponding con-
stant Mackey functor and the last functor sends A ∈ CAlg(SpΣr) to the (stable)

presentable ∞-category ModA(Sp
Σr). The first two functors manifestly preserve

sifted colimits (which are computed on the underlying object) and the last functor
preserves sifted colimits by [HA, Corollary 4.8.5.13].

For any map of simplicial rings R −→ R′, the induced left adjoint functor
ModΣr

R −→ ModΣr

R′ simply induces along R −→ R′. In particular, this sends the

full subcategory R[OΣr
] to R′[OΣr

]. One then obtains SCR −→ Add;R �→ R[OΣr
]

as a diagram of full subcategories. This preserves sifted colimits because the func-
tor Add −→ PrL;A �→ ModA preserves colimits and detects equivalences, by the
universal property discussed in Definition 2.1. �

Example 3.60 (Borel derived symmetric sequences). For any simplicial com-
mutative ring R, there is a fully faithful inclusion R[Σ] ↪→ R[OΣ] with essential
image given by R-linearised finite Σ-free symmetric sequences of sets. This induces
a fully faithful inclusion sSeqR −→ sSeqgenR . We will refer to the essential image of

the inclusion as the Borel(-nilpotent) derived symmetric sequences.

Example 3.61. There is a functor sSeq(Set) −→ sSeqgenR sending a set-valued

symmetric sequence X to its R-linearisation R[X]. This functor is uniquely char-
acterised by the fact that it preserves coproducts and sends a symmetric sequence
in arity r of the form Σr/H to the object R[Σr/H] in R[OΣ].

Example 3.62 (Discrete symmetric sequences). If R is a discrete commutative
ring, every discrete symmetric sequenceX determines a derived symmetric sequence
Xgen, given by the additive functor R[OΣ]

op −→ Sp sending each R[S] to the
discrete abelian group HomsSeq♥

R
(R[S], X). This encodes the data of all fixed points

X(r)H with H < Σr.

Just like on symmetric sequences, there is a plethora of monoidal structures on
derived symmetric sequences.

Construction 3.63 (Monoidal structures on derived symmetric sequences).
If R is a discrete ring, then the full subcategory R[OΣ] ⊆ sSeqR is closed under the
monoidal structures ◦, ⊗ and ⊗lev from Section 3.1. Note that for every map of
rings f : R −→ S, the induced functor R[OΣ] −→ S[OΣ] preserves these monoidal
structures, as well as all the compatibilities between them, e.g. the natural transfor-
mation exhibiting ⊗lev as (op)lax monoidal with respect to ◦. We can then define all
of these structures for a simplicial commutative ring R as well, using functoriality
over polynomial rings and extending by sifted colimits (using Lemma 3.59).
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As in Lemma 3.15, all of these monoidal structures are given by locally poly-
nomial functors. If R is a coherent simplicial commutative ring, Theorem 2.52
shows that they extend to monoidal structures ◦,⊗,⊗lev on sSeqgenR , which pre-
serve sifted colimits and finite totalisations. Furthermore, all of these monoidal
structures preserve all colimits in the first variable.

Definition 3.64 (Derived ∞-(co)operads). Let R be a coherent simplicial
commutative ring. We define a derived ∞-operad over R to be an associative
algebra in sSeqgenR with respect to the derived composition product ◦. Likewise, a

derived ∞-cooperad is a coalgebra in sSeqgenR . We will write OpgenR and coOpgenR for
the ∞-categories of derived ∞-operads and ∞-cooperads, respectively.

Example 3.65. The inclusion R[Σ] ↪→ R[OΣ] is preserves the composition
product. Consequently, the inclusion sSeqR −→ sSeqgenR of the Borel derived sym-
metric sequences preserves the composition product and its right adjoint is lax
monoidal for the composition product. It follows that there is an adjoint pair
OpR � OpgenR where the left adjoint includes R-linear ∞-operads into the derived
∞-operads and the right adjoint sends each derived ∞-operad to the underlying
‘Borel operad’.

Example 3.66 (Algebraic operads). Let R be a discrete coherent ring. Then

there is an adjoint pair F : sSeqgenR,≥0 � sSeq♥R : (−)gen where the right adjoint is as

in Example 3.62. The left adjoint is the nonabelian derived functor of the inclusion
R[OΣ] −→ sSeq♥R. This functor is monoidal for the composition product, so that
(−)gen is lax symmetric monoidal. Consequently, every classical R-linear operad P

determines a derived ∞-operad Pgen. This construction can be understood more
concretely in terms of our point-set models, see Remark 5.15.

Example 3.67 (Derived commutative operad). Applying the previous example
to the commutative operad gives a derived ∞-operad that we will denote by Com.
Unravelling the definitions, Com is the derived symmetric sequence given in each
arity r by the free R-module on the point, equipped with the trivial Σr-action.
Using this, one easily sees that the derived symmetric sequence underlying Com is
the unit for the levelwise tensor product.

Remark 3.68 (Formula for derived composition product). For a coherent sim-
plicial ring R, the r-fold Day convolution product of a derived symmetric sequence
Y admits a genuine Σr-equivariant structure. More precisely, there is a functor

sSeqgenR

∏
q≥0 Mod

Σr×Σq

R = ModR[OΣr×Σ]; Y Y ⊗r

obtained by left-right extending a polynomial functor Tr : R[OΣ] −→ R[OΣr×Σ]:
when R is a discrete ring, Tr simply sends the linearisation R[K] of a finite symmet-
ric sequence of sets to R[K⊗r] and one extends to general simplicial commutative
rings by sifted colimits (Lemma 3.59). The composition product on sSeqgenR can
then be identified with

X ◦ Y ∼=
⊕
r≥0

(
X(r)⊗ Y ⊗r

)
Σr

where we take the tensor product of X(r) and Y ⊗r in
∏

q Mod
Σr×Σq

R and then take

genuine Σr-orbits (Example 2.51). Indeed, both functors are obtained as left-right
extensions and coincide on R[OΣ].
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The derived composition product ◦ restricts to an action ◦ : sSeqgenR ×ModR −→
ModR, where we identify ModR with the full subcategory of derived symmetric
sequences concentrated in arity 0.

Example 3.69. Let X be a symmetric sequence of sets and let R[X] be the
associated derived symmetric sequence (Example 3.61). The induced endofunctor
of ModR is the right-left extended functor of the functor sending a finitely generated
free R-module V to

⊕
r≥0

(
X(r)+ ∧ V ⊗r

)
Σr

.

Definition 3.70 (Algebras over derived operads). Let R be a simplicial com-
mutative ring and P a derived ∞-operad. We define a P-algebra to be a left P-
module in ModR with respect to the composition product. Likewise, a coalgebra
over a derived ∞-cooperad is a left comodule in ModR with respect to the composi-
tion product. We will write AlgP(ModR) and coAlgC(ModR) for the ∞-categories
of (co)algebras.

Example 3.71 (Derived commutative algebras). The monad associated to the
derived commutative ∞-operad is the right-left extension of the functor send-
ing a finitely generated free R-module V to the symmetric algebra SymR(V ) =⊕

n≥0(V
⊗n)Σn

. In particular, the ∞-category of connective algebras over the de-

rived ∞-operad Com is the ∞-category of simplicial commutative (i.e. animated)
R-algebras. The ∞-category of all algebras for this monad is the ∞-category of
derived rings, as studied by Bhatt–Mathew, Raksit [Rak20] and others.

Derived PD operads. We will now discuss a version of derived ∞-operads
with divided powers, following the discussion in Section 3.3.

Definition 3.72 (Pro-coherent derived symmetric sequences). Let R be a co-
herent simplicial commutative ring. A derived pro-coherent symmetric sequence
over R is a pro-coherent module over the additive ∞-category R[OΣ]. We will
denote the ∞-category of pro-coherent derived symmetric sequences by sSeqgen,∨R .

Remark 3.73. The fully faithful inclusion sSeqR ↪→ sSeqgenR of the Borel de-

rived symmetric sequences extends to a fully faithful inclusion sSeq∨R ↪→ sSeqgen,∨R

between pro-coherent objects.

Recall that the ∞-category sSeqgen,∨R is (often) a further enlargement of the
∞-category of derived symmetric sequences, which also contains the continuous R-
linear duals of almost perfect derived symmetric sequences. We start by studying
the operation of taking R-linear dual pro-coherent derived symmetric sequences. To
this end, note that we can use Theorem 2.52 to endow sSeqgen,∨R with the levelwise
tensor product. The unit for this tensor product is the derived symmetric sequence
Com, given in each arity by the trivial Σr-representation on R.

Notation 3.74 (Linear dual pro-coherent derived symmetric sequences). Let R
be a coherent simplicial commutative ring. IfX is a pro-coherent derived symmetric
sequence, we will write X∨ for its dual with respect to the levelwise tensor product
and refer to it as the R-linear dual of X.

We have the following analogue of Proposition 3.46.

Proposition 3.75. Let R be a coherent simplicial commutative ring and con-
sider the functor (−)∨ : sSeqgen,∨R −→ sSeqgen,∨,op

R taking R-linear duals. This
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functor is the right-left extension of the equivalence R[OΣ] −→ R[OΣ]
op sending

each R-linearised finite symmetric sequence of sets R[X] to the R-linear dual sym-
metric sequence R[X]∨(r) = HomR

(
R[X](r), R

)
. Furthermore, it restricts to an

equivalence

(−)∨ : APerf∨R[OΣ] APerfopR[OΣ] .
�

In particular, the image of ι : sSeqgenR −→ sSeqgen,∨R is typically not closed under
duality.

Proof. Notice that the symmetric sequence R[X]∨ indeed defines an object in
R[OΣ] (isomorphic to R[X] itself) and that the resulting functor (−)∨ : R[OΣ] −→
R[OΣ]

op is an equivalence. We claim that R[X]∨ is indeed the dual of R[X] with
respect to the levelwise tensor product. For each arity r, there are canonical maps
in R[OΣ] of the form Com(r) −→ X(r)⊗levX(r)∨ and X(r)∨⊗levX(r) −→ Com(r)
exhibiting X∨ as the dual of X. The result now follows from Proposition 2.55. �

By Theorem 2.52, the composition product on derived symmetric sequences
(Construction 3.63) extends to a composition product on pro-coherent derived sym-
metric sequences. For applications to Koszul duality, we will be more interested in
a version of the composition product based on strict invariants, rather than strict
orbits:

Definition 3.76 (Restricted composition product). Let R be a simplicial
commutative ring. Conjugating the composition product on R[OΣ] by the self-
equivalence (−)∨ : R[OΣ] −→ R[OΣ]

op yields another monoidal structure, usually
referred to as the restricted composition product. Explicitly, this monoidal structure
on R[OΣ] can be identified with

X ◦̄Y = (X∨ ◦ Y ∨)∨ ∼=
⊕
r

(
X(r)⊗ Y ⊗r

)
Σr .

Here X(r)⊗Y ⊗r defines an object in R[OΣr×Σ], as in Remark 3.68 and (−)Σr takes
genuine Σr-fixed points.

This has properties analogous to the usual composition product; for example,
the levelwise tensor product ⊗lev is both lax and oplax monoidal with respect to ◦̄.
The norm maps

(
X(r)⊗ Y ⊗r

)
Σr

−→
(
X(r)⊗ Y ⊗r

)
Σr determine a natural map

Nm: X ◦ Y −→ X ◦̄Y.

This endows the identity functor with the structure of a lax monoidal functor(
R[OΣ], ◦

)
−→

(
R[OΣ], ◦̄

)
(see e.g. [Fre00]). Note that the norm map is an equiv-

alence if X is Σ-free or Y is concentrated in arity ≥ 1. All of these properties and
structures are verified directly when R is a discrete ring and hold for simplicial
commutative rings by taking sifted colimits (as in Construction 3.63).

Using the results from Section 2.2, the various products considered above can
now be extended to pro-coherent derived symmetric sequences:

Proposition 3.77. Let R be a coherent ring. Then the monoidal structures
◦, ◦̄,⊗ and ⊗lev all admit right-left extensions to monoidal structures on the cat-
egories sSeqgenR and sSeqgen,∨R . Furthermore, these monoidal structures have the
following properties:
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(1) Each of the four monoidal structures ◦, ◦̄,⊗ and ⊗lev preserves sifted colimits
and all colimits in the first variable.

(2) There is a commuting square of left adjoint functors

sSeqR sSeqgenR

sSeq∨R sSeqgen,∨R

ι ι

where the horizontal functors include the Borel (pro-coherent) derived sym-
metric sequences. All of these functors are (symmetric) monoidal with respect
to ◦, ◦̄,⊗ and ⊗lev. Here we identify ◦̄ = ◦ on symmetric sequences and pro-
coherent symmetric sequences.

(3) The functor ⊗lev is both lax and oplax monoidal with respect to ◦ and ◦̄.
(4) There is a natural norm map Nm: X ◦ Y −→ X ◦̄Y that endows the identity

functor with the structure of a lax monoidal functor. The norm map is an
equivalence if X is a pro-coherent Borel derived symmetric sequence or if Y
is concentrated in arity ≥ 1.

Proof. The proof of Proposition 3.18 carries over mutatis mutandis. Note
that the horizontal fully faithful inclusions in (2) are induced by the fully faith-
ful inclusion R[Σ] −→ R[OΣ]. The full subcategory R[Σ] is closed under each of
the four tensor products and furthermore the two composition products ◦ and ◦̄
coincide on R[Σ] (since the norm map is an equivalence on Borel derived symmet-
ric sequences). Theorem 2.52 then implies that the functors in the diagram are
(symmetric) monoidal for each of the four products. �

Example 3.78. When R is a coherent simplicial ring, the monoidal structure
◦̄ on sSeqgen,∨R is given by the formula

X ◦̄Y =
⊕
r

(
X(r)⊗ Y ⊗r

)
Σr .

Here X(r)⊗ Y ⊗r defines an object in QC∨
R[OΣr×Σ] (using Remark 3.68) and (−)Σr

is the derived genuine fixed points functor from Example 2.51.
In particular, when X 
 Tot(X•) and Y 
 Tot(Y •) arise as totalisations of

cosimplicial diagrams in R[OΣ], the value is given by the derived strict invariants

X ◦̄Y 
 Tot
(⊕

r≥0

(
X•(r)⊗ (Y •)⊗r

)
Σr

)
.

Definition 3.79 (Derived PD operads). Let R be a coherent simplicial com-
mutative ring. A derived PD ∞-operad over R is defined to be an associative
algebra in sSeqgen,∨R with respect to the restricted composition product ◦̄. We will

denote the ∞-category of derived PD ∞-operads by Opgen,pdR .

Remark 3.80. By part (4) of Proposition 3.77, there is a forgetful functor from
derived PD ∞-operads to algebras in sSeqgen,∨R with respect to the composition
product ◦. This forgetful functor is an equivalence for derived PD ∞-operads
without operations in arity 0.

The restricted composition product ◦̄ induces an action of sSeqgen,∨R on QC∨
R.
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Definition 3.81 (Algebras over derived PD operads). An algebra over a de-
rived PD ∞-operad P is a left P-module in QC∨

R with respect to the ◦̄-action. We
will write AlggenP (QC∨

R) for the ∞-category of P-algebras.

Example 3.82 (Divided power algebras). The derived commutative ∞-operad
Com from Example 3.71 admits a nonunital version Comnu. Since Comnu is
trivial in arity 0, its image in sSeqgen,∨R has the structure of a derived PD ∞-

operad. The corresponding monad on QC∨
R is the right-left extension of the func-

tor sending a finitely generated free R-module V to the divided power algebra
ΓR(V ) =

⊕
r≥1(V

⊗r)Σr .

3.6. Refined Koszul duality for derived PD operads

Finally, we shall discuss a refinement of the classical Koszul duality for ∞-
operads to the setting of derived ∞-operads. As a first step, the ∞-categorical
bar construction yields a functor from augmented derived ∞-operads to derived
∞-cooperads and from derived algebras to derived coalgebras

Bar: Opgen,aug
R coOpgen,aug

R Bar: AlggenP (ModR) coAlgBar(P)(ModR).

If P is a derived ∞-operad, then we define its (refined) Koszul dual to be the
pro-coherent R-linear dual of its bar construction. This carries the structure of a
derived PD ∞-operad by the following observation:

Proposition 3.83. Linear duality induces oplax monoidal functors

(
sSeqgen,∨

R , ◦
) (

sSeqgen,∨,op
R , ◦̄

) (
sSeqgen,∨

R , ◦̄
) (

sSeqgen,∨,op
R , ◦

)(−)∨ (−)∨

restricting to (strong) monoidal equivalences between almost perfect (dually almost
perfect) objects.

Proof. Let us only treat the first case and write F : R[OΣ] −→ R[OΣ]
op ⊆

sSeqgen,∨,op
R for the functor taking R-linear duals. By Proposition 3.75, linear dual-

ity is the right-left extension of F . The construction of the restricted composition
product (Definition 3.76) implies that F is a strong monoidal functor. Since ◦̄ pre-
serves sifted colimits in each variable, the right extension FR : APerf∨R[OΣ],� 0 −→
sSeqgen,∨,op

R remains strong monoidal. By (the opposite of) Lemma 2.58, the left

extension FLR then inherits an oplax monoidal structure. It is strong monoidal on
dually almost perfect objects by the construction and the fact that ◦̄ and ◦ both
preserve finite geometric realisations and totalisations in each variable. �

Definition 3.84 (Koszul duality for derived operads). Let R be a coherent
simplicial commutative ring and P an augmented derived ∞-operad over R. We
define the Koszul dual derived PD ∞-operad of P to be the pro-coherent R-linear
dual of the bar construction KDpd(P) = Bar(P)∨.

This refines the Koszul duality of Theorem 3.49: Koszul duality fits into a
commuting square where the vertical arrows include the Borel derived (PD) ∞-
operads

OpaugR

(
Oppd,augR

)op

Opgen,augR

(
Opgen,pd,augR

)op
.

KDpd

KDpd
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Definition 3.85. Let R be a coherent simplicial commutative ring and P an
augmented derived ∞-operad over R. If A is a P-algebra, then we define its Koszul
dual KDpd(P)-algebra to be the pro-coherent R-linear dual of the bar construction

KDpd(A) = BarP(A)∨.

Let us give a more explicit description of the monad associated to the Koszul
dual of a derived ∞-operad satisfying some finiteness conditions:

Definition 3.86 (Almost finitely presented derived ∞-operads). Let R be a
simplicial commutative ring. An augmented derived ∞-operad P over R is said
to be connective if its underlying derived symmetric sequence is connective. A
connective augmented derived ∞-operad P is said to be almost finitely presented
if it defines an almost compact object in the ∞-category Opgen,augR,≥0 of connective

augmented derived ∞-operads, in the sense of [HA, Definition 7.2.4.8].

We can then describe the monad induced by KDpd(P) in terms of the adjunction

cotP : AlggenP (QC∨
R) � QC∨

R : trivP

arising from the augmentation map of derived ∞-operads P −→ 1:

Proposition 3.87. Let R be a coherent simplicial commutative ring and P

a connective almost finitely presented augmented derived ∞-operad over R. Then
KDpd(P) is dually almost perfect. The induced monad KDpd(P) : QC∨

R −→ QC∨
R

preserves sifted colimits and dually almost perfect objects of tor-amplitude ≤ 0, and
the resulting monad on APerf∨R,� 0 can be identified with

KDpd(P)(V ) 

⊕
r

(
KD(P)pd(r)⊗ V ⊗r

)Σr 

(
cotP ◦ trivP(V ∨)

)∨
.

Proof. The proof of Proposition 3.53 carries over verbatim. The first formula
for the monad KDpd(P) follows from Example 3.78. The second equivalence follows
from Proposition 3.28 (applied to C− = (sSeqgen,∨R )1//1 acting on Cm = QC∨

R) and
the fact that linear duality gives a monoidal equivalence between dually almost
perfect and almost perfect pro-coherent derived symmetric sequences. �

One can verify that the nonunital commutative derived ∞-operad is almost
finitely presented. In particular, its bar construction is the derived symmetric
sequence Bar(Comnu)(r) 
 R[Σ|Πr|�] of reduced-unreduced suspensions of the
nerve of the partition complex; this is indeed an almost perfect derived symmetric
sequence (which is in fact all that we need), arising as the geometric realisation of
a simplicial diagram of derived symmetric sequences as in Example 3.61. Let us
write Hom(Σ|Πr|�, R) for its (pro-coherent) R-linear dual in QC∨

R[OΣr ]
; in terms

of the simplicial-cosimplicial models from Section 5, this can be described by the
cosimplicial R-module of R-valued functions on the simplicial set Σ|Πr|�.

Definition 3.88 (The derived partition Lie PD operad). The (derived) parti-

tion Lie PD ∞-operad is the Koszul dual LieπR,Δ = KDpd(Comnu).

Corollary 3.89. The monad associated to the derived partition Lie PD ∞-
operad agrees (over a field k) with the partition Lie monad from [BM19, Definition
5.47] and is given on dually almost perfect objects by

LieπR,δ(V ) =
⊕
r

(
Hom(Σ|Πr|�, R )⊗ V ⊗r

)
Σr .
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CHAPTER 4

Chain models for PD operads

In the previous chapter we have given an ∞-categorical discussion of PD ∞-
operads over coherent E∞-ring spectra. Every PD ∞-operad determines a sifted-
colimit-preserving monad on the ∞-category of pro-coherent R-modules, which can
be constructed as a right-left extended functor and can be described by a formula
involving the divided orbits of Example 2.50.

The purpose of this chapter is to provide explicit point-set models for these
∞-categorical constructions in the case where R is a discrete coherent ring. In
particular, we give a presentation of PD ∞-operads and their algebras in terms of
chain complexes of R-modules. As a motivation for all the constructions appearing
in this chapter, we shall give the following example:

Example 4.1. Let k be a field and let Enu denote the (nonunital) Barratt–
Eccles operad, given by Enu(r) = C∗(EΣr). In particular, each Enu(r) is given by
a chain complex of finitely generated free k[Σr]-modules, in nonnegative degrees.
For any chain complex V , the composition product Enu(r) then computes the free
nonunital E∞-algebra

Enu ◦ V =
⊕
r>0

(
Enu(r)⊗ V ⊗r

)
Σr



⊕
r>0

V ⊗r
hΣr

.

The last equivalence uses that Enu(r) is a projective resolution of the trivial Σr-
representation.

On the other hand, consider the linear dual Enu,∨ of the Barratt–Eccles operad.
This does not admit an obvious operad structure, but in Appendix A, we construct a
dg-operad Sur∨ whose underlying symmetric sequence is chain homotopic to Enu,∨.
Leaving this issue aside, note that Enu,∨ ◦V does not compute the free E∞-algebra⊕

r>0 V
⊗r
hΣr

on V , even though Enu,∨ is quasi-isomorphic to Enu. Indeed, even

though Enu,∨(r) is a chain complex of finitely generated free k[Σr]-modules, it is
not a projective resolution of the trivial Σr-representation; instead it is an injective
resolution. Consequently, for any bounded above complex V we now have that

Enu,∨ ◦ V =
⊕
r>0

(
Enu,∨(r)⊗ V ⊗r

)
Σr

∼=
⊕
r>0

(
Enu,∨(r)⊗ V ⊗r

)Σr 

⊕
r>0

(V ⊗r)hΣr

computes a free nonunital E∞-algebra with divided powers. Here the second iso-
morphism uses that Enu,∨(r) is a complex of finitely generated free k[Σr]-modules,
so that the norm map is an isomorphism (which also holds for Enu) and the last
equivalence uses crucially that Enu,∨(r) is an injective resolution of the trivial Σr-
representation.

Remark 4.2. Notice that the above computation is not in conflict with the
standard homotopy theory for operads from e.g. [Hin97,BM03]: even though
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the symmetric sequence Enu,∨ consists of complexes of free Σr-modules, it is not
Σ-cofibrant in the usual sense and is hence usually excluded from considerations.

We will show that the ∞-category of PD ∞-operads over R can be described
by a homotopy theory of dg-operads in which more dg-operads are Σ-cofibrant,
and hence fewer dg-operads are weakly equivalent to one another. In particular, in
Section 4.4 we will describe a dg-operad controlling the theory of spectral partition
Lie algebras, which is Σ-cofibrant (only) in this more liberal sense.

We start by discussing a chain model for the ∞-category of pro-coherent R[G]-
modules and the divided orbits functor for a finite group G; in fact, for our later
description of the ∞-category of derived ∞-operads, we will simultaneously treat
pro-coherent modules over the additive ∞-category R[OG] from Example 2.15.

4.1. Chain models for pro-coherent modules

Throughout this section, we fix a discrete (commutative) ring R, a finite group
G and a full subcategory F ⊆ OG of the orbit category. We will only make use of
the extreme cases where F contains only the trivial subgroup (later in this section)
and where F = OG (in Section 5).

Definition 4.3. A G-set is said to be F-admissible, or briefly admissible, if
each orbit is contained in F , and a subgroup H < G is said to be admissible if G/H
is an admissible orbit. If R is a ring, then an R-linear G-representation V is said
to be a (finite) F-admissible representation if V ∼= R[S] is the R-linearisation of
a (finite) F-admissible G-set. We will denote by R[F ] the full subcategory of the
category of (discrete) R-linear G-representations spanned by the finite F-admissible
representations.

Similar to Example 2.15, R[F ] is an additive category, which is coherent when
R is a coherent ring. By the formalism of Section 2.1, we therefore obtain an ∞-
category ModR[F ] ofR[F ]-modules, as well as a fully faithful functor of∞-categories
in the situation where R is coherent

ι : ModR[F ] −→ QC∨ (
R[F ]

)
.

We will give model-categorical presentations of these ∞-categories in terms of chain
complexes.

Notation 4.4. We denote the category of chain complexes of (discrete) R[G]-
modules by ChR[G]. This category is naturally enriched and tensored over the
category ChR of chain complexes of R-modules. We will write HomR[G](X,Y ) for
the mapping complex. If X is a chain complex, denote the n-fold suspension by
X[n] and the cone of the n-fold suspension by X[n, n+ 1].

Definition 4.5. A complex P of R[G]-modules is said to be F-quasifree if it is
given in each degree by an F-admissible G-representation. It is F-quasiprojective
if it is the retract of an F-quasifree complex of R[G]-modules.

A map of complexes of R[G]-modules X −→ Y is said to be an F-tame
weak equivalence if the induced map on mapping complexes HomR[G](P,X) −→
HomR[G](P, Y ) is a quasi-isomorphism for every F-quasiprojective object P .

Taking P = R[G/H], one sees that every F-tame weak equivalence induces
quasi-isomorphisms on H-fixed points for all admissible H < G.
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Proposition 4.6. Let R be a ring, G a finite group and F ⊆ OG a full sub-
category. Then the category ChR[G] can be endowed with the following two combi-
natorial model structures:

(1) the F-projective model structure, the weak equivalences of which are maps in-
ducing quasi-isomorphisms on H-fixed points and fibrations are maps inducing
surjections on H-fixed points, for all F-admissible subgroups H < G.

(2) the F-tame model structure, in which the weak equivalences are the F-tame
weak equivalences, the cofibrations are degreewise split monomorphisms with
an F-quasiprojective cokernel and the fibrations are maps inducing surjections
on H-fixed points, for all F-admissible subgroups H < G.

Furthermore, both model structures are naturally enriched over ChR, equipped with
the projective model structure.

Warning 4.7. Since these model structures are enriched over ChR, their as-
sociated ∞-categories are stable. However, unlike for many of the usual model
structures on chain complexes, a short exact sequence in ChR[G] need not define
a cofibre sequence in the associated stable ∞-category (because H-fixed points are
not exact).

Proof. We will only prove part (2), following the argument in [Nui17] (see
also [Bec14]); part (1) follows a similar, but more classical proof. We first observe
that for a map p : X −→ Y , the following four properties are equivalent:

(a) p has the right lifting property against the cofibrations.

(b) the map HomR[G](P,X) −→ HomR[G](P, Y ) is an acyclic fibration for all
F-quasifree complexes P .

(c) the map HomR[G](T,X) −→ HomR[G](T, Y ) is an acyclic fibration for all
bounded above complexes T of finite F-admissible representations.

(d) p is both a fibration and an F-tame weak equivalence.

The equivalences between (a), (b) and (d) are formal. We write T for the set of
complexes T appearing in (c). The fact that (c) implies the stronger condition (b)
relies on an inductive argument on the G-sets of R-linear generators of P , using
that for every generator x ∈ P there exists a subcomplex x ∈ T ⊆ P with T ∈ T

(see [Nui17, Lemma 8.6] for more details).
We then define the following sets of generating cofibrations and trivial cofibra-

tions:

I =
{
T −→ T [0, 1] : T ∈ T

}
J =

{
0 −→ R[S][n, n+ 1]: S ∈ F

}
.

By construction, a map has the right lifting property against J if and only if it is
a fibration and I generates the class of cofibrations. It then remains to verify that
a transfinite composition of pushouts of maps in J is a cofibration and an F-tame
equivalence: this is clear, since such maps are summand inclusions X −→ X ⊕ Y
where Y is chain homotopic to zero. �

Remark 4.8. As a consequence of the proof, a mapX −→ Y is an F-tame weak
equivalence if and only if HomR[G](T,X) −→ HomR[G](T, Y ) is a quasi-isomorphism
for every bounded above chain complex of finite F-admissible G-representations.

Example 4.9. Suppose that G is the trivial group. If R = k is a field, then
the projective and tame model structures on Chk are easily seen to coincide (this
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holds more generally when R is a regular Noetherian ring, by Example 2.28 and
Corollary 4.18 below). In general, these model structures are different because of
complexes of projective modules in negative degrees. The classical example is given
by the two complexes of modules over k[ε]/ε2

. . . 0 0 k[ε]/ε2 k[ε]/ε2 k[ε]/ε2 . . .

. . . k[ε]/ε2 k[ε]/ε2 k[ε]/ε2 0 0 . . .

ε ε ε

ε ε ε

These are quasi-isomorphic, but not tamely equivalent: indeed, induction along
k[ε]/ε2 −→ k defines a left Quillen functor for the tame model structure on Chk[ε],
but sends the above two (tamely cofibrant) complexes to complexes of k-vector
spaces that are not quasi-isomorphic.

Example 4.10 (Divided orbits). Let R be a coherent ring, G a finite group and
let F ⊆ OG contain only the trivial subgroup. Taking G-orbits gives a left Quillen
functor (−)G : ChF−tame

R[G] −→ Chtame
R . It will follow from Remark 4.19 that the

left derived functor models the divided orbits functor (−)dG of Example 2.50.
Concretely, note that on complexes of R[G]-modules that are projectively cofi-

brant, the left derived functor simply computes the homotopy orbits. This is in
particular the case for a bounded below chain complex of projective R[G]-modules.
However, a bounded above complex X of finitely generated projective R[G]-modules
need not be projectively cofibrant. Instead it is fibrant in the model structure on
G-objects in ChR given as follows: considering the projective model structure on
ChR a cofibration (resp. weak equivalence) of G-objects is a cofibration (resp. weak
equivalence) on the underlying object in ChR. Consequently, its G-orbits coincide
with its homotopy fixed points:

XG XG XhG.Nm
∼=

∼

For example, let C∗(EG;R)
�−→ R be the standard resolution of the trivial mod-

ule by finite free R[G]-modules. Then both C∗(EG;R) and the R-linear dual
C∗(EG;R) are quasi-isomorphic to R, but the left Quillen functor (−)G sends
C∗(EG;R) to the group homology and C∗(EG;R) to the group cohomology of G.
In particular, the composite quasi-isomorphism C∗(EG;R) −→ R −→ C∗(EG;R)
is not a tame weak equivalence.

Example 4.11 (Derived orbits and fixed points). In the case where F = OG,

taking G-orbits gives a left Quillen functor (−)G : ChF−tame
R[G] −→ Chtame

R . Remark

4.19 will show that the left derived functor models the derived orbits functor (−)G
of Example 2.51.

In addition, consider the functor (−)G : ChR[G] −→ ChR. This functor is not
a left adjoint, but it does have a left derived functor: indeed, it preserves F-tame
cofibrations and F-tame trivial cofibrations and hence restricts to a functor between
cofibrant objects sending F-tame weak equivalences to tame weak equivalences.
Since (−)G preserves pushouts along cofibrations (without differentials, cofibrations
are summand inclusions) and infinite direct sums, the associated functor L(−)G

of stable ∞-categories preserves colimits. We will later identify L(−)G with the
derived fixed points (Remark 4.19).
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Notation 4.12. We will denote the stable ∞-categories associated to the
model categories of Proposition 4.6 by DF (R[G]) and Dtame

F (R[G]). Because the
F-projective model structure is a right Bousfield localisation of the F-tame model
structure, there is a fully faithful left adjoint DF (R[G]) ↪→ Dtame

F (R[G]).

Our goal will be to show that DF (R[G]) and Dtame
F (R[G]) model the ∞-

categories of (pro-coherent) modules over the additive category R[F ] from Defi-
nition 4.3. We start by endowing both ∞-categories with a t-structure that will
correspond to the t-structure from Lemma 2.23.

Lemma 4.13. Let R be a ring and X a complex of R[G]-modules.

(1) Then X is weakly equivalent to a nonnegatively graded complex of R[G]-
modules in the F-projective model structure if and only if π∗(X

H) = 0 for
each ∗ < 0 and each F-admissible subgroup H < G.

(2) Then X is weakly equivalent to a nonnegatively graded complex of R[G]-
modules in the F-tame model structure if and only if π∗ HomR[G](T,X) = 0 for
each ∗ < 0 and each nonpositively graded chain complex of finite F-admissible
G-representations T .

Proof. Note that the two conditions are invariant under (F-projective, resp.
F-tame) weak equivalences, by definition and by Remark 4.8. Furthermore, they
are clearly satisfied by every nonnegatively graded complex, so that the conditions
are indeed necessary.

To see that the conditions are sufficient, we may assume thatX is F-projectively
cofibrant (for (1)) or is F-tamely cofibrant (for (2)). Let us write K for the class of
F-tamely cofibrant objects Y ∈ ChR[G] with the property that π∗HomR[G](Y,X) =
0 for ∗ ≤ 0. Because HomR[G](−, X) sends short exact sequences 0 → Y ′ → Y →
Y ′′ → 0 of F-tamely cofibrant objects to short exact sequences of chain complexes,
it follows that Y ∈ K whenever Y ′ ∈ K and Y ′′ ∈ K. Likewise, suppose that
Y0 ↪→ Y1 ↪→ . . . is a (transfinite) sequence of inclusions between objects in K,
such that each Yα+1/Yα ∈ K and Yβ = colimα<β Yα for each limit ordinal. Then
colimα Yα is an object in K as well.

For (1), we have that R[G/H][n] ∈ K for each admissible H < G and each
n < 0. The small object argument then implies that K contains all F-projectively
cofibrant complexes concentrated in negative degrees. In particular, the stupid
truncation X≤−1 is contained in K, so that there exists a null-homotopy h of the
inclusion i : X≤−1 ↪→ X. Such a null-homotopy endows the inclusion τ≥0X ↪→ X
with the structure of a deformation retract, using that X0 admits a direct sum
decomposition Z0(X)⊕ ker(1− hd). In particular, X is chain homotopy equivalent
to a nonnegatively graded complex.

For (2), we have that K contains all negatively graded chain complexes of
finite F-admissible G-representations, so that the argument from [Nui17, Lemma
8.6] shows that K contains all F-projectively cofibrant complexes concentrated in
negative degrees. In particular, X≤−1 ∈ K, so that the same argument shows that
X is chain homotopy equivalent to the nonnegatively graded complex τ≥0X. �

Lemma 4.14. The ∞-categories DF (R[G]) and Dtame
F (R[G]) both come equipped

with a left complete t-structure, in which an object is connective if and only if it is
weakly equivalent to a chain complex of R[G]-modules concentrated in degrees ≥ 0.
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Furthermore, the fully faithful functor ι : DF (R[G]) ↪→ Dtame
F (R[G]) exhibits the

domain as the right completion of the target.

Warning 4.15. It is not true (unless only the trivial subgroup is admissible)
that an object is coconnective if and only if it is weakly equivalent to a complex in
degrees ≤ 0.

Proof. Let us write DF (R[G])≥0 ⊆ DF (R[G]) and Dtame
F (R[G])≥0 ⊆

Dtame
F (R[G]) for the full subcategories of connective objects as defined in

Lemma 4.14. Note that DF (R[G])≥0 is the smallest subcategory of DF (R[G])
that is closed under colimits and contains the objects R[G/H] for each admissible
H < G. It is also closed under extensions in DF (R[G]): this follows from the
characterisation of the connective objects from Lemma 4.13, because each short
exact sequence X ′ → X → X ′′ of complexes of R[G]-modules with X → X ′′ a
fibration induces a short exact sequence as well. Using [HA, Proposition 1.4.4.11],
we then find that DF (R[G])≥0 is the subcategory of connective objects for a cer-
tain t-structure. Unravelling the definitions, an object X is (co)connective in this
t-structure if and only if XH is (co)connective for each admissible H < G. This
implies that the t-structure is left complete.

For the tame case, we note that the fully faithful inclusion ι : DF (R[G]) ↪→
Dtame

F (R[G]) restricts to an equivalence DF (R[G])≥0 
 Dtame
F (R[G])≥0. This fol-

lows from the fact that an F-projective weak equivalence f : X −→ Y between
bounded below chain complexes is also an F-tame weak equivalence: for any T as
in Remark 4.8, the map Hom(T,X) −→ Hom(T, Y ) is isomorphic to the map of
bounded below complexes

(
T∨ ⊗R X

)
G −→

(
T∨ ⊗R Y

)
G, which is easily seen to

be a quasi-isomorphism by a filtration argument.
In particular, the connective objects in Dtame

F (R[G]) are closed under colimits
and extensions and hence form the connective part of a t-structure. Furthermore,
ι exhibits DF (R[G]) as its right completion, since it restricts to an equivalence
between connective objects. Finally, the connective objects in Dtame

F (R[G]) are
closed under products and every ∞-connective object is contractible, since this was
already the case in DF (R[G]). This implies that the t-structure is left complete. �

Proposition 4.16. Let R be a ring, G a finite group and F ⊆ OG a full subcat-
egory. Then the natural functor R[F ] −→ DF (R[G]) induces a t-exact equivalence
of stable ∞-categories

F : ModR[F ] DF (R[G]).�

Proof. The functor R[F ] −→ DF (R[G]) sends each finite F-admissible G-
representation V to itself, viewed as a complex concentrated in degree 0. Note
that each such V is cofibrant in the F-projective model structure on ChR[G]. Since
HomR[G](V,−) preserves direct sums, it follows that the objects V form a set of
compact connective generators for DF (R[G]).

The universal property of ModR[F ] (Definition 2.1) now gives rise to a sifted-
colimit-preserving functor F . Since F maps the compact generators R[F ] of
ModR[F ] to compact generators of DF (R[G]), it is an equivalence. It identifies
the t-structures because in both categories, an object Y is (co)connective if and
only if the spectrum of maps R[G/H] −→ Y is connective for each admissible
subgroup H < G. �
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Next, we will provide a set of compact generators for the ∞-category
Dtame

F (R[G]), following the argument in [Nee08, Proposition 7.14], [Nui17, Propo-
sition 8.8].

Proposition 4.17. Let R be a coherent ring, G a finite group and F ⊆ OG.
We write K for the set of complexes of R[G]-modules Q satisfying the following
conditions:

(1) Q is a bounded above complex of finite F-admissible G-representations.

(2) the R-linear dual complex Q∨ is m-coconnective for some m: its H-fixed points
have vanishing homology in degrees > m, for all admissible H < G.

Then K provides a set of compact generators for Dtame
F (R[G]).

Proof. We first verify that every object Q ∈ K is compact. To this end, let
Yα be a set of F-quasifree complexes of R[G]-modules and let Y∞ =

⊕
Yα be their

direct sum. Furthermore, let Y
(n)
α denote the quotient of Yα by its subcomplex in

degree < n, so that Yα is the limit of Y
(n)
α as n → −∞. Now consider the diagram

of abelian groups of homotopy classes of maps

(4.1)

⊕
α

[
Q, Yα

]
. . .

⊕
α

[
Q, Y

(n)
α

] ⊕
α

[
Q, Y

(n+1)
α

]

[
Q, Y∞

]
. . .

[
Q, Y

(n)
∞

] [
Q, Y

(n+1)
∞

]
.

φ φn φn+1

We have to prove that φ is a bijection. First, observe that for each n and α (allowing
α = ∞), there is an isomorphism of bounded below complexes

HomR[G]

(
Q, Y (n)

α

) ∼=
(
Q∨ ⊗R Y (n)

α

)G
.

In particular, this implies that [Q, Y
(n)
α ] = 0 for all n � 0. Furthermore, the

fibre Z
(n)
α of Y

(n)
α −→ Y

(n+1)
α is an F-admissible G-representation, concentrated

in a single degree n. Since (Q∨)H has vanishing homology in a range [0,m] for all
admissible subgroups H, the fibre

(
Q∨ ⊗R Z(n)

α

)G −→ HomR[G]

(
Q, Y (n)

α

)
−→ HomR[G]

(
Q, Y (n+1)

α

)
then has homology groups in the range [n, n + m]. Consequently, the horizontal
towers in (4.1) stabilise for very negative n and converge. It therefore suffices to
prove by (descending) induction that each map φn is bijective. This follows because
the induced map on mapping fibres identifies with the bijection⊕

α

(
Q∨ ⊗R Z(n)

α

)G −→
(
Q∨ ⊗R

⊕
α

Z(n)
α

)G
.

Next, consider the class of objects generated by K under colimits and desuspensions.
By Remark 4.8, it suffices to show that this class contains any bounded above com-
plex T of finite F-admissible G-representations. For such T , the R-linear dual T∨

is a nonnegatively graded chain complex of finite F-admissible G-representations.
In particular, T∨ is a cofibrant object with respect to the F-projective model struc-
ture. By Proposition 4.16, T∨ can be considered as an object in the ∞-category
ModR[F ]; in this sense, it is an almost perfect module over R[F ].
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We will inductively define a chain model for the Postnikov tower of T∨ with
respect to the t-structure on DF (R[G]) of Lemma 4.14

T∨ −→ . . . −→ Pn −→ Pn−1 −→ . . . −→ P0.

To do this, we proceed as follows: let Fn be the fibre of τ≤n(T
∨) −→ τ≤n(T

∨) in
the ∞-category ModR[F ]. Since R[F ] is coherent, Fn is an n-connective, almost
perfect module over R[F ]. This implies that Fn can be modelled at the chain level
by a complex Qn of finite F-admissible G-representations, concentrated in degrees
≥ n. Finally, one can then model each τ≤n(T

∨) by Pn =
⊕n

i=0 Qi, with a certain
differential.

The upshot of this is the following: each Pn in the above tower is a connective,
n-coconnective chain complex of F-admissible G-representations. Furthermore, the
tower of Pn stabilises in each degree, so that T∨ −→ limPn =

⊕
i≥0 Qi is a weak

equivalence between cofibrant objects and hence a chain homotopy equivalence.
Dualizing, we then obtain that colimP∨

n −→ T∨∨ ∼= T is a chain homotopy equiv-
alence as well. Furthermore, each P∨

n −→ P∨
n+1 is an F-tame cofibration between

objects in K, so that the colimit agrees with the homotopy colimit. It follows that
T can be realised as a (filtered) homotopy colimit of objects in K, as desired. �

Corollary 4.18. Let R be a coherent ring, G a finite group and F ⊆ OG a
full subcategory. Then there are natural equivalences, compatible with t-structures

ModR[F ] DF (R[G])

QC∨
R[F ] Dtame

F (R[G]).

ι

�

�

Proof. The top equivalence is Proposition 4.16. For the bottom equivalence,
consider the full subcategory Dtame

F (R[G])ω of compact generators. By Propo-
sition 4.17, R-linear duality provides a fully faithful functor Dtame

F (R[G])ω ↪→
DF (R[G])op. Using Proposition 4.16, its essential image can be identified with the
full subcategory Coh(R[F ])op of coherent R[F ]-modules. This induces the desired
equivalence QC∨

R[F ] 
 Dtame
F (R[G]).

Unravelling the definitions, the composite R[F ] ↪→ QC∨
R[F ] ↪→ Dtame

F (R[G])
is simply the natural inclusion sending a finite F-admissible G-representation to
itself, viewed as a complex in degree 0. This yields the desired commuting square.
Since the vertical functors are equivalences on connective objects, it follows that
the bottom equivalence identifies connective objects and hence preserves the t-
structures. �

Remark 4.19. Consider a map of coherent rings f : R −→ S and a map
φ : G −→ H such that induction maps FG to FH . This determines a left Quillen
functor

F : ChFG−tame
R[G] ChFH−tame

S[H] ; X S[H]⊗R[G] X.

In particular, it restricts to a functor F : R[FG] −→ S[FH ] (viewed as complexes in
degree 0). The associated left derived functor LF : Dtame

FG
(R[G]) −→ Dtame

FH
(S[H])

preserves colimits and totalisations of cosimplicial objects in R[FG] (which can
simply be computed as total complexes). Under the equivalence of Corollary 4.18,
this means that LF presents the pro-coherent right-left extension of the functor
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F : R[FG] −→ S[FH ]. For example, the divided orbits and derived orbits functors
arise in this way (Example 4.10, 4.11). The same argument applies to the derived
functor of G-fixed points discussed in Example 4.11, even though it is not left
Quillen.

Remark 4.20. Suppose that R is a coherent ring. Corollary 4.18 then provides
the following alternative characterisation of the connective objects with respect to
the t-structure on Dtame

F (R[G]) from Lemma 4.14: an object X ∈ Dtame
F (R[G]) is

connective if and only if

π∗HomR[G](Q,X) = 0 for all ∗ < 0

for each of the compact generators Q from Proposition 4.17.

Remark 4.21. In the F-tame model structure on ChR[G], geometric realisa-
tions of simplicial objects can be computed by taking normalised chains in the
simplicial direction and then taking total complexes, using direct sums. Using
this, the ∞-category APerfR[F ] simply arises from the dg-category of bounded
below complexes of finite F-admissible representations. Dually, totalisations of
cosimplicial objects can be computed by taking normalised chains and then taking
total complexes using direct products. Consequently, the ∞-category APerf∨R[F ]

arises from the dg-category of bounded above complexes of finite F-admissible G-
representations. Note that R-linear duality identifies these two subcategories.

4.2. Explicit PD operads and their algebras

Using the homological algebra from the previous section, we will now provide
explicit chain models for PD ∞-operads. We begin by giving a description of the
∞-category of pro-coherent symmetric sequences.

Explicit pro-coherent symmetric sequences. Consider the model cate-
gories of Proposition 4.6 for all symmetric groups, using only the case where
F ⊆ OΣn

consists of the trivial subgroup. This yields a model-categorical pre-
sentation of the ∞-category of pro-coherent symmetric sequences over R.

Definition 4.22 (The tame model structure on symmetric sequences). Let R
be a ring and let sSeqR := ChR[Σ] denote the category of symmetric sequences
of chain complexes of R-modules. The tame model structure on sSeqR is the cofi-
brantly generated model structure whose fibrations are the surjections and whose
cofibrations are injections whose cokernel is given in each arity r by a complex of
projective R[Σr]-modules.

The standard projective model structure on symmetric sequences, whose weak
equivalences are the quasi-isomorphisms, is a right Bousfield localisation of the tame
model structure. The results from the previous section can now be summarised as
follows:

Corollary 4.23. Let R be a commutative ring. Then the underlying ∞-
category of the projective model structure on symmetric sequences is equivalent to
the ∞-category sSeqR from Definition 3.2, i.e. sSeqR[W

−1
proj] 
 sSeqR.

If R is coherent, the fully faithful left adjoint of ∞-categories sSeqR[W
−1
proj] ↪→

sSeqR[W
−1
tame] is naturally equivalent to the fully faithful functor ι : sSeqR ↪→

sSeq∨R. Furthermore, a map between bounded below symmetric sequences is a
tame weak equivalence if and only if it is a quasi-isomorphism.
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Our next goal will be to give a model-categorical description of the various
monoidal structures on sSeq∨R, as described in Proposition 3.18.

Lemma 4.24. Let R be a ring. Then the tame and projective model structures
on sSeqR satisfy the pushout-product axiom with respect to the Day convolution
product ⊗ and levelwise tensor product ⊗lev of symmetric sequences of chain com-
plexes. The induced closed symmetric monoidal structures on the projective local-
isation sSeqR and (if R is coherent) tame localisation sSeq∨R coincide with those
from Corollary 3.16 and Proposition 3.18.

Proof. We will only treat the tame case, the projective case is proven in the
same way. The pushout-product axiom is readily verified for both tensor products.
Write ⊗L and ⊗L

lev for the induced closed monoidal structures on sSeq∨R. Using
Remark 4.21, we see that the restriction of ⊗L (and likewise ⊗L

lev) to dually almost
perfect objects can be identified with the composite

(APerf∨R[Σ])
×2

(
APerf×2

R[Σ]

)op
APerfopR[Σ] APerf∨R[Σ] .

(−)∨

�
⊗L (−)∨

�

Since each step preserves totalisations of cosimplicial objects, Remark 2.45 implies
that ⊗L and ⊗lev are obtained by right-left extension from their restriction to R[Σ].
The result follows from the fact that both coincide with the usual Day convolution
and levelwise tensor product on the full subcategory R[Σ] ↪→ sSeq∨R. �

We want to carry out a similar analysis for the composition product on pro-
coherent symmetric sequences.

Proposition 4.25. Let R be a ring, let ◦ denote the usual composition product
on sSeqR and let X be a tamely cofibrant symmetric sequence. Then the following
assertions hold:

(1) The functor (−) ◦X : sSeqR −→ sSeqR is a left Quillen functor for the tame
model structure.

(2) The functor X ◦ (−) : sSeqR −→ sSeqR preserves tamely cofibrant objects, as
well as tame cofibrations and tame weak equivalences between tamely cofibrant
objects.

(3) The induced functor of ∞-categories X ◦L (−) : sSeqR[W
−1
tame] −→

sSeqR[W
−1
tame] preserves sifted colimits.

Remark 4.26. If X is tamely cofibrant, then the derived functor of X ◦ (−)
sends a tamely cofibrant symmetric sequence Y to

⊕
r(X(r) ⊗ Y ⊗r)dΣr

, where
(−)dΣr

is the divided orbits functor (Example 4.10).

The third assertion requires some preliminary observations. First, note that it
can be reduced to a purely model-categorical assertion as follows:

Lemma 4.27. Let F : M −→ N be a functor between combinatorial model cat-
egories preserving cofibrant objects and weak equivalences between them. Suppose
that F preserves all sifted colimits. Then the induced functor of ∞-categories pre-
serves all sifted colimits if the following condition is satisfied: for every category
I with finite coproducts, the induced functor Fun(I,M) −→ Fun(I,N) preserves
projectively cofibrant objects.

Proof. A functor between ∞-categories preserves sifted colimits if and only
if it preserves colimits of diagrams indexed by ordinary categories I with finite
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coproducts [HNP19, Appendix A]. Since M is a combinatorial model category,
every I-diagram in its associated ∞-category can be rectified to an I-diagram in
M itself [HA, Proposition 1.3.4.25]. It therefore suffices to verify that F preserves
homotopy colimits of I-diagrams. This follows from the fact that F preserves sifted
colimits and projectively cofibrant I-diagrams. �

Example 4.28. Let M be a combinatorial monoidal model category. If I has
finite coproducts, then the projective model structure on Fun(I,M) satisfies the
pushout-product axiom for the levelwise tensor product on M. Consequently, the
functor Fun(I,M) −→ Fun(I,M) sending Y �→ Y ⊗p preserves projectively cofibrant
objects, as well as projective cofibrations and weak equivalences between them.

Example 4.29. Suppose that X ∈ sSeqR comes with a G-action such that
each X(q) is a chain complex of projective R[G×Σq]-modules. If Y −→ Z is a map
of G-equivariant symmetric sequences which is a tame cofibration without G-action,
then X ⊗G Y −→ X ⊗G Z is again a tame cofibration of symmetric sequences. In
other words, the left adjoint functor X ⊗G (−) : sSeqG

R −→ sSeqR preserves tame
cofibrations (ignoring the G-action in the domain). Consequently, for any category

I the left adjoint functor X ⊗G (−) : Fun(I, sSeqG
R) −→ Fun(I, sSeqR) preserves

projective cofibrations with respect to the tame model structure on sSeqR (ignoring
the G-action in the domain).

Proof (of Proposition 4.25). Part (1) is easily verified. For (2), a com-
bination of Examples 4.28 and 4.29 shows that each functor Y �→ X(p) ⊗Σp

Y ⊗p

preserves tamely cofibrant objects and cofibrations between them. Taking the direct
sum over p then shows that X ◦ (−) preserves tamely cofibrant objects and cofibra-
tions between them. To prove that it preserves tame weak equivalences between
tamely cofibrant objects, it suffices to verify that it preserves trivial cofibrations
between tamely cofibrant objects.

Up to retracts, every such trivial cofibration is a transfinite composition of maps
Y −→ Y ⊕Z, where Y is tamely cofibrant and Z = R[Σr][n, n+1] is a contractible
complex in some arity r. Since X ◦(−) preserves transfinite compositions, it suffices
to verify that eachX◦Y −→ X◦

(
Y ⊕Z

)
is a trivial cofibration. For each p, consider

the Σp-equivariant symmetric sequence

L(p) = X((−) + p) ◦ Y.
The map X ◦ Y −→ X ◦

(
Y ⊕ Z

)
is then obtained as a transfinite composition of

inclusions whose cokernels are given by the symmetric sequences L(p)⊗Σp
Z⊗p. We

have to prove that these cokernels are contractible.
Because X and Y are tamely cofibrant, L(p) is given in each arity q by a

complex of projective R[Σp×Σq]-modules. Examples 4.28 and 4.29 show that each
L(p)⊗Σp

Z⊗p is tamely cofibrant. It remains to verify that it is also tamely weakly

contractible. To see this, write L(p) = limn F
≥−nL(p) as the limit of its brutal

truncations, keeping everything in degrees ≥ −n. Since Z is bounded above, we
then have that

L(p)⊗Σp
Z⊗p ∼= lim

n

((
F≥−nL(p)

)
⊗Σp

Z⊗p
)
.

But now notice that F≥−nL(p) is a bounded below object that is tamely cofibrant;
this implies that it is projectively cofibrant as well, so that F≥−nL(p) ⊗Σp

(−)
sends all non-equivariant tame (trivial) cofibrations of symmetric sequences to tame
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(trivial) cofibrations. This implies that each F≥−nL(p)⊗Σp
Z⊗p is tamely weakly

contractible in sSeqR, so that the (homotopy) limit for n → ∞ is tamely weakly
contractible as well.

Having established (1) and (2), it follows that the composition product can be
derived in each variable. Assertion (3) is then a consequence of Lemma 4.27 and
Examples 4.28 and 4.29. �

Let us also record the following variant of Proposition 4.25 for the projective
model structure:

Proposition 4.30. Suppose that X and Y are two projectively cofibrant sym-
metric sequences. Then X ◦ Y is projectively cofibrant as well. Consequently,
the composition product induces a functor of ∞-categories ◦L : sSeqR[W

−1
proj] ×

sSeqR[W
−1
proj] −→ sSeqR[W

−1
proj] preserving colimits in the first variable and sifted

colimits in the second variable.

Proof. For the second part, recall that the projective model structure is a
right Bousfield localisation of the tame model structure. If the composition prod-
uct preserves projectively cofibrant objects, the full subcategory sSeqR[W

−1
proj] ⊆

sSeqR[W
−1
tame] is therefore closed under the composition product from Proposi-

tion 4.25. Since this full subcategory is closed under colimits, it follows that
◦L : sSeqR[W

−1
proj] × sSeqR[W

−1
proj] −→ sSeqR[W

−1
proj] preserves colimits in the first

variable and sifted colimits in the second variable.
To see that X ◦Y is projectively cofibrant, let us assume that Y is projectively

cofibrant and write K for the class of tamely cofibrant objects X such that X ◦ Y
is projectively cofibrant. Since the projective model structure is a right Bousfield
localisation of the tame model structure, a tamely cofibrant object is projectively
cofibrant if and only if it is tamely equivalent to a projectively cofibrant object, and
the projectively cofibrant objects are closed under homotopy colimits (in the tame
model structure). Using that (−)◦Y preserves homotopy colimits in the tame model
structure by Proposition 4.25, it follows that the class K is closed under tame weak
equivalences and homotopy colimits (in the tame model structure). Using the small
object argument, any projectively cofibrant object can be obtained using homotopy
colimits from the projectively cofibrant symmetric sequences R[Σr][n], for some
r ≥ 0 and n ∈ Z. It therefore suffices to verify that R[Σr][n] ◦ Y is projectively
cofibrant. But R[Σr][n] ◦ Y 
 Y ⊗r[n] is projectively cofibrant by Lemma 4.24. �

Theorem 4.31 (Chain models for pro-coherent composition). Let R be a co-
herent ring. The composition product on the tame model category sSeqR induces
a monoidal structure on its ∞-categorical localisation. The resulting monoidal ∞-
category is equivalent to sSeq∨R with the monoidal structure ◦ of Proposition 3.18.

Proof. By (1) and (2) of Proposition 4.25, the composition product restricts
to a monoidal product on the full subcategory of tamely cofibrant symmetric se-
quences, which preserves weak equivalences in each variable. By part (1) and (3)
of Proposition 4.25, the resulting monoidal structure ◦L on the ∞-category sSeq∨

preserves sifted colimits.
By Remark 2.45, ◦L is the right-left extension of its restriction to R[Σ] if it

preserves totalisations of cosimplicial diagrams in R[Σ]. This follows from the
same argument as in Lemma 4.24: using Remark 4.21, the restriction of ◦L to
dually almost perfect objects can be identified with the functor sending (X,Y ) �→
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(
X∨ ◦L Y ∨)∨

, where (−)∨ takes R-linear dual symmetric sequences. Since (−)∨ is
an equivalence between dually almost perfect objects and almost perfect objects,
it follows that the restriction of ◦L to APerf∨R[Σ] preserves totalisations. The result

now follows the fact that ◦L restricts to the usual composition product on R[Σ]. �

For an arbitrary ring, the same proof applies to the projective model structure,
where we obtain a composition product on sSeqR 
 sSeqR[W

−1
proj] by Proposition

4.30. Using Corollary 3.16 to describe the composition product from Definition 3.4
as a left-right derived functor, we therefore obtain the following:

Corollary 4.32. Let R be a ring. The composition product on the projective
model category sSeqR induces a monoidal structure on its ∞-categorical localisa-
tion. The resulting monoidal ∞-category is equivalent to sSeqR with the monoidal
structure ◦ from Definition 3.4.

Rectification of PD operads and their algebras. Write sSeqc
R for the

full subcategory of sSeqR spanned by those symmetric sequences that are tamely
cofibrant. Theorem 4.31 implies that there is a zig-zag of monoidal functors

(
sSeqR, ◦

) (
sSeqc

R, ◦
) (

sSeq∨R, ◦
)

which exhibits the ∞-category sSeq∨R as a monoidal localisation of the category of
symmetric sequences of chain complexes of R-modules at the tame weak equiva-
lences. In particular, any dg-operad P over R defines a PD ∞-operad P, i.e. an
associative algebra in sSeq∨R, and every dg-algebra over such a dg-operad P defines a
pro-coherent algebra over the corresponding PD ∞-operad. The goal of this section
is to prove that all PD ∞-operads and algebras can be rectified in this way, or more
precisely, that the tame homotopy theory of dg-operads presents the ∞-category of
PD ∞-operads.

We begin by describing the tame homotopy theory of dg-operads and their al-
gebras in more detail. As the existence of model structures on categories of algebras
is typically a subtle issue [BM03,BB17], we will use semi-model structures, which
first appeared in work of Hovey [Hov98]:

Reminder 4.33 (Semi-model categories). Recall that a (left) semi-model struc-
ture on a presentable category M consists of classes of weak equivalences, fibrations
and cofibrations satisfying the usual axioms of a Quillen model category, with the
following exceptions (see e.g. [Fre09, Ch. 12] or [Spi01]): fibrations are only re-
quired to have the right lifting property against trivial cofibrations with cofibrant
domain, and only maps with cofibrant domain factor into a trivial cofibration, fol-
lowed by a fibration.

We will only deal with cofibrantly generated semi-model structures, where the
generating trivial cofibrations have cofibrant domains. Essentially all model cate-
gorical results have an obvious analogue in this setting. In fact, all such ‘tractable’
semi-model structures are Quillen equivalent to combinatorial model categories (by
a version of Dugger’s theorem [Dug01]); one can use this to carry over any result
that is invariant under Quillen equivalence. Notably, for any small category I there
an equivalence of ∞-categories Fun(I,M)[W−1] −→ Fun(I,M[W−1]

)
[HA, Propo-

sition 1.3.4.25] and Lemma 4.27 applies in this setting as well.
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Proposition 4.34. The following categories carry cofibrantly generated semi-
model structures whose weak equivalences and fibrations are (pointwise) tame weak
equivalences and fibrations on the underlying objects:

(1) the category OpR of R-linear dg-operads.

(2) the category AlgP of R-linear dg-algebras over a dg-operad P which is tamely
Σ-cofibrant, i.e. whose underlying symmetric sequence is tamely cofibrant.

(3) for any category I, the category of I-diagrams in OpR or AlgP.

For the analogous result using the projective model structure instead of the
tame one, see for example [Fre09, Theorem 12.2.A, Theorem 12.3.A] and [Spi01].

Proof. Part (3) is formal. The existence of the (cofibrantly generated) semi-
model structures (1) and (2) follows from the transfer theorem for semi-model
structures [Fre09, Theorem 12.1.4]: one has to verify that for any map with a cofi-
brant domain that is a pushout of a generating trivial cofibration, the map between
the underlying symmetric sequences or complexes is also a trivial cofibration.

For (1), this means that P −→ P � FreeOp(X) is a trivial cofibration of
symmetric sequences whenever P is cofibrant and X is tamely cofibrant and con-
tractible. Using the small object argument to write P as the retract of an iterated
pushout of cell attachments, it will suffice to verify this assertion in the case where
P = FreeOp(Y ) is the free dg-operad on a tamely cofibrant symmetric sequence. In

this case, note that the free operad FreeOp(Y ) = colimn T
(n)(Y ) can be written as

the colimit of the sequence of maps (cf. Theorem B.2)
(4.2)

in : T
(n−1)(Y ) = 1⊕

(
Y ◦ T (n−2)(Y )

)
1⊕

(
Y ◦ T (n−1)(Y )

)
= T (n)(Y ).

id⊕(Y ◦in−1)

The result then follows by induction, using that the trivial cofibration Y −→ Y ⊕X
induces trivial cofibrations on iterated composition products (Proposition 4.25).

For (2), we need to verify that A −→ A � (P ◦ X) is a trivial cofibration
of complexes whenever A is a cofibrant algebra and X is a cofibrant contractible
complex. Again, one can use the small object argument to reduce to A = P ◦ Y
being free on a complex of projective R-modules. Then P ◦ Y −→ P ◦ (Y ⊕X) is
a trivial cofibration of complexes by Proposition 4.25. �

Proposition 4.35. Let I be a small category with finite coproducts. Then the
forgetful functors

Fun
(
I,OpR

)
−→ Fun

(
I, sSeqR

)
Fun

(
I,AlgP

)
−→ Fun

(
I,ChR

)
preserve cofibrations with cofibrant domain (for the semi-model structures as in
Proposition 4.34).

Proof. In the operad case, say that a map f : P −→ Q in Fun(I,OpR) is good
if it is a cofibration and for each cofibrant I-diagram of symmetric sequences X:

(1) P� FreeOp(X) is a cofibrant I-diagram of symmetric sequences.

(2) P�FreeOp(X) −→ Q�FreeOp(X) is a cofibration of I-diagrams of symmetric
sequences.

We have to verify that every cofibration with cofibrant domain is good. To see
this, note that good maps are closed under transfinite compositions and retracts.
Furthermore, consider a map P −→ P�FreeOp(M)FreeOp(N) = Q, where P satisfies
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condition (1) above and M −→ N is a cofibration of I-diagrams of symmetric
sequences. For every X, there is then a sequence of monomorphisms

P � FreeOp(X) = F (0) ↪→ F (1) ↪→ F (2) ↪→ . . . −→ colimF (n) = Q� FreeOp(X)

whose associated graded can be identified with P�FreeOp(X⊕N/M), with grading
given by word length in N/M (cf. [BM03, Section 5]). By assumption (1), the
associated graded is cofibrant, so that the above sequence consists of cofibrations
and condition (2) is verified as well. Consequently, every cofibration whose domain
satisfies (1) is good.

Finally, note that the initial operad satisfies condition (1), so that all cofibra-
tions with cofibrant domain are good. Indeed, this follows from the formula for the
free operad FreeOp(Y ) as the colimit over a sequence of maps in : T

(n−1)(Y ) −→
T (n)(Y ) as in (4.2). Proposition 4.25 (or its proof) then shows that each of these
maps is a cofibration between cofibrant I-diagrams of symmetric sequences, so that
the colimit of the sequence is a cofibrant I-diagram as well.

In the case of algebras over a dg-operadP whose underlying symmetric sequence
is tamely cofibrant, we proceed in exactly the same way, using that for any P-
algebra A and cofibration M −→ N , there is a filtration on A �P◦M P ◦ N with
associated graded A � P(N/M). In the last step, one has to prove that P ◦ (−)
preserves cofibrations of I-diagrams of complexes of R-modules; this follows from
Proposition 4.25. �

Theorem 4.36 (Rectification of PD ∞-operads). Let R be a coherent ring.
Then the underlying ∞-category of the tame semi-model structure on dg-operads

over R is equivalent to the ∞-category OppdR of PD ∞-operads over R. More
precisely, there is a commuting square

OpR[W
−1
tame] OppdR

sSeqR[W
−1
tame] sSeq∨R .

�

�

Proof. Theorem 4.31 exhibits sSeq∨R as the monoidal localisation of sSeqR at
the tame weak equivalences, with respect to the composition product. This gives

rise to the above square. To see that the functor Φ: OpR[W
−1
tame] −→ OppdR is an

equivalence, notice that both vertical functors are monadic right adjoints: for the
left functor, this follows from Lemma 4.27 and Proposition 4.35 and for the right
functor, this follows from Theorem B.2. It follows that Φ is a right adjoint detecting
equivalences; to see that it is an equivalence, it suffices to show that it induces an
equivalence between the two monads.

By Theorem B.2, the left monad is the (left) derived functor of the functor
sending a symmetric sequence X of chain complexes to the free operad, given by
the colimit of the sequence (4.2). On the other hand, Theorem B.2 shows that the
right monad takes the free algebra with respect to ◦, which is given by the same
construction (4.2) at the ∞-categorical level. Theorem 4.31 then implies that Φ
induces an equivalence between these two monads. �

Remark 4.37 (Chain models for R-linear ∞-operads). The category OpR also
admits the standard (projective) semi-model structure whose weak equivalences are
the quasi-isomorphisms. This is a right Bousfield localisation of the tame model
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structure, whose associated ∞-category is equivalent to the full subcategory OpR ⊆
OppdR spanned by the R-linear ∞-operads as in Definition 3.7. The standard semi-
model structure on OpR also models the ∞-category OpR of R-linear ∞-operads
when R is not coherent: indeed, the proofs of Proposition 4.35 and Theorem 4.36
carry over verbatim from the tame to the projective setting.

Theorem 4.38 (Chain models for algebras over PD operads). Let R be a co-
herent ring and P a dg-operad over R whose underlying symmetric sequence is
tamely cofibrant. Then the underlying ∞-category of the tame model structure on
AlgP is equivalent to the ∞-category AlgP(QC∨

R) of pro-coherent algebras over the
associated PD ∞-operad P. In other words, there is a commuting square

AlgP[W
−1
tame] AlgP(QC∨

R)

ChR[W
−1
tame] QC∨

R .

�

�

Proof. The proof is similar to Theorem 4.36: Theorem 4.31 provides the
desired square of ∞-categories and shows that the bottom arrow is a (monoidal)
equivalence. The vertical functors are both monadic right adjoints (for the left,
this follows from Lemma 4.27 and Proposition 4.35). It suffices to verify that the
top functor induces an equivalence between the two monads. The left monad is
the derived functor of the functor sending a complex of R-modules M to P ◦ M .
Theorem 4.31 implies that this derived functor is indeed naturally equivalent to the
right monad P ◦ (−) : QC∨

R −→ QC∨
R. �

Remark 4.39. The equivalence from Theorem 4.38 is natural in the dg-operad
P. In particular, this implies that any tame weak equivalence P −→ Q between dg-
operads whose underlying symmetric sequence is tamely cofibrant over R induces
a Quillen equivalence AlgP � AlgQ.

Remark 4.40. Let P be a tamely Σ-cofibrant dg-operad. The category AlgP

also admits a more standard model structure whose weak equivalences are the quasi-
isomorphisms. This is a right Bousfield localisation of the tame model structure,
whose associated ∞-category is equivalent to the full subcategory of AlgP(QC∨

R)
generated under colimits by free P-algebras on all desuspensions of R.

Note that this is typically not equivalent to an ∞-category of algebras over
an operad in ModR. In particular, a quasi-isomorphism between two tamely Σ-
cofibrant dg-operads need not induce a Quillen equivalence between their categories
of algebras, with the standard semi-model structure.

4.3. Explicit Koszul duality

Finally, we will present the refined Koszul duality functor KDpd : Oppd,opR −→
OppdR by the classical bar dual operad defined by Ginzburg–Kapranov [GK95].

Construction 4.41 (Chain-level bar construction). Let R be a ring and let
Opaug

R denote the category of augmented dg-operads over R. If P is an augmented
dg-operad, we will denote its chain-level bar construction by B(P) [GJ94, Section
2].

Recall that B(P) is a coaugmented dg-cooperad, which can be described ex-
plicitly as follows (see e.g. [LV12, Section 6.5] for a textbook account). It is the
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cofree conilpotent cooperad CofreecoOpconil(P[1]) generated by the suspension of the
augmentation ideal of P −→ 1, whose underlying symmetric sequence is given by
complexes of rooted trees with vertices labelled by elements of P[1]. The differen-
tial is given by the sum ∂ = ∂P + ∂Bar, where ∂P is the differential induced by the
differential on P and the bar differential ∂Bar is given by contracting internal edges
of trees and multiplying the adjacent elements in P[1]. The chain-level bar dual
operad is defined to be the R-linear dual augmented dg-operad KD(P) = B(P)∨.

If A is a dg-algebra overP, then its chain level bar construction BP(A) is the dg-
coalgebra over B(P) defined as follows (see e.g. [LV12, Section 11.2] for a textbook
account). Consider the cofree coalgebra B(P) ◦A, whose underlying chain complex
consists of trees with vertices labelled by P[1] and leaves labelled by A. This is
endowed with the differential ∂ = ∂A + ∂Bar, where ∂A is the differential induced
by the differentials on A and B(P), while ∂Bar is given by removing leaf vertices
and applying the corresponding element of P[1] to the elements in A labelling
the leaves. The chain-level bar dual algebra is defined to be the R-linear dual
KDP(A) = BP(A)∨, which is an algebra over KD(P).

Theorem 4.42 (Chain models for Koszul duality). Fix a coherent ring R. Let
P be an augmented dg-operad over R with tamely cofibrant underlying symmetric
sequence and let P denote the corresponding PD ∞-operad.

Then the chain-level dual operad KD(P) is a model for the Koszul dual PD

∞-operad KDpd(P). Furthermore, there is a commuting square of ∞-categories in
which the vertical functors are equivalences

AlgP[W
−1
tame] AlgKD(P)[W

−1
tame]

op

AlgP(QC∨
R) AlgKDpd(P)(QC∨

R)
op.

KDP

� �
KDpd

P

Proof. Lemma 4.24 implies that the derived functor of R-linear duals on
sSeqR presents the R-linear dual of pro-coherent symmetric sequences. Our main
task will therefore be to prove that the chain-level bar construction B(P) presents
the ∞-categorical bar construction.

To this end, recall that the chain level Koszul complex K(P) is a symmetric
sequence of the form K(P) = B(P) ◦ P, whose elements are given by trees with
non-leaf vertices labelled by P[1] and leaf vertices labelled by P. The differential
contracts (internal) edges and multiplies the labels of the adjacent vertices. Then
K(P) becomes a left comodule over B(P) and a right module over P. Now ob-
serve that the category of right P-modules in symmetric sequences admits a model
structure in which the weak equivalences and fibrations are detected on the under-
lying object. The canonical map π : K(P) −→ 1 is then a tame weak equivalence
and exhibits K(P) as a cofibrant resolution of 1 as a right P-module (see e.g.
[Fre04, Proposition 4.1.4], whose proof carries over to the present context). This
implies that the natural map

1 ◦L
P 1 � K(P) ◦P 1

(
B(P) ◦K(P)

)
◦P 1 � B(P) ◦

(
K(P) ◦P 1

)
B(P)

coact id⊗π

is an equivalence, where the first map applies the coaction of B(P) and the second
maps applies the natural augmentation to 1 on the second factor. Lemma 3.32
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then shows that B(P) represents the coendomorphism coalgebra of the right P-
module 1; by Proposition 3.34, this means that B(P) represents the ∞-categorical
bar construction Bar(P).

Furthermore, the chain level Koszul complex K(P) represents the Koszul com-
plex K(P) of Construction 3.33. By Theorem 4.31 and Lemma 4.24, we thus obtain
a commuting diagram of functors

Algc
P coAlgc

B(P) Algop
KD(P)

AlgP(QC∨
R) coAlgBar(P)(QC∨

R) AlgKDpd(P)(QC∨
R)

op.

K(P)◦P(−) (−)∨

K(P)◦P(−) (−)∨

Here Algc
P and coAlgc

B(P) denote the categories of dg-algebras and coalgebras
whose underlying complex of R-modules is tamely cofibrant. The top functors
then preserve tame weak equivalences and the two left horizontal functors can be
identified with the chain-level bar construction BP(−) and the ∞-categorical bar
construction BarP(−) of an algebra. Inverting the tame weak equivalences then
gives the desired square from the theorem. �

4.4. Spectral partition Lie algebras

We will now describe various chain models for the PD ∞-operad LieπR,E∞ whose
algebras (when R is a field) coincide with the spectral partition Lie algebras from
[BM19]. Since LieπR,E∞ arises as the PD Koszul dual ∞-operad of the nonunital
E∞-operad (Definition 3.54), we have the following:

Proposition 4.43. Let Enu
R be a dg-operad modelling the R-linear nonunital

E∞-operad, such that Enu
R (0) = 0, Enu

R (1) = R · 1 and each Enu
R (r) is a complex of

finitely generated projective R[Σr]-modules. Then the Koszul dual dg-operad

KD(Enu
R ) = B(Enu

R )∨

is a cofibrant object for the tame model structure on OpR, which models the spectral
partition Lie PD ∞-operad LieπR,E∞ . In particular, there is an equivalence of ∞-
categories

AlgKD(Enu
R )[W

−1
tame] AlgLieπR,E∞

(QC∨
R).

∼

When R = k is a field, this means that the ∞-category AlgLieπR,E∞
(Modk) arises as

the localisation of AlgKD(Ek) at the quasi-isomorphisms.

For example, one can take Enu
R to be the (nonunital) chains on the Barratt–

Eccles operad, or the surjections operad from [MS03,BF04].

Notation 4.44 (Chain level cobar construction). If C is a coaugmented dg-
cooperad, we will denote its (chain-level) cobar construction by Ω(C). Recall that
this is the free dg-operad generated by the desuspension C[−1] of the coaugmenta-
tion ideal, with differential ∂ = ∂C + ∂cobar; here ∂C is the differential induced by
the differential on C and ∂cobar is induced by the partial cocomposition of C (see
e.g. [LV12, §6.5] for more details).
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Proof. By Theorem 4.42, KD(Enu
R ) is a dg-operad model for the PD∞-operad

LieπR,E∞ = KD(Enu
∞). Furthermore, the conditions on Enu

R imply that there is an
isomorphism to the chain-level cobar construction

KD(Enu
R ) ∼= Ω((Enu

R )∨).

The cobar construction Ω((Enu
R )∨) defines a cofibrant object in the tame model

structure on OpR: indeed, it can be obtained by a sequence of cell attachments,
where in each stage one attaches generators from the tamely cofibrant complex
of R[Σr]-modules (Enu

R )∨(r)[−1] (cf. [Hin97, §6]). In particular, it follows that
KD(Enu

R ) is tamely cofibrant as a symmetric sequence (Proposition 4.35), so that
AlgKD(Enu

R ) carries a semi-model structure and Theorem 4.38 applies. �

We will now apply Proposition 4.43 to the surjections operad from [MS03,
BF04] and obtain a combinatorial presentation of spectral partition Lie algebras.

Notation 4.45 (Nondegenerate sequences). Given r ≥ 1, a nondegenerate
sequence in r is an (ordered) sequence u = (u1, . . . , ur+d) of elements in r =
{1, . . . , r} such that each 1, . . . , r appears in the sequence and uα �= uα+1 for all
α. If u does not exhaust all of r or if uα = uα+1 for some α, then u is said to be
degenerate.

Definition 4.46 (Spectral partition L∞-algebras). Let R be a discrete co-
herent ring. A spectral partition L∞-algebra is a chain complex of R-modules g,
together with the following algebraic structure: for every r ≥ 2 and every nonde-
generate sequence u = (u1, . . . , ur+d), there is an operation

{−, . . . ,−}u : g⊗r g

of homological degree −1− d. Furthermore, these operations satisfy:

(a) Equivariance. For every σ ∈ Σr, let σ(u) =
(
σ(u1), . . . , σ(ur+d)

)
. Then

{x1, . . . , xr}σ(u) = ±(σ,x){xσ−1(1), . . . , xσ−1(r)}u
where ±(σ,x) is the Koszul sign associated to the permutation σ of x1, . . . , xr.

(b) Differential. For each nondegenerate sequence u = (u1, . . . , ur+d) in r and
each tuple x1, . . . , xr ∈ g, we have

∂{x1, . . . , xr}u =

r∑
i=1

(−1)|x1|+···+|xi−1|{x1, . . . , ∂(xi), . . . , xr}u

+

r+d+1∑
α=1

r∑
v=1

v 	=uα−1,uα

±(u+,α){x1, . . . , xr}u+=(u1,...,uα−1,v,uα,...,ur+d)

+
r−1∑
k=1

∑
σ∈UnShu(k,r−k)

±(σ,x) ±‖
{
{xσ(1), . . . , xσ(k)}v(k,σ), xσ(k+1), . . . , xσ(r)

}
w(k,σ)

The sign ±(u+,α) is associated to the element v in u+ as in Sign Rule A.5.
In the third row, we sum over the set UnShu(k, r − k) of (k, r − k)-

unshuffles σ which are compatible with u, in the following sense: if we de-
compose the subsequence of u consisting of all ui ∈ {σ(1), . . . , σ(k)} into
intervals

u1 =
(
uα(1), uα(1)+1, . . . , uα(1)+β(1)

)
, . . . , un =

(
uα(n), uα(n)+1, . . . , uα(n)+β(n)

)
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separated in u by elements in {σ(k+1), . . . , σ(r)}, then we have uα(i)+β(i) =
uα(i+1) for all i.

We then define v(k, σ) to be the sequence in k given by applying σ−1 to
the sequence

(4.3)
(
uα(1), . . . , uα(1)+β(1)−1, uα(2), . . . , uα(i)+β(i)−1, uα(i), . . . , uα(n)+β(n)

)
.

Define w(k, σ) as the sequence of elements of r − k + 1 obtained from u by
replacing each σ(k + i) (for i = 1, . . . , r − k) by 1 + i and replacing each of
the intervals u1, . . . ,un by a single copy of 1.

If either of these sequences is degenerate or of length 1, the corresponding
term is zero. Otherwise, the sign ±‖ is dictated by Sign Rule A.7, as follows.
There is a unique (non-ordered) bijection

φ : w(k, σ)‖ � v(k, σ)‖ u‖

between the concatenation of the linear orders of caesuras (Definition A.4) in
w(k, σ) and v(k, σ) and the caesuras in u, with the following properties: φ
sends a caesura in v(k, σ) to the corresponding caesura in the subsequence
(4.3) of u, and restricts to an order-preserving map on w(k, σ)‖. Then ±‖ is
the sign of the bijection φ.

Theorem 4.47 (Chain models for spectral partition Lie algebras I). Invert-
ing tame weak equivalences on the category of spectral partition L∞-algebras gives
the ∞-category AlgLieπR,E∞

(QC∨
R). In particular, when R = k is a field, localising

spectral partition L∞-algebras at the quasi-isomorphisms gives the ∞-category of
partition Lie algebras from [BM19, Definition 5.32].

Proof. Write C for the cooperad given by the linear dual of the surjections
operad described in [BF04]. Proposition 4.43 shows that spectral partition Lie al-
gebras over R can be described by algebras over the cobar construction Ω(C). With-
out differential, Ω(C) is the free operad generated by the symmetric sequence under-
lying the coaugmentation ideal C[−1]: this symmetric sequence is spanned in arity
r and degree −1 − d by the Σr-set of nondegenerate sequences u = (u1, . . . , ur+d)
in r.

The equation in (b) then simply asserts that the action of Ω(C) by operations
{−, . . . ,−}u is compatible with the differential. Indeed, note that the differential
of u in Ω(C) takes the form ∂C(u) + ∂cobar(u), where the first term is simply
the differential of u in C and the second term uses the partial cocomposition of
C. By [BF04, §1.2.3] (see also Appendix A) ∂C(u) is the sum of all sequences
(u1, . . . , uα, v, uα+1, . . . , ur+d) with a certain sign. This accounts for the second line
in the above equation. The third line corresponds to the action by ∂cobar(u), using
the description of the cocomposition in C dual to the formula for the composition
in the surjections operad from [BF04, §1.2.4]. �

In the remainder of this section, we will introduce another model for the spectral
partition Lie PD ∞-operad, which is smaller than the Koszul dual of the Barratt–
Eccles operad and closer to the classical (shifted) Lie operad.

Notation 4.48 (Shifted Lie operad). We will denote by LiesR the dg-operad
whose algebras are shifted dg-Lie algebras, i.e. complexes g such that g[−1] is a
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dg-Lie algebra. Likewise, write

Lies∞,R = KD(Comnu
R ) = Ω(Comnu,∨

R )

for the dg-operad defining (shifted) L∞-algebras over R. There is a natural map
Lies∞,R −→ LiesR taking the quotient by all generating operations in arity ≥ 3.

We will model the PD ∞-operad LieπR,E∞ by a modification of the standard
(shifted) Lie operad that also encorporates divided power operations, using the PD
surjections operad constructed in detail in Appendix A:

Definition 4.49 (PD surjections operad, see Appendix A). Let SurR denote
the symmetric sequence underlying the R-linear surjections operad from [MS03,
BF04]. Explicitly, SurR(r) is a chain complex given in degree d by the free R-
module on the set of nondegenerate sequences u = (u1, . . . , ur+d) in r (cf. Nota-
tion 4.45). By Theorem A.1, this symmetric sequence admits the structure of a
cooperad such that the canonical map SurR −→ coComnu to the cocommutative
cooperad is a quasi-isomorphism.

We define the PD surjections operad Sur∨R to be the R-linear dual of this coop-
erad. See Definition A.13 for more details, including a description of the differential
and composition in Sur∨R.

Remark 4.50. Note the substantial difference between the PD surjections op-
erad Sur∨R and the standard models for the E∞-operad, such as the Barratt–Eccles
operad or the surjections operad: the latter are given in each arity by a projective
resolution of the trivial Σr-module, while Sur∨R(r) is an injective resolution of the
trivial Σr-module. In particular, Sur∨R is a tamely Σ-cofibrant dg-operad such that
Sur∨R ◦V 


⊕
r≥0(V

⊗r)hΣr for every bounded above complex V of projective R-

modules (cf. Example 4.1). This implies that the canonical map Comnu −→ Sur∨R
cannot be a tame weak equivalence, although it is a quasi-isomorphism.

Recall that given two dg-operads P andQ, their levelwise (or Hadamard) tensor
product P⊗lev Q has a natural operad structure. The commutative operad is the
unit for this tensor product.

Definition 4.51 (Spectral partition Lie dg-operad). Let R be a coherent ring.
We define the spectral partition Lie dg-operad LieπR,E∞ to be the tensor product

LieπR,E∞ = LiesR ⊗lev Sur
∨
R .

Remark 4.52. Each LieπR,E∞(r) provides a resolution of the R[Σr]-module
LiesR(r) by a bounded above complex of finitely generated projective
R[Σr]-modules. In particular, LiesR(r) −→ LieπR,E∞(r) provides an injective reso-
lution of the Σr-action, so that

LieπR,E∞ ◦ V ∼=
⊕
r

(
LieπR,E∞(r)⊗ V ⊗r

)
Σr

∼=
⊕
r

(
LieπR,E∞(r)⊗ V ⊗r

)Σr 

⊕
r

(
LiesR(r)⊗ V ⊗r

)hΣr

for any bounded above complex V of projective R-modules. In particular, this
implies that for any algebra g over LieπR,E∞ , the homotopy groups π∗(g) have the
structure of a graded restricted Lie algebra.
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Theorem 4.53 (Chain models for spectral partition Lie algebras). The dg-
operad LieπR,E∞ is a tamely Σ-cofibrant model for the spectral partition PD ∞-
operad LieπR,E∞ . Consequently, AlgLieπ

R,E∞
(ChR) admits a semi-model structure

whose underlying ∞-category is equivalent to the ∞-category of spectral partition
Lie algebras

AlgLieπ
R,E∞

[W−1
tame] AlgLieπR,E∞

(QC∨
R).

∼

This follows immediately from Proposition 4.43 and the following result:

Proposition 4.54. Let Enu
R be a dg-operad modelling the nonunital E∞-operad

as in Proposition 4.43, for example the nonunital Barratt–Eccles operad. There
exists a commuting diagram of dg-operads

KD(Sur∨R) Lies∞,R LiesR

KD(Enu
R ) Lies∞,R ⊗lev Sur

∨
R LieπE∞,R

� �

�
f

�

in which all horizontal arrows are tame weak equivalences and the vertical arrows
are quasi-isomorphisms.

Proof. We shall start by describing the top row. The first map arises from the
quasi-isomorphism of cooperads SurR −→ coComnu

R by taking the cobar construc-
tion. Since both of these cooperads consist of projectively cofibrant R-modules (ig-
noring the Σr-action), the induced map between the cobar constructions is a quasi-
isomorphism. Furthermore, the map Lies∞,R −→ LiesR is a quasi-isomorphism
[Fre04, Theorem 6.8]. Since the top row consists of dg-operads in nonnegative
degrees, these two quasi-isomorphisms are also tame weak equivalences.

The right square is obtained by taking the levelwise tensor product with
Comnu

R −→ Sur∨R. Note that the map Lies∞,R ⊗lev Sur∨R −→ LieπE∞,R can be
identified in arity r with the map between mapping complexes

HomR

(
SurR(r),Lie

s
∞,R

)
HomR

(
SurR(r),Lie

s
R

)
.

Since each SurR(r) is tamely cofibrant, each of these maps is a tame weak equiva-
lence.

The map Lies∞,R = KD(Comnu
R ) −→ KD(Enu

R ) can be identified with the
Koszul dual of the quasi-isomorphism of dg-operads Enu

R −→ Comnu
R . It then

remains to produce the tame weak equivalence f making the triangle commute.
For this, it will be convenient to consider the linear dual situation and instead
produce a map φ of conilpotent dg-cooperads

(4.4)

B(Enu
R )

B(Comnu
R )⊗lev SurR B(Comnu

R )

φ

where SurR is the cooperad constructed in Appendix A. Given such a map φ,
we simply take f to be its R-linear dual. The resulting map f is then indeed
a tame weak equivalence: indeed, note that both solid maps in (4.4) are quasi-
isomorphisms, so that φ is a quasi-isomorphism as well. Since both the domain
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and codomain of φ are projectively cofibrant symmetric sequences, it follows that
φ is a tame weak equivalence as well and its linear dual f remains a tame weak
equivalence.

To produce the lift φ, we will proceed by induction: for each n ≥ 0, let Enu,≤n
R

denote the linear quotient of Enu
R by all operations of arity > n that are contained

in the kernel of the map Enu
R −→ Comnu

R . These form a tower of dg-operads such

that Enu,≤1
R

∼= Comnu
R and Enu

R
∼= limn E

nu,≤n
R .

Now recall that the chain-level bar construction of an augmented dg-operadP is
given by the cofree conilpotent cooperad on the suspension P[1] of the augmentation
ideal, together with a certain differential on it (see Construction 4.41). This implies

in particular that B(Enu
R ) ∼= limn B(E

nu,≤n
R ). It therefore suffices to inductively

construct a compatible family of maps

φn : B(Comnu
R )⊗lev SurR −→ B(Enu,≤n

R ).

The map φ1 is just the bottom map in Diagram (4.4). For the inductive step, note
that

I(n+1) Enu,≤n+1
R Enu,≤n

R

is a square zero extension of dg-operads with kernel I(n+1). This implies that the

cooperad B(Enu,≤n+1
R ) is obtained from B(Enu,≤n

R ) by the dual of a cell attachment,
adding cogenerators in arity n + 1. More precisely, for each n there is a pullback
square of conilpotent dg-cooperads

B(Enu,≤n+1
R ) CofreeCoopconil(I(n+1)[1, 2])

B(Enu,≤n
R ) CofreeCoopconil(I(n+1)[2]).

To find an extension of φn : B(Comnu
R ) ⊗lev SurR −→ B(Enu,≤n

R ), it then suffices
to find a lift in the following diagram of symmetric sequences

I(n+1)[1, 2]

B(Comnu
R )⊗lev SurR B(Enu,≤n

R ) I(n+1)[2]
φn

But now notice that B(Comnu
R )⊗levSurR is a (projectively) Σ-cofibrant symmetric

sequence and that I(n+1) is the part of the kernel of the acyclic fibration Enu
R −→

Comnu
R concentrated in arity n + 1. It follows that I(n+1)[1, 2] −→ I(n+1)[2] is an

acyclic fibration, so the desired lift exists. �

Remark 4.55. There cannot exist a model P
�−→ LieπE∞ which is bounded

below. Indeed, any such model would be quasi-isomorphic and therefore tamely
weak equivalent to the Lie operad, but LieπE∞ is not tamely weak equivalent to the
Lie operad.

The explicit description of the PD surjections operad in Definition A.13 leads
to the following alternative chain level description of spectral partition Lie algebras:
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Corollary 4.56 (Explicit spectral partition Lie algebras – chain model II).
Let R be a coherent ring. Then a spectral partition Lie algebra over R can be
described by a chain complex of R-modules g, together with the following algebraic
structure: for every r ≥ 2, every operation λ ∈ Lies(r), and every nondegenerate
sequence u = (u1, . . . , ur+d) in r, there is an operation

{−, . . . ,−}λ,u : g⊗r g

of homological degree 1− r − d. Furthermore, these operations satisfy:

(a) Equivariance. For every σ ∈ Σr and all x1, . . . , xr ∈ g,

{x1, . . . , xr}σ(λ),σ(u) = ±(σ,x){xσ(1), . . . , xσ(r)}λ,u
where ±(σ,x) is the Koszul sign associated to the permutation σ of x1, . . . , xr.

(b) Differential. For each λ ∈ Lies(r) and a nondegenerate sequence u in r and
x1, . . . , xr ∈ g, one has

∂{x1, . . . , xr}λ,u =
r∑

i=1

(−1)|x1|+···+|xi−1|{x1, . . . , ∂(xi), . . . , xr}λ,u

+
r+d+1∑
α=1

r∑
v=1

±(u+,α){x1, . . . , xr}λ,u+=(u1,...,uα−1,v,uα,...,ur+d).

Each term where u+ is a degenerate sequence is zero and if u+ is nondegen-
erate the sign is as in Sign Rule A.5.

(c) Composition. Let r, s ≥ 2 and take λ ∈ Lies(r) and u = (u1, . . . , ur+d) a
nondegenerate sequence in r, as well as μ ∈ Lies(s) and v = (v1, . . . , vs+e) a
nondegenerate sequence in s. For each 1 ≤ k ≤ r, we then have

{x1, . . . , {xk, . . . , xk+s−1}μ,v, . . . , xr+s−1}λ,u =
∑
w

±‖{x1, . . . , xr+s−1}λ◦kμ,w

where λ ◦k μ is the partial composition of λ and μ in the Lie operad. Here
the sum runs over all nondegenerate sequences w = (w1, . . . , wr+s−1+d+e) in
r + s− 1 with the following properties:

- The subsequence of w with values in {k, . . . , k + s − 1} has the form(
wα(1), . . . , wα(i+s+e−1)

)
for some i, where

wα(i) = v1+(k−1), wα(i+1) = v2+(k−1), . . . , wα(i+s+e−1) = vs+e+(k−1).

- Consider the sequence w′ with values in {1, . . . , k−1, k, k+s, . . . , r+s−1}
obtained from w as follows: remove all elements wα(i+1), . . . , wα(i+s+e−1)

appearing above and replace all elements wα(1), . . . , wα(i) in the sequence
above by k. Then the resulting sequence w′ (of length r + d) coincides
with the sequence u under the obvious order-preserving bijection

{1, . . . , k − 1, k, k + s, . . . , r + s− 1} ∼= {1, . . . , r}.

Furthermore, the sign ±‖ arises from Sign Rule A.7, as follows: there is a
(non-ordered) bijection w‖ ∼= u‖ � v‖ between the linearly ordered sets of
caesuras (Definition A.4) of the sequence w and the concatenation of the
linear orders of caesuras in u and v. Then ±‖ is the sign of this bijection.
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Remark 4.57. Suppose that P is an R-linear dg-operad in arity ≥ 1 consisting
of complexes of projective R-modules. Then the levelwise tensor product of P with
the (nonunital) Barratt–Eccles operad produces a tamely Σ-cofibrant replacement

P⊗lev E
nu ∼−→ P of P.

On the other hand, the tensor product with the PD surjections operad provides
a map P −→ P⊗lev Sur

∨
R which is a quasi-isomorphism, but generally not a tame

weak equivalence. In fact, the same computation as in Remark 4.52 shows that for
any bounded above complex of projective R-modules V , one has(

P⊗lev Sur
∨
R

)
◦ V 


⊕
r≥1

(
P(r)⊗ V ⊗r

)hΣr .

The dg-operad P⊗levSur
∨
R therefore models a PD ∞-operad over R whose algebras

can be seen as ‘P-algebras with divided powers’.
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CHAPTER 5

Simplicial-cosimplicial models for derived PD
operads

Given an ordinary ring R, recall that the homotopy theory of simplicial com-
mutative rings over R does not have a good description in terms of chain complexes
over R, unless R is a Q-algebra. More generally, it is complicated to give chain
complex models for derived (PD) ∞-operads and their algebras. Instead, we will
now introduce simplicial-cosimplicial analogues of the model categories studied in
the previous chapter.

5.1. Simplicial-cosimplicial models for modules and pro-coherent
modules

Throughout, we fix a discrete ring R, a finite group G and F ⊆ OG. We
will start by introducing simplicial-cosimplicial versions of the model categories of
complexes of G-representations from Proposition 4.6. The main idea will be to
build these as some sort of resolution model structures.

Notation 5.1. For any category C with limits, restricting along the Yoneda
embedding yields an equivalence of categories Fun(Δop,C) 
 FunR

(
sSetop,C). We

can therefore evaluate a simplicial object X in C on a simplicial set K, and denote
the resulting object in C by X(K); it can be computed explicitly as the limit of X
over the category of simplices of K.

Definition 5.2. Let f : Y −→ X be a map of simplicial chain complexes of
R[G]-modules. We will say that f is an F-tame (resp. F-projective) Kan fibration
if it satisfies the following two conditions:

(1) it is a Reedy fibration of simplicial objects, i.e. each map of chain complexes

(5.1) Y (Δ[n]) −→ Y (∂Δ[n])×X(∂Δ[n]) X(Δ[n])

induces surjections on H-fixed points for all admissible H.

(2) for each horn inclusion Λi[n] −→ Δn, the map

Y (Δ[n]) −→ Y (Λi[n])×X(Λi[n]) X(Δ[n])

is a fibration of complexes of R[G]-modules whose fibre is connective with
respect to the t-structures of Lemma 4.14. Note that working in the tame or
projective setting results in two different connectivity conditions (see Lemma
4.13).

Likewise, f is said to be an F-tame (resp. F-projective) acyclic Kan fibration if it
is a Reedy fibration and each map (5.1) has a connective fibre.

If X is a simplicial chain complex, we will write Tot⊕(X) for the total complex
of the corresponding bicomplex, using the direct sum.

83
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Lemma 5.3. Let f : Y −→ X be an F-tame Kan fibration of simplicial chain
complexes of R[G]-modules. Then f is an F-tame acyclic Kan fibration if and only
if Tot⊕(Y ) −→ Tot⊕(X) is an F-tame weak equivalence. The same statement holds
in the F-projective case.

Proof. Since Tot⊕ is exact, it suffices to verify that a Kan fibrant simplicial
chain complex X is acyclic if and only if Tot⊕(X) 
 0 is weakly equivalent to zero.
Note that Tot⊕(X) is the total complex of the bicomplex

[
· · · → F (2) → F (1) →

X(0)
]
, where F (n) is the kernel of X(n) −→ X(Λ0[n]).

Assume that X is acyclic, so that X(0) and all F (n) are connective by assump-
tion. This means that Tot⊕(X) is connective as well and the spectral sequence
associated to Tot⊕(X) converges to π∗(X) and has E1-page

[
· · · → π∗F (2) →

π∗F (1) → π∗X(0)
]
. The fact that X is an acyclic Kan fibrant object implies that

this is exact, i.e. the E2-page vanishes. It follows that π∗Tot⊕(X) = 0, and since
Tot⊕(X) was connective it follows that Tot⊕(X) 
 0.

Conversely, suppose that Tot⊕(X) 
 0 and let Z(n) be the fibre of each
X(n) −→ X(∂Δ[n]). We will prove by induction that each Z(n) is connective.
To this end, consider the sub-bicomplexes

C(n) =
[
· · · → F (n+ 1)

∂n+1−→ Z(n) −→ 0 −→ · · · → 0
]
.

Since X is Reedy fibrant, the map ∂n+1 is surjective (on H-fixed points for admis-
sible H < G), with fibre given by the kernel of X(n + 1) −→ X(∂Δ[n + 1]). It
follows that there are fibre sequences C(n+1) −→ C(n) −→ Z(n)[n, n + 1], so that
an inductive argument shows that Tot⊕(C

(n)) 
 Tot⊕(X) 
 0 for each n. Now
note that we have a cofibre sequence of complexes

Z(n)[n] −→ Tot⊕(C
(n)) −→ Tot⊕

[
· · · → F (n+ 1) → 0 → · · · → 0

]
.

Since X is Kan fibrant, each F (k) is connective so that the cofibre is (n + 1)-
connective; since the middle term is contractible, Z(n) is connective. �

We turn to simplicial-cosimplicial modules, which we will also call sc-modules.

Notation 5.4. Write Modc
R[G] and Modsc

R[G] for the (ordinary) categories of

cosimplicial and simplicial-cosimplicial R[G]-modules. By the classical Dold–Kan
correspondence, the normalised chains functor identifies these categories with the
categories of nonpositively graded chain complexes and second quadrant bicom-
plexes. Write Tot⊕ : Modsc

R[G] −→ ChR[G] for the functor sending an sc-module to
the total complex of the associated bicomplex.

We will say that a map of sc-modules is an F-tame (F-projective) Kan fibration
if taking normalised chains in the cosimplicial direction yields a Kan fibration
between simplicial chain complexes in the sense of Definition 5.2, and similarly for
acyclic Kan fibrations.

Theorem 5.5. Let R be a ring, G a finite group and F ⊆ OG a full subcate-
gory. Then the category Modsc

R[G] can be endowed with the following two cofibrantly
generated, simplicial model structures:

(1) the F-projective model structure, whose (trivial) fibrations are the
F-projective (acyclic) Kan fibrations. Furthermore, a map is a weak equiv-
alence if and only if its image under Tot⊕ induces quasi-isomorphisms on
H-fixed points for all admissible H < G.
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(2) the F-tame model structure, whose (trivial) fibrations are the F-tame (acyclic)
Kan fibrations. Furthermore, a map is a weak equivalence if and only if its
image under Tot⊕ is an F-tame weak equivalence.

Furthermore, the total complex functor determines a Quillen equivalence

Tot⊕ : Modsc
R[G] ChR[G] : Res

between the F-tame (resp. F-projective) model structures.

Proof of Theorem 5.5. Throughout, we will work with nonpositively
graded chain complexes of R[G]-modules instead of cosimplicial R[G]-modules for
simplicity; the two are equivalent by the Dold–Kan correspondence. We will start
by constructing the two desired model structures on the category sChR[G],≤0 of sim-
plicial diagrams of nonpositively graded chain complexes of R[G]-modules. Given
a set K of maps of simplicial sets and a set L of maps of chain complexes, write
K � L for the set of maps

T+ ∧M ∪S+∧M S+ ∧N −→ T+ ∧N S
∈K−→ T, M

∈L−→ N,

where ∧ is the evident tensoring of sChR[G],≤0 over pointed simplicial sets. Both
model structures have sets of generating (trivial) cofibrations of the form

I =
{
∂Δ[n] → Δ[n]

}
�

{
P → P [0, 1]}

J =
{
Λi[n] → Δ[n]

}
�

{
P → P [0, 1]} ∪

{
∂Δ[n] → Δ[n]

}
�

{
0 → P [0, 1]

}(5.2)

for a certain set of dg-R[G]-modules P . In the F-projective case, we take the set of
shifted representations P = R[G/H][k] with H < G admissible and k < 0. In the
F-tame case, we use the set of complexes of finite F-admissible G-representations
concentrated in degrees ≤ −1. It follows from Lemma 4.13 that a map is an acyclic
Kan fibration if and only if it has the right lifting property against I, and a Kan
fibration if and only if it has the right lifting property against J .

To see that these generating sets determine model structures, we have to verify
that iterated pushouts of maps in J are weak equivalences and that a Kan fibration
is a weak equivalence if and only if it is an acyclic Kan fibration. The form of the
sets I and J then implies that both of these model structures are simplicial. To
see that the maps in J are weak equivalences, note that Tot⊕ preserves colimits
and that it sends each map in J to a pushout of a map 0 −→ P [n, n + 1]. For
any F-quasiprojective complex P , the map 0 −→ P [n, n+1] is a trivial cofibration
in both the F-projective and F-tame model structure on ChR[G]. Consequently,
iterated pushouts of maps in J are weak equivalences in both the F-projective and
F-tame case. Lemma 5.3 shows that an F-tame (resp. F-projective) Kan fibration
is acyclic if and only if it is an F-tame (F-projective) weak equivalence.

It remains to show that Tot⊕ is part of a Quillen equivalence. To see this,
note that its right adjoint Res sends a complex X to the simplicial chain complex
given in degree n by the degree ≤ 0 part of Hom(C∗(Δ[n]), X). It follows from
this that Res preserves cofibrant objects. Furthermore, unravelling the definitions
shows that Tot⊕ Res(X) can be identified (up to signs) with the complex

. . .
⊕
n≥0

X1 ⊕
⊕
n≥1

X0

⊕
n≥0

X0 ⊕
⊕
n≥1

X−1

⊕
n≥0

X−1 ⊕
⊕
n≥1

X−2 . . .

⎛
⎝∂ 1

0 ∂

⎞
⎠

⎛
⎝∂ 1

0 ∂

⎞
⎠
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The counit map Tot⊕ Res(X) −→ X is simply the projection onto the zeroth sum-
mand, which is an acyclic fibration. We conclude that the derived counit map is
an equivalence.

To see that Tot⊕ is part of a Quillen equivalence, it remains to check that
it detects equivalences. In the F-projective case this is obvious. In the F-tame
case, it suffices to verify that every fibrant-cofibrant object X such that Tot⊕(X)
is acyclic is itself acyclic. This follows from Lemma 5.3. �

Remark 5.6. Let us spell out the sets of generating (trivial) cofibrations (5.2)
of the F-tame model structure more explicitly in simplicial-cosimplicial terms. To
this end, let us write ∧ for the tensoring of Modsc

R[G] over pointed simplicial sets.

Furthermore, let C̃∗(Δ[1]) denote the cosimplicial R-module of reduced cochains

on Δ[1] and let C̃∗(S1) −→ C̃∗(Δ[1]) be the natural restriction map along Δ[1] −→
S1 = Δ[1]/∂Δ[1]. Now consider the following three types of inclusions of simplicial-
cosimplicial R-modules (with trivial G-action):

i : ∂Δ[n]+ ∧ C̃∗(Δ[1]) �∂Δ[n]+∧C̃∗(S1) Δ[n]+ ∧ C̃∗(S1) Δ[n]+ ∧ C̃∗(Δ[1])

j1 : Λ
i[n]+ ∧ C̃∗(Δ[1]) �Λi[n]+∧C̃∗(S1) Δ[n]+ ∧ C̃∗(S1) Δ[n]+ ∧ C̃∗(Δ[1])

j2 : ∂Δ[n]+ ∧ C̃∗(Δ[1]) Δ[n]+ ∧ C̃∗(Δ[1]).

Then the cofibrations are generated by the set of maps of simplicial-cosimplicial
R[G]-modules of the form i ⊗R P , where P is a cosimplicial diagram of finite F-
admissible G-representations. Likewise, the trivial cofibrations are generated by
the set of maps j1 ⊗R P and j2 ⊗R P .

For later purposes, let us record some further properties of the cofibrations
in the F-projective and F-tame model structures on simplicial-cosimplicial G-
representations.

Lemma 5.7. A map of simplicial-cosimplicial R[G]-modules f : X −→ Y is:

(1) an F-projective cofibration if and only if it is a split monomorphism in each
simplicial-cosimplicial bidegree and in each simplicial degree n, the cosimplicial
R[G]-module (Y/X)n corresponds to an F-projectively cofibrant chain complex
under the Dold–Kan correspondence.

(2) an F-tame cofibration if and only if it is a split monomorphism in each
simplicial-cosimplicial bidegree and (Y/X) is given in each simplicial-
cosimplicial bidegree by the retract of an F-admissible G-representation.

Proof. Let us again identify simplicial-cosimplicial R[G]-modules with of non-
positively graded chain complexes of R[G]-modules using the Dold–Kan correspon-
dence to Modsc

R[G] 
 sChR[G],≤0. Under this identification, a map that is a split
monomorphism in each simplicial-cosimplicial bidegree corresponds to a map that
is a split monomorphism in each simplicial-chain bidegree.

Consider the sets of maps {P → P [0, 1]} in ChR[G],≤0 used in the definition
of the set of generating cofibrations (5.2) in the proof of Theorem 5.5. In the F-
projective case, we took the objects P to be the shifted representations R[G/H][k]
with H < G admissible and k < 0, and in the tame case we took the objects
P to be all complexes of finite F-admissible G-representations in degrees ≤ −1.
One readily verifies that the weakly saturated class generated by these sets consists
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exactly of the F-projective and F-tame cofibrations in ChR[G],≤0. In the F-tame
case, this follows from the proof of Proposition 4.6. Note that a map in ChR[G],≤0

is an F-projective cofibration if and only if it is an F-injection with F-cofibrant
cokernel, and likewise in the F-tame case.

The weakly saturated class of the set I from (5.2) then consists of the associated
class of Reedy cofibrations, i.e. of maps X −→ Y in sChR[G],≤0 such that each
relative latching map Xn �LnX LnY −→ Yn is an F-projective (resp. F-tame)
cofibration in ChR[G],≤0. Because each LnX −→ Xn is the inclusion of a direct
summand, by the Dold–Kan correspondence, one readily sees that this is equivalent
to X −→ Y being an F-projective (resp. F-tame) cofibration in each simplicial
degree. Assertions (1) and (2) follow directly from this. �

Remark 5.8. Consider the full subcategory sModR[G] ↪→ Modsc
R[G] of sc-

modules that are constant in the cosimplicial direction. This carries an induced
model structure, whose weak equivalences and fibrations are the maps inducing
weak equivalences and Kan fibrations on H-fixed points, for every admissible sub-
group H. The resulting ∞-category can be identified with the ∞-category
ModR[F ],≥0 of connective modules over F . In the case where F = OG, this can be
thought of as an R-linear version of Elmendorf’s theorem [Elm83].

Remark 5.9 (Geometric realisations and totalisations). The model structure
on Modsc

R[G] is tensored over the Kan–Quillen model structure in the obvious way.
The homotopy colimit of a pointwise cofibrant simplicial diagram X : Δop −→
Modsc

R[G] can therefore be computed by the diagonal of X in the simplicial direc-
tion. The image of the diagonal under the functor Tot⊕ simply computes the total
complex (using the direct sum).

The homotopy limit of a cosimplicial diagram X : Δop −→ Modsc
R[G] cannot be

computed by the cosimplicial diagonal in general. However, this does hold when
X is a diagram of cosimplicial R[G]-modules (constant in the simplicial direction).
Indeed, in this case the Quillen equivalence Tot⊕ sends the cosimplicial diagonal
to the total complex with respect to the sum; since all sums involved are finite this
coincides the total complex using the direct product, which computes the homotopy
limit in ChR[G].

Remark 5.10. Consider a cosimplicial diagram X : Δ −→ R[F ] of finite F-
admissible R[G]-modules. Then X defines a cofibrant object of Modsc

R[G] with re-
spect to the F-tame model structure. If X is furthermore finite, i.e. n-coskeletal for
some n, thenX is also cofibrant in the F-projective model structure. Indeed, X cor-
responds under the Dold–Kan correspondence to a complex of finite F-admissible
R[G]-modules in degrees [−n, 0]. Starting in degree −n, such a complex can be
obtained by cell attachments from the generating (F-projective) cofibrations used
in the proof of Theorem 5.5.

5.2. Explicit derived operads, PD operads, and their algebras

We will now use the homotopy theory described in Theorem 5.5 to describe ex-
plicit simplicial-cosimplicial models for derived ∞-operads, derived PD ∞-operads,
and their algebras.

Simplicial-cosimplicial symmetric sequences. Write sSeqsc
R for the cat-

egory of symmetric sequences of simplicial-cosimplicial R-modules. This can be
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endowed with a Day convolution product ⊗, a composition product, and restricted
composition product

X ◦ Y =
⊕
r

(
X(r)⊗ Y ⊗r

)
Σr

X ◦̄Y =
⊕
r

(
X(r)⊗ Y ⊗r

)
Σr .

These operations can be computed in each simplicial-cosimplicial degree. In par-
ticular, an algebra with respect to the composition product is simply a simplicial-
cosimplicial operad (or sc-operad) over R, while an algebra with respect to the
restricted composition product is a simplicial-cosimplicial restricted operad over R
(or sc-restricted operad), see e.g. [Fre00, Iko20,Ces16].

Recall that the norm map Nm: X ◦ Y −→ X ◦̄Y makes the identity a lax
monoidal functor and is an equivalence when Y is in arity ≥ 1 (cf. Definition 3.76).
In particular, every sc-restricted operad has an underlying sc-operad. This defines
an equivalence between sc-restricted operads and sc-operads in arities ≥ 1.

The category sSeqsc
R acts on Modsc

R by both the composition product ◦ and
the restricted composition product ◦̄. If P is an sc-operad, a left module over it
in Modsc

R is simply a simplicial-cosimplicial P-algebra. Likewise, if P is an sc-
restricted operad, a left P-module in Modsc

R is simply a restricted P-algebra. A
restricted P-algebra A is in particular an algebra over the operad underlying P.

Notation 5.11. We will write Opsc
R and Opsc,res

R for the categories of sc-
operads and sc-restricted operads over R. Furthermore, we denote by Algsc

P and
Algsc,res

P the categories of algebras and restricted algebras over an sc-operad, re-
spectively sc-restricted operad P.

Remark 5.12 (Restricted algebras). Suppose that k is a field and P is a (re-
stricted) operad in arity ≥ 1 coming from an operad S in sets as P = k[S]. In this
case, Ikonicoff [Iko20, §3.1] has given an explicit description of restrictedP-algebras
as k-vector spaces with operations and relations. Indeed, a restricted P-algebra A
is an ordinary P-algebra (via the norm), and there are additional operations

γs(a1, . . . ar) ∈ A

for all s ∈ S(r) and all tuples a = (a1, . . . , ar) in A, which satisfy various properties
which generalise the axioms of a divided power algebra (we use a slightly more
efficient labelling convention than [Iko20]). To define the element γs(a1, . . . ar), we
simply apply the structure map (P(r)⊗A⊗r)Σr → A to the element∑

ρ∈Σr/Σa,s

[ρ(s)]⊗ aρ(1) ⊗ . . .⊗ aρ(r)

where [ρ(s)] is the basis element in k[S(r)] corresponding to ρ(s) and Σa,s ⊂ Σr

consists of all permutations which fix both s and the tuple a. These operations are
compatible with sums, scalar multiplication and composition in the way one might
expect from this equation. In Construction 5.43, we will use this strategy to make
our point set models for derived partition Lie algebras more explicit.

Model structures. We now apply the Constructions from Section 5.1 in the
case of the symmetric groups, taking F = OΣr

to be the full orbit category. Along
the lines of Definition 4.3, we will say that a symmetric sequence of discrete R-
modules is admissible if it arises as the R-linearisation of a symmetric sequence of
sets.
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Definition 5.13. The tame model structure on sSeqsc
R is the simplicial, cofi-

brantly generated model structure whose:

• cofibrations are the split monomorphisms in each simplicial-cosimplicial degree,
with cokernel given by the retract of an admissible symmetric sequence.

• (trivial) fibrations are (acyclic) Kan fibrations in each arity, for F = OΣr
.

• weak equivalences are maps inducing F-tame weak equivalences upon applying
Tot⊕.

This admits a right Bousfield localisation given by the projective model structure,
whose weak equivalences are maps X −→ Y such that for every H < Σr, the map
X(r)H −→ Y (r)H induces a quasi-isomorphism on total complexes (using direct
sums).

Proposition 4.16, Corollary 4.18 and Theorem 5.5 then have the following con-
sequence:

Corollary 5.14. Let R be a commutative ring. Then the projective model
structure on sSeqsc

R presents the ∞-category sSeqgenR of derived symmetric se-

quences, i.e. sSeqsc
R [W−1

proj] 
 sSeqgenR .
If R is furthermore coherent, then the fully faithful left adjoint of ∞-categories

sSeqsc
R [W−1

proj] ↪→ sSeqsc
R [W−1

tame]

is naturally equivalent to the fully faithful inclusion ι : sSeqgenR ↪→ sSeqgen,∨R into
the pro-coherent derived symmetric sequences.

Remark 5.15 (Connective objects). A map between simplicial symmetric se-
quences (constant in the cosimplicial direction) is a tame weak equivalence if and
only if it induces a weak equivalence on all H-fixed points; these simplicial sym-
metric sequences model the (equivalent) connective parts of sSeqgenR and sSeqgen,∨R .

The functor sSeq♥R −→ sSeqgenR,≥0 from Example 3.66 then simply sends a symmetric
sequence of discrete R-modules to the corresponding constant simplicial symmetric
sequence. Note that sSeq♥R is not the heart of the t-structure on sSeqgenR .

Lemma 5.16. The projective and tame model structure on sSeqsc
R both satisfy

the pushout-product axiom with respect to the Day convolution product and level-
wise tensor product. The induced symmetric monoidal structures on sSeqgenR and

(when R is coherent) sSeqgen,∨R coincide with the ones from Construction 3.63 and
Proposition 3.77.

Proof. The pushout-product axiom is readily checked using the sets of gen-
erating cofibrations and trivial cofibrations from Remark 5.6. The resulting sym-
metric monoidal structures on sSeqgenR and (when R is coherent) sSeqgen,∨R restrict

to the Day convolution and levelwise tensor product on R[OΣ]. In the projective
case, Remark 5.9 and Remark 5.10 show that they preserve finite totalisations of
cosimplicial diagrams in R[OΣ]. In the tame case, Remark 5.9 implies that they
preserve all totalisations of cosimplicial diagrams in R[OΣ]. The result then follows
from Remark 2.45. �

Proposition 5.17. Let ◦̄ denote the restricted composition product on sSeqsc
R ,

computed levelwise. If X is a tamely cofibrant simplicial-cosimplicial symmetric
sequence, then the following assertions hold:
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(1) The functor (−)◦̄X : sSeqsc
R −→ sSeqsc

R preserves tame cofibrations and trivial
cofibrations and the associated functor between ∞-categories

(−)◦̄LX : sSeqsc
R [W−1

tame] −→ sSeqsc
R [W−1

tame]

preserves all colimits.

(2) The functor X ◦̄(−) : sSeqsc
R −→ sSeqsc

R preserves tamely cofibrant objects, as
well as tame cofibrations and tame weak equivalences between them, and the
associated functor between ∞-categories

X ◦̄L(−) : sSeqsc
R [W−1

tame] −→ sSeqsc
R [W−1

tame]

preserves sifted colimits.

The same assertions apply to the usual composition product.

Following the same sort of strategy as in the proof of Proposition 4.25, we
will decompose the functors ◦̄ and ◦ into several functors. Most importantly, we
will need a slightly more refined understanding of the functor sending a simplicial-
cosimplicial symmetric sequence X to its r-fold Day convolution product X⊗r,
together with its Σr-equivariant structure. To this end, let us write

Modsc
R[Σr×Σ] =

∏
q≥0

Modsc
R[Σr×Σq ]

for the category of simplicial-cosimplicial symmetric sequences with an additional
action of Σr, equipped with the tame model structure for the family F = OΣr×Σq

of all subgroups.

Lemma 5.18. Let r ≥ 0 and consider the functor sSeqsc
R −→ Modsc

R[Σr×Σ]

sending X �−→ X⊗r to its r-fold Day tensor product. This functor preserves tamely
cofibrant objects, as well as tame cofibrations and weak equivalences between tamely
cofibrant objects.

Proof. Suppose that X is a tamely cofibrant object. Then X is given in each
simplicial-cosimplicial bidegree (a, b) by a retract of the free R-linear symmetric
sequence R[S(a, b)] generated by a symmetric sequence of sets S(a, b). It follows
that X⊗r is given in simplicial-cosimplicial bidegree (a, b) by a retract of the R-
linearisation of the Σr-equivariant symmetric sequence S(a, b)⊗r given by the r-fold
Day tensor product of symmetric sequences of sets. By Lemma 5.7, this implies
that X⊗r is cofibrant in the tame model structure on Modsc

R[Σr×Σ].

To study the behaviour of the functor X �−→ X⊗r, we will use a filtration
argument. If X −→ Y is a map in sSeqsc

R that is a split monomorphism in each
simplicial-cosimplicial bidegree, then there is a natural filtration

X⊗r = F0 F1 . . . Fr = Y ⊗r

in Modsc
R[Σr×Σ] obtained by declaring X to be in filtration weight 0 and Y to

be in weight 1. This filtration has the property that each Fm−1 −→ Fm is a
split monomorphism in each simplicial-cosimplicial bidegree and that the associated
graded is

⊕r
m=0

(
Fm/Fm−1

) ∼= (X ⊕ Y/X)⊗r. Here Fm/Fm−1 corresponds to the
summands in (X ⊕ Y/X)⊗r containing exactly m tensor factors of Y/X.

Recall from Lemma 5.7 that X −→ Y is a tame cofibration if and only if it is a
split monomorphism in each simplicial-cosimplicial bidegree, with tamely cofibrant
cokernel. If X is tamely cofibrant, it follows that (X⊕Y/X)⊗r is tamely cofibrant,
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so that each summand Fm/Fm−1 is cofibrant. Consequently, each Fm−1 −→ Fm is
a tame cofibration in Modsc

R[Σr×Σ] and X �−→ X⊗r indeed preserves cofibrations
between cofibrant objects.

Finally, we will show that X �−→ X⊗r preserves trivial cofibrations, and hence
weak equivalences, between cofibrant objects. Since it preserves transfinite compo-
sitions, the small object argument implies that it will suffice to verify the following.
For any pushout square in sSeqsc

R

A B

X Y

where A −→ B is a generating trivial cofibration as in Remark 5.6 and X is cofi-
brant, the map X⊗r −→ Y ⊗r is a trivial cofibration in Modsc

R[Σr×Σ]. Using that

Y/X ∼= B/A, we obtain a filtration on Y ⊗r whose associated graded is (X⊕B/A)⊗r.
Remark 5.6 shows that B/A either admits a simplicial homotopy equivalence to 0
(for the generating cofibrations arising from j1) or a cosimplicial homotopy equiv-
alence to 0 (for j2). Since the functor (X ⊕ −)⊗r is “prolongation” in both the
simplicial and the cosimplicial direction of its restriction to discrete symmetric se-
quences, a result of Dold [Dol58, Theorem 5.6] implies that X −→ (X ⊕ B/A)⊗r

is a simplicial or cosimplicial homotopy equivalence. Consequently, the associated
graded of the filtration on Y ⊗r is acyclic and X⊗r −→ Y ⊗r is indeed a trivial
cofibration. �

Proof of Proposition 5.17. We decompose the composition products ◦̄ and
◦ into several functors, along the lines of Proposition 4.25. First, let r ≥ 0 and
consider the functor

Modsc
R[Σr] ×Modsc

R[Σr×Σ] Modsc
R[Σ×Σr]; (V,W ) V ⊗W

sending a simplicial-cosimplicial Σr-representation and a Σr-equivariant simplicial-
cosimplicial symmetric sequence to their tensor product, with diagonal Σr-action.
This is readily checked to be a left Quillen bifunctor for the tame model structures
(where all subgroups are admissible).

Next, consider the functor (−)Σr : Modsc
R[Σ×Σr] −→ sSeqsc

R taking Σr-fixed
points. This preserves transfinite compositions and pushouts along monomorphisms
that are split in each simplicial-cosimplicial degree. Using this and the description of
the generating (trivial) cofibrations from Remark 5.6, one sees that (−)Σr preserves
cofibrations and trivial cofibrations. This follows from a similar, but much easier,
argument as in the proof of Lemma 5.18. The same argument applies to the functor
(−)Σr

: Modsc
R[Σ×Σr] −→ sSeqsc

R .

For (1), notice that X⊗r defines a tamely cofibrant in Modsc
R[Σr×Σ] by Lemma

5.18. The above two observations then show that the functors sending a simplicial-
cosimplicial symmetric sequence Y to Y ◦̄X =

⊕
r(Y (r) ⊗ X⊗r)Σr and Y ◦ X =⊕

r(Y (r)⊗X⊗r)Σr
both preserve cofibrations and trivial cofibrations. Since these

functors preserve pushouts along cofibrations and direct sums, the induced functors
of ∞-categories preserve all colimits.

For (2), let X be a tamely cofibrant object. Lemma 5.18 and the above two
observations then show that for each r ≥ 0, the functors sending Y ∈ sSeqsc

R to
(X(r)⊗ Y ⊗r)Σr and (X(r)⊗ Y ⊗r)Σr

preserve tamely cofibrant objects, as well as
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tame cofibrations and weak equivalences between tamely cofibrant objects. Taking
the sum over all r then shows thatX ◦̄(−) and X◦(−) also preserve tamely cofibrant
objects, as well as cofibrations and weak equivalences between them.

It remains to verify that the induced functors of ∞-categories preserve sifted
colimits. First, note that X ◦̄L(−) and X ◦L (−) : sSeqsc

R [W−1
tame] −→ sSeqsc

R [W−1
tame]

preserve geometric realisations of simplicial objects, since these can simply be com-
puted by the simplicial diagonal (Remark 5.9). It remains to verify that X ◦̄L(−)
and X ◦L (−) : sSeqsc

R [W−1
tame] −→ sSeqsc

R [W−1
tame] preserve colimits of diagrams in-

dexed by filtered posets [HTT, Proposition 5.3.1.16, Corollary 5.5.8.17].
Let us first verify this for ω1-filtered posets. For this case, note that the weak

equivalences in sSeqsc
R are closed under ω1-filtered colimits. Indeed, the functor

Tot⊕ : sSeqsc
R −→ ChR[Σ] taking total complexes preserves filtered colimits and

detects tame weak equivalences, and the weak equivalences in ChR[Σ] are closed
under ω1-filtered colimits by Remark 4.8. This implies that ω1-filtered colimits in
sSeqsc

R are already homotopy colimits, and the result follows from the fact that
X ◦̄(−), X ◦ (−) : sSeqsc

R −→ sSeqsc
R preserve filtered colimits.

Finally, we need to check that X ◦̄L(−) and X ◦L (−) : sSeqsc
R [W−1

tame] −→
sSeqsc

R [W−1
tame] preserve colimits indexed by filtered posets with countably many

objects. Every such countable poset admits a cofinal functor from N, so we have
to show that X ◦̄(−), X ◦ (−) : sSeqsc

R −→ sSeqsc
R preserve homotopy colimits of

sequences. This follows immediately from the fact that both functors preserve se-
quences of cofibrant objects and cofibrations between them, as well as sequential
colimits. �

Lemma 5.19. The composition products

◦L, ◦̄L : sSeqsc
R [Wtame]× sSeqsc

R [Wtame] −→ sSeqsc
R [Wtame]

preserve totalisations of cosimplicial diagrams in R[OΣ] ↪→ sSeqsc
R [Wtame].

Proof. By Remark 5.9, the totalisation of a cosimplicial object X• : Δ −→
R[OΣ] can simply be presented by the cosimplicial symmetric sequence X• ∈
sSeqsc

R , which is tamely cofibrant. Since the composition products of simplicial-
cosimplicial symmetric sequences are computed levelwise, the result follows. �

Proposition 5.20. If X and Y are projectively cofibrant simplicial-cosimplicial
symmetric sequences, then X ◦Y and X ◦̄Y are projectively cofibrant. Consequently,
the composition product and the restricted composition product induce monoidal
structures ◦L, ◦̄L : sSeqgenR × sSeqgenR −→ sSeqgenR preserving colimits in the first vari-
able and sifted colimits in the second variable.

Proof. The proof from Proposition 4.30 carries over to this setting. The pro-
jective model structure is a right Bousfield localisation of the tame model structure
and exhibits

sSeqgenR 
 sSeqsc
R [W−1

proj] ⊆ sSeqsc
R [W−1

tame]

as the full subcategory generated under colimits and finite totalisations by the
symmetric sequences R[Σr/H] for all subgroups H < Σr. Verifying that ◦ and
◦̄ preserve projectively cofibrant objects therefore comes down to verifying that
sSeqgenR is stable under the (restricted) composition products from Proposition 5.17.
If this is the case, the restriction will automatically preserve colimits in the first
variable and sifted colimits in the second variable.
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To see that sSeqgenR is stable under ◦L and ◦̄L, note that both functors pre-

serve colimits and (hence) finite totalisations in the first variable. It therefore
suffices to verify that for all H < Σr, the objects R[Σr/H] ◦L Y ∼= (Y ⊗r)H and
R[Σr/H]◦̄LY ∼= (Y ⊗r)H are contained in sSeqgenR whenever Y ∈ sSeqgenR . Since
both functors preserve sifted colimits by Proposition 5.17, we just need to verify
that (Y ⊗r)H and (Y ⊗r)H are contained in sSeqgenR whenever Y = Tot(Y •) is a

the totalisation of a finite cosimplicial diagram Y • : Δ −→ R[OΣ]. Let us write
D• : Δ

op −→ R[OΣ] for the R-linear dual simplicial object, so that Y 
 |D•|∨ in
sSeqsc

R . Using Remark 5.9, one can then identify

(Y ⊗r)H 

∣∣(D⊗r

• )H
∣∣∨ and (Y ⊗r)H 


∣∣(D⊗r
• )H

∣∣∨.
The simplicial symmetric sequences

∣∣(D⊗r
• )H

∣∣ and ∣∣(D⊗r
• )H

∣∣ are both perfect, be-

cause the functors X �−→ (X⊗r)H and X �−→ (X⊗r)H are r-excisive (see the proof
of Corollary 2.49). In other words, both simplicial symmetric sequences are equiva-
lent to the geometric realisation of a finite simplicial object in R[OΣ]. This implies
that their R-linear duals (Y ⊗r)H and (Y ⊗r)H are equivalent to the totalisation of
a finite cosimplicial object in R[OΣ]. Remark 5.10 now implies that (Y ⊗r)H and
(Y ⊗r)H are contained in sSeqgenR . �

Corollary 5.21. Let R be a ring. Then the monoidal structures ◦L and ◦̄L on
sSeqgenR from Proposition 5.20 are naturally equivalent to the composition product
◦ and the restricted composition product ◦̄ from Construction 3.63.

Proof. The (restricted) composition product from Proposition 5.20 preserves
colimits in the first variable and sifted colimits in the second variable. By Remark
5.10 and Remark 5.9, it furthermore preserves finite totalisations of cosimplicial
diagrams in R[OΣ]. Since it restricts to the usual (restricted) composition product
onR[OΣ], Remark 2.45 then implies that it is naturally equivalent to the (restricted)
composition product from Construction 3.63. �

Theorem 5.22. Let R be a coherent ring. The composition product ◦ and
the restricted composition product ◦̄ on the tame model category sSeqsc

R induce
the monoidal structures ◦ and ◦̄ of Proposition 3.77 on the underlying ∞-category
sSeqgen,∨R .

Proof. By (1) and (2) of Proposition 4.25, ◦ and ◦̄ restrict to monoidal prod-
ucts on the full subcategory of tamely cofibrant symmetric sequences, which pre-
serve weak equivalences in each variable. By part (1) and (3) of Proposition 4.25,
the resulting monoidal structures ◦L and ◦̄L on the ∞-category sSeqgen,∨R preserve

sifted colimits. Furthermore, the restrictions of these monoidal structures to R[OΣ]
coincide with the usual composition product and restricted composition product.
Finally, ◦L and ◦̄L preserve totalisations of cosimplicial diagrams in R[OΣ] (Lemma
5.19), so that both are obtained by left-right extension (Remark 2.45) and hence
coincide with the monoidal structures from Proposition 3.77. �

Rectification of derived operads and algebras. Corollary 5.21 and The-
orem 5.22 show that the composition product ◦̄ on sSeqgenR and sSeqgen,∨R can be

presented by the restricted composition product on sSeqsc
R . We will now show

how this can be used to produce point-set models for the ∞-categories of derived
∞-operads and derived PD ∞-operads.
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Proposition 5.23. The following categories carry cofibrantly generated semi-
model structures whose weak equivalences and fibrations are tame weak equivalences
and fibrations on the underlying objects:

(1) the category Opsc
R of sc-operads.

(2) the category Opsc,res
R of sc-restricted operads over R.

(3) the category Algsc
P of algebras over an sc-operad P whose underlying symmet-

ric sequence is tamely cofibrant.

(4) the category Algsc,res
P of algebras over an sc-restricted operad P whose under-

lying symmetric sequence is tamely cofibrant.

One can also endow these categories with a semi-model structure whose weak equiv-
alences and fibrations are the ones from the projective model structure.

Proof. We only treat the case (4) of restricted algebras over an sc-restricted
operad P whose underlying symmetric sequence is tamely cofibrant; the other cases
are similar. By [Fre09, Theorem 12.1.4], it suffices to verify the following condition:
for a cofibrant P-algebra A, a generating trivial cofibration V −→ W in Modsc

R and
a map f : V −→ A in Modsc

R , the map A −→ A �P◦̄V P◦̄W is a trivial cofibration
in Modsc

R . To prove this, we use that the pushout carries an exhaustive increasing
filtration

(5.3) A = F 0 F 1 . . . A �P◦̄V P◦̄W

where each map is a split monomorphism in each simplicial-cosimplicial degree. To
see this, consider the category Fun(Z≥0,Modsc

R ) of increasing sequences in Modsc
R ,

with the Day convolution product and the Reedy model structure. We can consider
A as a P-algebra in Fun(Z≥0,Modsc

R ) given by A in each filtration weight. Likewise,
consider V as a constant sequence and let W ′ denote the sequence given by V in
weight 0 and by W in weight ≥ 1. Then the pushout A�P◦̄V P◦̄W ′ of P-algebras
in Fun(Z≥0,Modsc

R ) will produce the desired filtration.
Indeed, note that A being cofibrant implies that it is given in each simplicial-

cosimplicial degree (i, j) by the retract of a freePj
i -algebra on a projectiveR-module

Xj
i . Because V −→ W is a split monomorphism in each simplicial-cosimplicial de-

gree, we can identify A�P◦̄V P◦̄W ′ ∼= Pj
i ◦̄

(
Xj

i ⊕(W/V )ji
)
, where (W/V )ji has weight

1. This shows that the inclusions in (5.3) are split injections in each simplicial-
cosimplicial degree.

It therefore suffices to show that the associated graded of the filtration (5.3)
consists of acyclic tamely cofibrant sc-R-modules in weight ≥ 0. The associated
graded can be identified with the coproduct A�P◦̄(W/V ). It therefore suffices to
prove that for any cofibrant P-algebra A and any contractible cofibrant sc-module
Z, the map A −→ A � P◦̄Z is an acyclic cofibration of sc-modules. Using the
small object argument and a similar filtration argument to the one given above,
this can be reduced to the assertion that for any cofibrant sc-module X, the map
P◦̄X −→ P◦̄(X ⊕ Z) is an acyclic cofibration of sc-R-modules. This follows from
Proposition 5.17. �

Remark 5.24. The proof shows that the forgetful functors Opsc
R −→ sSeqsc

R ,
Opres

R −→ sSeqsc
R and Algsc

P −→ Modsc
R preserve cofibrations between cofibrant

objects.
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Lemma 5.25. Consider the forgetful functors Opsc
R −→ sSeqsc

R , Opsc,res
R −→

sSeqsc
R and Algsc

P −→ Modsc
R , where P is a simplicial-cosimplicial (restricted)

operad whose underlying symmetric sequence is tamely cofibrant. Each of these
functors is right Quillen for the model structures from Proposition 5.23, and the
induced functor of ∞-categories preserves geometric realisations.

Proof. The forgetful functors are right Quillen functors that preserve weak
equivalences by construction. It remains to prove that the induced functor of ∞-
categories preserves geometric realisations, which we will only do in the case of P-
algebras (the other cases are exactly the same). Recall that Modsc

R is a simplicial
model category and note that the cotensoring over simplicial sets preserves P-
algebras. Using this, there is an adjoint pair

δ∗ : Fun(Δop,Algsc
P) Algsc

P : δ∗

where δ∗ takes the diagonal in the simplicial direction, and δ∗ sends a simplicial-
cosimplicial algebra A to the simplicial diagram AΔ[•]. This adjoint pair is a Quillen
pair when Fun(Δop,Algsc

P) is endowed with the Reedy (semi-)model structure;
furthermore, the right adjoint δ∗ sends every fibrant object A to a simplicial diagram
that is homotopically constant on A. It follows that the left derived functor of δ∗

computes the homotopy colimit of a simplicial diagram in Algsc
P . Since the forgetful

functor Algsc
P −→ Modsc

R commutes with taking the diagonal and preserves Reedy
cofibrant simplicial diagrams by Remark 5.24, the result follows. �

Theorem 5.26 (Rectification of derived ∞-operads and derived PD
∞-operads). Let R be a coherent ring. Then the underlying ∞-category of Opsc

R

with the projective semi-model structure is equivalent to the ∞-category OpgenR of

derived ∞-operads over R. Likewise, the underlying ∞-category of Opsc,res
R with

the tame semi-model structure is equivalent to the ∞-category Opgen,pdR of derived
PD ∞-operads over R. More precisely, there are commuting squares

Opsc
R [W−1

proj] OpgenR Opsc,res
R [W−1

tame] Opgen,pdR

sSeqsc
R [W−1

proj] sSeqgenR sSeqsc
R [W−1

tame] sSeqgen,∨R .

� �

� �

Proof. Following the same argument as in Theorem 4.36, using Theorem 5.22,
Proposition 5.23 and Lemma 5.25. �

Theorem 5.27 (Rectification of algebras: derived setting). Let R be a coherent
ring and P a simplicial-cosimplicial (restricted) operad over R whose underlying
symmetric sequence is tamely cofibrant. Then the underlying ∞-category of the
tame semi-model structure on simplicial-cosimplicial algebras over P is equivalent
to the ∞-category AlgP(QC∨

R) of pro-coherent algebras over the associated derived
(PD) ∞-operad P. In other words, there are commuting squares

Algsc
P [W−1

tame] AlggenP (QC∨
R) Algsc,res

P [W−1
tame] Alggen,pdP (QC∨

R)

Modsc
R [W−1

tame] QC∨
R Modsc

R [W−1
tame] QC∨

R .
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Proof. Exactly as in Theorem 4.38, we combine Theorem 5.22, Proposition
5.23 and Lemma 5.25. �

Remark 5.28 (Rectification of derived∞-operads and algebras over non-coher-
ent rings). Similarly to Remark 4.37, the parts of Theorem 5.26 and Theorem 5.27
pertaining to the projective model structure also apply when R is not a coherent
ring. More precisely, for any commutative ring, there is an equivalence of ∞-
categories Opsc

R [W−1
proj] 
 OpgenR and for every simplicial-cosimplicial (restricted)

operad P over R whose underlying symmetric sequence is projectively cofibrant,
there are commuting squares

Algsc
P [W−1

proj] AlggenP (ModR) Algsc,res
P [W−1

proj] Alggen,pdP (ModR)

Modsc
R [W−1

proj] ModR Modsc
R [W−1

proj] ModR .


 



 


Indeed, Lemma 5.25 shows that the left vertical functors are monadic right adjoints,
and Corollary 5.21 identifies the corresponding monads on ModR with the monads
P ◦ (−) and P◦̄(−) whose categories of algebras are precisely AlggenP (ModR) and

Alggen,pdP (ModR), respectively.

In particular, we deduce:

Corollary 5.29 (Derived rings as simplicial-cosimplicial commutative rings).
For any R-algebra, the ∞-category AlgComR

(ModR) of derived commutative R-

algebras is obtained from the model category Algsc
ComR

of simplicial-cosimplicial
commutative R-algebras by inverting projective weak equivalences.

5.3. Partition Lie algebras

We will now construct an explicit cosimplicial model for the derived PD ∞-
operad (cf. Definition 3.88) which parametrises derived partition Lie algebras, freely
using the techniques developed in [AB21]. This cosimplicial model is the linear
dual of the subdivided simplicial bar construction of the commutative operad. As
the bar construction can already be computed in pointed simplicial sets, we start
by working with symmetric sequences and operads in this setting.

Let Comnu denote the (nonunital) commutative operad, given by S0 with
trivial Σr-action in each arity ≥ 1 and by a point in arity 0. This is an augmented
operad, and we can consider the simplicial bar construction

Bar•(1,Comnu,1) = . . . Comnu ◦Comnu Comnu 1.

This simplicial bar construction has a well-known description in terms of partition
complexes, which we will now recall.

Notation 5.30. Write Pr for the poset of partitions of r = {1, . . . , r}, ordered
by coarsening; the initial and terminal partitions are given by

0̂ = 1 2 3 . . . r 1̂ = 123 . . . r .

Write N•(Pr)
−[0̂<1̂] ⊆ N•(Pr) for the simplicial subset spanned by the chains of

partitions that do not contain [0̂ < 1̂].
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One can then identify Bar•(1,Comnu,1) in arity r with the pointed simplicial
set

(5.4) Bar•(1,Comnu,1)(r) =
N•(Pr)

N•(Pr)−[0̂<1̂]
.

For r = 0, this is the basepoint, and for r = 1 this is S0 by convention. The non-
basepoint n-simplices of Bar•(1,Comnu,1)(r) are then given by chains of partitions

[0̂ = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = 1̂]; the simplicial structure maps simply
insert identities or remove elements from such chains, and give the basepoint if the
resulting chain no longer begins at 0̂ and ends at 1̂.

Remark 5.31 (Levelled trees). A chain of partitions [x0 ≤ · · · ≤ xt] can be
viewed as a levelled forest, where each leaf is labelled by a subset of r. Indeed, each
leaf is labelled by a subset of r corresponding to a class in x0, and each class of
xt determines a tree. In particular, chains [0̂ = x0 ≤ · · · ≤ xt = 1̂] correspond to
levelled trees with leaves labelled by the elements of r.

In these terms, the non-basepoint simplices of Bar•(1,Comnu,1)(r) correspond
to levelled trees, and the simplicial face maps are given by contracting edges between
two levels or removing the root or leaf vertices; this produces the basepoint if the
result is no longer a tree with r leaves.

Notation 5.32 (Barycentric subdivision). We will denote the barycentric sub-

division of a simplicial set X by sd(X). We abbreviate sd(N•(Pr)
−[0̂<1̂]) as

sd(Pr)
−[0̂<1̂]. Finally, we define

Barsd(Comnu)(r) :=
sd(Pr)

sd(Pr)−[0̂<1̂]

as the barycentric subdivision of the simplicial bar construction (5.4). Explicitly,
this is the quotient of the nerve of the poset of nondegenerate chains of partitions
σ = [x0 < · · · < xt] by the full subcomplex spanned by chains with x0 �= 0̂ or

xt �= 1̂.

Even more explicitly, d-simplices in sd(Pr)
/
sd(Pr)

−[0̂<1̂] correspond to pairs(
σ, S

)
=

(
[0̂ = x0 < · · · < xt = 1̂], S0 ⊆ · · · ⊆ Sd

)
,

where σ is a nondegenerate chain of partitions of r and S0 ⊆ · · · ⊆ Sd = {0, . . . , t} is
an increasing set of subsets. We allow t = −1 in this definition, which corresponds
to the basepoint. We will refer to such tuples as nested chains of partitions of r.

Our goal will be to endow the barycentric subdivision Barsd(Comnu) with the
structure of a cooperad in pointed simplicial sets. It will be convenient to describe
such cooperads as symmetric sequences of pointed simplicial sets C together with
the following kind of cocomposition maps: for every partition y of the form

r ∼= r1 � · · · � rb,

there is a total cocomposition map

Δy : C(r) C(b) ∧ C(r1) ∧ · · · ∧ C(rb)

which is equivariant with respect to the stabiliser Σy < Σr of y and satisfies obvious
associativity and unitality constraints.

To define these cocomposition maps Δy, we will need some terminology:
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Definition 5.33. Let y be a partition of r of the form r ∼= r1 � · · · � rb.
A nondegenerate chain of partitions σ = [x0 < · · · < xt] of r is said to be

y-branched if every class ri of the partition y arises as a class in some partition xα

in σ.
Furthermore, σ is said to be y-subbranched if it is contained in a y-branched

chain of partitions. Write Sub(y) ⊆ sd(Pr) for the simplicial subsets spanned by
all (

σ, S
)
=

(
[x0 < · · · < xt], S0 ⊆ · · · ⊆ Sd

)
for which [x0 < · · · < xt] is y-subbranched.

Write Unbr(y)−[0̂<1̂] ⊆ sd(Pr) for the simplicial subsets spanned by all nested

chains
(
σ, S

)
such that either σ is not y-branched or σ does not contain [0̂ < 1̂].

Notation 5.34. If σ is a degenerate chain of partitions, let ((σ)) be the minimal
nondegenerate chain with a map σ −→ ((σ)); it is obtained by deleting repetitions.

Construction 5.35 (Ungrafting map). Let y : r ∼= r1� · · · � rb be a partition.
We will define an order-preserving map

φy : Sub(y) sd(Pb)× sd(Pr1)× · · · × sd(Prb)

which we will refer to as the ungrafting map (along y).
Start with the map Sub(y) → sd(Pr,≥y) × sd(Pr,≤y) induced by the map of

posets

σ �→
(
((σ ∨ y)), ((σ ∧ y))

)
.

Next, note that there are isomorphisms Pr,≥y
∼= Pb and Pr,≤y

∼= Pr1 × · · · × Prb .
On subdivisions, this induces an isomorphism sd(Pr,≥y) ∼= sd(Pb) and a map

sd(Pr,≤y) sd
(
Pr1 × · · · × Prb

)
sd(Pr1)× · · · × sd(Prb)

∼=

where the second map sends a nondegenerate tuple (σ1, . . . , σb) of chains to the
tuple of nondegenerate chains ((σi)).

Combining these two maps, we can assign to each nondegenerate chain σ in
Sub(y) a tuple of chains (σb, σr1

, . . . , σrb
). We obtain φy(σ) from this tuple by

removing the maximal partition 1̂ (if it appears) from σri
for each class ri of y that

does not appear anywhere in σ. Note that this map preserves subchain inclusions.

Remark 5.36 (Description via levelled trees). Let σ be a chain of partitions
of r, corresponding to a levelled forest where each leaf is labelled by a subset of r.
Then σ is y-branched if and only if for every class ri of the partition y, there is a
branch in the forest whose leaves are precisely labelled by subsets with union ri.
These various branches may be of different height.

If σ is y-branched, unravelling the definitions shows that φy(σ) is given as
follows. The resulting chain σb in Pb corresponds to the forest obtained by cutting
off all ri-labelled branches and inserting just enough degeneracies on the top to make
the result a levelled forest. The chains of partitions σri of each ri corresponds to
the ri-labelled branch, with all of its degeneracies removed.

For a subchain τ ⊆ σ of such a y-branched chain σ, φy(τ ) simply takes the

corresponding subchains in Pb and Pri and furthermore removes the endpoint 1̂
from σri

whenever ri does not appear as a class anywhere in τ .
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Lemma 5.37. Let y : r ∼= r1 � · · · � rb be a partition. The inclusion Sub(y) ↪→
sd(Pr) induces an isomorphism

Sub(y)

Sub(y) ∩ Unbr(y)−[0̂<1̂]

∼=−→ sd(Pr)

Unbr(y)−[0̂<1̂]

and the map φy of Construction 5.35 descends to a map

Sub(y)

Sub(y) ∩Unbr(y)−[0̂<1̂]
−→ sd(Pb)

sd(Pb)−[0̂<1̂]
∧ sd(Pr1)

sd(Pr1)
−[0̂<1̂]

∧ · · · ∧ sd(Prb)

sd(Prb)
−[0̂<1̂]

.

Proof. For the first assertion, note that the map is injective by construction.
To see that it is surjective, note that the non-basepoint simplices of

sd(Pr)
/
Unbr(y)−[0̂<1̂] correspond to nested families of nondegenerate chains [σ0 ≤

· · · ≤ σn], where σn is a nondegenerate chain of partitions which is y-branched and

contains 0̂ and 1̂. This implies that all σi are y-subbranched.
For the second assertion, first suppose that σ is a y-branched chain. If σ does

not end in 1̂, then φy(σ) defines a chain in Pb not ending in 1̂. On the other hand,

if σ does not start at 0̂, then φy(σ) defines a chain in at least one Pri that does

not start at 0̂. Both assertions are readily seen by the description of φy in terms of
levelled trees (Remark 5.36). Furthermore, if τ ⊆ σ is a subchain of a y-branched
chain which is not itself y-branched, then φy(τ ) contains at least a chain in one Pri

which does not end at 1̂ (by construction). Hence φy descends to the quotient. �

Construction 5.38 (Cocomposition). Let y : r ∼= r1 � · · · � rb be a partition.
We then define Δy to be the composite map

sd(Pr)

sd(Pr)−[0̂<1̂]

sd(Pr)

Unbr(y)−[0̂<1̂]

Sub(y)

Sub(y)∩Unbr(y)−[0̂<1̂]

sd(Pb)

sd(Pb)
−[0̂<1̂]

∧ sd(Pr1
)

sd(Pr1
)−[0̂<1̂]

∧ · · · ∧ sd(Prb
)

sd(Prb
)−[0̂<1̂]

.

∼=

φy

Explicitly, Δy can be described in simplicial degree d as follows. Following No-

tation 5.32, a d-simplex in sd(Pr)
/
sd(Pr)

−[0̂<1̂] corresponds to a nested chain of
partitions (

σ, S
)
=

(
[0̂ = x0 < · · · < xt = 1̂], S0 ⊆ · · · ⊆ Sd

)
.

Then Δy(σ, S) is the basepoint if σ is not y-branched. If σ is y-branched, then
it can be ungrafted along y, as in Construction 5.35. Write σb and σri

for the
resulting nondegenerate chains of partitions of b and ri. These chains are indexed
by quotients of Sd (because we have divided out degeneracies), which we will denote
by πb : Sd � Sb,d and πri

: Sd � Sri,d
. The subsets Sα ⊆ Sd are then sent to subsets

Sb,α ⊆ Sb,d and Sri,α
⊆ Sri,d

as follows: Sb,α is simply the image πb(Sα) ⊆ Sb,d.
On the other hand, for each ri, Sri,α

⊆ Sri,d
is the subset of all πri

(x) with x ∈ Sα

such that the partition x has ri as a union of some of its classes.
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In terms of trees, σ determines a levelled tree and each Sα marks some of its
levels. We then mark the same levels in each of the branches and the trunk obtained
by ungrafting along y (and removing degeneracies). Furthermore, one marks the
top level of the trunk if in the original tree, there was a level marked by Sα entirely
above the ungrafting line.

Proposition 5.39. The maps Δy endow Barsd(Comnu) with a cooperad struc-
ture.

Proof. We have to check that for any two partitions z ≤ y, cocomposition
along y and z is coassociative. For any (σ, S) the image under the two cocom-
positions (1 ◦ Δz)Δy and (Δy ◦ 1)Δz is the basepoint unless σ corresponds to a
tree that can both be ungrafted along y and z. If σ can both be ungrafted along
y and z, (1 ◦ Δz)Δy(σ) and (Δy ◦ 1)Δz(σ) have the same underlying chains, by
coassociativity of ungrafting. Furthermore, the explicit description of the subsets
of ‘marked levels’ in each of these trees shows that these marked levels are the same
when we first ungraft along y and then along z or vice versa. �

The R-linearisation of a cooperad in pointed simplicial sets is a cooperad in
simplicial R-modules, and taking R-linear duals gives a cosimplicial restricted op-
erad.

Definition 5.40. Let R be a coherent ring. Write LieπR,Δ for the cosimplicial
restricted operad over R given by

LieπR,Δ = Map∗(Bar
sd(Comnu), R).

In particular, we see that the cosimplicial R-module LieπR,Δ(r)
d has a basis

given by nested chains of partitions of r:(
σ, S

)
=

(
[0̂ = x0 < · · · < xt = 1̂], S0 ⊆ · · · ⊆ Sd

)
.

Given ρ ∈ Σr, we will write ρ
−1(σ, S) for the nested chain of partitions of r obtained

by restricting each partition xi along ρ : r → r.

Remark 5.41. Note that Barsd(Comnu)(r) is given in each simplicial degree
by a finite Σr-set. Consequently, the cosimplicial restricted operad LieπR,Δ(r) has
an underlying symmetric sequence that is tamely cofibrant, so that the category of
algebras over LieπR,Δ carries a semi-model structure.

Theorem 5.42 (Simplicial-cosimplicial models for partition Lie algebras). The
cosimplicial restricted operad LieπR,Δ is a model for the derived partition Lie PD
∞-operad LieπR,Δ of Definition 3.88. Consequently, there is an equivalence of ∞-
categories

Algsc,res
Lieπ

R,Δ
[W−1

tame] Alggen,pdLieπR,Δ
(QC∨

R).
�

In particular, when R = k is a field, the localisation of the category of simplicial-
cosimplicial restricted algebras over Lieπk,Δ at the weak equivalences is equivalent to
the ∞-category of partition Lie algebras from [BM19, Definition 5.47].

Proof. The fact that LieπR,Δ is a cosimplicial model for LieπR,Δ will follow from
our point-set description of Koszul dual PD ∞-operads below (Theorem 5.52). The
assertion about algebras then follows from Theorem 5.27 and the final conclusion
follows from Corollary 3.89. �
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Adapting [Iko20] to our setting, we can make the simplicial-cosimplicial
LieπR,Δ-algebras appearing in Theorem 5.42 more explicit:

Construction 5.43. Let R be a field. A simplicial-cosimplicial restricted
LieπR,Δ-algebra is a simplicial object in cosimplicial restricted LieπR,Δ-algebras. To
equip a cosimplicial R-module

g0 g1 g2 . . .

with the structure of a cosimplicial restricted LieπR,Δ-algebra, we must first define
a LieπR,Δ-algebra structure on g.

This means that for any nested chain

(σ, S) =
(
[0̂ = x0 < · · · < xt = 1̂], S0 ⊆ · · · ⊆ Sd

)
∈ LieπR,Δ(r)

d

and any tuple a = (a1, . . . , ar) in gd, we must specify an element

{a1, . . . , ar}(σ,S) ∈ g
d,

depending linearly on each entry of a, satisfying the following properties:

(1) The canonical generator (σ, S) ∈ LieπR,Δ(1)
d ∼= R, given by σ = [0̂ = x0 = 1̂]

and subsets S0 = · · · = Sd = {0}, acts as {a}(σ,S) = a for any a ∈ gd;

(2) Given a permutation ρ ∈ Σr and a tuple a = (a1, . . . , ar) as above, we have

{aρ(1), . . . , aρ(r)}(σ,S) = {a1, . . . , ar}ρ−1(σ,S)

(3) Given a partition y : r ∼= r1 � . . . � rb, nested chains (τ, T ) of b, (σi, Si) of
ri, and tuples ai = (ai1, . . . a

i
ri) for all i = 1, . . . b corresponding to a tuple

a = (a1, . . . , ar) under y, we have{
{a1}(σ1,S1), . . . , {ab}(σb,Sb)

}
(τ,T )

=
∑

Δy(σ,S)=((τ,T ),(σ1,S1),...,(σb,Sb))

{a}(σ,S)

(4) Let ψ∗ : g
d −→ gd

′
be the cosimplicial structure map induced by ψ : [d] → [d′]

in Δ. Then

ψ∗{a1, . . . , ar}(σ,S) =
∑

ψ∗(τ,T )=(σ,S)

{ψ∗a1, . . . , ψ∗ar}(τ,T ) .

Here the sum runs over all nested chains (τ, T ) = (τ, T0 ⊆ · · · ⊆ Td′) in

LieπR,Δ(r)
d′

such that (σ, S) =
(
τ
∣∣
Tψ(d)

, Tψ(0) ⊆ · · · ⊆ Tψ(d)

)
.

Moreover, for any tuple a = (a1, . . . , ar) in gd with stabiliser group Σa ≤ Σr

and any nested chain (σ, S) ∈ LieπR,Δ(r)
d, we must specify an element

γ(σ,S)(a1, . . . , ar) ∈ gd

These ‘divided operations’ must satisfy the following properties:

(5) Let Σa,σ = Σa∩Stab(σ) < Σr be the group of symmetries of a fixing σ. Then

{a1, . . . , ar}(σ,S) =
∣∣Σa,σ

∣∣ · γ(σ,S)(a1, . . . , ar).

(6) For any permutation ρ ∈ Σr, we have

γ(σ,S)(aρ(1), . . . , aρ(r)) = γρ−1(σ,S)(a1, . . . , ar).
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(7) Suppose that a contains (at least) i copies of an element a, indexed by a subset
i ⊆ r and let a(λ,i) be the tuple obtained from a by scaling each of these i
copies by λ ∈ R. Writing Σa,a(λ,i),σ < Σr for the subgroup of permutations
fixing a, a(λ,i) and σ, we have

|Σa(λ,i),σ|
|Σa,a(λ,i),σ|

γ(σ,S)(a(λ,i)) = λi · |Σa,σ|
|Σa,a(λ,i),σ|

γ(σ,S)(a).

(8) Suppose that a contains (at least) i copies of an element a = b+ c, indexed by
a subset i ⊆ r. For each decomposition i = j+k, form a new tuple a(j,k) from
a by replacing the first j copies of a by b and the last k copies of a by c. Write
Σa,i,σ < Σr for the subgroup of permutations fixing a, σ and the subset i, and
Σa,j,k,σ < Σr for the permutations fixing a, σ and the two disjoint subsets of
i containing its first j and last k elements. We then have

|Σa,σ|
|Σa,i,σ|

γ(σ,S)(a) =
∑

i=j+k

∑
ρ∈Σa,σ\Σa/Σa(j,k)

|Σa(j,k),ρ−1(σ)|
|Σa,j,k,ρ−1(σ)|

γρ−1(σ,S)(a(j,k)).

(9) Fix a partition y : r ∼= r1 � . . . � rb, as well as nested chains (σi, Si) ∈
LieπR,Δ(ri)

d and (τ, T ) ∈ LieπR,Δ(b)
d. Given a tuple a = (a1, . . . , ar), let

ai = (ai1, . . . a
i
ri) denote the tuples corresponding to the classes i = 1, . . . , b of

the partition y. Let us consider the following subgroups of permutations of b

Σ(ai),(σi,Si),τ < Σ(γ(ai)),τ < Σb

Here the left subgroup contains permutations that fix τ , the family of tuples
(ai)i∈b and the family of nested partitions (σi, Si). The second subgroups

contains the permutations that fix τ and the tuple
(
γ(σi,Si)(a

i)
)
.

We then have

|Σ(γ(ai)),τ |
|Σ(ai),(σi,Si),τ |

· γ(τ,T )

(
γ(σ1,S1)(a1), . . . , γ(σb,Sb)(ab)

)

=
∑

Δy(σ,S)=((τ,T ),(σ1,S1),...,(σb,Sb))

|Σa,σ|
|Σ(ai),(σi,Si),τ �

∏
i∈b Σai,σi

| ·γ(σ,S)(a).

(10) Let ψ∗ : g
d −→ gd

′
be the cosimplicial structure map induced by ψ : [d] → [d′]

in Δ. Then

|Σψ∗(a),σ|
|Σa,σ|

ψ∗γ(σ,S)(a1, . . . , ar) =
∑

ψ∗(τ,T )=(σ,S)

|Σψ∗(a),σ|
|Σψ∗(a),τ |

γ(τ,T )(ψ∗a1, . . . , ψ∗ar).

Here the sum runs over all nested chains (τ, T ) = (τ, T0 ⊆ · · · ⊆ Td′) in

LieπR,Δ(r)
d′

such that (σ, S) =
(
τ |Tψ(d)

, Tψ(0) ⊆ · · · ⊆ Tψ(d)

)
. Note that for

each such nested pair (τ, T ), there are subgroup inclusions Σa,σ < Σψ∗(a),σ

and Σψ∗(a),τ < Σψ∗(a),σ induced by the inclusions Σa < Σψ∗(a) and Stab(τ ) <
Stab(σ).

Remark 5.44. The description of a cosimplicial restricted LieπR,Δ-algebra in
Construction 3.63 is an application of the explicit description of restricted algebras
over operads given in [Iko20, Definition 4.1.1, 4.1.4]. To translate between the two
descriptions, observe that any tuple of elements (a1, . . . , ar) is uniquely determined
by a partition y : r ∼= r1 � · · · � rb on r, together with a b-tuple of mutually distinct
elements (ar1 , . . . , arb) of A.
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The element denoted γ(σ,S)(a1, . . . , ar) above then corresponds to
γ[σ,S]y,y(ar1 , . . . , arb) in the notation of Ikonicoff. By [Iko20, Definition 4.1.1(3)],
these γ[σ,S]y,y(ar1 , . . . , arb) with all ari mutually distinct determine all other oper-
ations appearing in loc. cit.

5.4. Explicit Koszul duality

We will now give a simplicial-cosimplicial model for the Koszul dual of more gen-
eral augmented derived ∞-operads, similarly to the simplicial-cosimplicial model
for the partition Lie PD ∞-operad in Definition 5.40.

Definition 5.45. An augmented (simplicial-cosimplicial) operad P over R is
called reduced if P(0) = 0 and P(1) = R · 1.

We start by fixing a reduced operad P in discrete R-modules and consider the
simplicial bar construction

Bar(1,P,1) = . . . P ◦P P 1.

This is a simplicial symmetric sequence ofR-modules which can be written explicitly
as a direct sum

Bar(1,P,1)(r)d =
⊕

σ∈Bar(1,Comnu,1)(r)d

P(σ).

Here the direct sum is indexed by the non-basepoint d-simplices of the partition
complex, i.e. by chains of partitions σ = [0̂ = x0 ≤ · · · ≤ xd = 1̂]. Each such
chain of partitions determines a levelled tree and we denote by P(σ) the R-module
of labellings of this tree by elements of P; in other words, it is a certain tensor
product of P(rα) indexed by the vertices of the tree. The simplicial structure is
obtained by removing levels and composing operations in P, and produces zero if
the result is no longer a tree with r leaves.

As in the previous section, the barycentric subdivision of the simplicial bar
construction can be endowed with the structure of a cooperad.

Notation 5.46 (R-linear barycentric subdivision). Recall that there is an ad-
joint pair sd : sSet � sSet : Ex given by the barycentric subdivision and Kan’s Ex-
functor. The functor Ex preserves simplicial symmetric sequences of R-modules,
and we will write sd : ssSeqR −→ ssSeqR for its left adjoint; in other words, this is
the R-linear extension of the usual barycentric subdivision. The natural transfor-
mation id −→ Ex is adjoint to an augmentation sd −→ id.

For any reduced operad in discrete R-modules, we will then write Barsd(P) for
the R-linear barycentric subdivision of Bar(1,P,1). Explicitly, this is given by

Barsd(P)(r)d =
⊕

(σ,S)∈Barsd(Comnu)(r)d

P(σ)

where the sum runs over all simplices in the (set-valued) barycentric subdivision
from Notation 5.32. Such simplices correspond to nested nondegenerate chains
of partitions σ = [0̂ = x0 < · · · < xt = 1̂] with S0 ⊆ · · · ⊆ Sd = {0, . . . , t}.
Here we allow t = −1, corresponding to the basepoint in Barsd(Comnu)(r); the
corresponding summand P(σ) is zero in this case by definition.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

104 5. SIMPLICIAL-COSIMPLICIAL MODELS FOR DERIVED PD OPERADS

Remark 5.47. For any simplicial set K and any cosimplicial symmetric se-
quence P , one has that sd(K+ ∧ P ) ∼= sd(K)+ ∧ P . Because the tame model
structure on simplicial-cosimplicial symmetric sequences is simplicial, one sees that
for each cofibrant cosimplicial symmetric sequence P , the augmentation

sd(K+ ∧ P ) ∼= sd(K)+ ∧ P −→ K+ ∧ P

is a tame weak equivalence. Furthermore, the description of the generating (trivial)
cofibrations for the tame (or projective) model structure on sSeqsc

R (see Remark 5.6)
shows that sd: sSeqsc

R −→ sSeqsc
R is a left Quillen functor. Combining these two

observations, one sees that the augmentation sd(X) −→ X is a weak equivalence
for every tamely cofibrant sc-symmetric sequence. By adjunction, this means that
Y −→ Ex(Y ) is a weak equivalence for every fibrant sc-symmetric sequence.

Construction 5.48 (Cocomposition on the subdivided bar construction). Let
P be a reduced operad in discrete R-modules and let y be a partition of the form
r ∼= r1 � · · · � rb. We define a map

(5.5) Δy : Barsd(P)(r) Barsd(P)(b)⊗ Barsd(P)(r1)⊗ · · · ⊗ Barsd(P)(rb)

as follows. Note that the domain is a direct sum indexed by Barsd(Comnu)(r) while
the target is a direct sum indexed by Barsd(Comnu)(b)∧Barsd(Comnu)(r1)∧ · · ·∧
Barsd(Comnu)(rb). Then Δy sends the summand indexed by (σ, S) to the summand
indexed by Δy(σ, S), for the comultiplication of Construction 5.38. In particular,
Δy sends the summand by (σ, S) to zero if σ is not y-branched.

If σ is y-branched, it corresponds to a tree that can be ungrafted along y and
Δy(σ, S) is the tuple consisting of the branches and trunk of this ungrafted tree.
Note that the branches and trunk of the tree associated to σ together contain
exactly the same vertices labelled by non-identity operations in P as the tree σ
itself. Consequently, the (σ, S)-summand in Barsd(P)(r) is naturally isomorphic
to the Δy(σ, S)-summand in Barsd(P)(b)⊗Barsd(P)(r1)⊗ · · · ⊗Barsd(P)(rb). We
then define Δy to be this natural isomorphism.

In other words, the map (5.5) sends a levelled tree σ with vertices labelled by
P (and a nested family S0 ⊆ · · · ⊆ Sd of marked levels) to zero if it cannot be
ungrafted along y, and to the ungrafting if it can.

As in Proposition 5.39, the associativity of ungrafting then shows:

Corollary 5.49. Let P be a reduced operad in discrete R-modules. The
operations Δy endow Barsd(P) with the structure of a simplicial cooperad in R-
modules.

Remark 5.50. When P = Comnu
R is the nonunital R-linear commutative op-

erad, Barsd(Comnu
R ) ∼= R ∧ Barsd(Comnu) is simply the R-linear extension of the

cooperad in pointed simplicial sets from Proposition 5.39.

Definition 5.51 (Subdivided bar construction of reduced simplicial-cosimpli-
cial operads). Suppose that P is a reduced simplicial-cosimplicial R-linear operad.
We will write Barsd(P) for the simplicial-cosimplicial cooperad given by

Barsd(P)nd = Barsd(Pn
d )d

with cocomposition given in each simplicial-cosimplicial degree as in Construction
5.48. The simplicial-cosimplicial dual restricted operad is the R-linear dual

DΔ(P) = Barsd(P)∨.
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Theorem 5.52. Let P be a reduced sc-operad with projectively cofibrant under-
lying symmetric sequence (Definition 5.13). Let P denote the associated augmented
derived ∞-operad. Then the sc-restricted operad DΔ(P) is a model for the derived

PD ∞-operad KDpd(P).

The proof requires a preliminary construction:

Construction 5.53 (Simplicial-cosimplicial Koszul complex). Suppose that
P is a reduced operad in discrete R-modules. We will define the subdivided Koszul
complex of P to be the symmetric sequence

Ksd(P) = sd
(
Bar(1,P,P)

)
.

Explicitly, Ksd(P)(r)d ∼=
⊕

(σ,S) P(σ) where the sum runs over chains of partitions

σ = [x−1 = 0̂ ≤ x0 < · · · < xt = 1̂] with a nested family of subsets S0 ⊆ · · · ⊆ Sd =
{−1, . . . , t} which all contain −1. The simplicial structure maps act on the nested
family of subsets S0 ⊆ · · · ⊆ Sd in the evident way.

In terms of levelled trees, a d-simplex of Ksd(P)(r) consists of a levelled tree
with vertices marked by P, together with a nested family of marked levels, which all
contain the top level (i.e. the leaves). These levelled trees are almost nondegenerate:
one only allows the leaf vertices to all be equal to the identity.

The bar construction Bar(1,P,P) carries a natural right P-action. This in-
duces a right P-module structure on Ksd(P). In terms of levelled trees, this action
simply precomposes the leaf vertices labelled by P with operations from P.

On the other hand, Ksd(P) is a left comodule over Barsd(P). Indeed, for every
partition y of the form r ∼= r1 � · · · � rb, there is a comultiplication map

Δy : Ksd(P)(r) Barsd(P)(b)⊗Ksd(P)(r1)⊗ · · · ⊗Ksd(P)(rb)

defined in exactly the same way as in Construction 5.48: a levelled tree with vertices
marked byP is sent to its ungrafting along y if this is possible, and to zero otherwise.
Furthermore, the subsets S0 ⊆ · · · ⊆ Sd give rise to subsets of levels for each of the
branches and the trunk of the resulting ungrafted tree. Note that the left comodule
structure and right P-module structure commute.

More generally, if P is an sc-operad, we define Ksd(P) by the diagonal

Ksd(P)nd = Ksd(Pn
d )d.

This carries a commuting left comodule structure of Barsd(P) and a right P-module
structure.

Proof of Theorem 5.52. Consider the natural map of right P-modules
π : Ksd(P) −→ 1 sending all summands indexed by (σ, S) with σ = [0̂ = x−1 ≤
x0 < · · · < xt = 1̂] to zero, except the summand in arity 1 and simplicial-

cosimplicial degree zero corresponding to 0̂ = x−1 ≤ x0 = 1̂; this summand is
given by P(1) ∼= R · 1. We claim this π is a weak equivalence and that the map
(5.6)

Ksd(P) ◦hP 1 Barsd(P) ◦Ksd(P) ◦hP 1 Barsd(P) ◦ 1 = Barsd(P)

is a weak equivalence as well. By Proposition 3.34, this implies that Barsd(P) is a
model for the ∞-categorical bar construction of P. If P is projectively cofibrant as
an sc-symmetric sequence, then Barsd(P) is easily seen to be tamely cofibrant as
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an sc-symmetric sequence. It then follows from Lemma 5.16 that the R-linear dual
DΔ(P) is a model for the Koszul dual derived PD ∞-operad KDpd(P).

It remains to verify the claim, for which it suffices to treat the case where
P is a projectively cofibrant cosimplicial operad; the case of a general sc-operad
follows by taking geometric realisations (Remark 5.9). For a reduced cosimplicial
operad P, let RModP(sSeq

sc
R ) be the category of right P-modules in sc-symmetric

sequences. Because P is cofibrant as a symmetric sequence, this carries a simplicial
model structure whose fibrations and weak equivalences are fibrations and weak
equivalences on the underlying symmetric sequences, as in Definition 5.13. Now
note that the map π factors into natural maps of sc-symmetric sequences (equipped
with a right P-action)

π : Ksd(P) Bar(1,P,P) 1.

The map Bar(1,P,P) −→ 1 is the usual augmentation of the bar construction,
which gives a cofibrant replacement in the simplicial model category
RModP(sSeq

sc
R ); in particular, it is a weak equivalence.

The first map is the canonical augmentation of the linearised barycentric subdi-
vision (Notation 5.46). Recall that this map is adjoint to a natural transformation
θ : id −→ Ex of functors RModP(sSeq

sc
R ) −→ RModP(sSeq

sc
R ). The map θ is a nat-

ural transformation between right Quillen functors which is an weak equivalence
on fibrant objects, since it is at the level of the underlying symmetric sequences
(Remark 5.47). This implies that sd −→ id is a natural transformation of left
Quillen functors RModP(sSeq

sc
R ) −→ RModP(sSeq

sc
R ), which is a weak equiva-

lence on cofibrant objects. In particular, the map Ksd(P) −→ Bar(1,P,P) is a
weak equivalence between cofibrant left P-modules.

This shows that Ksd(P) −→ 1 is a cofibrant resolution of 1 as a right P-module.
The map (5.6) can then be identified with the map

Ksd(P) ◦P 1 Barsd(P) ◦Ksd(P) ◦P 1 Barsd(P) ◦ 1 = Barsd(P).Δ

Since Ksd(P)◦P1 ∼= Barsd(P), this map is readily verified to be an isomorphism. �

Corollary 5.54. Let R be a coherent ring and let A be a nonunital simplicial
commutative R-algebra which is cofibrant as a simplicial R-module. Then the

Koszul dual partition Lie algebra KD(A) ∈ Alggen,pdLieπR,Δ
(QC∨

R) can be modelled by

the cosimplicial restricted LieπR,Δ-algebra

(5.7)
(
Ksd(Comnu

R ) ◦Comnu
R

A
)∨

whose restricted LieπR,Δ-algebra structure arises by R-linear duality from the

Barsd(Comnu
R )-coalgebra structure on Ksd(Comnu

R ) ◦Comnu
R

A .

Proof. The proof of Theorem 5.52 shows that Ksd(Comnu
R ), equipped with

its commuting left Barsd(Comnu
R )-comodule structure and its right Comnu

R -module
structure, is a model for the Koszul complex of the derived ∞-operad Comnu (Con-
struction 3.33). Since Ksd(Comnu

R ) is cofibrant as a right Comnu
R -module and

A is cofibrant as an R-module, it then follows that the Barsd(Comnu
R )-coalgebra

Ksd(Comnu
R ) ◦Comnu

R
A is a model for the bar construction of A, whose underlying

simplicial R-module is cofibrant. The R-linear dual is then a cosimplicial restricted
LieπR,Δ-algebra that models KD(A). �
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Remark 5.55. Let R be a coherent ring and let A be a discrete nonunital
commutative R-algebra that is projective as an R-module. Then the Koszul cosim-
plicial restricted LieπR,Δ-algebra g from (5.7) can be identified explicitly as follows.

The R-module gd consists of families of R-linear maps

α = (α(τ,T )), α(τ,T ) : A
⊗j −→ R

where (τ, T ) runs over the set of nested chains of partitions τ = [0̂ = x0 < · · · <
xt = 1̂], T0 ⊆ · · · ⊆ Td = {1, . . . , t} of the finite set j, for all j ≥ 1. Furthermore,
this family of maps has to be invariant in the following sense: if (τ, T ) and (τ ′, T ′)
are two nested chains of partitions of j related by the action of some γ ∈ Σj , then
α(τ,T )(a1, . . . , aj) = α(τ ′,T ′)(aγ(1), . . . , aγ(j)).

To describe the cosimplicial structure maps, let us fix a map f : [d] → [d′].
Suppose that τ ′ = [0̂ = x0 < · · · < xt = 1̂] and T0 ⊆ · · · ⊆ Td′ = {0, . . . , t} form
a nested chain of partitions of j, and consider the partition xmin(Tf(d)) of j. This

partition induces a quotient map q : j � b and for each i ∈ [d], the restricted chain

σ
∣∣Tf(i) induces a chain of partitions of on b. Let us write f∗(τ, T ) for the resulting

nested chain of partitions of b. For any element α ∈ gd, its image f∗α ∈ gd
′
is then

given by the family of maps

(f∗α)(τ,T ) = αf∗(τ,T )

( ∏
j∈q−1(1)

aj ,
∏

j∈q−1(2)

aj , . . . ,
∏

j∈q−1(b)

aj
)
.

Finally, the restricted LieπR,Δ-algebra structure on g can be described as follows.

For (σ, S) ∈ LieπR,Δ(r)
d and α1, . . . , αr ∈ gd, the element γ(σ,S)(α1, . . . , αr) is a

tuple of maps (
γ(σ,S)(α1, . . . , αr)

)
(τ,T )

: A⊗j −→ R.

If (τ, T ) can be cocomposed into (σ, S) and branches (τ1, T1), . . . , (τr, Tr), then the
above map is a suitable symmetrisation of the product (α1)(τ1,T1) . . . (αr)(τr,Tr). If
there is no such cocomposition, the map is zero.
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APPENDIX A

The PD surjections operad

The commutative operad ComR admits various well-known explicit resolu-
tions by Σ-cofibrant dg-operads, like the Barratt–Eccles operad and the surjec-
tions operad [MS03,BF04]. In contrast, the dual problem of finding an explicit
(combinatorial) Σ-cofibrant resolution of the nonunital cocommutative dg-cooperad
coComnu

R has not yet been addressed in the literature.
The significance of such a Σ-cofibrant resolution comes from the Koszul dual

problem of trying to find a cofibrant chain model for the Lie operad (this problem
seems to be folklore, and is raised for instance in [DV15]). Indeed, a Σ-cofibrant
model for the (non-counital) cocommutative cooperad gives rise to a cofibrant model
for the Lie operad by the cobar construction. A partial result in this direction ap-
pears in [Deh17, Proposition 2.3], where the author constructs a certain Σ-cofibrant
cooperad Lie�3 and a map Lie�,s3 → coComnu

R from its operadic suspension which
is a resolution in low degrees.

The goal of this chapter is to present a solution to this problem by giving a
construction of SurR, the surjection dg-cooperad over a ring R, inspired by the
surjections cooperad of McClure–Smith.

Theorem A.1. Let R be a commutative ring. There exists an explicit Σ-
cofibrant dg-cooperad SurR in non-negative degrees, together with a
quasi-isomorphism of dg-cooperads SurR → coComnu

R to the cooperad of nonuni-
tal cocommutative coalgebras over R. We will refer to SurR as the surjections
cooperad.

We note that SurR(0) = 0 and there is no natural way of extending the coop-
erad structure in order to resolve coComR. The rest of this section will be devoted
to proving Theorem A.1. We will first describe the underlying symmetric sequence
of SurR (from which Σ-cofibrancy will be evident), then define a comultiplication
on it, and finally prove that the structure described indeed forms a cooperad. The
existence of the quasi-isomorphism SurR → coComnu

R is then evident.

A.0.1. The underlying complex. The symmetric sequence underlying
SurR agrees with the symmetric sequence underlying the (nonunital) surjections
operad of McClure–Smith [MS03]. We briefly recall its definition following the
notation and conventions from Berger–Fresse [BF04] (who denote it by X ).

Definition A.2. Let r be a set with r ≥ 1 elements and let
〈
r+d

〉
be a linear

order with r + d elements; up to unique isomorphism, we identify
〈
r + d

〉
with

{1, . . . , r+d}. A map (of sets) u :
〈
r+d

〉
−→ r can be identified with an (ordered)

sequence of elements in r

u =
(
u1, . . . , ur+d

)
.

109
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Such a sequence is said to be degenerate if u :
〈
r + d

〉
−→ r is not surjective or if

it sends two consecutive elements in
〈
r + d

〉
to the same element in r.

Let SurR(r)d be the quotient of the free R-module on such sequences u, by
the submodule generated by the degenerate sequences. In other words, SurR(r) is
freely generated by non-degenerate sequences. The symmetric group Aut(r) acts in
an obvious way on SurR(r)d.

Remark A.3. Non-degenerate sequences are often called non-degenerate sur-
jections in [BF04]; we use the term sequences to highlight the ordering, which
becomes important later.

Definition A.4 (Caesuras). Following [BF04], we call an element uα in a
sequence u =

(
u1, . . . , ur+d

)
in r a caesura if it is not the last occurrence of that

element in the sequence. There are exactly d such caesuras in the sequence. We
write u‖ for the set of caesuras in u, with its natural linear order.

Sign Rule A.5. Let u = (u1, . . . , ur+d) be a nondegenerate sequence in r. We
associate a sign ±(u,α) to each uα in this sequence as follows. First consider all α
for which the uα are caesuras; these are given alternating signs ±, starting with
+. Next consider all α for which uα occurs for the last time in the sequence; these
uα are given the sign opposite to the sign associated to the previous copy of the
element uα ∈ r in the sequence (if there is no previous copy, we associate 0 to it,
although this will not play a role). For example, we have the following element in
SurR(4)4: (+

1
−
3
+
2
0
4
−
1
−
2
+
3
+
1
)
.

Note that the sign associated to uα only depends on (a) whether uα is a caesura or
not and (b) the subsequence

(
u1, . . . , uα

)
of elements preceding it.

The differential ∂ : SurR(r)d −→ SurR(r)d−1 is then given by removing ele-
ments from such a sequence, together with the sign from Sign Rule A.5

∂
(
u1, u2, . . . , ur+d

)
=

r+d∑
α=1

±(u,α)

(
u1, . . . , ûα, . . . , ur+d

)
.

Note that if the element uα appears only once in the sequence, then removing it gives
zero (since the resulting sequence no longer describes a nondegenerate sequence).

Proposition A.6 ([MS03, Theorem 2.15c]). For every r ≥ 1, there is an
Aut(r)-equivariant quasi-isomorphism to the trivial representation

SurR(r) −→ R.

Proof. In degree 0, the map is the R-linear extension of the map sending every
sequence (u1, . . . , ur) to the unit 1. To see that this is a quasi-isomorphism, one
can realise each SurR(r − {1}) as a deformation retract of SurR(r), from which
the result follows by induction. Indeed, define i : SurR(r − {1}) → SurR(r) by
i(u) = (1, u1, . . . , ur+d) and r : SurR(r) → SurR(r−{1}) by r(u) = (u2, . . . , ur+d)
if u1 = 1 is the only occurrence of 1, and r(u) = 0 otherwise. It is clear that
ri = id; the homotopy h : SurR(r)d → SurR(r)d+1 between id and ir is given by
h(u) = (1, u1, . . . , ur+d). �
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A.0.2. The cooperad structure. We will describe the cooperad structure on
the symmetric sequence SurR in terms of partial cocomposition maps. To this end,
let r and s be two nonempty finite sets and let v ∈ r. We denote by r�vs = r\{v}�s
the set obtained by removing v and adding s. The cocomposition of an (r+ s− 1)-
ary operation along v into an r-ary and an s-ary operation is then a map of the
form

Δv : SurR
(
r �v s

)
−→ SurR

(
r
)
⊗ SurR

(
s
)
.

This map acts by replacing the first elements of s appearing in a sequence u by the
element v and removing the remaining ones.

More precisely, given a sequence u =
(
u1, . . . , up

)
in SurR

(
r �v s

)
(which is

of degree p− r − s+ 1), its image under Δv is as follows. Let
(
uα(1), . . . , uα(k)

)
be the subsequence consisting of all elements in s (in particular, k ≥ s). Then we
define Δv

(
u1, . . . , up

)
to be

(A.1)
k∑

i=1

±‖

(
u1, . . . ,

v
���uα(1) , . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(k), . . . , up

)
⊗

(
uα(i), . . . , uα(k)

)
.

This gives a sequence of elements in r, which may be degenerate in case the orig-
inal sequence has consecutive elements in s. Furthermore, one takes the sequence
uα(i), . . . , uα(k) of elements in s; this may either be degenerate or may not exhaust
all of s. When degenerate or non-exhaustive sequences appear, the corresponding
term is zero. This typically means that many terms in the above sum are zero: if
uα(1), . . . , uα(i−1) are not all caesuras, then the second factor is not exhaustive and
the term vanishes. Finally, the sign ±‖ is dictated by the following Koszul sign rule
for caesuras:

Sign Rule A.7 (Koszul sign rule for caesuras). We will write ±‖ for the sign
obtained by the following rule: whenever in a formula a caesura passes along another
one, one multiplies by −1. Explicitly, consider a term in the cocomposition (A.1) of
the form v⊗w for certain sequences v and w. Then there is a bijection u‖ ∼= v‖�w‖
between the linear orders of caesuras in u and those in v and w (where � denotes
the addition of ordinals) and the sign ±‖ is the sign of this bijection.

Note that the sign rule for caesuras refines the usual Koszul sign rule, in the
sense that under the symmetry isomorphism SurR(r) ⊗ SurR(s) ∼= SurR(s) ⊗
SurR(r),

(
u1, . . . , ur+d

)
⊗

(
v1, . . . , vs+e

)
and

(
v1, . . . , vs+e

)
⊗

(
u1, . . . , ur+d

)
agree

up to the sign ±‖ given by the number of times two caesuras are interchanged.

Example A.8. Consider the sequence (1,2,3, 1, 2, 3) ∈ SurR(3)3 (numbers in
bold are the caesuras) and write 3 = {1, v} ◦v {2, 3}. The partial cocomposition
Δv(1, 2, 3, 1, 2, 3) along v is then given by

(1, v, 1)⊗ (2, 3, 2, 3) + (1, v, v, 1)⊗ (3, 2, 3) + (1, v, v, 1, v)⊗ (2, 3)

+ (1, v, v, 1, v, v)⊗ (3)

= (1, v, 1)⊗ (2, 3, 2, 3) + 0⊗ (3, 2, 3) + 0⊗ (2, 3) + 0⊗ 0

= (1, v, 1)⊗ (2, 3, 2, 3).

There are no caesuras going over other caesuras and therefore all signs are +.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

112 A. THE PD SURJECTIONS OPERAD

If we consider instead the sequence (1,2,1,3, 1, 2, 3) ∈ SurR(3)4 and we de-
compose along the same element v, we get

Δv(1, 2, 1, 3, 1, 2, 3) = −(1, v, 1, 1)⊗ (2, 3, 2, 3) + (1, v, 1, v, 1)⊗ (3, 2, 3)

+ (1, v, 1, v, 1, v)⊗ (2, 3) + 0

= −0 + (1, v, 1, v, 1)⊗ (3, 2, 3) + (1, v, 1, v, 1, v)⊗ (2, 3) + 0.

The first sign arises since the first 2, which is a caesura, went over the second 1
which is also a caesura.

Remark A.9. Any caesura uβ in
(
u1, . . . , up

)
will appear as a caesura in exactly

one of the two factors in the expression for Δv(u): if uβ �∈ s, it will appear as a
caesura in the first factor and if it is one of the uα(i), . . . , uα(k), it will appear as a
caesura in the second factor. Finally, all uα(1), . . . , uα(i−1) will appear as caesuras
in the first factor (namely as all but the last copy of v).

Observe that the maps Δv are well-defined: such maps send a degenerate se-
quence to a sum of terms, each of which containing a degenerate sequence and
likewise for non-surjective sequences.

Proposition A.10. For r, s ≥ 1, the formulas

Δv : SurR
(
r �v s

)
−→ SurR

(
r
)
⊗ SurR

(
s
)

defined above endow {SurR(r)} with the structure of a dg-cooperad.

The proof of this proposition is a lengthy verification of all the axioms. Post-
poning this for the moment, we record some simple consequences.

Corollary A.11. The maps from Proposition A.6 induce a quasi-isomorphism
of dg-cooperads SurR −→ coComnu

R = π0(SurR).

Proof. All we need to check is that the map is compatible with the partial
cocompositions in degree 0. One readily checks that any partial composition of a
permutation in SurR(r)0 is a tensor product of two permutations with a + sign
(there are no caesuras). �

Notice that while the degree 0 part of the surjections cooperad is a Σ-free dg-
cooperad with underlying symmetric sequence SurR(r)0 = k[Σr], this cooperad is
not the nonunital coassociative cooperad; this should not be expected, since there
is no map coAssnuR → coComnu

R .

Remark A.12 (Surjections cooperad in degree 0). One can show that degree
0 piece of the surjection cooperad (SurR)0 is isomorphic to the linear dual of the
operad Zinb governing Zinbiel algebras. Recall that such Zinbiel algebras are chain
complexes equipped with a binary operation ≺ satisfying (x ≺ y) ≺ z = x ≺ (y ≺
z + (−1)|y||z|z ≺ y) [LV12, Section 13.5].

Indeed, we can define a map (SurR)0 → CofreeCoop(Rμ ⊕ Rμ(12)) into the
cofree cooperad cogenerated by an arity 2 element μ with free Σ2 action, us-
ing that SurR(2)0 ∼= R[Σ2]. This map restricts to a map (SurR)0 → Zinb∨ ⊆
CofreeCoop(Rμ⊕ Rμ(12)). This map is necessarily injective, since it is injective on
cogenerators. Since dim((SurR)0(n)) = dim(Zinb(n)) = n!, it is an isomorphism.

Proof of Proposition A.10. We start by observing that for nonempty finite
sets r and s and v ∈ r, the map Δv : SurR

(
r �v s

)
−→ SurR

(
r
)
⊗ SurR

(
s
)
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is equivariant with respect to the group Aut(r \ v) × Aut(s) ⊆ Aut(r �v s) of
permutations of r fixing v and of permutations of s. To show that the dg-cooperad
axioms are satisfied we need to check counitality, coassociativity (both parallel and
sequential), and compatibility with the differential.

Counitality. Note that SurR(1) ∼= R is spanned by the trivial one term se-
quence (1); this gives the counit. For v ∈ r and a sequence u in SurR(r �v 1),
the formula for the cocomposition has only one term in which the second factor is
nonzero, for i = k, giving

Δv

(
u1, . . . , up

)
=

(
u1, . . . ,

v

�1, . . . ,
v

�1, . . . , up

)
⊗ (1).

In other words, one just replaces all copies of the element 1 ∈ 1 by v. This shows
that the cocomposition is right counital; the verification of left counitality is similar.

Parallel coassociativity. Let v1, v2 ∈ r be two distinct elements, and s1 and
s2 two sets. We consider the set r �(v1,v2) (s1, s2) obtained by replacing vi ∈ r by
si. Notice that

r �(v1,v2) (s1, s2) = (r �v1 s1) �v2 s2 = (r �v2 s2) �v1 s1.

Consider a sequence u =
(
u1, . . . , up

)
∈ SurR(r�(v1,v2) (s1, s2))d. We have to verify

that

Δv2 ◦Δv1(u) ∈ SurR(r)⊗ SurR(s2)⊗ SurR(s1)

agrees with Δv1 ◦Δv2(u) upon permuting the SurR(s1) and SurR(s2) pieces. We
start by doing this verification up to the Koszul sign induced by the caesuras.

Let uα(1), . . . , uα(k) be the subsequence of elements in s1 and uβ(1), . . . , uβ(l)

for the subsequence of elements in s2. Then Δv2 ◦Δv1(u1, . . . , up) is given by

l∑
j=1

k∑
i=1

±‖
(
u1, . . . ,

v1
���uα(1) ,

v2
���uβ(1) . . . ,

v1
���uα(i) ,

v2
���uβ(j) , . . . , ̂uα(i+1), ̂uβ(j+1), . . . , ûα(k), ûβ(l), . . . , up

)

⊗
(
uβ(j), uβ(j+1), . . . , uβ(l)

)
⊗

(
uα(i), uα(i+1), . . . , uα(k)

)
.

In words, one just replaces all uα(1), . . . , uα(i) by v1 and removes the uα(i+1), . . . ,
uα(k), and similarly one replaces uβ(1), . . . , uβ(j) by v2 and removes the uβ(j+1), . . . ,
uβ(l). In the first factor, the various uα and uβ need not appear in the order they
are depicted: for instance, uβ(1) may precede uα(1). This is clearly symmetric upon
exchanging v1 ↔ v2 and s1 ↔ s2. Using Sign Rule A.7 it is immediate that the
signs ±‖ produced in the computation of Δv2 ◦Δv1 are also produced in Δv1 ◦Δv2 .

Sequential coassociativity. We now consider sets r, s and t and let v ∈ r,
w ∈ s. We will address coassociativity on the total set (r�v s)�w t = r�v

(
s�w t

)
.

Concretely, we let u be a sequence of SurR(r �v s �w t)d and we will show that

Δv ◦Δw(u) = Δw ◦Δv(u) ∈ SurR(r)⊗ SurR(s)⊗ SurR(t).
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Let
(
uα(1), . . . , uα(k)

)
be the subsequence of elements in s �w t and let

(
uα(i1), . . . ,

uα(iω)

)
be the (sub)subsequence of elements in t. Then Δw ◦Δv(u) is given by

k∑
i=1

∑
λ : iλ≥i

±‖

(
u1, . . . ,

v
���uα(1) , . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(k), . . . , up

)

⊗
(
uα(i), uα(i+1), . . . ,

w
���uα(i1) , . . . ,

w
���uα(iλ) , . . . , ̂uα(iλ+1), . . . , ûα(iω), . . . , uα(k)

)

⊗
(
uα(iλ), uα(iλ+1), . . . , uα(iω)

)
.

In words, from
(
u1, . . . , up

)
one first removes the part of the subsequence

(
uα(1), . . . ,

uα(k)

)
after step i and replaces the part of the subsequence before step i by copies

of v. Next, from the sequence
(
uα(i), uα(i+1), . . . , uik

)
one removes the part of the

subsubsequence
(
uα(i1), . . . , uα(iω)

)
after the step λ and replaces the part of the

subsubsequence before step λ by copies of w.
Going ‘right-to-left’ instead, we see that every summand above is obtained

by first picking out a subsequence
(
uα(iλ), uα(iλ+1), . . . , uα(iω)

)
of

(
u1, . . . , up

)
of

arbitrary length, then extending it to a larger subsequence (determined by α(i)
and α(k)) while picking a number i1 ≤ iλ.

Note that these are precisely the terms obtained when computing
Δv◦Δw

(
u1, . . . , up

)
, except that the latter may also produce terms in which i1 > iλ.

Those additional terms are all zero, since the middle sequence in SurR(s) is no
longer exhaustive (it does not contain any w). Because in both computations, the
signs arise from the same permutations of caesuras, they agree and we conclude
that Δv ◦Δw

(
u1, . . . , up

)
= Δw ◦Δv

(
u1, . . . , up

)
.

Compatibility with the differential. It remains to check that the cocom-
position is compatible with the differential ∂. Let u ∈ SurR(r �v s)d and let(
uα(1), . . . , uα(k)

)
be the subsequence of elements in s. Up to signs, ∂ ◦ Δv(u) is

given by

∂
k∑

i=1

(
u1, . . . ,

v
��uα(i) , . . . , ̂uα(i+1), . . . , ûα(k), . . . , up

)
⊗

(
uα(i), uα(i+1), . . . , uα(k)

)

=
∑

uβ �∈s

k∑
i=1

(
u1, . . . , ûβ , . . . ,

v
��uα(i) , . . . , ̂uα(i+1), . . . , ûα(k), . . . , up

)
⊗

(
uα(i), uα(i+1), . . . , uα(k)

)

+
k∑

i=1

∑
j≤i

(
u1, . . . ,

v̂
���uα(j) , . . . ,

v
��uα(i) , . . . , ̂uα(i+1), . . . , ûα(k), . . . , up

)
⊗

(
uα(i), uα(i+1), . . . , uα(k)

)

+
k∑

i=1

∑
j≥i

(
u1, . . . ,

v
��uα(i) , . . . , ̂uα(i+1), . . . , ûα(j), . . . , ûα(k), . . . , up

)
⊗

(
uα(i), . . . , ûα(j), . . . , uα(k)

)

Here we have split the result into the three types of summands above corresponding
to the three kinds of elements which can be removed by the differential: (1) an
element uβ ∈ r \{v}, (2) a copy of v put in the place of uα(j) ∈ s, or (3) an element
uα(j) ∈ s.
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On the other hand, we have that Δv ◦ ∂(u) is given up to signs by

∑
uβ �∈s

Δv
(
u1, . . . , ûβ , . . . , up

)
+

k∑
j=1

Δv
(
u1, . . . , ûα(j), . . . , up

)

=
k∑

i=1

∑
uβ �∈s

(
u1, . . . , ûβ , . . . ,

v
���uα(i) , . . . , ̂uα(i+1), . . . , ûα(k), . . . , up

)
⊗

(
uα(i), uα(i+1), . . . , uα(k)

)

+
k∑

j=1

∑
i>j

(
u1, . . . , ûα(j), . . . ,

v
���uα(i) , . . . , ̂uα(i+1), . . . , ûα(k), . . . , up

)
⊗

(
uα(i), uα(i+1), . . . , uα(k)

)

+
k∑

j=1

∑
i<j

(
u1, . . . ,

v
���uα(i) , . . . , ̂uα(i+1), . . . , ûα(j), . . . , ûα(k), up

)
⊗

(
uα(i), . . . , ûα(j), . . . , uα(k)

)

The first type of summand corresponds to the case where the differential removes
an element not in s whereas the second and third line describe the cocomposition
after one has removed the element uα(j) from the sequence.

We first check that up to signs the two computations agree and we will do
a careful sign verification afterwards. It is clear that the first type of summands
agrees in both formulas. The other summands are almost the same, except that
∂ ◦ Δv

(
u1, . . . , up

)
also includes the cases where i = j (twice). One easily sees

that such terms pairwise cancel each other out. To be precise, the difference ∂ ◦
Δv

(
u1, . . . , up

)
−Δv ◦ ∂

(
u1, . . . , up

)
is (as usual up to sign) given by

k∑
i=1

(
u1, . . . ,

v
����uα(i−1) , . . . ,

v̂
���uα(i) , . . . , ̂uα(i+1), . . . , ûα(k), . . . , up

)
⊗

(
uα(i), uα(i+1), . . . , uα(k)

)
(A.2)

+
k∑

i=1

(
u1, . . . ,

v
���uα(i) , . . . , ̂uα(i+1), . . . , ûα(j), . . . , ûα(k), . . . , up

)
⊗

(
ûα(i), uα(i+1), . . . , uα(k)

)
.

In the first line, the term corresponding to i = 1 is zero (the first factor does not
contain any v) and in the second line, the term corresponding to i = k is zero. For
i > 1, the i-th term in the first line is precisely cancelled by the (i − 1)-st term in
the second line; we will verify that the signs match in Case (vi) below.

The signs of ∂ ◦ Δv and Δv ◦ ∂. Recall that the differential ∂ acts by re-
moving from a sequence u the element uβ for all j, with sign ±u,β (Sign Rule A.5)
determined by (a) whether or not uβ is a caesura and (b) the caesuras appearing
in u1, . . . , uγ , where uγ denotes the largest caesura with γ ≤ β and uβ = uγ .

On the other hand, Sign Rule A.7 dictates that Δv produces a sign which
is equal to the sign of an unshuffle of caesuras: cutting

(
u1, . . . , up

)
along v in

SurR(r �v s) carries the sign ±‖ given by the exchange of caesuras in(
uα(i), uα(i+1), . . . , uα(k)

)
∈ SurR(s) and the caesuras among the elements

uα(i)+1, . . . , up ∈ SurR(r).
In order to check the difference in signs between Δv ◦ ∂ and ∂ ◦Δv we will go

through various cases, denoting by uβ the element removed by the differential and
by uα(i) the element at which one cuts:

(i) If β < α(i). Removing uβ does not change the caesuras after uα(i) and
cutting at uα(i) does not change the amount of caesuras before uβ, nor
whether uβ is a caesura. The signs therefore agree.

(ii) If α(i) < β and uβ is a caesura which is not in s. In this case, cutting at
uα(i) removes the caesuras uα(c) ∈ s before uβ which satisfy α(i) ≤ α(c) < β
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(all other caesuras remain the same or are changed into caesuras labelled by
v); the sign therefore changes by the number of such uα(c).

On the other hand, after removing uβ, the sign from Δv changes by this
same number: indeed, the caesuras uα(c) ∈ s with α(i) ≤ α(c) < β need to
be moved passed one less caesura. We conclude that in this case the signs
agree.

(iii) If α(i) < β and uβ is a non-caesura which is not in s. Let γ < β be the
largest number such that uγ = uβ . Since ±u,β = −(±u,γ) (Sign Rule A.5),
the previous argument shows that after cutting, the sign of the differential
is changed by the number of caesuras uα(c) ∈ s such that α(i) ≤ α(c) < γ.
Similarly, after removing uβ the element uγ is no longer a caesura, so that
the sign from Δv changes by the number of caesuras uα(c) ∈ s with α(i) ≤
α(c) < γ as well. In total the signs coincide.

(iv) If α(i) < β and uβ is a caesura belonging s. Since uβ ∈ s, β = α(b) for
some b. Upon cutting at α(i), there are more caesuras before uα(b): indeed,
the caesuras uγ ∈ r \ v with γ > α(b) now precede uα(b) and the sign of the
differential changes by their number.

On the other hand, when cutting at α(i) after having removed uα(b),
one no longer has to move uα(b) past the caesuras uγ ∈ r \ v with γ > α(b).
Thus, in this case, the signs also agree.

(v) If α(i) < β and uβ ∈ s is not a caesura. We again write β = α(b) and
suppose that uα(c) is the preceding copy of that same element in s (i.e. c < b
is the biggest number such that uα(c) = uα(b)). There are two subcases:

• α(i) < α(c): Since the sign of the differential at uα(b) is minus the sign
of uα(c), Case (iv) shows that after cutting at uα(i), the sign of the
differential changes by the number of caesuras uγ ∈ r \ v with γ > α(c).
On the other hand, after removing uα(b) the element uα(c) is no longer a
caesura, therefore moving it past all caesuras in r \ v after it, no longer
contributes to the sign of Δv. In total the sign therefore remains the
same.

• α(c) < α(i). Since the sign of the differential at uα(b) is minus the sign
of uα(c), Case (i) shows that the sign of the differential is left unchanged.
Similarly, removing uα(b) does not change the caesuras appearing after
uα(i), so the signs for Δv do not change either.

(vi) With all cases considered, it remains to identify the sign of the i-th term
in the first row of (A.2) with minus the sign of the (i − 1)-st term in the
second row. Note that both terms are zero if uα(i−1) is not a caesura.

Now the sign of the i-th term in the first row is given by (a) the number
of caesuras uγ with γ ≤ α(i− 1) (coming from the differential) and (b) the
sign of the unshuffle of the caesuras in s and r \v appearing in places ≥ α(i)
(coming from Δv).

On the other hand, the sign of the (i − 1)-st term in the second row is
given by (a1) the number of caesuras uγ ∈ r \v, (a2) the number of caesuras
uα(b) ∈ s with α(b) < α(i−1) (together these give the sign of the differential)
and (b) the sign of the unshuffle of the caesuras in s and r \ v appearing in
places ≥ α(i− 1) (coming from Δv).
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The difference between the two different signs (a) coming from the dif-
ferential is given by minus the parity of the number of caesuras uγ ∈ r \ v
with γ > α(i− 1). The difference between the signs (b) coming from Δv is
the parity of the number of times uα(i−1) is moved past a caesura in r \ v
after it. The signs differ therefore by −1 and the two terms indeed cancel.

This concludes the proof of Proposition A.10 and therefore also Theorem A.1.
�

A.0.3. The PD surjections operad. For most of our purposes we are more
interested in the linear dual of the cooperad SurR, so we conclude by giving an
explicit description of the operad Sur∨R, which we dub the PD surjections operad.

Definition A.13 (PD surjections operad). The PD surjections operad Sur∨R
is the R-linear dg-operad defined as follows:

• For each nonempty finite set r = {1, . . . , r}, let Sur∨R(r) be the free graded
R-module spanned in each degree −d ≤ 0 by by (ordered) sequences u =
(u1, . . . , ur+d) that are non-degenerate in the sense that each 1, . . . , r appears
in the sequence and uα �= uα+1 for α = 1, . . . , r + d− 1. The symmetric group
Σr acts on such nondegenerate sequences by permuting each individual uα.

• Each Sur∨R(r) comes equipped with a differential sending a nondegenerate se-
quence u to the (signed) sum of all nondegenerate sequences u+ obtained by
adding an element to u. More precisely,

∂
(
u1, u2, . . . , ur+d

)
=

r+d+1∑
α=1

∑
uα−1 	=v 	=uα

±u+,α

(
u1, . . . , uα−1, v, uα . . . , ur+d

)
.

Here the sign ±u+,α is the sign associated to the element v in u+ = (u1, . . . ,
v, . . . , ur+d), as in Sign Rule A.5.

• The operad structure is determined by partial composition maps

◦k : Sur∨R(r)⊗ Sur∨R(s) → Sur∨R
(
(r − {k}) � s

)
along k ∈ r, defined as follows. For any two sequences u = (u1, . . . ur+d) in r
and v = (v1, . . . , vs+e) in s, let (uα(1), . . . , uα(i)) denote the subsequence of u
with values k. We then define

u ◦k v =
∑

±‖

(
u1, . . . ,

s1
���uα(1) , . . . ,

si−1

����uα(i−1) , . . . ,
v1

���uα(i) ,

uα(i)+1, . . . , v2, . . . , uβ , . . . , vs+e, . . . , ur+d

)
.

More precisely, we take the sum of all sequences w in (r − {k}) � s obtained
from u by the following procedure:

– replace the last occurence of k in the sequence u by v1.

– replace the occurences of k that are caesuras by any choice of elements
s1, . . . , si−1 ∈ s.

– shuffle the elements uα(i)+1, uα(i)+2, . . . , ur+d appearing after the last oc-
curence of k and the elements v2, . . . , vs+e.

The sign ±‖ is determined by how many caesuras went past each other to reach
the final sequence w, as in Sign Rule A.7. Explicitly, for any sequence w as
above, there is a (non-ordered) bijection w‖ ∼= u‖ � v‖ between the linearly
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ordered sets of caesuras (Definition A.4) of w and the concatenation of the
linear orders of caesuras in u and v. Then ±‖ is the sign of this bijection.

We conclude with the following result about the Koszul dual of the PD surjec-
tions operad:

Theorem A.14. The cobar construction of the surjections cooperad gives a
cofibrant replacement Ω(SurR)

∼−→ LiesR of the R-linear shifted Lie operad. Equiv-

alently, there is an equivalence of dg-operads KD(Sur∨R)
∼−→ LiesR.

Proof. The first assertion follows from the fact that SurR is a Σ-cofibrant
resolution of coComnu

R and the fact Ω(coComnu
R ) 
 LiesR [Fre04, Theorem 6.8].

Since SurR(r) is a finite rank free R-module in each degree, there is an isomorphism
KD(Sur∨R)

∼= Ω(SurR). �
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APPENDIX B

Free algebras in monoidal ∞-categories

The purpose of this chapter is to record an existence result for free associative
algebras in monoidal ∞-categories where the tensor product preserves colimits in
the first variable, but not in the second (such as symmetric sequences with the com-
position product). This is due to Kelly [Kel80] in the case of ordinary categories
and, as we will show, the argument from loc. cit. carries over to ∞-categories.

Construction B.1. Let C be a monoidal ∞-category with coproducts and
sequential colimits, which are preserved by −⊗X for each X ∈ C. For each X ∈ C,
we inductively define a sequence of objects in C by

T (0)(X) = 1 T (n)(X) = 1�
(
X ⊗ T (n−1)(X)

)
.

We define maps in : T
(n−1)(X) −→ T (n)(X) by setting i1 : 1 −→ 1 � X to be the

obvious inclusion and

in : 1�
(
X ⊗ T (n−2)(X)

)
1�

(
X ⊗ T (n−1)(X)

)
.

id�(X⊗in−1)

Theorem B.2. Let C be a monoidal ∞-category with coproducts and sequential
colimits, such that each (−)⊗X preserves finite coproducts and sequential colimits,
while each X ⊗ (−) preserves sequential colimits. For every object X ∈ C, there
then exists a T (X) ∈ Alg(C) together with a map X −→ T (X) in C which exhibits
T (X) as the free associative algebra on X. In other words, the forgetful functor

forget : Alg(C) C

admits a left adjoint T . Furthermore, there is a natural equivalence of objects in C

T (X) 
 colimn T
(n)(X).

The remainder of this section is devoted to a proof of Theorem B.2; through-
out we assume that C is a monoidal ∞-category with the properties appearing in
the theorem. The main idea of the proof will be to deduce Theorem B.2 from a
statement about left modules. More precisely, recall that C is the free right C-
module ∞-category on a single object (the unit 1), so that there is an equivalence
of monoidal ∞-categories from C to the ∞-category of right C-linear endofunctors
of C [HA, §4.7.1]

C EndC(C); X X ⊗ (−).∼

For an object X ∈ C, write FX : C −→ C for the right C-linear functor X ⊗ (−).
We will then denote by LActFX

(C) the lax equaliser of FX and the identity, i.e. the

119
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pullback

LActFX
(C) Fun(Δ[1],C)

C Fun
(
{0},C

)
× Fun

(
{1},C

)
.

Forget

(FX ,id)

This is a pullback diagram of right C-module ∞-categories. One can identify
LActFX

(C) with the ∞-category of objects M ∈ C equipped with an action map
X ⊗M −→ M (without further structure); the left vertical functor takes the un-
derlying object in C.

Proposition B.3. The forgetful functor LActFX
(C) −→ C admits a right C-

linear left adjoint Free, with the following properties:

(1) There is a natural equivalence of right C-linear endofunctors of C

Forget ◦ Free(Y ) 
 colimn

(
T (n)(X)⊗ Y

)
.

(2) The free-forgetful adjunction is a monadic adjunction.

Proof. Write D = Fun(N,C) for the category of sequences Y0 −→ Y1 −→ . . .
in C and let LActFX

(D) be the lax equaliser of the functors Y• �→ X⊗Y• and Y• �→
Y•+1. In other words, LActFX

(D) is the ∞-category of sequences M• equipped
with a natural map X ⊗ M• −→ M•+1. The forgetful functor LActFX

(C) −→ C

then factors as the composite of right C-linear functors

LActFX
(C) LActFX

(D) C.cst ev0

The first functor, taking constant sequences, admits a left adjoint sending M• to
colimn Mn, since X ⊗ (−) preserves sequential colimits. We claim that the second
functor admits a left adjoint sending Y to the sequence T (•)(X)⊗ Y .

To see this, note that T (•)(X)⊗ Y admits a natural left X-module structure,
given by the obvious inclusion

λ : X ⊗
(
T (n) ⊗ Y

)
⊆

(
1�

(
X ⊗ T (n)(X)

))
⊗ Y = T (n+1)(X)⊗ Y.

Note that T (•)(X)⊗ Y is naturally equivalent to Y in degree 0. We therefore need
to prove that evaluation at 0 induces a natural equivalence

(B.1) MapLActFX
(D)

(
T (•)(X)⊗ Y,M•

)
MapC(Y,M0).

∼

To see this, note that the X-linear mapping space from T (•)(X)⊗ Y to M• can be
described inductively: a map T (•)(X)⊗ Y −→ M• is given by a sequence of maps
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fn : T
(n)(X)⊗ Y −→ Mn together with commuting cubes

X ⊗ T (n−1)(X)⊗ Y T (n)(X)⊗ Y

X ⊗ T (n)(X)⊗ Y T (n+1)(X)⊗ Y

X ⊗Mn−1 Mn

X ⊗Mn Mn+1.

λ

in

fn

in
λ

X⊗fn

fn+1

Unravelling the definitions and using that (−) ⊗ Y preserves coproducts, one sees
that the top square is coCartesian. Consequently, given f0, . . . , fn, there is a con-
tractible space of maps fn+1 making the above cube commute. Proceeding induc-
tively, one then finds that the map (B.1) is an equivalence.

The description of the left adjoint as colimn T
(n)(X)⊗Y gives property (1) and

shows that it is right C-linear (since the tensor product commutes with sequential
colimits in the first variable). For (2), note that the free-forgetful adjunction satis-
fies the conditions of the Barr–Beck–Lurie theorem [HA, Theorem 4.7.3.5]. Indeed,
the forgetful functor clearly detects equivalences and if M• is a simplicial diagram
of X-modules which is split in C, then it is also split in LActFX

(C): this follows
immediately from the fact that X ⊗

(
colimM•

)

 colim(X ⊗ M•) for any split

simplicial diagram M• in C. �

Proof (of Theorem B.2). Fix an object X ∈ C and let FX : C −→ C be
its image under the monoidal equivalence C 
 EndC(C). We will write TX ∈
Alg(EndC(C)) for the right C-linear monad associated to the free-forgetful adjunc-
tion LActX(C) � C from Proposition B.3. Note that there is a natural map
η : FX −→ TX in EndC(C), corresponding to the obvious map

X −→ T (1)(X) = 1�X −→ colimn T
(n)(X) = T (X)

under the monoidal equivalence C 
 EndC(C). It therefore suffices to show that η
exhibits TX as the free algebra on FX in EndC(C).

To see this, let T ∈ Alg(EndC(C)) be any right C-linear monad and denote
by GT : AlgT (C) −→ C the right C-linear forgetful functor from the ∞-category
of T -algebras. Recall that there is a left action of EndC(C) on the ∞-category
FunC(AlgT (C),C) of right C-linear functors, given by postcomposition. By the
right C-linear version of [HA, Lemma 4.7.3.1], the monad T then arises as the
endomorphism algebra of GT ∈ FunC(LModT (C),C). We therefore have to show
that restriction along η defines an equivalence

η∗ : MapAlg(EndC(C))

(
TX ,End(GT )

)
MapEndC(C)

(
FX ,End(GT )

)
.∼

Using the universal property of the endomorphism algebra End(GT ), the domain
can be identified with the space of TX -module structures TX ◦ GT −→ GT . Such
a TX -module structure on GT simply endows each T -algebra with a natural TX -
algebra structure; in other words, the space of such TX -module structures on GT



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

122 B. FREE ALGEBRAS IN MONOIDAL ∞-CATEGORIES

is equivalent to the space of right C-linear factorisations of GT as

AlgT (C) AlgTX
(C)

C.
GT GTX

Likewise, MapEndC(C)

(
FX ,End(GT )

)
can be identified with the space of natural

maps FX ◦GT −→ GT , i.e. with factorisations of GT over LActFX
(C). The asser-

tion then follows from the fact that restriction along η determines an equivalence
AlgTX

(C)
∼−→ LActFX

(C), by Proposition B.3. �
Remark B.4. The proof of Theorem B.2 provides an additional property of

the free algebra T (X): there is an equivalence between left T (X)-modules in C and
X-modules, i.e. objects equipped with a map X ⊗M −→ M .
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Mathématiques, École Polytechnique Fédérale de Lau-
sanne, Station 8, 1015 Lausanne Vaud, Switzerland;
e-mail: joachim.krieger@epfl.ch

Elliptic and parabolic PDEs, geometric analysis,
Yannick Sire, Department of Mathematics, Johns Hop-
kins University, 404 Krieger Hall, 3400 N. Charles
Street, Baltimore, MD 21218 USA; e-mail: ysire1@jhu.edu

Elliptic and parabolic PDEs, geometric analysis,
Ben Weinkove, Mathematics Department, Northwestern
University, 2033 Sheridan Rd, Evanston, IL 60201 USA;
e-mail: weinkove@math.northwestern.edu

Harmonic analysis and partial differential equa-
tions, Monica Visan, Department of Mathematics, Uni-
versity of California Los Angeles, 520 Portola Plaza, Los
Angeles, CA 90095 USA; e-mail: visan@math.ucla.edu

Nonlinear Fourier and harmonic analysis and par-
tial differential equations, Andrea R. Nahmod, De-
partment of Mathematics and Statistics, University of
Massachusetts Amherst, 710 N. Pleasant St. Lederle
GRT, Amherst, MA 01003 USA; e-mail: nahmod@umass.edu

Partial differential equations, calculus of varia-
tions, optimizations and control theory, dynamical
systems, Wilfrid Gangbo, College of Physical Sciences,
UCLA, 520 Portola Plaza, Los Angeles, CA 90095 USA;
e-mail: wgangbo@math.ucla.edu

Real analysis and partial differential equations,
Joachim Krieger

4. ANALYSIS & DYNAMICS
Coordinating Editor: Krzysztof Fra�czek Faculty of Math
and Computer Science, Nicolaus Copernicus University,
Ul. Chopina 12/18 87-100 Toruń, Poland; e-mail:
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