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1 | INTRODUCTION

A classical heuristic in deformation theory asserts that the infinitesimal deformations of an
algebro-geometric object over a field k of characteristic zero are controlled by a differential graded
Lie algebra. A first instance of this can already be found in the work of Kodaira-Spencer on
deformations of complex manifolds [34]; its recognition as a key principle in deformation the-
ory traces back to ideas of Deligne and Drinfeld. These ideas have been further developed in
the work of various authors [23, 25, 33, 41], leading to a precise mathematical formulation of the
above heuristic as an equivalence of categories between deformation problems and dg-Lie algebras
[38, 46].

More precisely, following work of Schlessinger [48], one can describe the infinitesimal
deformations of an algebro-geometric object X over k by a functor

defy : Ring} — Set

from the category of (commutative) Artin local k-algebras with residue field k. This functor sends
each Artin local k-algebra A to the set of deformations of X over A. The aforementioned works
have led to two modifications of this idea.

First, the deformations of X typically have automorphisms and homotopies between them,
leading to the study of deformation functors with values in spaces or simplicial sets. Second, it
has been observed that the deformation theory of an object X usually comes with an additional
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obstruction theory, which is not encoded by the functor defy. A key idea, tracing back to Drinfeld,
is to incorporate such an obstruction theory by extending defy to the category of dg-Artin local
k-algebras. One is therefore led to contemplate deformation functors

Defy : CAlg)" — S

from the co-category of (connective) dg-Artin local k-algebras to the co-category of spaces. Such
deformation problems satisfy a variant of the Schlessinger conditions: their value on k is con-
tractible and they preserve fibre products along maps inducing a surjection on H° (see Section 2
for more details). Following Lurie [38], we will refer to such functors as formal moduli problems.
The work of Lurie [38] and Pridham [46] now provides an equivalence of co-categories

FMPk % Liek

between formal moduli problems and differential graded Lie algebras over k.

The equivalence between Lie algebras and formal moduli problems indexed by commutative
algebras can be viewed as a manifestation of the Koszul duality between the commutative operad
and the Lie operad. In fact, there is a similar equivalence between associative algebras and formal
moduli problems indexed by associative algebras [38], which can be thought of as an incarnation
of the Koszul self-duality of the associative operad. These two equivalences are related in a natural
way: if a Lie algebra arises from an associative algebra by taking the commutator bracket, then
the corresponding commutative formal moduli problem is the restriction of an associative formal
moduli problem.

Statement of results

The purpose of this paper is to generalize the above results to more general pairs of Koszul dual
operads over a field of characteristic zero. More precisely, for any augmented operad 9 one can
define an co-category Art,,of Artin Sralgebras. A JRalgebraic formal moduli problem is then given
by a functor

F:Artgxﬁg

satisfying a natural analogue of the Schlessinger conditions (see Section 2 for more details). We
denote the co-category of such functors by FMP . When Zis a Koszul binary quadratic operad, we
prove that such Salgebraic formal moduli problems can be classified by algebras over its Koszul
dual operad:

Theorem 1.1. Let k be a field of characteristic zero and consider:

* a Koszul binary quadratic operad Sin non-positive cohomological degrees;
* its Koszul dual operad 2.

Then there is an equivalence of co-categories

FMPy, — Alg,; F — T(F)[-1].
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Here T(F) denotes the tangent complex of the formal moduli problem, as defined by Lurie [38] (see
also Definition 2.14).

This recovers the aforementioned results of Lurie and Pridham, taking 9°to be the commutative
operad, whose Koszul dual is the Lie operad, or the associative operad. It also applies to many
other Koszul dual pairs of algebraic operads (see Section 3). In fact, allusions to the role of Koszul
duality in such a correspondence have appeared before, notably in [15; 32, Lecture 15] and in [47].
For example, taking °to be the permutative operad, whose Koszul dual is the pre-Lie operad [11],
we obtain a classification of permutative formal moduli problems in terms of pre-Lie algebras.
Such pre-Lie algebras indeed appear naturally in the deformation theory of operadic algebras,
see the work of Dotsenko, Shadrin and Vallette [16] (in fact, this was the original motivation for
the present paper). From the point of view of deformation theory, a Lie algebra underlies a pre-
Lie algebra structure whenever the corresponding commutative formal moduli problem is the
restriction of a permutative formal moduli problem.

Our proof of Theorem 1.1 will make little use of the Koszul property of & the Koszul prop-
erty mainly serves to guarantee that the operad Padmits a resolution with good properties. More
precisely, we will deduce Theorem 1.1 from a statement about algebras over the dual of the bar
construction of an augmented dg-operad. In fact, it will be convenient to work in a slightly more
general setting.

(a) We work with coloured dg-operads.

(b) Instead of taking dg-operads over the base field, we will consider operads which are aug-
mented over a connective dg-algebra or, in the coloured case, over a connective dg-category
k (here connective means that the cohomology groups are concentrated in non-positive
degrees). More precisely, we will consider coloured dg-operads & which fit into a retract
diagram of operads

k— % — k.

Given a dg-category k, we will refer to such objects as (augmented) k-operads.

For example, one can take k to be a discrete dg-category with finitely many objects and only zero
maps between them, or (Morita equivalently, cf. Remark 1.7) the semisimple associative algebra
k = kK*". In this case, deformations parametrized by Artin associative algebras relative to k cor-
respond to multi-pointed deformations, as frequently considered in non-commutative geometry
[35].

The usual operadic homological algebra (as in [40], for example) has an analogue for aug-
mented k-operads; the Appendix provides all the results and definitions that we will need. In
particular, every (augmented) k-operad 9has a dual k°P-operad, given somewhat informally as

DD = D(A = Extylk, k).
More precisely, we can make the following definition:

Definition 1.2. Let k be a dg-category and let %be a (augmented) k-operad, which we assume to
be cofibrant as a left k-module throughout this introduction. We define the dual operad to be the
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k-linear dual of the bar construction of Pover k
D (P =B, (PN".

The k°P-operad structure arises from the k-cooperad structure on the bar construction. Up
to a degree shift, this corresponds to the dual operad introduced in [21], see Section A.2 for
more details.

With these definitions, our main result is then the following:

Theorem 1.3. Let k be a dg-category over Q and let Pbe an augmented k-operad. Suppose that the
following conditions are satisfied.

(1) k and Pare both connective, that is, their conomology is concentrated in non-positive degrees.

(2) k is cohomologically bounded, that is, there exists an N € N such that all H*(k)(c,d) are
concentrated in degrees [N, 0].

(3) The derived relative composition product

A1) o, K1)

is concentrated in increasingly negative cohomological degrees as the arity increases (cf.
Definition 3.37).

Then there is an equivalence of co-categories

FMPy —— Algy g F —— T(F), (1.4)

where T(F) denotes the tangent complex (Definition 2.14). Furthermore, this equivalence is natural
inp

We will denote the inverse equivalence (1.4) by

MC: Algg ) — FMPg

and think of it as sending a D(A-algebra to the ‘formal JRalgebraic stack of solutions to the
Maurer-Cartan equation’. Some justification for this terminology is provided in Section 7, where
we show that for various operads 93 this inverse functor does indeed admit a description in terms
of Maurer-Cartan elements of dg-Lie algebras, resembling the construction by Hinich [25] in the
commutative case. This is a by-product of our proof of Theorem 1.3, which relies on a careful
analysis of the adjoint pair

D: Alg, —>< Alg® D (1.5)

D(P) - .

Here D sends a SPalgebra to the k-linear dual of its operadic bar construction. We point out a
slight difference from the arguments of Lurie: when Zis the commutative operad, we study the
behaviour of the functor ® (the Harrison complex) instead of the functor ®’ (the Chevalley—
Eilenberg complex). An adjunction between the Harrison and Chevalley-Eilenberg complex also
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appears in the arguments from [22, 46]; here the co-category of commutative algebras is replaced
by a certain model category of pro-Artinian algebras (with the effect of making the Harrison
complex a right adjoint detecting equivalences, in contrast to (1.5)).

The conditions of Theorem 1.3 hold for Koszul binary quadratic operads, leading to the
following proof of Theorem 1.1:

Proof of Theorem 1.1 (from Theorem 1.3). The Koszul property of S asserts that there are weak
equivalences of operads (using curly brackets to denote degree shift)

QP —>5 P D(P) — PY-1}L

Since Pis generated by binary operations in degrees < 0, the quadratic dual cooperad & is gener-
ated by binary operations in degrees < —1. It follows that the generators of Q% are concentrated
in increasingly negative degrees as the arity increases. The operad Zthen satisfies the conditions
of Theorem 1.3 (condition (3) follows from Corollary A.26), and the sequence of equivalences

FT(F)

FMPg ———% Algg o ——— Algg,

VeV[-1
Algg,

provides the desired result. [l

Suppose that Pis an augmented k-operad arising as the bar dual of a (sufficiently nice) k°P-
operad. Theorem 1.3 then gives an interpretation of the co-category Alg,in terms of formal moduli
problems. One may wonder if there is a similar interpretation of the co-category of algebras over
an arbitrary augmented k-operad & Somewhat informally, one expects a S2algebra to correspond
to some homotopy-theoretic, or geometric, analogue of a ‘conilpotent coalgebra over a conilpotent
cooperad’. Theorem 1.3 precisely provides us with a geometric way to think about this conilpotent
cooperad, as a formal moduli problem

MCQD . Artop H S

on the category of Artin (that is, nilpotent, finite-dimensional) operads. This is discussed in more
detail in Section 8 and relies on the fact that the operad for non-unital symmetric operads is Koszul
self-dual, relative to the dg-category of finite sets and bijections (k-linearizing all sets of maps). One
may informally think of the functor MC,, as encoding a family of finite-dimensional nilpotent
operads, corresponding to the family of linear duals of the finite-dimensional conilpotent sub-
cooperads of the conilpotent cooperad B2

Given a formal moduli problem X : ArtOp — &, there is a natural notion of formal moduli
problem over X. Indeed, in a similar way as one usually defines quasi-coherent sheaves on moduli
functors in algebraic geometry, one can define a formal moduli problem over X to consist of the
following data.

(1) A @-algebraic formal moduli problem F, € FMP,, for every x € X(Q).
(2) Foreverymap f: @ — @' and every x € X(@), an equivalence

Ff*(x) — [.Fx
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together with coherence data between them (see Definition 6.14). Here f,F, denotes the
restriction of 7, along the forgetful functor Art; — Art,.

Informally, these formal moduli problems can be thought of as geometric analogues of conilpotent
coalgebras over conilpotent cooperads. Indeed, a formal moduli problem over X describes a coher-
ent collection of finite-dimensional nilpotent algebras over finite-dimensional nilpotent operads.
This roughly corresponds to the collection of linear duals of the finite-dimensional conilpotent
sub-coalgebras of a conilpotent coalgebra.

We then have the following result:

Theorem 1.6. Let & be a I-coloured augmented operad. Then there is an equivalence of
co-categories

FMPyc, — Alg,; F —— T(F).

One may consider this as a geometric, or co-categorical, version of the relation between algebras
over Pand conilpotent coalgebras over the conilpotent cooperad BZ2[51].

Finally, let us point out that Brantner and Mathew [4] have recently established that in positive
characteristic, formal moduli problems do not correspond to dg Lie algebras but rather to partition
Lie algebras. Their result can also be interpreted as a refinement of Koszul duality following [1,
Example 1.6].

1.1 | Outline and how to read the paper

Let us briefly describe the structure of the rest of the paper. In Section 2, we introduce the main
definitions concerning formal moduli problems parametrized by algebras over operads.

In Section 3, we will discuss various (non-)examples and special cases of our main theorem,;
these include many of the well-known operads. This section essentially only makes reference to
the statement of the main theorem relating operadic moduli problems with algebras over the dual
operad (Theorem 1.3), or rather to a slightly more precise formulation thereof (Theorem 5.1). Tak-
ing this for granted, Section 3 essentially only assumes some familiarity with operadic homological
algebra. For operads over a field k of characteristic zero, all operadic results we use are classical
and contained for instance in [21, 40].

Some additional techniques are required in Section 3.3, where we treat deformations
parametrized by operads. Since these are themselves algebras over a coloured operad, this involves
aversion of the usual operadic homological algebra relative to a dg-category k. This is developed in
the Appendix, with a few more specific results used in Section 3.3 appearing in Section 8. For read-
ability, we have tried to put the tools from the Appendix in the background; as a rule of thumb,
the reader may think of k as a dg-algebra and suppose that all results that hold for classical k-
operads will also hold for k-operads and their algebras, as long as the corresponding modules
are k-cofibrant. In particular, the reader only interested in moduli problems for algebras over
k-operads can safely ignore the Appendix.

In Section 4, we explain how to associate to an operadic formal moduli problem an algebra
which requires establishing the adjoint pair (1.5) (see Theorem 4.10) and proceed to describe the
general framework that goes into our proof of Theorem 1.3.
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Section 5 is the technical heart of the proof (Theorem 5.1); in this section, we verify the technical
hypotheses that allow us to apply the axiomatic argument (Theorem 4.18) described in Section 4.2.
In Section 6, we discuss the naturality of the equivalence (1.4) in the operad $and apply this to
deduce Theorem 1.6 in Section 6.3. Under certain conditions on the operad & we describe this
equivalence more concretely in terms of Maurer-Cartan elements in Section 7 (see Theorem 7.18).

Finally, Section 8 contains some further remarks about Koszul duality relative to a base k. In
particular, we use this to spell out some leftover proofs from Section 3.3; in particular, we show
that the operad for operads is, in a relative sense, Koszul self-dual.

1.2 | Conventions

Throughout, we work over a field k of characteristic zero” and all objects involved are differential
graded (with differentials of degree +1), even if this is not said explicitly.

Given k € Z and a graded vector space V, we denote by V[k] its degree shift satisfying (V[k])? =
Vk+d .

Model categories and co-categories

Since certain functors are only defined at the level of co-categories, we will need to distinguish
between model categories or relative categories, and the co-categories obtained from them by
inverting the weak equivalences. We will employ the following basic convention: we will denote
by %2 a certain category of dg-objects, for example, operads or algebras over them, and by & the
underlying co-category. For example:

Algdg? = {dg-algebras over Alg,, = Alg;g[quasi—iso_l].

We will typically refer to the objects of each of these two categories as Jalgebras, leaving the
differential graded structure implicit (except for dg-categories, in order not to confuse these with
ordinary categories or co-categories).

Linear algebra

Let of be a dg-category (over our base field of characteristic zero). Recall that a left /-module is
a dg-functor o/ — Ch,, to the category of cochain complexes and a right @/-module is a functor
9P — Chy, that s, a left &/°P-module. By default, modules are left modules. For an object ¢ € <,
the free o/-module at c is the corepresentable functor

d,: o — Chy; d —> d(c,d).

An o/-B-bimodule is a B°P ® o/-module (so that an o/-k-bimodule is just an &-module). We will
denote the canonical &/~-bimodule by

A:dPQR@A —» Chy; (c,d) —— d(c,d).

In fact, everything we do also works over an arbitrary ring, instead of a field of characteristic zero, if one restricts to
non-symmetric operads.
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Given an o/-%-bimodule E and a %-%-bimodule F, we can form the tensor product (Day
convolution) E ® , M; for a € o and ¢ € %, one explicitly computes (E @, F)(c,a) as the
coequalizer

, , acton E
E(b', B(b,b M(c,b E(b, M(c,b E ®g F)(c,a).
b,bgz% (b',a) ® B(b,b") @ M(c )—i bGE% (b,a) @ M(c,b) — (E ®g F)(c,a)

actson F

In particular, when & = k, this defines a functor E ® ;; — : LModgf — LModf;g, and similarly for
right modules. This satisfies the obvious identities, for example, ¥ ® ;M = M and E @, B, =
E. = E(c,—). As usual, composing two such functors coincides with tensoring bimodules: if E is
a A-%-bimodule, and F a %-E-bimodule, then

E®yu—) o (F®;—)=(E®4F)Qy—.

The functor E ® ; — has a right adjoint, given by Hom (E, —), where the left -module structure
on Hom (E, N) comes from the right 9-action on E. Similarly, the right adjoint to — ®_  E is
Homg(E, -).

Finally, for M a left o/-module, we will denote

MY := Hom_(M, &).
This is a right @/-module via the canonical right action of < on itself.

Remark 1.7. Let of be a dg-category with finitely many objects and consider its (ordinary) category
of left modules. This category has a single compact projective generator, given by the direct sum
of all free modules

P=@P4,.

ced

Likewise, the category of right &-modules has a single compact generator Q = @ (. 2). It fol-
lows from Morita theory that the category of left o/-modules is equivalent to the category of
modules over the dg-algebra B = End 4 (P)°? = End 40, (Q). Unraveling the definition, this algebra
is given by the cochain complex

B Hﬂ(c, d)
c,d

and the product of two morphisms is their composition whenever they are composable, and 0
otherwise. The equivalence from left o/-modules to B-modules simply sends a left &/-module M
to Q ® , M = P, M(c), with the obvious action maps arising from #/(c, d) ® M(c) — M(d).

The following is a special case of [37, Proposition A.3.3.2] (where we enrich over Ch; with the
projective model structure):

Proposition 1.8. For any dg-category k, the category of k-modules admits a cofibrantly gener-
ated model structure for which the fibrations are pointwise surjections and weak equivalences are
pointwise quasi-isomorphisms. Furthermore, this model structure is enriched over Chy.



10 | CALAQUE ET AL.

Remark 1.9 (Cofibrant objects). Note that this model structure arises from transfer along the free-
forgetful adjunction [] ., Ch, S LModig with right adjoint evaluating at each object c € k. Every
free k-module (in the image of the left adjoint) is therefore cofibrant and the generating cofibra-
tions are the cone inclusions k,[n] — Cone(k.[n]) for ¢ € k. Conversely, a cofibrant object is (in
particular) the retract of quasi-free k-module.

It is not hard to verify that a map in LModig is a cofibration if and only if it is a monomorphism
whose cokernel is cofibrant. As a consequence, if M is a k-module equipped with an exhaustive
increasing filtration whose associated graded is cofibrant, then M is itself cofibrant.

If k is of the form k[G], where G is any locally finite groupoid, then Maschke’s theorem [53,
Chapter 4.2] implies that every k[G]-module M is the retract of the free k[G]-module generated
by M (by averaging over G). By the above remark, this implies that all objects are cofibrant and
that the cofibrations are the monomorphisms.

Operads

In this paper, we make extensive use of the machinery of algebraic operads, namely bar (denoted
B) and cobar (denoted Q) constructions for both (co)operads and for (co)algebras, relative to a
Koszul twisting morphism (denoted --»), as developed in [40].

In fact, throughout we will employ the theory of coloured operads relative to a base dg-category,
which we will denote by k. More precisely, suppose that k has a set of objects S. By a k-operad %,
we will mean an S-coloured (symmetric, differential graded) operad together with maps of S-
coloured operads k — 9% — k that compose to the identity (cf. Proposition A.2 for a slightly
different perspective). In particular, we will always assume that 9is augmented over k, unless
explicitly stated otherwise.

An algebra over a k-operad Pis simply an algebra over the underlying coloured operad. In
particular, each JRalgebra has an underlying left k-module and the usual constructions with %
algebras, such as the free Salgebra or the bar construction, can be performed at the level of
k-modules as well. We refer to the Appendix for an extensive discussion of the usual operadic
homological algebra relative to a dg-category k.

For any operad &% we denote by Kk} its degree shift by k, such that A is a Ak} algebra if and
only if A[k] is a Salgebra. In particular, if Sis concentrated in degree 0, Z1}(n) is concentrated
in degree —n + 1.

All operads (respectively, cooperads) are assumed to be unital and augmented (respectively,
counital and coaugmented) and have no other constraints in arities 0 and 1, unless otherwise
explicitly written.

We will say that a k-operad Pis n-reduced if the map k — Pis an isomorphism in arities < n
(in particular, it is trivial in arities # 1 and < n).

Assumption 1.10 (Cofibrancy assumptions). Since we are not working over a field, various point-
set level constructions involving tensor products and k-linear duals are only well behaved when
applied to left k-modules that are cofibrant (for the model structure of Proposition 1.8). For this
reason, we will typically (tacitly) assume throughout the text that our k-operads are cofibrant as
left k-modules and that k-cooperads are filtered-cofibrant left k-modules (Definition A.13). Since
our main results are formulated in homotopy-invariant terms, one can always replace by a k-
operad for which this assumption holds.
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2 | MODULI PROBLEMS FOR ALGEBRAS OVER OPERADS

In this section, we introduce the main notion of a formal moduli problem for algebras over a
(augmented) k-operad & and describe the associated tangent complex. Recall that a classical
(commutative) formal deformation functor is a functor

Ring] — Set

from the category of Artin local commutative k-algebras satisfying (some version of) the Sch-
lessinger conditions. To describe the notion of a formal moduli problem for algebras over a
k-operad % we will replace the category of Artin local rings by the following category of Artin
Salgebras.

Definition 2.1. Let k be a dg-category and let #be a k-operad. A trivial algebra is a Salgebra
obtained from a k-module by restriction along the augmentation map % — k. We will denote by

ke[n] :=k(c,-)[n]

the trivial algebra whose underlying k-module is free on a generator at the object ¢ € k, of
cohomological degree —n. We denote its cone by k.[n,n + 1].

Definition 2.2 (cf. [38, Definition 1.1.8]). The co-category Art,of Artin Palgebras is the smallest
full subcategory of the co-category of JRalgebras such that:

(1) the trivial algebra k,[n] is Artin for every object ¢ € k and every n > 0;
(2) for any Artin JRalgebra A and any map A — k.[n] with n > 1, the homotopy pullback
A xﬁc[n] 0 is also Artin.

By definition, being Artin is a homotopy-invariant condition: any algebra quasi-isomorphic to
an Artin algebra is itself Artin. As we see in Example 2.10, in the case Zis the commutative operad,
we recover the usual notion of an Artin local algebra (or rather, their augmentation ideals, which
is equivalent data).

Example 2.3. Suppose that A is an Artin Jalgebra and that

lkc[n] — B —>» A
is a strict square zero extension of A by the trivial A-module k.[r], for n > 0. Then B is Artin as
well. Indeed, pulling back to a quasi-free resolution of A if necessary, we may assume that A is
a quasi-free Falgebra. In this case, we can write B = A @ k.[n] as a split square zero extension,

with differential of the form

d(a,v) = (da,dv + y(a)) aceA v € k. [n].
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The map y defines a Ralgebramap y : A — k.[n + 1], and one can easily verify that A’ fits into
a strict pullback square (a homotopy pullback since the vertical maps are fibrations)

B=A®k [n] —> k. [n,n+1]

1 i

A ﬁ [kc[n + 1]

Since k.[n, n + 1] is contractible, we find that B ~ A xﬁ (1] 0is Artin.
C

Remark 2.4. In fact, the argument from Example 2.3 can be used to give the following chain-level
description of the Artin S2algebras: they form the smallest class of Palgebras that is closed under
quasi-isomorphisms and (strict) square zero extensions by the trivial modules k [n] with n > 0.

Definition 2.5. A Salgebra A is strictly Artin if it admits a filtration
A=AM 5 ... 5 40 ¢

with the property that each A® — A(~1) is a square zero extension with kernel ke, [p;], for some
¢; €kand p; > 0.

An iterated application of Example 2.3 shows that a strictly Artin Salgebra is Artin. Conversely,
if Pis a cofibrant k-operad, then every Artin Palgebra is quasi-isomorphic to a strictly Artin
SPalgebra (see Lemma 5.12).

Remark 2.6. The k-module underlying a strictly Artin Jalgebra is cofibrant, and quasi-freely gen-
erated (that is, disregarding differentials) by finitely many generators of degree < 0. In particular,
it is a perfect left k-module.

Let us remark that in favourable cases, being Artin reduces to a condition at the level of the
cohomology groups of a Salgebra:

Definition 2.7. Let 2 be a coloured symmetric sequence of chain complexes (for example, a
k-operad). We will say that 2 is connective if for all tuples of colours,

H*(%(cl,...,cp;co)) =0 for all > 0.

Furthermore, & is eventually highly connective if for every n € Z, there exists an p(n) € N such
that H*(Z) vanishes in degrees *> n in arities > p(n).

Lemma 2.8. Suppose thatk = k is a field and that Pis a connective operad. Then a algebra A is
Artin if and only if it satisfies the following conditions.

* H(A)=0fori>0andi <0.
* Each H'(A) is a finite-dimensional vector space.



MODULI PROBLEMS FOR OPERADIC ALGEBRAS | 13

* Each H'(A) is a nilpotent module over the H*(P-algebra H(A), in the following sense: consider
the action maps

:u(al’ ey g1, _) : Hl(A) H Hl(A) (2.9)

for u € HY(P(q) and a; € H°(A). Then there exists an n such that any n-fold composition of such
(possibly different) action maps is zero.

h
k[n]
H*(B) — H*(A) on cohomology is a square zero extension of H°(9)-algebras with kernel k[n —

1]. Using this inductively, one verifies the above conditions for every Artin S2algebra A.

For the converse, we may assume P is a cofibrant operad and by homotopy transfer [40, Sec-
tion 10.3] that A is minimal, so that H'(A) = A;. Leti < 0 be the minimal number such that A; # 0.
We claim that there exists a non-zero v € A; such that u(a,, ..., a,,v) = 0 for any operation .
Assuming this, we find that (v) — A — A/(v) is a square zero extension by k[i]. Example 2.3
then shows that A is Artin if A/(v) is Artin, and the result follows by induction.

Since we assumed 2to be connective, degree reasons dictate that the claim is equivalent to the
following: there exists a v € A; on which the H(9-algebra A, acts trivially. Let n be the mini-
mal number such that any n-fold composition of action maps (2.9) is zero. If n = 0, then A, acts
trivially on A; and we are done. For n > 1, there exists by assumption an (n — 1)-fold composite
of action maps which is non-zero. Any non-trivial element v in its image is then annihilated by
all of A,,. O

Proof. Consider a homotopy pullback of JRalgebras of the form B ~ A x7, - 0. Then the map

Example 2.10. Let 9= Com be the 1-reduced commutative operad. An Artin Com-algebra is
exactly a non-unital cdga m with finite-dimensional cohomology groups which are zero in degrees
> 0 and < 0, and with H%(m) nilpotent. These are exactly the augmentation ideals of the unital
Artin dg-k-algebras from [38, Proposition 1.1.11].

With the Artin JRalgebras playing the role of local Artin dg-algebras, we now define a
‘Pralgebraic formal moduli problem’ to be a functor Art, — & satisfying the Schlessinger
conditions.

Definition 2.11. Let %be a k-operad. A formal moduli problem over Pis a functor
F: Artga H §

to the co-category of spaces, satisfying the following two conditions.

(1) F(0) ~x*, where O is the zero algebra.
(2) F sends a pullback diagram in Art,, of the form

A — 30

Ll -

A H Ikc[n]

to a pullback square of spaces, for every colour c € kand n > 1.
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We will denote the co-category of formal moduli problems over by FMP,,

Example 2.13. To every JRalgebra B, we can associate its formal spectrum, a formal moduli
problem Spf(B) : Art, — S, given by A — Mapy(B, A).

If one thinks of the functor F as assigning to a Jfalgebra A the space of deformations of a
certain object &, then the above conditions encode the usual obstruction theory for deformations
along square zero extensions. Indeed, note that the pullback square (2.12) exhibits A’ as a square
zero extension of A by the trivial A-module k.[n — 1] (cf. Example 2.3). For every deformation
X, € F(A), one obtains an ‘obstruction class’

ob(X,) € moF (k[n])

by applying the functor F to the map A — k_[n]. This obstruction class is zero if and only if X,
lifts to a deformation over the square zero extension A’.

Let us recall that there is a more cohomological way of interpreting these kinds of obstruction
classes, as follows. Applying condition (2) in the case where A = 0, one obtains a natural sequence
of equivalences

F(k.) — OF (k[1]) —— Q%F(k.[2]) ——> ..
In other words, the sequence of spaces F(k.[n]),, forms an Q-spectrum T(F),.

Definition 2.14. We refer to T(F), as the tangent complex of F at c, and to the spectra T'(F),.¢
collectively as the tangent complex of F.

In fact, the tangent complex admits a canonical k°P-module structure, as we will see in the
next lemma. We denote the category of spectra by Sp. Recall that there is a functor Mod, — Sp
sending X to the spectrum formed by (the Dold-Kan image of) its iterated connective covers
70X, 51X, ..., each of which is the looping of the next.

Lemma 2.15. For any formal moduli problem F over &, the tangent complex has a unique inverse
image under the forgetful functor

Modkup H HCG[RUP MOdZ H Hcekop Sp (216)

with the following property: for all free k°P-modules generated by c € k°P in degree n > 0, there is a
natural equivalence

MapMOd[kop (kgp[_n]’ T(F)) = F(kc[n])

In other words, the obstructions to lifting deformations along square zero extensions are given
by classes in the cohomology of the k°P-module T(F).

Remark 2.17. The first functor in (2.16) takes a k°°’-module V to the collection of chain complexes
V(c). Equivalently, one can consider these as HZ-module spectra (via the Dold-Kan correspon-
dence [49]). The second functor then forgets the HZ-module structure. The composite functor
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preserves both limits and colimits, since its left adjoint preserves compact generators: it sends
(0, ...,0,8",0,...,0), with a sphere at place c, to the free k°’-module k.’ [n].

Proof. Uniqueness follows from the fact that the free modules k.’ [—n] with n > 0 generate the co-
category Mod, op under colimits. Existence follows either from Theorem 4.18, or from the following
argument. Let €<" C Mod,., denote the subcategory generated by the free k°’-modules ki"[n]
under finite limits and let € = colim,, <" be their union. Consider the functors

X,: (8" — 8 V. — Q"F(V[-n]").

These functors are well defined because the trivial Palgebra V[—n]Y is Artin for all V € €<".
Because F is a formal moduli problem, there are natural equivalences X, ~ X, |4, S0 that one
obtains a functor

X:6P% — 8 V —— Q"F(V[-n]).

This functor sends finite colimits in € to limits of spaces, since F is a formal moduli problem.
But € C Mod, oy contains all free k°P-modules and is closed under finite colimits, so it follows
that X is representable by a k°?-module [37, Corollary 5.3.5.4, Proposition 5.3.5.11]. Unravelling
the definitions, this is exactly the desired k°?-module T(F). O

3 | EXAMPLES AND APPLICATIONS

In this section, we discuss various examples and applications of our Theorem 1.1. We start in Sec-
tion 3.1 by recalling the usual deformation theory along Artinian algebras from this perspective,
with emphasis on (commutative) deformations of algebraic structures.

In the deformations theory of operads and algebras over them, one also encounters deformation
problems parametrized by permutative algebras. Koszul dually, this roughly corresponds to the
fact that deformation complexes are pre-Lie algebras. In Section 3.2, we more generally treat such
permutative deformation problems, their pre-Lie tangent spaces and some concrete examples,
while in Section 3.3 we consider deformations along operads.

Finally, in Section 3.4, we will give some further examples of operads satisfying the conditions
of Theorem 1.3. Of these conditions, the most important one is condition (3), which we discuss in
some detail. This last section is mostly independent of the previous ones.

3.1 | Commutative and associative deformation theory

Let us start by briefly reviewing how Theorem 1.1 plays out in the classical cases of the (k-linear)
commutative operad Com and associative operad As. Note that, since we are always working with
augmented operads, algebras over the operads Com and As are given by non-unital commutative
and associative algebras. Such algebras are equivalent to augmented unital commutative algebras
by adding a unit and taking the augmentation ideal:

Alg.,, 224 calgl® Alg, 274 Alge.
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In particular, this identifies the subcategory of non-unital (commutative) Artin dg-algebras with
the subcategory of augmented Artin dg-algebras and we can identify F € FMP,,, with a formal
moduli problem F : CAlgirt — &inthe usual sense of [38] (and similarly in the associative case).

The operads Com and As are binary Koszul with Koszul dual operads given by Lie and As.

Consequently, there are Koszul duality functors
Dyt Alge,, — Algh Dyt Alg,, —> Algy

sending a commutative (associative) algebra A to the linear dual of the cofree coLie (coassocia-
tive) coalgebra on A[1], with differential induced by the multiplication on A. These constructions
preserve quasi-isomorphisms, so that they indeed induce functors of co-categories. Theorem 1.1,
or more precisely Theorem 5.1, then yields equivalences

T[-1] T[-1]
FMP, 7 Alg . FMP 7 Al
Com T nge As T gAs

where the functor MC is defined such that for a pair (g, A) of a Lie algebra and an Artin
commutative algebra (respectively, two associative algebras)

MC,(A) = Map(D(4), 0)

Of course, these two cases of the theorem have already been established by Pridham [46] and
Lurie [38]. To illustrate these equivalences (and motivate what will follow), let us recall how these
equivalences can be used to study deformations of algebras and modules:

Example 3.1. Suppose that B is a connective associative algebra and M a connective B-module.
Then one can consider the associative formal moduli problem

DefM . ArtAS H S, DefM(A) = MOdA+®B XMde@B {M}

sending a (non-unital) associative algebra A to the space of all AT ® B-modules M’ equipped with
a B-linear equivalence k ® 4+ M’ ~ M. This formal moduli problem is classified by the derived
endomorphism algebra RHomg(M, M) [38, Corollary 5.2.15], that is, the endomorphism algebra
of a cofibrant resolution of M over B.

Example 3.2. Suppose that @ is a connective k-operad and that R is a connective k-linear @-
algebra. Then one can consider the deformation problem

Defy : Arteory — S Defr(A) = AlgA+®@ Xalg, {R}

sending a (non-unital) commutative algebra A to the space of all A*-linear @-algebras R’ (equiv-
alently, algebras over the tensor product A™ ® @) equipped with a @-algebra equivalence k ® 4+
R’ ~ R. The Lie algebra classifying this formal moduli problem is given by the derived derivations
of R, that is, the derivations of a cofibrant replacement of R [26, 43].
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Remark 3.3. When @ is an operad concentrated in arity 1 (that is, an algebra), Example 3.2 is
simply the restriction of Example 3.1 to commutative Artin algebras. This is reflected in the fact
that the Lie algebra classifying commutative deformations of a B-module M is the Lie algebra
underlying the associative algebra RHomy(M, M). We will come back to this in Section 3.2 and
(in more detail) in Section 6.

Example 3.4. For an operad @ and a @-algebra (R, ), one can also consider the commutative
formal moduli problem ﬁR sending A to the space of A*-linear @-algebra structures on A™ ® R
with a @-algebra equivalence k ® 4+ (AT ® R) ~ R. Note that this differs from Example 3.2: we
only consider deformations of (R, 1) whose underlying complex is the trivial deformation A* ® R
of the complex underlying R (that is, we do not deform the differential).

Note that a @-algebra structure on R ® A" is equivalent to the datum of a k-linear operad map
to the (A*-linear, non-augmented) endomorphism operad of A*™ ® R

@ — End,+(A* ® R) ~ End(R) ® A*.

Here the equivalence follows from the fact that At is Artin, so in particular perfect as a k-module.
Using this, it follows that the space Defy(A™) is equivalent to the space of dotted lifts in the
following diagram in the oo-category Op,, of k-linear operads:

End,(R) @ A*

e
i (3.5)

The commutative formal moduli problem from Example 3.4 makes sense more generally:
instead of deforming an operad map into the endomorphism operad End; (R), one can take any
map of k-linear operads ¢ : @ — 9 To describe the associated Lie algebra, let us suppose that
@ = Q% arises as the cobar construction of a k-cooperad (which can always be arranged up to
quasi-isomorphism, cf. Proposition A.22) and recall the following construction:

Construction 3.6 (Deformation complex). Let &% be a (not necessarily augmented) k-linear
operad, € a k-cooperad with cokernel € of its coaugmentation, and @ = Q%. The complex

a = Hom(%,9) = [ | Hom(%(p). ) *
p

of maps of symmetric sequences % —> Pcomes equipped with a binary operation %, such that
(¢, 9] = ¢ % P — (2)I?I'¥lp x p endows g with the structure of a dg-Lie algebra [40, Proposition
6.4.7]. Informally, ¢ * ¥(c) is obtained by taking the sum of all partial cocompositions of ¢ into
two elements of &, applying ¢ and 9 to them and then applying the composition in 2 (see also
Construction A.17 and Remark A.19 for more details).

An operad map ¢ : @ = Q€ — Pthen corresponds to a Maurer-Cartan element in g [40,
Theorem 6.5.7] (or see Proposition A.20). Given such amap ¢ : @ — & let us write

g¢ = (g’ d+ [¢’ _])
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for the twisting of g by the Maurer—Cartan element ¢. This is again a dg-Lie algebra for the original
bracket [—, —].

Let ¢ : Q€ = @ — Pbe a map from an augmented to a not necessarily augmented k-linear
operad. The deformations of ¢ determine a formal moduli problem

Def . o o(A) = Mapoy(@, @ A*) Xyap, (0. {6} (3.7)
sendingeach A € Alg?:rgm to the space of deformations of ¢ (as in Diagram (3.5)). This deformation
problem is classified by the Lie algebra g%, as illustrated by the following two observations:

Lemma 3.8. Suppose that g is a Lie algebra and that A is strictly Artin. If one chooses a fibrant
simplicial resolution of g, then the space MC(A) can be modelled by the simplicial set of Maurer-
Cartan elements

MC,(4) = MC(g. ® A).

Proof. For strictly finite-dimensional A, the Lie algebra D(A) = D|;.(A) freely generated by
AV[-1], with differential given on generators by the linear dual of the product. If A is further-
more nilpotent, then D, ;(A) is cofibrant: the dual of the adic filtration on A yields a filtration on
D(A) where each stage is obtained from the previous one by adding generators whose differential
is contained in the previous stage. The mapping space Map, ;.(D(A), g) can then be modelled by
the simplicial set of maps D(A) — g.. Since D(A) is quasi-free on AV[—1], such maps are deter-
mined by degree 1 elements in A ® g, and compatibility with the differential translates into the
Maurer—Cartan equation [40, Corollary 11.1.4]. O

Proposition 3.9. Let ¢: Q€ = @ — Pbe as above and let A be a strictly Artin commutative
dg-algebra. Then there is an equivalence Def $: o AA) ~ MC¢ (A).

Proof. Let us start by recalling the following property of the twisting of a Lie algebra by a Maurer-
Cartan element: a degree 1 element ¢, € g® ® A is Maurer-Cartan element if and only if the
element ¢ ® 1 + ¢, defines a Maurer-Cartan element in g ® A* = (g ® k) ® (g ® A). Since A
is finite dimensional, the Lie algebra ¢ ® A" coincides with the Lie algebra from Construction 3.6
applied to € and 2@ A*. By the discussion there, we obtain bijections

MC(g? ® A) = MC(g ® A™) Xyyc(g) {$} = Home (06, 2@ A) Xijom (6. 19}

to the set of maps of dg-operads Q€ — P® A which reduce ¢ modulo A.

Now note that Construction 3.6 is natural in & A fibrant simplicial resolution &, of the operad &
with % = Ptherefore gives rise to a simplicial Lie algebra g?, which forms a simplicial resolution
of g®. Lemma 3.8 and the previous argument then show that the space MC o (A) can be modelled
by the simplicial set

Homopdg(Q%, @ ® A+) XHomOpdg(QﬁFf.) {¢}
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Since Q% is a cofibrant operad and & ® A™ is a simplicial resolution of Z® A*, the simplicial set
Homopdg (Q€, 2 ® At)isamodel for the space Mapop(Q%, PR AT). Furthermore, note that the
map of simplicial resolutions & ® AT — & is a Reedy fibration between simplicial resolutions
(the relative matching maps are given by the surjections %, ® A" — M,(2£) @ A™ Xy () %)
Consequently, the map of simplicial sets Homopdg(Q%, P RAY) — Homopdg(Q%, P)isaKan
fibration [29, Theorem 16.5.2]. The above pullback is therefore a homotopy pullback, so that it
indeed models the space Def . ,_, AA). O

3.2 | Permutative deformation theory

In this section, we will spell out the contents of Theorem 1.1 in a bit more detail for a less classical
pair of Koszul dual operads: we will consider deformation problems whose associated Lie algebra
arises from a pre-Lie algebra.

Definition 3.10. A pre-Lie algebra is a vector space V equipped with a bilinear operation {—, —}
such that for every x,y,z € V,

{{x’ y}a Z} - {x5 {ya Z}} = {{xv Z}’ y} - {x’ {Z’ y}} .
Such pre-Lie algebras are algebras over a k-linear operad preL.ie.

Definition 3.11 [10]. A permutative algebra, or Perm-algebra, is an associative algebra (X, -) such
that for every x,y,z € X,

x-y-z2)=x-(z-y). (3.12)

One easily sees that permutative algebras are algebras over a k-linear operad Perm (which in fact
arises from an operad in sets).

The operads Perm and preLie are both binary quadratic, and it is not hard to verify that they are
each others quadratic dual. Consequently, there is a functor of co-categories

D: AlgPerm H Alggfeue; A H BcopreLie(A)v (313)

sending a permutative algebra A to the k-linear dual of its bar construction, that is, of the
cofree pre-Lie coalgebra generated by the suspension A[1], with differential determined by
the permutative structure on A [21, 40] (or see Definition A.30). This construction preserves
quasi-isomorphisms and hence descends to a functor of co-categories.

Since the operads Perm and preLie are Koszul [11], we then have the following special case of
Theorem 1.1 (made slightly more precise, as in Theorem 5.1):

Theorem 3.14. For every pre-Lie algebra g, consider the functor

MC, : Artpey —> §; A —> MappreLie(Q(A),g).
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Here the domain is the co-category of Artin permutative algebras, that is, A such that H*(A) is finite
dimensional and concentrated in degrees < 0, and such that H°(A) is nilpotent (see Lemma 2.8).
This determines an equivalence of co-categories

MC: Alg, .. ——> FMPpeqp,.

Remark 3.15. The operad Perm fits into a sequence of Koszul binary quadratic operads

As —> Perm — Com,
(compatible with quadratic data) whose quadratic dual sequence is
As «— preLie «— Lie.

This dual sequence sends the Lie bracket to the commutator of the pre-Lie structure (respectively,
of the associative product). The equivalence from Theorem 1.1 is natural in these operads, in
the sense that the equivalence of Theorem 3.14 and the equivalences from Section 3.1 fit into a
commuting diagram of co-categories (Proposition 6.10)

AlgAs % AlgpreLie —> AlgLie

s & L

FMPAS H 1:“NIPP(-Hm H FMPCom'

Here the top horizontal maps forget algebraic structure, while the bottom horizontal maps restrict
formal moduli problems along the forgetful functors Artc,,, — Artp.,,, — Art,,. This tells us
in particular that a commutative formal moduli problem lifts to a permutative one (respectively,
to an associative one) if and only if the Lie bracket on its tangent complex arises from a pre-Lie
structure (respectively, an associative structure).

In fact, this same remark applies to any other map #— @ of Koszul binary quadratic operads,
with Koszul dual map @' — .

Before providing several examples, let us give a more explicit description of the value of the
permutative formal moduli problem MC, classified by a pre-Lie algebra g on a strictly Artin per-

mutative algebra A. To this end, note that the tensor product g ® A of a pre-Lie algebra g and a
permutative algebra A is a Lie algebra under

[x®a,y®b] :=(-DV{x,y}@a-b—(-1)IFDVy x}@a-b.
Lemma 3.16. Suppose that g is a pre-Lie algebra and that A is strictly finite-dimensional nilpotent
permutative algebra A. If one chooses a fibrant simplicial resolution g, of g, then the space MCy(A)
can be modelled by the simplicial set of Maurer-Cartan elements
MC,(A4) = MC(g. ® A).

Proof. The proof of Lemma 3.8 carries over verbatim (or see Remark 7.21). O

A similar result applies to any Koszul dual pair of binary quadratic operads.
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Example: two-parameter permutative deformations

Let A be the quotient of the free permutative algebra on two degree zero generators 7, € by the
relations 72 - € = 0 = 2. As a vector space, it admits the following basis: {#",e - h™|n > 1,m > 0}.

Lemma 3.17. For every pre-Lie algebra g, the Maurer—Cartan set of ¢ ® A consists of pairs (X,Y)
of degree one elements in g[h] = g @, k[h] such that

X(0) =0, dX +{X,X}=0 and Vy(Y)=0,
where Vy = d — (—1)I71{—, X}.
Proof. A degree one element y in ¢ ® A is a (finite) linear combination

y:ZXn®h”+ZYm®ehm,

n>1 m=0

where the X,, and Y, have degree one. The Maurer-Cartan equation dy + {y, y} = 0 then trans-
lates into two infinite families of equations: looking at the coefficient of 7" for each n > 1 and the
coefficient of 2™ for each m > 0 gives

dX, + Y X, X)}=0 and dY, + Y Vi, X}=0.
k+l=n k+l=m

Writing X := Y, X, h" € h-g[h] and Y =} _Y,h" € g[h], these two families of equa-
tions are equivalent to the two equations dX + {X,X} = 0and dY +{Y,X} = 0. O

Remark 3.18. Observe that this is different from what we would get by looking at the Maurer-
Cartan set of ¢ ® C, where C is the non-unital commutative algebra generated by 7, € subject to
the relation €2 = 0: the equation Vy(Y) = 0 would have to be replaced by dy(Y) = 0, where d, =
d+[X,-].

The permutative algebra A introduced above is not Artin, but each finite-dimensional quotient
A, = A/(h") is. Using Lemma 3.17, one sees for instance that the space of Maurer-Cartan ele-
ments in ¢ ® A, is the space of pairs of 1-cocycles (Y, X) in g together with a null-homotopy of
{Y, X}

MCg(AZ) ~ hofib<(1—<1g)><2 {_i T<29> .

Deforming trivial morphisms of operads

A standard source of pre-Lie algebras is given by convolution pre-Lie algebras [40, Section 6.4]
(see also Remark A.19). We have already seen these pre-Lie algebras implicitly in Construction
3.6: if € is a k-cooperad, € the cokernel of its coaugmentation and %be a k-linear operad (not
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necessarily augmented), then the convolution pre-Lie algebra is given by

¢ = [ Hom(%(p), 9(p)>2p

p=0

with pre-Lie structure given by the operation x built from the partial composition of and par-
tial cocomposition of € (see Construction 3.6 or Construction A.17). Note that g arises as the
totalization of a Z,,-graded pre-Lie algebra g&', where

¢%(p) = Hom (%(p), g(p))Zp

and the pre-Lie operation x has weight —1 with respect to the Z,-grading.
To describe the permutative deformation problem classified by the pre-Lie algebra g, observe
that for every permutative algebra A, there is a non-unital operad Q A, such that:

* the underlying symmetric sequence is given by (2Q® A)(n) := An) @ A;
* the composition operation reads as

(%o ® ap) o (P ® ay, ""lpp ® ap) = i(EDO o (Py, ... ,d’p)) ®ap-a;--ap

where + is a Koszul sign. Associativity of the composition follows from the associativity of
permutative algebras and the permutative axiom (3.12), while the equivariance/commutativity
directly follows from (3.12).

Now let Q& denote the augmentation ideal of the cobar construction of ¥ and consider the functor

Desz 0o - Altpemy —> 83 A —— MapOpnu (5‘6,95 ®A) (3.19)

sending every Artin permutative algebra to the space of non-unital operad maps Q% — PQ A.
Using that ® (—) sends homotopy pullbacks of permutative algebras to homotopy pullbacks of
non-unital operads, one sees that F is a permutative FMP. Adding units to our operads, one can
think of F as the FMP describing permutative deformations of the trivial map of operads

0: 06 —3% k —> P.

In particular, the restriction of Def,. o4, »to Artin commutative algebras coincides with the com-
mutative deformation problem (3.7) for the trivial map 0. Note that this map 0 corresponds to the
zero Maurer—Cartan element in g, that is, the Lie algebra g2 is simply the Lie algebra underlying
the convolution pre-Lie algebra g.

Proposition 3.20. Let € be a k-cooperad, Pa (not necessarily augmented) k-linear operad, and
g their convolution pre-Lie algebra. For every strictly Artin permutative algebra A, there is an

equivalence
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In other words, the convolution pre-Lie algebra g classifies deformations of the trivial operad
map Q% — P When P= End(V) is the endomorphism operad of a complex V, g therefore
classifies deformations of the trivial Q%-algebra structure on V.

Proof. The proof is analogous to that of Proposition 3.9: a fibrant simplicial resolution &% of
Pinduces a simplicial resolution g, of the pre-Lie algebra g and Lemma 3.16 then asserts that
MC,(A) can be modeled by the simplicial set of Maurer-Cartan elements MC(g. ® A). Unravel-
ing the definitions, one sees that this simplicial set coincides with the simplicial set of maps of
non-unital operads Q% — P ® A, which in turn models the mapping space Mapgnu (Q%, 2®

A) = Defy. g AA). O

3.3 | Operadic deformation theory

In the previous section, we have seen how the convolution pre-Lie algebra

a = [T Hom(@p). #p))

p>0

classifies permutative deformations of the trivial map of operads Q€ — k — 2 In fact, the pre-
Lie algebra g arises from an even richer algebraic structure: the sequence of mapping complexes
Hom(%( p), Ap)) forms a non-unital operad, the convolution operad of € and £ In this section,
we will explain how this additional algebraic structure can be understood from a deformation
theoretic point of view.

Let us start by considering formal moduli problems that are classified by (monochromatic)
non-unital operads. Here we take a non-unital operad to be a symmetric sequence equipped with
partial composition maps satisfying the usual associativity and equivariance conditions (see also
Definition 3.27 below). In particular, the category of non-unital operads is equivalent to that of
(augmented) k-operads by the functors 2 2 adding a unit (in arity 1) and %~ Ztaking the
augmentation ideal. In particular, in analogy to the functor (3.13), we have a functor

D: 0p™ — Op™?; P — D(P) = B(PH)
taking (the augmentation ideal of) the dual operad in the sense of Definition 1.2. We can then mim-
ick the construction in Theorem 3.14 to associate to a non-unital operad a formal moduli problem
indexed by the co-category Arty, of Artin non-unital operads. Theorem 1.3 (or more precisely,

Theorem 5.1) then yields:

Theorem 3.21. For every non-unital operad & consider the functor
MCg : Artg, —> 8; R —> Mapopnu(ﬁ(gi),@).

This establishes an equivalence of co-categories MC : Op™ — FMP,,,.

Remark 3.22. Throughout this section, it will be convenient to slightly enlarge the subcategory
Artg, C Op™ of Artin operads so that it is also closed under retracts. This will not change the
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theory, since an $-valued diagram on retracts of Artin operads is determined uniquely by its value
on Artin operads as in Definition 2.2. The Artin operads in this slightly broader sense then have
the following simple description, as in Lemma 2.8: they are those non-unital symmetric operads
% such that H*(Z) is concentrated in non-positive degrees, of finite total dimensional (summing
over degrees and arities) and H(2) is a nilpotent operad.

Example 3.23. Let V be a chain complex in degrees < 0 and consider the functor associating
to each Artin non-unital operad & the space of %*-algebras A together with an equivalence
k o4+ A~V after inducing along the augmentation of #*. One can show that this defines
an operadic formal moduli problem (using that the composition product o is exact in the first
variable). The operad classifying this is the coendomorphism operad

coEnd(V)(n) = Hom(V, V™).

To exemplify this, suppose that & is strictly finite dimensional, nilpotent and in degrees < 0. Then
there is an isomorphism D(%) = B(%)" = Q(%*V) between the dual operad of &% and the cobar
construction of the cooperad #Z*V (which is a cofibrant operad). An operad map ¢ : QEY) —
coEnd(V) is uniquely determined by its restriction to the generators. This restriction in turn cor-
responds to a collection of equivariant maps §,, : %V(n) ® V. — V®", or equivalently (since %
is finite-dimensional), toamap 6 : V — % o V. Unraveling the definitions, ¢ is a map of oper-
ads precisely when #* o V is a dg-#*-algebra whose differential is given on generators by d + &.
Such an algebra determines a deformation of V over %.
Note that this recovers Example 3.1 by seeing an associative algebra as an operad in arity 1.

To see how Theorem 3.21 fits into the framework of Theorem 1.3, let us recall how
(monochromatic) operads themselves are algebras over a coloured operad.
The operad of non-unital operads

Let us start by recalling the operad whose algebras are non-unital non-symmetric operads. To this
end, consider the linear category k" having non-negative integers as objects and morphisms

K (m, n) = {0 if m#n

k else.

Note that k"$-operads are just (augmented) Z-coloured operads. Non-unital non-symmetric
operads then arise as algebras over the following quadratic operad:

Definition 3.24 (see [52]). Let a,b and c denote colours in Z, and let 0™ be the k"$-operad
generated by o; : (a,b) — a+b —1fori=1,...,a, subject to the relations

( 1°j)
(a,b,c) —)a (a,b+c—1)

<oi,c>l l (3.25)

(a+b-1,c) —— a+b+c-2
i+j—1
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forl<i<aand1l<j<b,and

(a,b,c) ——— (a,c,b) ﬂ) (a+c-1,b)

oel = (3.26)

(a+b-1,0) >a+b+c—-2

o;

fori<i<j<a.

To discuss the case of non-unital symmetric operads, let us introduce another linear category
k[X], having objects the non-negative integers, and

0 ifg#p
k[Z](p,q) :=
[Z1p. ) {k[Ep] else.
Note that k[X] ~ k[Z]°P by taking inverse permutations. There is a quadratic k[Z]-operad O%Y™
whose algebras are non-unital symmetric operads:

Definition 3.27 (see [17, Definition 1.7]). Let OY™ be the unital non-augmented operad gener-
ated by o; : (a,b) — a + b — 1 as in Definition 3.24 and 0 : a — a for o € Z, subject to the
equations (3.25) and (3.26), together with the group structure equations

c-t=(01): a—a 0, TEZ,
and the equations
(a,7) (o,b)
(a,b) ———— (a,b) (a,b) ———— (a,b)
l l l l” (3.28)
a+b—lﬁ/la+b—l a+b—17)a+b—1

where for /i and i /o are some permutations of a + b — 1 determined from 7, o and the number
i. Finally, we impose the relation that the identity of the group 1, € X, is identified with the
operadic unit 1, € 6%™(a; a).

Remark 3.29. Unlike the usual conventions in this manuscript, we are forced to consider &Y™
as a unital non-augmented operad. The reason for this is that there is no way to define an aug-
mentation since the relations o - c~! produce the unit. Comparing with [17], we notice that there
are other problems with this presentation that heuristically come from seeing the symmetric
groups as additional structure: the presentation is not quadratic (and, for example, a result like
Proposition 8.9 is not expectable for the operad of symmetric operads).

Instead, it is more convenient to consider 0*Y™ as an operad relative to k[X]. In this case,
there is a natural augmentation O™ — k[Z], so that O™ is a k[X]-operad in the sense of Sec-
tion A.1. We will show in Section 8 that 0™ is Koszul self-dual relative to k[X], that is, that
O™ ~ D(OY™). Theorem 3.21 then arises as a special case of Theorem 1.3:
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Proof of Theorem 3.21. We apply the main Theorem 1.3 (or more precisely, Theorem 5.1) to the
k[Z]-operad 6%Y™. To see that @Y™ indeed satisfies condition (3), note that Y™(1) = k[Z], so that

k[Z] ol k[Z] = By (0Y™) = (6¥™{-1})".

To see that this is concentrated in increasingly negative cohomological degrees as the arity
increases, one uses the same argument as in the proof of Theorem 1.1. Finally, the functor
D Alggym — Alggfym appearing in Theorem 5.1 coincides with the functor taking dual operads,
by Proposition 8.12. O

Connecting permutative and operadic deformation theories

Let us now spell out the relation between permutative and operadic deformation theory. First,
we have seen in Section 3.2 that every permutative algebra A defines functorially a non-unital
symmetric operad L(A), given in each arity by the permutative algebra A and with all partial
compositions given by the product of A. When A is Artin, L(A) is not quite Artin (it is concentrated
in all arities, hence not finite dimensional). However, one can show (Lemma 3.34) that it arises as
the limit of a (canonical) object L(A) € Pro(ArtOp), given by a pro-system of Artin operads --- —
L(A); — L(A), which is eventually constant in each individual arity.

On the other hand, if Pis a non-unital operad, then ] >0 Ap)*r can be equipped with the
structure of a pre-Lie algebra [40, Proposition 5.3.17]. The equivalences from Theorem 3.14 and
3.21 are intertwined by these constructions:

Proposition 3.30. There is a commuting square of co-categories

Opnu % FMP@sym

M| e

A]'gpreLie % FMPPerm'

Here the right vertical functor sends an operadic formal moduli problem F to the permutative formal
moduli problem L*F(A) = F(L(A)) := lim,, F(L(A),).

In other words, a pre-Lie algebra g arises as g = szo A p)*r if and only if the corresponding
permutative deformation problem lifts to an operadic deformation problem.

Before addressing the proof of Proposition 3.30, let us first describe its implications to the
deformation theory of operad maps.

Example 3.31 (Deforming trivial morphisms of operads (continued)). Let € be a k-cooperad and
Pa k-linear operad. The convolution pre-Lie algebra g = [] ., Hom, (8(p), A p))EP then arises
from the (non-unital) convolution operad

p>0

Conv(%, A(p) := Hom, (é(p), 9(19)),

whose operad structure arises from the convolution of the (non-unital) cocomposition on & and
the composition on 2
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The operadic deformation problem associated to the convolution operad sends an Artin operad
Z to the space of non-unital operad maps 5(%) — PQp X to the Hadamard (that is, aritywise)
tensor product of Pand %. To see this, note that for a strictly Artin operad &, the following maps
are in 1-1 correspondence:

(1) non-unital operad maps Q%) — PRy &

(2) twisting morphisms [ PRy K

(3) twisting morphisms %" --> Conv(%, 9,

(4) non-unital operad maps D(XZ) —> Conv(E, P.

Here (1) <= (2) and (3) < (4) follow from the universal property of the cobar construction,
together with the fact that D(%) = B(%+)Y = Q(%*V) for finite dimensional %. The bijec-
tion (2) <= (3) follows by unraveling the definition of a twisting morphism (see, for example,
Definition A.17); at the level of the underlying maps of symmetric sequences, it simply sends
a X,-invariant map %(p) — Ap) @ A(p) to the adjoint map Z(p)¥ — Hom(E(p), g(p))zp.
Replacing Sby a fibrant resolution, one obtains an equivalence between spaces of operad maps
asin (1) and (4).

Proposition 3.20 now asserts that the permutative deformation functor associated with g =
T] Conv(%&, A( p)*» sends a strictly Artin permutative algebra A to the mapping space

lim Mapo,e (5(%), POy L(A)n> ~ Mapo,n (%), 2@y L(A))

(here we use that the tower of L(A),, is eventually constant in each arity). But the Hadamard tensor
product 2®;; L(A) simply coincides with the levelwise tensor product of #with the permutative
algebra A. In other words, we precisely recover the permutative deformation problem Def,. oo, »
(3.19). -

In the remainder of this section, we will prove Proposition 3.30 by describing the relation
between the operad O™ and the operad Perm. This requires comparing operads defined over
a different base: Perm is defined over the base field k and @Y™ over k[Z]. To do this, note that
each k-linear symmetric sequence .Z gives rise to a k[Z]-symmetric sequence

M) ifng+--+n=n+k-1

0 otherwise

L(AM)(ny,s ..., 1y 1g) = {

z,d . zd
£ - BiMod™®

carrying a trivial £, X -+- X X, action. This defines a functor L : BiMod, et

Proposition 3.32. The functor L extends to a functor
d d
L: Opf — Opk“[gz]

which preserves (Koszul) quadratic operads and their quadratic duals. Furthermore, at the level of
algebras there is an adjoint pair

L: Alg® —>< Algit ¢ R.
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If A is a Q-algebra, then the underlying k[X]-module of L(A) is the constant one L(A)(p) = A. The
right adjoint R is given by R(</) =[] » N p)*e.

The proof of Proposition 3.32 is not difficult, but due to some technical points we leave the
details to Section 8.3 (where quadratic duality of k[X]-operads is discussed as well). For now, let
us point out that the explicit formula of the functor L : Ong — Opifz] shows that it commutes
with linear duality and preserves quasi-isomorphisms. Furthermore, Proposition 3.32 implies that
D(L(Q)) ~ L(Q)' = L(@") for any binary Koszul operad @, and that Theorem 1.1 applies to such
operads as well (cf. Observation 8.3).

We can now express the fact that every permutative algebra gives rise to an operad (constant in

every arity) in terms of a map of k[Z]-operads.

Lemma 3.33. There is a natural map of binary quadratic k[X]-operads O™ — L(Perm). Koszul
dually, this induces a map of binary quadratic k[Z]-operads L(preLie) — O™,

Proof. By Proposition 3.32, the k[X]-operad L(Perm) is generated by operations u: (a,b) —
a + b —1 which are ¥, X 2, X 2, ,_-invariant, subject to the associative and permutative rela-
tion (3.12). At the level of quadratic data, the map O™ — L(Perm) then sends each operation
o; : (a,b) > a+ b —1totheoperation u: (a,b) >a+b—1. O

Notice that both adoint functors L and R from Proposition 3.32 preserve quasi-isomorphisms
(they actually form a Quillen pair), so that they induce an adjoint pair on co-categories.

Lemma 3.34. Let @ be a Koszul binary quadratic operad in degree zero and A € Art,. Then the
formal moduli problem

Spf(L(A)) = Map, 4, (L(A), =) : Artyqy —> §

is corepresentable by a pro-Artin L(Q)-algebra L(A) which is eventually constant in each fixed arity.

Proof. The formal moduli problem Spf(L(A)) is classified by the dual L(@')-algebra D(L(A)).
It then suffices to verify that this L(@')-algebra can be written as the colimit of a sequence 0 =
D(L(A))y = D(L(A)); — ... where each D(L(A)),, is obtained from the previous one by adding a
positive degree cell (cf. (4.21)), so that in total we add only finitely many cells in each arity. Indeed,
by Theorem 5.1, this means that each D(L(A)), is the dual of an Artin L(@)-algebra L(A),,, giving
the desired pro-system".

Now L is monoidal and preserves duals, so we can identify D(L(A)) = L(D(A)). Since A is
Artin, D(A) is obtained by such a finite process of cell attachments (Theorem 5.1). Concretely,
this means that D(A) arises as a quasifree @'-algebra generated by x,, ..., x,,, where d(x;) is an
expression in Xy, ...,x;_,. Then D(L(A)) =~ L(D(A)) is a quasifree L(@')-algebra generated by
Xq,p, s Xp,p fOr €ach arity p. One now obtains the desired sequence by giving the generator x;

Lp
p+i

weight ( 5 ) + i and letting D(L(A)),, be the subalgebra on the generators of weight < n. O

T Technically, the L(A), thus obtained are not Artin algebras, but only retracts of such. One can always enlarge the
subcategory of Artin L(@")-algebras to include such retracts, cf. Remark 3.22.
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Lemma 3.35. Let @ be a Koszul binary quadratic operad over k with Koszul dual @'. Then there is
a commuting diagram of co-categories

Alg; gy ——> FMPyq,

") l (3.36)

Alg, —=—% FMP,

where the right vertical functor is given by L*F(A) = F(L(A)) := lim,, F(L(A),).

In other words, L*F parametrizes deformations along pro-Artin L(@)-algebras of the form L(A),
with A a Artin @Q-algebra.

Proof. The functor L: Mod; — Modyy taking constant symmetric sequences preserves ten-
sor products and linear duals, and hence commutes with taking the dual of the (operadic) bar
construction. In other words, we obtain a commuting diagram of co-categories

Alg? = Alg, —— FMP

0 lL VL,

op B(-)

The composite horizontal functors have a very simple description: they send a @-algebra A to the
formal moduli problem Spf(A) = Map,(A, —) of Example 2.13. Consequently, the right vertical
functor L, (which is defined uniquely by the above diagram) sends the formal moduli problem
corepresented by an Artin @-algebra A to the formal moduli problem Spf(L(A)). By Lemma 3.34,
this formal moduli problem is pro-represented by L(A), that is, Spf(L(A)) = colim,, Spf(L(A),,)
with L(A), Artin. Passing to right adjoints then yields the desired square (3.36). O

Proof of Proposition 3.30. Compose the square (3.36), with @ = Perm and @' = preLie, with the
square

Opnu % FMP@sym

y 1

AlgL(preLie) - 7 FMPL(PEFW)

obtained from naturality with respect to the map of k[Z]-operads Y™ — L(Perm) (Proposi-
tion 6.10). O
3.4 | Splendid operads

The main technical condition of Theorem 1.3 is Condition (3), which asserts that the operad is
splendid in the following sense:
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Definition 3.37. Let %be a k-operad. We will say that Pis splendid if its 0-reduced part %! (the
suboperad such that 2%1(0) = 0 and agrees in other arities) satisfies the following condition: the
derived relative composition product

A1) ol A1)
is eventually highly connective (Definition 2.7).

Remark 3.38. At least for connective 9 this definition should be considered as a homotopy-
invariant reformulation of the following condition: %! admits a free resolution whose generators
are in increasingly negative degrees (as the arity increases). See Section A.4.

An immediate natural question to ask is therefore whether a given operad is splendid. Let us
start by making some general observations about the property of being splendid. First of all, let
us observe that more Koszul operads are splendid than just the binary ones considered in the
Introduction, so that Theorem 1.1 applies to these as well:

Observation 3.39. A (non-necessarily binary) Koszul quadratic operad T(E)/(R) living in non-
positive degrees generated by a symmetric sequence E with generators in bounded arity (that is,
E(n) = 0for n > 0)is splendid. Indeed, its Koszul resolution has generators sitting in increasingly
negative degrees by the same argument as in the proof of Theorem 1.1.

Example 3.40. For a pair of Koszul dual quadratic operads (% %) in degree 0, Observation 3.39
is of course symmetric in and . For example, in addition to commutative formal moduli prob-
lems being classified by Lie algebras, formal moduli problems over Artin Lie algebras are classified
by (non-unital) commutative algebras. We do not know of a good geometric interpretation of this
equivalence, but let us point out the following.

Suppose we are working over k = Q and consider @ as a non-unital commutative algebra.
Then the formal moduli problem MCg : Art;; — & sends an Artin Lie algebra g, that is,
one with H*(g) finite dimensional, nilpotent and in non-positive degrees, to the corresponding
rational homotopy type. Indeed, Theorem 5.1 identifies MC(g) ~ MapCOm(EZE(g), Q) with the
spatial realization of the corresponding Sullivan model. More generally, for any unital commu-
tative A, one can identify MC4(g) with the A-points of the (rational) schematic homotopy type
corresponding to g.

Example 3.41 (and non-example). A quadratic operad that does not fit the constraints of the
previous observation is the gravity operad Grav [19, Theorem 4.5]. The operad Grav is generated
by a sequence E such that E(n) is 1-dimensional and concentrated in degree —1. Clearly such an
operad cannot be splendid, as the generators of a resolution need to cover all generators of Grav.

In fact, there is some ambiguity in the literature regarding the degrees of these operads. We
denote by Grav what we will also call the gravity operad, which has the same quadratic presenta-
tion but with generators V(n) a 1-dimensional space concentrated in degree 2 — n (in other words,
Grav is obtained from Grav by reversing the degrees and operadicaly shifting down by 1).

The operad Grav is Koszul and its Koszul dual is the operad HyperCom of hypercommutative
algebras [20], generated by one operation in arity n in degree 2(n — 2) for all n > 2. It follows that
Grav is splendid and from Theorem 1.3 we deduce that the co-category FMPg,,, is equivalent to
the co-category of hypercommutative algebras.
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Note that one cannot exchange the roles of Grav and HyperCom in this statement: HyperCom is
not splendid and Theorem 1.3 does not hold for hypercommutative formal moduli problems.

Remark 3.42. Suppose that Pis a monochromatic augmented operad which is 1-reduced, that is,
KO0) = 0and A1) = k - 1. If Pis connective, then the shifted operad 1} satisfies the conditions
of Theorem 1.3. The case where Pis in addition aritywise finite dimensional also appears in work
of Brantner-Mathew [4, Corollary 5.59] (see also [9]).

Next, note that an operad typically satisfies the conditions of Theorem 1.3 as soon as its
cohomology does:

Lemma 3.43. Let Pbe a (coloured) connective operad over Q. If H*(P) is splendid, then Pis splendid
as well.

Proof. We can assume that %is 0-reduced and consider the simplicial resolution
- =3 PP oP(1) =F PM)oP) -y P(1)hP).

Taking (at each tuple of colours) the corresponding normalized cochains, we obtain a (cohomo-
logically) Z, x Z,-graded bicomplex, with an associated convergent spectral sequence

E = H'(H* K1) ol JH* A1) = H (AL o, AD)).

Here H*A1) oi‘l »H *A1) is computed in the category of (non-positively) graded symmetric
sequences of complexes. If H*2is splendid, then p-ary part of the E,-page is concentrated in
degrees *< 0 and r < f(p) < 0, with f(p) iR —o0. Then the p-ary part of A1) og, A1) is also
concentrated in cohomological degrees < f(p), and we conclude that Pis splendid. O

Example 3.44 (Variants of the little discs operads). Using this lemma, one can show that the little
n-discs operad E,, is splendid without having to use that it is quasi-isomorphic to its homology e,,.
Indeed, e, is a binary quadratic Koszul operad [40, Section 13.3.16] and is therefore splendid. In the
next section, we will show that the homology of the framed little n-discs operad is also splendid.

Another application of Lemma 3.43 involves the result of Hoefel and Livernet [30] that the
homology of the Swiss—-Cheese operad (8¢'°" in [30]) is a quadratic binary Koszul coloured operad.
This shows the Swiss-Cheese operad is splendid, even though we do not know a simple model
for its dual.

In the following subsections, we will look at a few examples in a bit more detail.

The homology of the framed little discs operad

Recall that the non-unital little n-discs operad E,, carries an action of SO,, and, following [50], the
framed little n-discs operad arises as the associated semi-direct product [Efnr =E, X SO,,. At the
homological level, e,, := H,(E,) is an operad in the category of modules over the cocommutative
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Hopf algebra H,(SO,,). Likewise, one can express
H,(EM) =: e" = e, x H,(S0,)

as the semi-direct product of e, with H,(SO,). We will show that el and (hence) ET are
both splendid.

More generally, let H be a cocommutative Hopf algebra and let be a k-operad in the (symmet-
ric monoidal) category of modules over H. The semi-direct product %X H is a k-operad arising
from a distributive law (see [40, 8.6.1] or Section 8) as follows.

The underlying symmetric sequence of *X H is & o H, viewing H as an operad in arity 1. The
action of H on 9°gives a map

A:HoP— PoH,

sending h ® ¥ € H(1) @ Ap) to (hV - 1) @ (h® @ --- ® h1*+P)), using the p-fold coproduct of
h. One verifies property (I) from [40, 8.6.1] using the coassociativity and cocommutativity of
the coproduct in H, while property (II) follows from the compatibility of the product and the
coproduct in H. We then have

Lemma 3.45. Let Pbe a 1-reduced k-operad equipped with an action of a cocommutative Hopf
algebra H in degrees < 0. If Pis splendid as a k-operad, then 9’} H is a splendid k-operad.

Proof. The operad X H = 9 o, H is given by H in artiy 1, so we have to show that H oZDOA nH
is eventually highly connective. To see this, we will resolve H as a right & o, H-module. Let
us consider the symmetric sequence BL o, %o H, where BS o, Pis the twisted composition
product associated to the universal twisting morphism 7 : B2--» 9[40, Section 6.5.4] (or see Defi-
nition A.23). Explicitly, B9 o, 9o H is spanned by trees with vertices labelled by 5{1], onto which
we graft to each leaf a 2-level tree with root vertex labelled by %and leaf vertices labelled by H.
The differential is given by (a) applying d or dy; to vertices, (b) contracting edges between A1)
labelled vertices and composing the labels, and (c) for each _9{1]-1abelled vertex furthest from the
root, compose with all Slabelled vertices above it.

Note that B o, PPo H has a manifest right & o, H-module structure which is compatible with
the differential (since parts (b) and (c) of the differential only involved composition in % without
any interference of H). The augmentation B& o, »— k is a quasi-isomorphism [40, Lemma
6.5.9] (or Lemma A.25), so that the induced map B% o, %P0 H — H is a quasi-isomorphism as
well. This is readily seen to be a map of right % o, H-modules.

One can endow B% o, 9o H with an increasing filtration by the number of HA1]-labelled ver-
tices, whose associated graded is the free right % o , H-module on gr(B9). Using this filtration asin
Lemma A.25, one sees that the functor (B# o, Po H) o on 1 (—) preserves quasi-isomorphisms.
This implies that we can compute H O;OA 1 as the (strict) relative composition product

H o, ,Hx~(BPo, PoH) oy, yH=BPoH.
Since H is connective and B(9) is eventually highly connective (since #was splendid), it follows

that H o H = BP0 H is eventually highly connective as well. 1

Pop
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Corollary 3.46. The k-operad eff is splendid. Furthermore, eflr isnaturally a H,(SO,,)-operad which
is splendid.

Proof. The first statement follows directly from Observation 3.39 and the previous lemma. The
second statement follows from Example 8.7. O

The BD-operad

For each n > 0, there is a k[#]-linear operad BD,, which agrees with the (0-reduced) E, -operad
away from 7 = 0 and with the (0-reduced) shifted Poisson operad at 2 = 0 [12]:

BD, ®j,, k[n*] = E,[A*], BD,, ®};, k[1]/h = Pois,.

For example, the BD,-operad from [6, 8] (see also [2]) is the k[#]-operad generated by a commu-
tative product and a Lie bracket of degree 1 satisfying the Leibniz rule, and equipped with the
differential d(— - —) = h[—, —].

Similarly, the operad BD, is obtained as the Rees construction of the associative operad,
equipped with the PBW-filtration [8, 12]; explicitly, a BD; -algebra is a k[/1]-module equipped with
a (non-unital) associative product  and a Lie bracket [—, —] satisfying

[a,b xc] =[a,b] *xc+ b *[a,c] a*xb—>bx*a=h[a,b].
Proposition 3.47. The k[h]-operads BD, and BD,; are Koszul self-dual
D(BD,) ~ BD, D(BD,) ~ BD,{-1}
(relative to k[h]) and satisfy the conditions of Theorem 1.3, so that there are equivalences

FMPgp, —— Algy, 3 X —— Tx[-n], forn=0,1.

Proof. Case n = 0: note that BD, = Free(E)/R is a binary quadratic operad on two generators
u=(—--)and A = [—, —], with differential du = % - 1. Since the relations are the ones of the
usual Poisson operad, its quadratic dual BDEJ = Free(EV)/R* is isomorphic to BD,{1}. To see that
it is Koszul, it suffices to see that

BD|, = coFree(E[1],R[2]) —> B(BD,)
is a quasi-isomorphism of k[#]-modules. To see this, it suffices to verify that the maps

BD,, ®}, k[]/h — B(BD,) ®}, klhl/h

are both quasi-isomorphisms (by derived Nakayama, the second condition implies that the local-
izations at i = 0 are quasi-isomorphic). Because extension of scalars is symmetric monoidal and
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all BDy(p) and BDE)( p) are finite complexes of free k[#]-modules (so that we do not have to derive
the tensor product), the above two maps agree with the maps

(BDq @y k1) —— B(BD, @y kI1*1 )

(BDo ®nl k[”l]/h>i — B<BD0 ®wnl k[h]/h)-

The first map is a quasi-isomorphism between two cooperads which are both quasi-isomorphic
to the trivial cooperad k[#*], while the second map is a quasi-isomorphism because BD, ®
k[n]/h = P, is a quadratic Koszul operad.

Case n = 1: note that BD, = Free(E)/R is a quadratic operad on two binary generators u =
— - —,1 =[—,—], on which X, acts trivially, respectively, by the sign representation. The module
of relations R is generated by:

(J) Jacobi relation [a, [b,c]] + [b, [c, a]] + [c, [a, b]];
(L) Leibniz rule [a,b-c]—c-[a,b]+ b -[a,c];
(A) associativity for a * b := a - b + h[a, b], or explicitly:

(a-(b-c)—c-(a-b))+n(a-[b,c]—c-[a,b]l+[a,b-c]+[c,a-b])
+n?([a, [b,c]] + [c, [a, b]D.

Note that Free(E)(p) and BD, (p) are finitely generated projective (equivalently, torsion free) k[#]-
modules for all p; for BD,(p), this follows from the fact that it arises as the Rees construction of a
vector space with an increasing filtration. It follows that R is also finitely generated and projective.
Note that R has rank 6, since its fibre at # = 0 is the vector space of relations for the Poisson operad
P, which has dimension 6.

Now consider the inner product on E of signature (1, 1), determined by (u, 1) = 1. This induces
an inner product on Free(E)(3) of signature (6, 6), and an explicit computation shows that R C
Free(E)(3) is isotropic, hence Lagrangian. For example, one has

() =(a-(-c)la[b,cll) = (c-(a-b)[c-[a,b]]) =1-1=0
((A); @) =(ha-[b,clila,b-c]) —{(h[c,a-blic-[a,b]) =h—h=0

and ((A); (A)) is given by 2h? times

(a-(b-c)la,[b,cll) = (c- (a,b)[c,[a,b]]) + (a- [b,cl;[a-(b-O)])
—(c-[a,bl;[c,(a-b)]) = 0.

Now consider the quadratic dual BD!1 = Free(EY)/R*. Identifying u¥ < 1 and 1" < y using the
inner product described above and using that the inner product identifies the Lagrangian R with
R*, we obtain an isomorphism BD!1 =~ BD;.

It remains to verify that BD,; is Koszul. This follows as in the case of BD,: we have to show
that the map BDi1 — B(BD,) is a quasi-isomorphism, which can be checked at # = 0 and after
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inverting . Since each BD,(p) is a finitely generated projective k[#]-module and extension of
scalars is symmetric monoidal, one then reduces to checking that BD; ®yp, k[2*] and BD; ®yp
k are Koszul operads. But these are just the associative and P;-operads. O

Remark 3.48. Proposition 3.47 also applies to the operads BD,, with n > 2, which are defined as
the Rees construction of the E,-operads, endowed with their Postnikov filtration. Indeed, by the
(rational) formality of the E,,-operad [55], this filtration splits and one can identify BD,, ~ e, [7].
Probably one can also deduce Proposition 3.47 directly from the self-duality of the E,-operad
[18].

G-equivariant algebras

Suppose that k is a connective symmetric monoidal dg-category. Recall that this sym-
metric monoidal structure can be encoded by a non-augmented k-operad k®, defined by
[k®(cl, s €3 Co) = k(cg ® -+ ® ¢,,5¢)- Note that each [k‘x’(cl, .., €3 —) is a free left k-module (on
¢; ® - ® ¢,). Consequently, a symmetric k-bimodule k® is isomorphic to its k-linear dual (k®)¥
and comes with a cocomposition k® — k® o, k® dual to the composition of k®.

Now let Pbe a k-operad and consider the k-operad ® k® given by the exterior Hadamard
tensor product (A.9). Unraveling the definitions, one sees that a @ k®-algebra is a Jalgebra
in the symmetric monoidal category LModig of k-modules as in Section 1.2 (with ® given by
Day convolution). The fact that [k®(c1, .., Cy;—) is a free left k-module implies that there is an
isomorphism

B (? ®k®) — (B?) @ k®

between the bar construction of 2® k® relative to k and the exterior Hadamard tensor product
of k® with the bar construction of Pover k. This is a map of k-cooperads if one gives B#® k® the
cooperad structure coming from the one on k® = (k®)¥ and BZ

In particular, if Zis a finite type binary Koszul operad, then 2® k® is splendid and its dual
operad (relative to k) is #{—1} ® k®.

Example 3.49. Suppose that G is a reductive algebraic group over k and let Rep; = QCoh(BG)
denote the symmetric monoidal co-category of G-representations. It follows from [5, Corollary
3.22] that Rep; is compactly generated by the finite-dimensional G-representations (concentrated
in degree 0). Let k = Repgd be the symmetric monoidal dg-category of these representations and
note that k is simply a category enriched over vector spaces (in degree zero): there are no higher
Ext-groups since G is reductive. The symmetric monoidal model category LModig then presents
the symmetric monoidal co-category Repy;.

Let us now apply the previous discussion to the operad %= Lie. Then Theorem 1.3 provides
an equivalence between the co-category of formal moduli problems Art ;g6 —> & indexed
by Artin Lie algebras carrying a G-representation, and that of non-unital commutative alge-
bras in Rep,;. This correspondence has been considered extensively in [44, 45] in the study of
pro-algebraic homotopy types.
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Operads with only nullary operations

The following baby-example might also be useful to illustrate what happens for operads with
nullary operations, when the category k has non-trivial (endo)morphisms. Let k be a connective
dg-algebra and let V' be a connective left k-module. There is a k-operad Zwhose algebras are left
k-modules W with a k-linear map V — W: K0) =V, A1) = k, and An) = 0 for every n > 2.
The dual operad (relative to k) is the k°P-operad D, (%) whose algebras are left k°P-modules W
endowed with an k°P-linear map VV[—-1] = Hom, (V[1],k) — W.

In this case, the Koszul duality functor ©: Alg, — Algg’k(% can be identified with the
functor

V /LMod,, — (VV[—l]/RModk)op
(3.50)
(V — W) —> fib(WY — VV).

The category of Artin FPalgebras can be identified with the category of V.— W, where W is a
finitely presented k-module, with generators in non-positive degrees. Using this, one sees that

FMP,, ~ Ind(%)") %, ={V — W : perfect W} C V/LMod,.

Similarly, the category of right k-modules under V'V is compactly generated, so that there is an
equivalence

Algg, (5 =~ Ind(8)) @, = {VY — W : perfect cofibre} C V¥ /RMod,,.

Theorem 1.3 then reduces to the assertion that the functor (3.50) establishes a contravariant
equivalence between €, and %,.

4 | FROM FMPs TO ALGEBRAS

In this section, we introduce the main ingredients that will be used to relate formal moduli prob-
lems of algebras over an operad 9 to algebras over its dual operad D(2) as in Definition 1.2. In
particular, we describe an adjoint pair of co-categories

D: Alg, . ? Algg@): D’

sending an algebra to its (bar) dual algebra (see Section 4.1). This adjunction is an example
of a weak Koszul duality context in the sense of [7] and will be the main actor in the proof
of our main theorem (Theorem 1.3). Indeed, the axiomatic framework developed in [7, 38]
provides explicit conditions under which this adjoint pair induces an equivalence between
D(A-algebras and formal moduli problems over 2 We will recall these conditions in Section 4.2
(see Theorem 4.18).

We follow Assumption 1.10: all k-(co)operads are assumed to be (co)augmented and (filtered)
cofibrant as left k-modules.
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4.1 | Duality for algebras over operads

Let k be a dg-category and let ¢ : € --> Pbe a twisting morphism from a k-cooperad to a k-operad
(see Construction A.17). Recall our convention that & (respectively, &) is always assumed to be
filtered-cofibrant (respectively, cofibrant) as a left k-module, see Assumption 1.10.

Recall that (Proposition A.32) the twisting morphism ¢ gives rise to an adjoint pair

Qy : CoAlge T Algl¥: By.
Taking the linear dual of the bar construction, we obtain a functor
Alg’ — 2 Coalg®® — 5 Algleer
with values in algebras over the dual k°P-operad €V (cf. Proposition A.15). By Lemma A.33, this

functor preserves quasi-isomorphisms between algebras which are cofibrant as left k-modules.
Consequently, it induces a functor of co-categories

Dy 0 Alg, —> Algh.

If ¢ is weakly Koszul (Definition A.27), we can identify the co-category of algebras over ¥ with
algebras over the dual operad D(H) = B(AH".

Lemma 4.1. Suppose that ¢ : € --> Pis weakly Koszul. Then the following assertions hold.

(1) For any $algebra A, there is a natural equivalence of k°P-modules
§)¢(A) ~ RDer4A, k)

to the (derived) k°P-module of Falgebra derivations of A with coefficients in the trivial A-module
k.
(2) The functor Dy preserves all colimits, so it is the left adjoint in an adjoint pair

Dy 1 Algy, 3 7 Alg, Q);. (4.2)

In the terminology of [7], the adjoint pair (4.2) is an example of a weak Koszul duality context
(this is essentially the assertion of Corollary 4.7).

Proof. The first assertion implies the second: indeed, the functor Dy preserves colimits (and hence
admits a right adjoint by the adjoint functor theorem [37, Corollary 5.5.2.9]) if and only if the
composite

forget dg,op

B _\WV
Alg®® —* 5 Coalg® — 5 Algls® s Mod (4.3)
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preserves homotopy colimits. The functor RDer(—,k) taking derived modules of derivations
clearly has this property.

Since € — B%Pis a quasi-isomorphism between cofibrant left k-modules, the functor (4.3) is
naturally equivalent to the functor associated to the universal twisting morphism ¢"* : B —
2 1t will therefore suffice to prove assertion (1) for ¢ = ¢"". In this case, consider the Quillen
pair

I: Algdg{f’r . ? Modig: triv

where the right adjoint takes the trivial 2algebra (using the augmentation — k) and I sends
a JPalgebra to its module of indecomposables. Unraveling the definitions, one sees that there is
an isomorphism of k-modules

\
B4(A)Y = I(QyB4(A))" = Dery(QyBy(A), k),
where we have used that I(B)" = Der (B, k). By Lemma A.34, the map Q4B4(A) — Aisaquasi-
isomorphism whenever A is cofibrant as a k-module, that is, it provides a functorial cofibrant
replacement of A. It follows that D4 computes indeed the derived functor of derivations with

coefficients in the trivial A-module k. O

Let us note that the adjoint pair (4.2) depends naturally on ¢, in the following sense (we will
come back to this in Section 6):

Lemma 4.4. Consider a commuting square

€ -1y
g lf (4.5)
D ——w—> Q,

where g is a map of k-cooperads, f is a map of k-operads and ¢ and P are weakly Koszul twisting
morphisms. Then there is a natural transformation of 2" -algebras

pt By(f1A)Y —— g"By(A)".
When A is a cofibrant Palgebra, this map is a weak equivalence.

In other words, a diagram like (4.5) induces a square of co-categories

Al D0 AL
gp — Alg,

le = ig (4.6)

Algg —5—> Alg
W
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commuting up to a natural equivalence u. In particular, D, is a homotopy invariant of the map ¢,
in the following sense: if f (and, by Lemma A.21, also g) is a quasi-isomorphism, then the vertical
functors in (4.6) are equivalences by Corollary A.8 which intertwine Dy and D.

Proof. We define u to be the dual of a natural map of &-coalgebras
g&'By(A) —— By(f1A).

Without differentials, this map is given by the map 6(A) — 2(f,A), defined on cogenerators by
6(A) — A — f,A. This map of D-coalgebras indeed preserves the bar differential. To see that
itis aweak equivalence when A is cofibrant, we can work at the level of the underlying k-modules.
In that case, we have a weak equivalence

Der(A, k) —— Der(QyB4(A), k) = B4(A)"

from the complex of SRalgebra derivations of A (see Lemma 4.1). We obtain a commuting square
of chain complexes

Derg(f1(A),k) — Derg (A, k)
By(f1A)Y ——— By(A4)",

The top horizontal map is an isomorphism, so the result follows. O

Corollary 4.7. For any weakly Koszul twisting morphism ¢ : € --» Pand any k-module V, there is
a natural equivalence of 6" -algebras

Dy (P(V)) —> triv(VY).

Consequently, for any algebra g over the k°P-operad D(PH = (BA)", the underlying k-module of
Q);(g) is given by the derived functor of derivations

i‘);(g) =~ RDerg (g, k).

Proof. The first assertion is a special case of Lemma 4.4 and the second assertion follows by passing
to right adjoints. L]

Definition 4.8. Let &be a k-operad and let D(PH = (BA" be its dual operad. We will denote by

. — op .
D: Alg, o Algg g : D’ (4.9)
the adjunction associated to the universal twisting morphism 7 : B%--> 2 By the discussion after
Lemma 4.4, we are allowed to model D(P) and Pusing any quasi-isomorphic twisting morphism

¢: € A.

We conclude by giving an explicit description of the right adjoint ®'.
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Theorem 4.10. For any k-operad & there exists a natural map
n:P — DDP))

op

in the oco-category of k-operads, and the right adjoint functor (‘% : Algg( 2

equivalent to the functor

— Alg, is naturally

op D n*
Algg(g)) — Algg(g(g)) —_— Algg}).

To define the map 7, which will arise from a zig-zag of maps at the chain level, let us make the
following observation:

Construction 4.11. Let ¥ be a k-cooperad and & a k°P-cooperad. Then there is an isomorphism
of convolution Lie algebras (cf. Remark A.19)

VY ~ \4
Homgiyoqz,, (2.€7) = HomBiModk?((g’g )
sending a linear map ¢ : & — %" to its adjoint 3T : € — V. In particular, this restricts to a

bijection between twisting morphisms. For a twisting morphism 3 and a 9-coalgebra X, there is
a natural map of ¢"-algebras

A%
QX)) — (Byr(XY)) (4.12)
given on generators by the obvious inclusion X — X"V — (@ o XV)V.
Let us now fix a k-cooperad € which is filtered-cofibrant as a left k-module and lete : @ =@

denote a replacement of €" by a k°P-operad which is cofibrant as a left k°’-module. Consider the
canonical twisting morphisms

$:6 ---> QOB ¢': B@ ---5 @.

Applying Construction 4.11 to the case where @ = B@, the twisting morphism ¢ o ¢' : B@ > "
has an adjoint twisting morphism (¢ 0 ¢")" : & -» B(Q)". We can write (¢ 0 ¢")" =17 o ¢, where

n: Q8 — B(Q)Y

is the corresponding map of k-operads out of the cobar construction. In this setting, we have the
following identification of the right adjoint @;:

Proposition 4.13. In the above situation, the right adjoint Q); : Alg;% — Algq is naturally
equivalent to the functor

Al —E5 AL 'y A Al
Egv T = 8q 8g(a)v 8av:
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Remark 4.14. When € is finite dimensional, the map 7 : Q(%¥) — B(%")" is an isomorphism and
we can simply identify Ebgb with D

Proof. Our first goal will be to define a natural map of Q%-algebras
1*Dgi(€*g) — Diy(a) (4.15)
for every €V -algebra g. By adjunction, it suffices to provide a natural map

3 — Dy(n* Dy (e*g)) (4.16)

in the co-category of € -algebras. To do this, note that By(n*—) = B,4(—)and By (e*=) = By (=)
both preserve objects that are cofibrant as left modules. Consequently, we can compute

Dy (7" Dys1(9)) = (Bncﬁ(Bewg)v)v

whenever g is cofibrant as a left k-module. Now apply Construction 4.11 to the case where & =
B(@) and to the twisting morphisms

p=cp': D=B(Q) ---> 6 P =np: € ---> D.

For the &-coalgebra X = B.,+g, the map (4.12) then gives a natural map of ©"-algebras

Q€¢"' (Bw.;.(g)) —_— <B7)¢ (wa- g)v) . (4.17)

The domain is the usual bar-cobar construction of g, which comes with a natural quasi-
isomorphism Qg (B€¢+(g)) — gwhen g is cofibrant as a k°’-module (Lemma A.34). At the level
of co-categories, we therefore obtain the desired map (4.16) and the adjoint comparison map (4.15).

‘We now have to check that the comparison map (4.15) is an equivalence, for which it suffices to
see that the underlying map of k-modules is an equivalence. Note that Lemma 4.1 and Corollary 4.7
produce natural equivalences of k-modules

D41(8) =~ RDergy (g, k) @;(g) ~ RDergv (g, k).
Under these equivalences, the comparison map (4.15) corresponds to a natural endomorphism of
RDerg (8, k°P) = Dergy (Q4:B.4(9), k) = B.gi(q)".

Unravelling the definitions, this endomorphism can be described as follows: an element a €
Byt (g)V is sent to the k°P-linear map

(4.17) e

vy Y Vo o
foc: Beqﬁg — Qeq&"‘Beq&"‘g — (Bngﬁ(Beqﬁ"'g) ) — Beq&"‘(g)vv — k.
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Here the first map is the inclusion of the generators and the third map is the projection, dual to the
inclusion of B€¢+(g)v into its bar construction (as the primitive elements). The last map evaluates
an element of the bidual at a. One easily sees that the assignment a — f, is an isomorphism,
so that (4.15) is indeed an equivalence. O

Proof (of Theorem 4.10). Suppose that Pis cofibrant as a left k-module and consider the situation
of Proposition 4.13 in the case where € = B& Then

€ ~0~DPD and B(@)" ~ D(D(P)

so that the natural zig-zag P QBP—s B(@)" defines a natural map in the oo-category of k-
operads 77 : P—> D(D(A). Theorem 4.10 then follows from Proposition 4.13. O

4.2 | Axiomatic argument

We will now describe the strategy of the proof of our main result, Theorem 1.3. Our strategy follows
the axiomatic frameworks developed in [7, 38]. More precisely, let us consider the adjunction

D: Alg, . ? Algg(g)): D'

This adjunction is essentially never an equivalence, because it involves taking duals: both ©
and D’ send an algebra to its module of derivations with coefficients in k (Lemma 4.1 and
Corollary 4.7). Instead, one can try to refine the above adjunction to an equivalence between
D(P-algebras and formal moduli problems over & using the following construction: every
D(H-algebra g defines a functor

Artyg — 85 A > Mapg ) (D(A),g).

Under suitable conditions on the functor D, this functor will satisfy the axioms of a formal moduli
problem (Definition 2.11). Furthermore, the results leading to [38, Theorem 1.3.12] provide general
conditions on ® under which this construction becomes an equivalence. In the current situation,
we can summarize these results as follows:

Theorem 4.18. Let Pbe a k-operad. Then there is an equivalence of co-categories

MC: Algy gy —> FMPg; ¢ —— Mapg 4)(D(-), @)

if the following conditions are satisfied.

(A) For every Artin Palgebra A, the unit map A — D'D(A) is an equivalence.

(B) For every trivial algebra k [n] generated by a single element of degree n > 0, the D(H)-algebra
D(k,[n]) is freely generated by k.[n]".

(C) The functor D sends every pullback square of Artin algebras
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Al ——0

oo

A H kc[n]

with n > 1 to a pushout square of D(A-algebras.
In this case, the inverse of the functor MC sends a formal moduli problem F to its tangent complex

T(F), endowed with some D(H)-algebra structure.

Remark 4.19. The notation MC is supposed to be suggestive: when 9 satisfies suitable finite-
dimensionality conditions, the formal moduli problem MC, can indeed be described concretely
in terms of Maurer—Cartan simplicial sets of Lie algebras. We will discuss this in more detail in
Section 7.

The technical part of the proof of our main result (Theorem 1.3) will consist of verifying the
above conditions for a suitable class of operads. This will be done in Section 5. In the remainder
of this section, we will describe how Theorem 4.18 follows from the results of [7, 38].

Proof. Condition (C) guarantees that for every D(H-algebra g, the functor

MC,: Artg —> §; A —> Mapg(g,)(‘b(A),g)

does indeed define a formal moduli problem. Consequently, we obtain a well-defined functor
MC: Alggs» — FMP,. By condition (B), we have that

Mcg(kc[n]) = Map@(@)(g(kc[n])’ g)
~ Mapgy s (Free(k.[n]"), g) ~ Mapyo (k' [—n], g).

It then follows from Lemma 2.15 that the tangent complex of the formal moduli problem MC, is
given by

T(MC,) =~ }g. (4.20)
In particular, if MC admits an inverse, then this inverse will necessarily send a formal moduli F
to T(F), endowed with a D(A-algebra structure. To see that MC indeed does admit an inverse,

let us recall the following terminology [7, Definition 2.15]. The class of good D(9)-algebras is the
smallest class of algebras such that:

(1) it contains the free algebras Free([kf_,’p[n]) forn < 0;
(2) for any pushout square

Free(k;'[n]) —>

g
l l (4.21)
b

0 —

where g is good and n < —1, § is good as well.
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By condition (A), the functor D restricts to a fully faithful embedding of the co-category of Artin
Salgebras into Algg. By conditions (B) and (C), the essential image of this embedding is (the
opposite of) a full subcategory of Algs, 5 which satisfies conditions (1) and (2). In particular, it
contains the good D(A-algebras. But then the image of the good D(F-algebras under D’ is a full
subcategory of the Artin Salgebras that satisfies the conditions of Definition 2.2. Since the Artin
algebras were the smallest subcategory with these properties, we conclude that ® and ®’ induce
an equivalence

. — ood \OP |
D: Arty ) (Algi(g,)) C Y. (4.22)

It will now follow from [38, Theorem 1.3.12] that the functor MC is an equivalence. Indeed, the
conditions of [38, Definition 1.3.1] hold precisely because D restricts to the equivalence (4.22). The
remaining condition [38, Definition 1.3.9] asserts that the functor

C
Algg(@) L FMP@ L) Hc Sp

preserves sifted colimits. But it follows from (4.20) that this functor is naturally equivalent to the
composite

forget

Algg ) ——— Modyy ——— TI, Sp.

Forgetting the structure of an algebra over an operad always preserves sifted homotopy colimits
[31, Appendix A] and the second functor preserves all colimits (see Remark 2.17). O

5 | COHOMOLOGY OF ARTIN ALGEBRAS

Let 9be a k-operad and consider the adjoint pair whose left adjoint sends a JRalgebra to its dual
D(H)-algebra

D: Alg, 77 Algy, ;D

The purpose of this section is to show that under certain conditions on the operad & the func-
tor D is well behaved when restricted to the class of Artin Salgebras. In particular, it satisfies
the assumptions of Theorem 4.18, so that the above adjunction can be refined to an equiva-
lence between D(H)-algebras and formal moduli problems over % More precisely, will prove the
following:

Theorem 5.1 (Theorem 1.3). Let k be a dg-category and Pan (augmented) k-operad. Assume that
the following conditions hold.

(1) k and Sare both connective.

(2) k is cohomologically bounded, that is, there exists an n € N such that all H*(k)(c,d) are
concentrated in degrees [—n, 0].

(3) Pis splendid.
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Then the following assertions hold.

(A) For any Artin Palgebra (Definition 2.2), the unit map A — D' D(A) is an equivalence.
(1) D(k.[n]) is freely generated by k.[n]", forall c and n > 0.
(B) The functor D sends every pullback square of Artin algebras

Al ——0

1 1l (5.2)

A H lkc[n]

with n > 1 to a pushout square of D(PA-algebras.

In particular, Theorem 4.18 applies and there is an equivalence

Assumption 5.3. We will assume, as usual, that Pis cofibrant as a left k-module. Because k is
assumed to be connective and cohomologically bounded, we will furthermore make the following
chain-level assumption throughout this section: we will assume that k is a dg-category such that
every k(c, d) is concentrated in degrees [—N, 0], for some fixed N.

5.1 | Polynomial subalgebras

Let us start with the following general observation. Let ¢ : € --» Pbe a weakly Koszul twisting
morphism from an k-cooperad to a k-operad. Then D,4(A4) = B¢(A)V is given by

A%
Dy(A) = <€B E(p) ®s, pir A®P>

p=0

= H (%(P) s, xi®r A®p>v-

p=0

Consider the graded €"-subalgebra

D (4) =P (%(p) ®s, xier AP )V € Dy(A). (54)
p>0

Note that this is not necessarily closed under the differential, but it will be if A satisfies the
following condition:

Definition 5.5. A Salgebra A is nilpotent if A is annihilated by all operations of arity > p, for
some p.

Remark 5.6. When P is concentrated in arity > 2, then a nilpotent algebra is annihilated by
any composition of > p operations in &% for some p. Conversely, if & is generated by opera-
tions in finitely many arities and A is annihilated by any composition of > p operations, then
A is nilpotent.
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Remark 5.7. The algebra @g()ly(A) is not homotopy invariant: it depends on the point-set choices

for A and the twisting morphism ¢. Note that an algebra that is quasi-isomorphic to a nilpotent
algebra need not be nilpotent itself.

To prove Theorem 5.1, it will be much more convenient to work with ®P°Y (A) instead of D(A).
Indeed, the following result shows that DP°Y(A) is typically much better behaved than D(A):

Lemma 5.8. Let ¢ : € --> Pbe a Koszul twisting morphism. If A is a strictly Artin, nilpotent 2
algebra, then QDZOIY(A) is a cofibrant €”-algebra.

Proof. Let us start with the following general observation: if A — B is a square zero extension
of Falgebras by k. [n], with n > 0, then their bar constructions fit into a pullback square of -
coalgebras

By(A) —— Gk [n,n+1])

) l (5.9)

By(B) — G (k.[n +1)).

Indeed, this follows from writing A = B @ k.[n] as k-modules (without differential), so that B4(A)
is obtained from B¢(B) by adding cogenerators from k.[n]. Assuming that A and (hence) B are
nilpotent, we can take duals and restrict to ‘polynomial’ subalgebras to obtain a square

6" (kF[-n — 1]) — DEV(B)

! ! (510)

B (kP[-n,—n—1]) —> @g"‘y(A).

Without differentials, this square is a pushout square of €"-algebras, so the same is true with
differentials. Since the left vertical map is a (generating) cofibration of ¢ -algebras, it follows that
@g()ly(A) is cofibrant as soon as Q)gfﬂy (B) is.

Now suppose that A is strictly Artin and nilpotent. By definition, A fits into a sequence A =
AW — ... — A = of square zero extensions by various ke, [p;]. Proceeding by induction, it

follows that QDEOIY(A) is cofibrant. O

To reduce statements about D(A) to statements about the more tractable algebra DP°Y(A), we
will use of the following result:

Proposition 5.11. Suppose that k is as in Assumption 5.3 and that Pis a splendid k-operad, con-

centrated in non-positive degrees. Let  : BSP--> Pbe the universal Koszul twisting morphism and
let A be a Falgebra which is strictly Artin and nilpotent. Then the map of B9 -algebras

DY (A) — D, (A)

is a quasi-isomorphism.
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This proposition forms the technical heart of our proof of Theorem 5.1 (and hence Theorem 1.3).
In particular, its proof is somewhat involved and is proven in increasing levels of generality, using
some of the results of the Appendix. We will therefore postpone the proofto Section 5.3 and instead
discuss how it can be used to prove Theorem 5.1.

As afirst application of Proposition 5.11, we find that every Artin S2algebra can be modelled by
a nilpotent algebra. More precisely, we have the following:

Lemma 5.12. Consider a retract diagram of k-operads P Q€ — P where € is filtered-
cofibrant as a left k-module. Then the following assertions hold.

(1) Every Artin Salgebra is quasi-isomorphic to a strictly Artin Salgebra (Definition 2.5).

(2) Suppose that the (Koszul) twisting morphism ¢ : € --> JPassociated to Q€ — FPhas the follow-
ing property: for every A which is strictly Artin and nilpotent, the map ‘E)gOIY(A) — Py(A)isa
quasi-isomorphism. Then every Artin J*algebra is quasi-isomorphic to a strictly Artin Salgebra
which is furthermore nilpotent.

Every cofibrant k-operad Z*fits into a retract diagram P QBP— P Consequently, part
(1) asserts that Artin algebras over cofibrant operads are quasi-isomorphic to strictly Artin
algebras.

Proof. The Artin SRalgebras form the smallest class of JRalgebras that is closed under homotopy
pullbacks along the maps of trivial algebras 0 — k.[n + 1] (with n > 0). It therefore suffices to
show the following: let A be a strictly Artin Salgebra, let Q,B,4(A) —> A be its bar-cobar resolu-
tion (using Lemma A .34, since strictly Artin algebras are k-cofibrant by Remark 2.6) and consider
any (homotopy) pullback diagram of the form

Y — k[n,n+1]

l l (513)

Then the map Y — QyB,(A) is naturally quasi-isomorphic to a square zero extension B — A
with kernel k [n]. For part (2), we must furthermore show that B can be taken nilpotent, assuming
A is nilpotent.

We will only prove this assertion for part (2); the argument for part (1) is similar but easier. Let
us denote by i : P— QF and r : Q€ — FPthe inclusion and retraction, and let 3 : € --> Q¥
denote the universal twisting morphism. There are natural maps

By(A) — B,(r*A) i"Qy(C) — Q4(0)

for a Palgebra A and a G-coalgebra C. The first map is an isomorphism and the second map
is obtained by applying i* to the natural map Q,(C) — r*Q4(C). Now observe that there are
bijections

X Q¢B¢(A) — k. [n +1] = X: B¢(A) — Bk [n +1]),
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where @(k.[n + 1]) is the cofree @-coalgebra on a single generator of degree n + 1 at place c. A
map x : QyBy(A) — k.[n + 1] therefore corresponds to a degree —(n + 1) cycle y € Dy(A)(c).
Homologous cycles correspond to homotopic maps, and hence give rise to weakly equivalent
homotopy pullbacks Y. We may therefore change y by a coboundary and assume that it is
contained in the image of the quasi-isomorphism

DIV (4) — Dy(A).

Now consider the pullback square of €-coalgebras

' — B(k[n,n+1])

l l (5.14)

By(A) ——> G (k.[n +1]).

Unravelling the definitions, one sees that the map ¢’ — B, (A) is isomorphic to a map of the form
B¢(A’ ) — By (r*A), where A" — r*A is a square zero extension of Q%-algebras with kernel
k.[n]. In particular, A’ is a strictly Artin Q@-algebra.

To see that A’ is a nilpotent Q@-algebra, we use that A’ = A @ k.[n] is a square zero extension
of r* A by a trivial r* A-module. Each generator u € C[—1] C QC acts on A’ by

(asx (=)

pw: (Adk[n)) —p a® LDy 4y @i [n].

Here y(u, —) denotes the composite

u®id

Aer O G(p)[-1] @ A%P € By(A) —1 K [nl.

By our assumption that y lies in the image of DP°Y(A), the generating operations y(u, —) vanish
when the arity of u is high enough. Furthermore, the composition of at least two such generating
operations maps A to A and vanishes on k,[#]. Because A was assumed to be a nilpotent Zalgebra,
it follows that such composite operations also vanish if their arity is high enough. We conclude
that A’ is a nilpotent Q@-algebra.

Now, applying functor i*Q to (5.14) and using that there is a natural map i*Q, — Qy, we
obtain a diagram of Jalgebras

i*A' % l*Q¢B¢(A/) H Q¢B¢(kc[n + l,n]) % kc[n + 1,n]

! i i ! 519

Taking B = i*A’, we obtain a nilpotent square zero extension of A. The above diagram shows that
it is related to the pullback Y of (5.13) by a zig-zag

B =i*A' <~ i"Q,By(A") —> Y.
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Itremains to verify that the right map is a quasi-isomorphism, for which we can work at the level of
the underlying complexes. But forgetting J2algebra structures, there are natural sections i* A’ —
i"QyBy (A")and A — Q4B4(A) that make the composition of the three squares a (homotopy)
pullback square of chain complexes. Consequently, we find maps of complexes

- h h —
B=AX! . 10— QBy(A) —> QuBy(AD X}, ,0=Y.

The first map and the composite map are quasi-isomorphisms, so that i*Q¢B¢(A’ )— Yisa
quasi-isomorphism, as desired. O

Corollary 5.16. Suppose that k is as in Assumption 5.3 and that Pis a splendid cofibrant k-operad,
concentrated in non-positive conomological degrees. Then every Artin Salgebra is quasi-isomorphic
to a strictly Artin S2algebra which is nilpotent.

Proof. Apply part (2) of Lemma 5.12 to the retract diagram &— QB%— % where first map
exists since Pis assumed cofibrant. O

5.2 | Proofof Theorem 5.1

In this section, we will prove Theorem 5.1, and hence Theorem 1.3, using Proposition 5.11 (whose
proof will be taken up in Section 5.3). Since the statement of Theorem 5.1 only depends on the
quasi-isomorphism classes of k and % we are allowed to make the following assumptions through-
out this section: we will assume that k is bounded, as in Assumption 5.3, and that Pis a cofibrant
k-operad which is concentrated in non-positive cohomological degrees. We denote by

7:BP -——> P

the universal Koszul twisting morphism and will model ® : Alg, — Alg by D,.

op
D(F)

Proof of Theorem 5.1(A). Suppose that A is an Artin algebra. By Corollary 5.16, we can assume
that A is strictly Artin and nilpotent. To verify that the unit map

is an equivalence, it suffices to work at the level of the underlying k-modules. By Corollary 4.7,
the functor D/ is given at the level of k-modules by the derived functor of B + Der(B, k). By
Lemma 5.8 and Proposition 5.11, a cofibrant resolution of ®,(A) is given by the polynomial
subalgebra DP°Y (A). It therefore suffices to verify that the natural map

A — Der(D2Y(4),k)

is a quasi-isomorphism. Since Q)f,Oly(A) is the free graded algebra on AY, one can identify the
underlying map of graded k-modules with the canonical map

A —3 AWV,
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This is an isomorphism since A is a finitely generated quasi-free k-module (Remark 2.6). O
For part (B) of Theorem 5.1, let us make the following more general observation:
Proposition 5.17. Let k be a bounded connective dg-category and f : »— @Q a map of augmented
k-operads which are connective and splendid. Let D(f) : D(Q) —> D(A) be the induced map on
bar dual operads. For every @-algebra A, there is a natural map of D(A-algebras
(D (D) — D(f*(A)).

This map is an equivalence whenever A is a Artin @-algebra.

Proof. We can assume that %and @ are cofibrant k-operads and consider the map between twisting
morphisms

Bp -1y o
q L
BQ -—-) 0.

Let B(f)* denote the forgetful functor from BZcoalgebras to B@-coalgebras. Then there is a
natural map of B@-coalgebras for every @-algebra A

B(f)*By(f*(A)) —> By(A).

Without differentials, this is given by the obvious map BAA) — B@(A) into the cofree
B@-coalgebra on A. Taking duals gives a map of D@-algebras

Dy(A) — D) Dy (f*(A)).

The desired natural map of algebras over D(F) is then obtained by adjunction, that is, by (derived)
inducing up along 0 — DR

Now suppose that A is a Artin @-algebra. By Corollary 5.16, we may assume that A is strictly
Artin and nilpotent. By Proposition 5.11 and Lemma 5.8, there are cofibrant resolutions

DV(A) — Dy(A) DV (f(A)) —> Dy(f*(A)).
In particular, we obtain a commuting square

DD () — DEV(FHA)

g |-

D NDy(A) ——> Dy(f*(A)
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where in the second row, D(f), (implicitly) denotes the derived functor. Unravelling the
definitions, the top horizontal map is given without differentials by the natural map

DP) on@ (DQ) oy A) — D(P) on A.

This map is an isomorphism, so the result follows. O

Proof of Theorem 5.1(B). This is the special case of Proposition 5.17 where the map #— & =k
is the augmentation map. O

Proof of Theorem 5.1(C). Let A be an Artin Palgebra and consider a pullback square (5.2) in the
oo-category of Palgebras. Inspecting the proof of Lemma 5.12 (cf. Diagram (5.15)), one can present
such a square in the co-category of JRalgebras by a strict diagram of Salgebras of the form

B<+~— B —= k/[n,n+1]
44 ¢
A %A % kc[n'l_l],

where p : B — A is a square zero extension of strictly Artin, nilpotent S2algebras. By a standard
model categorical argument, one can in fact assume that the surjective map B — A is given by
QB(p): Q¢B¢(B) — Q¢B¢(A), and that the left two quasi-isomorphisms are the canonical maps
from the bar-cobar resolution.

Now apply the bar construction By to the above diagram. Then the left two weak equivalences
admit canonical sections. Using these canonical sections, one obtains a composite square of B%#
coalgebras of the form (5.9), which is cartesian. After dualizing, one obtains a square of the form

! !

Dy (ke[n,n +1]) —> Dy(B).

We have to show that this square is a homotopy pushout square of D(A-algebras. Since all R
algebras involved in this square are strictly Artin and conilpotent, Proposition 5.11 implies the
above square is naturally equivalent to the square (5.10) of polynomial subalgebras. But then the
proof of Lemma 5.8 shows that this square is a (homotopy) pushout square of D(A-algebras (cf.
Diagram (5.10)). O

We conclude that the functor D : Alg, — Algg’( ) satisfies the conditions of Theorem 4.18.
In particular, this says that the functor

MC: Algq ) ——> FMPy; g —— Mapg o (D(-),9)

is an equivalence of co-categories, with inverse sending a formal moduli problem F to T(F). This
proves Theorem 1.3.
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Variant 5.18. Let & be a k-cooperad which is filtered-cofibrant as a k-module and lett: € —
Q% = Pbe the universal twisting morphism. Inspecting the above proof, one sees that the con-
clusions of Theorem 5.1 remain valid as long as D" (A) — D,(A) is a quasi-isomorphism for
every A that is strictly Artin and nilpotent. Consequently, Theorem 1.3 then holds for the operad
P= Q8.

As an important example of this situation, let us record the following. Suppose that k is a dg-
category such that all k(c, d) are concentrated in some fixed interval [a, b], and suppose that & is
a k-cooperad with the following property: €(p) is concentrated in degrees < f(p), with

f(p) =3 .

Note that when A is strictly Artin, there is an n such that any n-fold composition of generating
operations acts trivially on A. Since A is concentrated in finitely many degrees (Remark 2.6), this
means that such A is automatically nilpotent (Definition 5.5). Furthermore, the map i‘)f)o}y (A) —
D,(A) is then an isomorphism for degree reasons (cf. the proof of Lemma 5.19). The above proof
and Theorem 4.18 then imply that there is equivalence of co-categories

Alg,, = Algg g — FMPy.

Note that ¥ may have contributions from positive degrees, as long as it is eventually concen-
trated in sufficiently negative degrees. In particular, this hold when & concentrated in finitely
many arities.

5.3 | Proof of Proposition 5.11

This section is devoted to the proof of Proposition 5.11. Throughout, we assume that k is as in
Assumption 5.3, that is, concentrated in cohomological degrees [N, 0], and that Pis a k-operad
in non-positive degrees. We will prove Proposition 5.1 in increasing levels of generality, starting
with the following special case:

Lemma 5.19. Suppose that = =P is non-positively graded and concentrated in arities < p, and

let m : B?— Pbe the universal twisting morphism. If A is a non-positively graded Jalgebra, then
the map of B9 -algebras

1
DV (A) — DA(A)
is an isomorphism.
Proof. Since Pis concentrated in arities < p, its bar construction is generated by operations in
arities < p and degrees < —1. This means that the arity g part of B%is concentrated in degrees

< —q/p. Consequently, each term

BAq) ®qu><|k®q A®4



MODULI PROBLEMS FOR OPERADIC ALGEBRAS | 53

is concentrated in degrees < —q/p. Since k is concentrated in degrees [—N, 0], the k-linear dual is
concentrated in degrees > q/p — N in arity q. Consequently, in each degree there are only finitely
many arities that contribute to D(A), that is, the map

D (B@(q) s, xkea A®q)v — 11 (B@(Q) B, Kk A®q)v

g0 g0
is an isomorphism in each individual degree. O

Let us next consider the case of a 0-reduced k-operad & that is, {0) = 0. Then the tower of
quotients

P —S o — P S Pl y sl

is a tower of operads. By definition, every nilpotent Salgebra A can be considered as a FPo-
algebra, for some p,.

Lemma 5.20. Let 9be a 0-reduced k-operad, concentrated in non-positive degrees, and let

7:BP ——> P and <P B(PSP) —— - gp<P

denote the universal twisting morphisms. For each 9~Po-algebra A in non-positive degrees, there is a
natural square of chain complexes

colim,,s,, D' (A) — DEM(A)

J !

colimp , Dy (A) —— D (A),
in which the two marked arrows are isomorphisms.
Proof. Recall that for every map of twisting morphisms ¢ — ¢’, there is a natural map of chain
complexes Dy (A) —> Dy(A). When A is nilpotent, this restricts to polynomial subalgebras. This

gives the desired square. The vertical arrow is an isomorphism by Lemma 5.19 and the horizontal
arrow is given without differentials by the map

\% \%2
@ colim,,, (BEPL)Q) ®sper A%1) — @ (BP(9) ®spies A% .

q=>0 g>0
This map is an isomorphism. Indeed, the tower
BP(q) — .. — B(P=*)(@) — B(P=")(q) — ..

becomes stationary as soon as p > q , so that the sequence obtained by tensoring with A®4 and
taking k-linear duals becomes stationary for p > q as well. O
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Corollary 5.21. Let Pbe a 0-reduced k-operad in non-negative degrees and let A be a F~Po-algebra
in non-negative degrees, for some p,. Let 7 : BS--> Pbe the universal twisting morphism. Then the
map of complexes

DEV(A) — D(A)
can be identified with the natural map

hocolim s ,, DP(A) — D(A)

where D<P . Algg;gp — Alge‘;)(ggp) and D : Alggo — Algg(ga

In particular, Corollary 5.21 furnishes a homotopy-invariant characterization of the map
@g()ly(A) —> D,(A), as long as we take all our operads and algebras to be non-positively graded:
it no longer depends on the specific point-set models for the twisting morphism 7 or A (as long
as these models are non-positively graded).

Proposition 5.22. Let k be a dg-category in degrees [—N, 0] and let Pbe a splendid, 0-reduced k-

operad, concentrated in degrees < 0. Let A be a <Po-algebra which is freely generated as a k-module
by generators of degrees < 0, with finitely many generators of degree 0. Then the map

hocolim ), , D=P(A) —> D(A)
is an equivalence.

Proof. We can work at the level of chain complexes. Since ® and D<P are homotopy invariant,
we may resolve the tower #— ... — P — . by a tower of cofibrant k-operads

Q@ —> .. —> @aP — @) —3

with the properties described in Proposition A.43. In particular, each @'P) is a quasi-free k-operad
generated by a non-negatively graded, cofibrant k-symmetric sequence V().

For each the quasi-free k-operad @ = Free(V), the right @-module k admits a cofibrant
resolution of the form

HK = Cone(V o, @ — G).
By Remark A.31, the underlying complex of D(A) can be identified with
(# 0 A) = (@@ V1]) o A)
with some differential. Let us now decompose A = A, @ A, where A, is the k-module generated

by the (finitely many) degree O generators and Alis generated by elements of degree < 0. By Propo-
sition A.43, V(P) is concentrated in increasingly negative degrees as its arity increases. Using that
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A, is free on finitely many generators, one then sees that

(F ogm A)V = H M(q,r)

q,r=0

with some differential, where
. —®q v V\Qr
M(g.r) = (A VIIDG+7) @ o0 A ) ®speuer (AN

Since A is concentrated in degrees < —1 and k is concentrated in degrees [—N, 0], M(q, r) is con-
centrated in degrees > q — N. Consequently, in each fixed cohomological degree there are only
contributions of the M(q, r) for finitely many q.

Similarly, V' is concentrated in increasingly negative degrees as the arity increases. Conse-
quently, in each fixed cohomological degree there are only contributions of the M(q, r) for finitely
many r. It follows that the above product over q and r is isomorphic to a direct sum, so that

D(A) = (F ogm A)" = @) M(g.r). (5.23)

q,r>0

The same analysis applies to each of the graded-free operads PP = Free(VP)) with p > Do- Con-
sequently, one finds that the sequence of chain complexes -+ — DP(A) — DPHL(4) —
-« — D(A) is quasi-isomorphic to the sequence of sums

.= D MP(q,r) = D MP(gr) = .. = @ M(q,r) (5.24)

q,r>0 q,r>0 q,r>0

endowed with some differential. We claim that this sequence is a colimit sequence of complexes.
This means that it is also a homotopy colimit, which proves the proposition.
To see that (5.24) is a colimit sequence, it suffices to prove that for every fixed r, the sequence
of graded vector spaces
—Q®q Vv
B (10 vP11)@+r ®s s A ")

g0

is a colimit sequence. We claim that this sequence becomes stationary in every fixed cohomolog-
ical degree. Indeed, since the gth summand is concentrated in degrees > g (since Alis generated
by elements of degree < —1), only finitely many summands contribute to each individual degree.
It therefore suffices to verify that for each g and r, the sequence of graded vector spaces

(1@ v®n1)@+ 1 ®s e A7)

becomes stationary as p — oo. But this follows from the construction of Proposition A.43, which
guaranteed that V(P)(q + r) is constant for p > q +r. 1

To deduce Proposition 5.11 from Proposition 5.22, we now only have deal with the extra oper-
ations in arity zero that obstruct the use of the tower of quotients — %P, This is done by a
filtration argument:



56 | CALAQUE ET AL.

Construction 5.25. Let %be a k-operad which is cofibrant as a left k-module and let 7 : B —
Pbe the universal twisting morphism. For any J*algebra A which is cofibrant as a k-module, we
can filter the bar construction B,(A) = BZ o, A by word length in the nullary operations of S
This is an increasing filtration by left k-modules which preserves the bar differential.

The associated graded can be described as follows: let %! denote part of Pin non-zero arity

and let 72! : B(9*') — %! be the universal twisting morphism. Then we can identify

gr(B;(A)) = B1(A & AO)(1)),

where A @ H0)[1] is the product of A, considered as a %!-algebra by restriction, and the trivial
algebra A 0)[1]. Since all pieces are cofibrant as k-modules, dualizing yields a complete Hausdorff
filtration on D, (A) whose associated graded is

(D, (A)) = D=1(A © AO)[1)).

Lemma 5.26. Suppose that Pis a k-operad in non-positive degrees and let A be a S*algebra which is
strictly Artin and nilpotent. Then the complete Hausdorff filtration on D,.(A) from Construction 5.25
restricts to a complete Hausdorff filtration on Q)f;‘)ly (A). Furthermore, the map QDEOIY(A) — D (A)
induces the obvious map

®p01y (A ® g)(())[l]) —_— @7{21 (A &) @(0)[1])

at the level of the associated graded.

Proof. Let us first check that the induced filtration on D°Y(A) is complete Hausdorff. By
Construction 5.25, we can write

Bo(4) = @D (BE&)(@ + 1) 8,00 K0 )[g] @, ror A"

q,r20

as left k-modules, with some differential. The filtration is indexed by q. Since A is finitely
generated quasi-free over k, the k-linear dual of each of summand is given by

\%
N(@.r) = (B + 1) ®s o0 HOPT) [=q] @, omper (A"
and we have that

DW= [[Ngrn and D@ =@[]Nan.

q,r=0 r o q=0

Since k is concentrated in degrees [—N,0] and both A and & are concentrated in non-positive
degrees, we have that N(q, r) is concentrated in degrees > q — N, for all values of r. Consequently,
the natural map

D (A) = D, [ N(@r) — 50 D, Ng:7)
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is an isomorphism in each cohomological degree. Now note that 5)201y(A) = quo @D, N(q,r)
is manifestly complete Hausdorff with respect to the filtration by g. Furthermore, we see that,
without differential, there is an inclusion

gr(DF") c er(@n)

given in degree g by the obvious inclusion @, N(q,r) — [], N(q,r). Since gr(D,(A)) =
D,>1(A @ AO)[1]), the second part of the lemma then follows by unravelling the definitions. []

Proof (of Proposition 5.11). Suppose that k is concentrated in degrees [—N, 0], that Jis concentrated
in non-positive degrees and that A is nilpotent and strictly Artin. In particular, A is quasi-free and
finitely generated over k (Remark 2.6). To see that DY (4) — D (A) is a quasi-isomorphism,
we can work at the level of the underlying k-modules.

Endow both ®£OIY(A) and D, (A) with the filtration by the number of nullary operations from
P as in Lemma 5.26. Since these filtrations are complete and Hausdorff, it suffices to show that
the induced map on the associated graded

DY (AB P(O)1]) — Dy (A D P(O)[1])

is a quasi-isomorphism, where 7>! : B(Z%!) --» 9% is the universal twisting morphism. Note that
the 9%l-algebra A @ K0)[1] satisfies the conditions of Proposition 5.22: it is quasi-free over k
and it has finitely many generators in degree 0, all coming from A. The result then follows from
Corollary 5.21 and Proposition 5.22. O

6 | CHANGE OF OPERADS

In this section, we describe the functoriality of the equivalence

MC: Algg ) —> FMPy

in the operad Pand use it to give a modular interpretation of the category of @-algebras for any k-
operad @ (Theorem 6.15). We will start by considering the functoriality of the adjoint pair (D, Q);))
in the twisting morphism ¢.

6.1 | Naturality of weak Koszul duality

To study the dependence of the adjoint pair (D, ED;’) on the twisting morphism ¢ : € --> & let
us consider the following category of twisting morphisms:
Definition 6.1. Let Koszul denote the category whose

* objects are weakly Koszul twisting morphisms ¢ : € --» Sfrom a k-cooperad % to a k-operad £
When considered as a left k-module, & is filtered-cofibrant and Zis cofibrant by assumption;
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* morphisms consist of a k-operad map f : »— @ and a k-cooperad map g : € — I, fitting
into a commuting square

€ ---y P
8 lf (6.2)
D -4 Q.

A map between such twisting morphisms is a weak equivalence if f (and hence also g) is a quasi-
isomorphism.

Remark 6.3. There is an obvious projection map 7 : Koszul — Opig sending a twisting mor-

phism to its codomain. This projection admits a section o : Opig — Koszul sending Zto the
universal twisting morphism B&--» & In addition to the isomorphism 7o 2 id, there is a natural
weak equivalence id — o7: every weakly Koszul twisting morphism ¢ : € --» SPadmits a natu-
ral weak equivalence to the universal one B#--» & It follows that 77 and ¢ induce an equivalence
of co-categories after inverting the weak equivalences.

Consider the following functors with values in the co-category of co-categories and left adjoint
functors between them

Alg: Koszul — Catk Alg™ : Koszul — Catk. (6.4)

These two functors send a map (6.2) to the left adjoint functors
fro Alg, — Alg, (V)1 Algy, — Alg),.
We then have the following homotopy coherent upgrade of Lemma 4.4:

Proposition 6.5. There is a natural transformation of functors

Alg
>
ﬂ@ Cats, (6.6)

dual

Koszul

Alg

whose value at a weakly Koszul twisting morphism ¢ : € --> Pis given by

ii)¢ op
Alg, — Alg,,.

Note that the functors Alg and AlgOlUlal send weak equivalences between twisting morphisms to

equivalences of co-categories (Corollary A.8), and hence descend to functors on the oco-categorical
localizations. By Remark 6.3, we therefore obtain the following:

Corollary 6.7. Let Op, be the co-category of (augmented) k-operads. Then there is a natural
transformation of functors
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Op, ® Catl

()

dual

Alg

; ; ® op dual
given on objects by Alg(9) := Alg, —— Algg , =: Alg"*().

Recall from Lemma 4.4 that a single map of twisting morphisms induces a square of oco-
categories commuting up to natural equivalence. For this reason, it will be more convenient to
establish Proposition 6.5 in terms of fibrations.

Construction 6.8. Let Algdg denote the category whose:

* objects are tuples (¢ : € -» P A) consisting of a weakly Koszul twisting morphism, together
with a cofibrant JRalgebra A;

* morphisms (¢ : € > BA) — (P : D> @, B) consist of a map (6.2) and a map of Falgebras
A — f*B.

Similarly, let Alg?"3 denote the category whose:

* objects are tuples (¢ : € > & g) consisting of a weakly Koszul twisting morphism, together
with a €"-algebra g;

* morphisms (¢ : €-> Kg) — (P : D - @, }) consist of a map (6.2) and a map of Falgebras
(9)"(e) — b.

There are obvious projections
Alg® — 3 Koszul Algh™% 3 Koszul,

whose fibres over ¢ : € > &P are given by the categories of cofibrant Salgebras and of €-
algebras, respectively. We will say that a map in Algdg is a fibrewise weak equivalence if it is a
quasi-isomorphism of algebras that covers the identity in the base category Koszul.

Note that both projections are co-Cartesian fibrations: given a map (6.2) in the base category
Koszul, the induced functors between the fibres are given by f, and (¢¥)*. By construction, these
change-of-fibre functors preserve fibrewise weak equivalences, so that inverting the fibrewise
weak equivalences yields co-Cartesian fibrations [28, Proposition 2.1.4]

Alg — Koszul Alg™ — Koszul.

These are exactly the co-Cartesian fibrations classified by the functors Alg and Alg"#! from (6.4).
Since these functors take values in co-categories and left adjoint functors between them, the
projections are Cartesian fibrations as well [37, Corollary 5.2.2.5].

Proof (of Proposition 6.5). Consider the commuting triangle

Algdg BY > Algdual,dg

SN

Koszul
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where the vertical functors are the projections and the top horizontal functor is given by
(P: G BA) — (¢: €G> ABy(A)).

This functor sends fibrewise weak equivalences in Algdg to fibrewise weak equivalences in
AlgduaLdg by Lemma A.33. Consequently, it descends to a functor between the oco-categorical
localizations, which we will denote by

dual

Alg 2 > Alg
\ / (6.9)

Koszul.

When restricted to the fibre over a weakly Koszul twisting morphism ¢, this functor is given by
D, and admits a right adjoint @;5 by Lemma 4.1. Furthermore, the functor ® : Alg — Algdua!
preserves co-Cartesian edges. Indeed, unraveling the definitions, this is exactly the assertion of
Lemma 4.4. It follows from [39, Proposition 7.3.2.6] (and its dual) that the functor D has a right
adjoint which commutes with the projections, preserves Cartesian edges and is given fibrewise by
i‘); Under straightening, this means precisely that ® determines a natural transformation of the
form (6.6). O

6.2 | Naturality of the main theorem

We will now use Corollary 6.7 to show that the equivalence between formal moduli problems and
algebras of Theorem 1.3 depends functorially on the operad:

Proposition 6.10. Let k be a bounded connective dg-category and let Opg denote the oo-category
of splendid connective k-operads. There is a natural equivalence of functors

Algy

/—N
Op, ﬂMC PrR
~
FMP

with values in the co-category of locally presentable co-categories and right adjoint functors. The
value of this natural equivalence at a map f : P — Q@ is given by the commuting square of right
adjoints

MC
Algy ) —=> FMPg

%(f)*\L \L(f*)* (6.11)

MC
Algy ) —= FMPg.

where the right vertical functor restricts a formal moduli problem along the forgetful functor
[ Arty; — Artg,
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Lemma 6.12. Let k be a bounded connective dg-category and let Opu:r denote the co-category of
splendid connective k-operads. Then there is a natural transformation of functors

(op;)” ﬂib Caty (6.13)

Alg
whose value on a map f : P— @ is given by

)
Artg —> Algg( @

f*l 120

Arty —> Algg ..

Proof. Recall the commuting triangle (6.9), where the vertical projections are Cartesian and
co-Cartesian fibrations and the top horizontal functor ® sends (¢: €--> K A) to (p: € >
P Dy(A)). Let us consider the following subcategories of the co-categories appearing in that
triangle.

* Let Koszul* C Koszul denote the subcategory of universal twisting morphisms B#--> %where
Pis a splendid connective k-operad, with maps between those given by tuples f: P»— @
and B(f) : B#— B@. By Remark 6.3, inverting the weak equivalences in Koszul™ yields the
co-category Op;'.

¢ Let Alghdual = Algdual 5 Koszul* be the restriction of Alg? to the category Koszul™.

* Let Algt*™" C Alg Xy, Koszul™ be the full subcategory of tuples (¢ : B%#-> % A) with A an
Artin SRalgebra.

The functors appearing in (6.9) then restrict to

™~

Koszul®.

+,art

Alg > Alg+,dual

Note that the projection Alg™9"3 — Koszul* is (the restriction of) a co-Cartesian and Carte-

sian fibration. Since the restriction of an Artin algebra along a map of operads % — @ is again
Artin, the projection Alg™*"" — Koszul™ is a Cartesian fibration as well. Recall that D sends a
tuple (¢ : €-> FA)to(p: €--> P Dy(A)). Inparticular, Proposition 5.17 shows that it preserves
Cartesian edges, so that we obtain a natural transformation

Art

/_N
Koszul "% ﬂg Cat,,.
\_2

dual

Alg
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The domain of this natural transformation is given by %+— Art, and the codomain is given by
Pr— Alg;p( P Since these functors send quasi-isomorphisms to equivalences of co-categories,

the natural transformation descends to the localization of Koszul® at the quasi-isomorphisms,
yielding the desired natural transformation (6.13). O

Proof. Consider the natural transformation (6.13) from Lemma 6.12. Taking the opposites of its
values, one obtains a functor with values in co-categories sending a map f : — @ to

op D
Arty —— Algg(@)

] lsm

op
Artg, —)@ Algg(g,).

By the universal property of presheaf categories [37, Theorem 5.1.5.6], one obtains a natural trans-
formation of functors Opu:r — Pr® with values in presentable co-categories and right adjoint
functors, whose value on f is given by

Alggy g <2y Fun(Artg, S)

D( f)*\L l/(f )

Alggy oy 5 Fun(Artg, S).

Here the functor (f*)* restricts a (co)presheaf along f* and D* sends a D(A-algebra g to the
functor A = Mapeg,5»(D(A), g). By part (B) of Theorem 5.1, the natural transformation D* takes
values in diagram of full subcategories #—— FMP,. The result then follows from the fact that

MC: Algy ) —> FMPy < Fun(Artg,S)

agrees with D* by definition. N

6.3 | FMPs from algebras over operads

Since every Artin (augmented symmetric) k-operad @ is in particular concentrated in finitely
many arities, it is splendid. Proposition 6.10 and passing to opposite categories therefore shows
that there is a triangle

Art) —=—— Op

MC Alg
FMP

PrL

commuting up to the natural equivalence MC : Algg o) —> FMP,. Since Pr’ admits all colimits,
this induces a commuting diagram
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Fun(Artgp, ) # Op

l/Mc Alg
FMP,
prL

where ®, and FMP, are the unique colimit-preserving extensions of © and FMP. The right adjoint
to D, sends an operad Zto the functor Map,,(D(—), P. In other words, this right adjoint is
precisely the functor MC, composed with the inclusion FMPg, & Fun(Artg,, ). This implies
that for a formal moduli problem F,

D,(F) ~ MC™I(F) = T(F)
is given by the tangent complex (by Theorem 4.18 the inverse of MC is the tangent complex).

Definition 6.14. Let X : Arty, — S be a functor. We define FMPy to be the value of FMP, on
X. One can identify FMPy with the limit of the diagram

(At /X)™ — Cat,,

sending

(@,x € X(@)) ——> FMP,

fia—ae R
FO ! HFef

(@',x" € X(Q")) ——> FMPy,.

Theorem 6.15 (Theorem 1.6). For any formal moduli problem X : Arto, — S, there is an
equivalence of co-categories

MC: Alg; ) — FMPy.

Lemma 6.16. The functor Alg: Op — Prl; 9 Alg,, preserves sifted colimits.

Proof. The functor Alg is classified by a Cartesian and co-Cartesian fibration Alg — Op; in fact,
this is just the functor obtained by localizing the functor Algdlg — Op8 of Construction 6.8. Note
that Alg is itself the category of algebras over a coloured operad (namely, the operad for operads
with an algebra over them), and hence admits all limits and colimits.

We claim that the lemma follows from the following assertion: consider a cone diagram
F: #* — Algsuch that:

* the full subcategory # C #* is a sifted co-category;
* the composite #~ — Alg — Op is a colimit diagram of operads;
* for each arrow in the subcategory # C %%, its image in Alg is a Cartesian arrow.

Then the diagram F : #> — Alg is a colimit diagram if and only if for every arrow in %*, its
image in Alg is Cartesian.
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Indeed, let K — Op be a colimit diagram and consider the functor
Map’,. ((F>), Alg) — Map’, (%%, Alg)

which restricts a lift #~ — Alg with values in Cartesian edges to the full subcategory & C #*.
By the assertion, this functor is an equivalence with inverse given by left Kan extension (cf. [37,
Proposition 4.3.2.15]) and the lemma then follows from [37, Proposition 3.3.3.1].

To verify the assertion, note that the forgetful functor

@ = (9!, 0%): Alg —> Op x Mod; (P,A € Alg,) —> (2, A)

arises from restriction along a map of operads, and hence detects sifted colimits [39, Corol-
lary 3.2.3.2]. Furthermore, an arrow in Alg is Cartesian if and only if its image under @2 is
essentially constant.

We now have a diagram F : K> — Alg such that ®'(F) is a colimit and diagram and ®(F|.%)
is essentially constant. Then F is a colimit diagram if and only if ®*(F) is a colimit diagram,
which is equivalent to ®2(F) being essentially constant, that is, F sends every arrow to a Cartesian
arrow. I

Proof (of Theorem 6.15). By Lemma 6.16, we have sifted colimit-preserving functors that send a
diagram X : Arty, — S'to FMPy and Algg, (x). Since MC defines a natural equivalence between
them on corepresentables, the same is true for all X : Artop — & that can be written as sifted
colimits of corepresentables. In particular, this holds when X is an FMP [38, Proposition 1.5.8].
The result then follows from the fact that T(X) = 9,(X) when X is an FMP. O

7 | MAURER-CARTAN EQUATION

In the previous sections, we have discussed how — for a suitable augmented k-operad %— every
algebra g over the dual operad D(P) determines a formal moduli problem

MCg: Artga H S.

The formal moduli problem has been defined in co-categorical terms by the formula
MC,(A) = Mapg 5 (D(A), ).

The purpose of this section is to give a more explicit chain-level description of this functor in
terms of Maurer—Cartan elements of (nilpotent) L, -algebras (see Theorem 7.18). In particular, in
the classical case where 9= Com and g is a Lie algebra, we recover the usual formula (see, for
example, [25])

MC,y(4) = MC(A ® 4 ® Q.)

describing the formal moduli problem classified by g in terms of simplicial sets of Maurer-Cartan
elements (see Example 7.20).
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‘We will start by recalling some models for co-categories of algebras by simplicially enriched
categories. Under certain finiteness conditions on the k-operad % (see Assumption 7.6), we can
then present the co-functor ® on Artin Salgebras by a simplicially enriched functor that sends a
strictly Artin S2algebra to the cobar construction of its linear dual. The results of Section A.3 then
allow us to describe MC, in terms of Maurer-Cartan elements.

7.1 | Simplicial categories of algebras

Recall that for any k-operad % the co-category of JRalgebras is defined to be the co-category
obtained from the model category of JRalgebras by localizing at the quasi-isomorphisms. Such
localizations can be modelled by simplicially enriched categories, using the simplicial localiza-
tion of Dwyer and Kan, and often its mapping spaces can be computed using fibrant resolutions
[13]:

Definition 7.1. Given a k-operad % the naive simplicial category of Jalgebras Alg,, is the
following simplicially enriched category.

* Objects are JRalgebras.
* For two SRalgebras A and B, the simplicial set Map;(A,B) of maps between them has
n-simplices given by maps of Palgebras

A—>B®Q,

where Q,, = Q[A"] denotes the cdga of differential forms on the n-simplex. Equivalently, these
are maps of Q@ Q,-algebras A® 2, — B ® Q,,.

Furthermore, let Alg?, C Alg,denote the full simplicial subcategory on the cofibrant J2algebras.
Let Alg;g denote the (ordinary) category of JRalgebras and let Alg'(;“f’o C Algf;,ig denote the
subcategory of cofibrant J*algebras. We then have a commuting square of simplicial categories

Alg‘;%f’ SN Alggjﬁg

! !

Alg;, — Alg,,

where the vertical functors simply include the vertices of the mapping spaces.

After taking simplicial localizations at the quasi-isomorphisms, each of the above functors
yields a weak equivalence of simplicial categories. Indeed, taking cofibrant replacements pro-
duces a functor Q : Alg;g — Alg‘;g’o such that Q oi and i o Q are naturally quasi-isomorphic to
the identity. It follows that i induces a weak equivalence after simplicial localization at the quasi-
isomorphisms, and similarly for the inclusion AlgZ, — Alg,. The right vertical functor induces
an equivalence after localizations because for every JRalgebra A, the simplicial presheaf

Map;(—,A): Alggf —> sSet
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is representable by the simplicial diagram of Jtalgebras A ® Q[A*], all of which are quasi-
isomorphic (see, for example, [14] or [42, Corollary 2.9]). Now note that every quasi-isomorphism
in Algg, is already a homotopy equivalence [24, Lemma 4.8.4]. Consequently, Algg, is weakly
equivalent to its simplicial localization and we obtain the following:

Lemma 7.2. If Pis a k-operad, then the co-category of P algebras can be modelled by the simplicial
category Alg?,

Recall that given a Koszul twisting morphism ¢ : & --» & there is a more general notion of
oo-morphisms of Falgebras, given by maps between the respective bar constructions. This recov-
ers the classical examples of A - or L -morphisms. The oo-categorical localization can also be
described using co-morphisms:

Definition 7.3. Given a Koszul twisting morphism ¢ : & --» Z(Definition A.27), we define Alg;
to be the following simplicially enriched category.

* The objects of Alg?, are Jalgebras which are cofibrant as k-modules.
* For two such Palgebras A and B, the simplicial set Map? (A, B) of maps between them has
n-simplices given by co-morphisms

A ~~> B® Q,.
Equivalently, an n-simplex is a map of € ® Q,,-coalgebras

B4(A) ® Q, —— By(B) ® Q. (7.4)

Lemma 7.5. If ¢ : € --» Pis a Koszul morphism over k, then the co-category of Falgebras can be
modelled by the simplicial category Alg?.

Proof. Including the strict morphisms into the co-morphisms and sending an co-morphism A ~ B
to the strict morphism QgB,(A) — Q4By4(B) induces simplicially enriched functors

j: Algy, —> Alg> Q4B : Alg, — Algy,.
The natural homotopy equivalences Q4By (A) — A(LemmaA.34)and A ~» Q¢B¢(A) show that
Jj and Q define a homotopy equivalence of simplicial categories. O
7.2 | Simplicial categories of Artin algebras

We will now specialize to the case where 9= Q% arises as the cobar construction of a k-cooperad
satisfying suitable finiteness hypotheses:

Assumption 7.6. For the remainder of this section, let us fix a dg-category k and a k-cooperad &
which is filtered-cofibrant as a left k-module, and let = Q% denote its cobar construction. We
will assume that k is concentrated in degrees [0, N1, for some N, and that & satisfies the following
conditions.
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(1) For all colours cy, ..., ¢y € S, the left k-module %(c;, ..., Cps —) is quasi-projective and finitely
generated.

(2) Each ¢(p) is concentrated in degrees < f(p), where f(p) tends to —oo as the arity p tends to
0.

Example 7.7. Let € = coFree(E,R) be a quadratic cooperad over a field k, where E is finite
dimensional and in cohomological degrees < 1. Then € satisfies the conditions of Assumption
7.6. In particular, this applies to the quadratic dual cooperads of classical quadratic operads such
as Com, As, Lie and Perm, as well as 05Y™ (Definition 3.27).

Let us record the following immediate consequences of these assumptions:

Remark 7.8. The k-operad = Q@ satisfies the conditions of Variant 5.18. In particular, for degree
reasons every Artin Jalgebra A is automatically nilpotent and the inclusion ‘E)gOIY(A) C §)¢(A) is
the identity. Theorem 4.18 then provides an equivalence of co-categories between formal moduli
problems over Pand € -algebras.

Remark 7.9. There is a canonical map of k-operads = Q& — B(®")V. Because each €(p)
is finitely generated over k, this map identifies B(%")" with the completion 9" of P at its
augmentation ideal.

Note that a strictly Artin (hence nilpotent) S2algebra A has a canonical &-algebra structure.
Since such A is perfect over k, its linear dual AY has the canonical structure of a B(¢")-coalgebra.
Unravelling the definitions, one then obtains a natural isomorphism of &-algebras

0y (AY) =5 DYV (A) = Dy(A),

where ¢ : B(8") --» € is the canonical twisting morphism.

Definition 7.10 (Simplicial category of Artin algebras). For = Q% as in Assumption 7.6, let
us define

Art3 C Alg;
to be the full simplicial subcategory on the J2algebras that are strictly Artin (Definition 2.5).

Lemma 7.11. In the situation of Assumption 7.6, the oco-category of Artin FPalgebras can be
presented by the simplicial category ArtZ].

Proof. The simplicial category Art?; presents a full subcategory of the co-category of Salgebras
by Lemma 7.5. It presents the subcategory of Artin JRalgebras by Lemma 5.12, which applies by
Variant 5.18. O

Assumption 7.6 now allows us to give a very simple description of the functor Dy on the co-
category of Artin JRalgebras:
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Lemma 7.12. In the situation of Assumption 7.6, there is a (strictly) fully faithful functor of simplicial
categories

Dy : Arty; — Alge,; A —> Dy(A) 1= Qg (AY). (7.13)
This simplicial functor presents the functor of co-categories Dy : Arty, — Alggy from Section 4.1.

Proof. Let us start by defining the functor (7.13) more precisely. By Remark 7.9, we have that
Dy(A) = SEOIY(A) > Q41 (AY) is cofibrant whenever A is strictly Artin (and hence nilpotent, cf.
Remark 7.8). Let us now define the functor D, on simplicial sets of morphisms

D, : Map(A,B) — Mapl, (Dy(B), Dy(A)).
To this end, recall that an n-simplex in ArtZ is given by a map of € ® Q,,-coalgebras
By(A) ® Q, — By(B) ® Q,,. (7.14)

Because € satisfies the conditions (1) and (2) of Assumption 7.6 and because A is perfect over
k, we have that B3(A) ® Q, = 6(A) ® Q, is quasi-projective and finitely generated as a left k ®
Q,-module. The k ® Q,-linear dual of B4(A) ® Q,, is then given by

Homygq (Bgs(A), k®Q,) = D4(A) ® Q,.

On (higher) morphisms, we can therefore simply define Dy to send (7.14) to its k ® Q,,-linear dual.
The resulting map of simplicial sets is an isomorphism, with inverse taking the k°°? ® Q,,-linear
dual of a map of €V ® Q,,-algebras. We therefore obtain the desired fully faithful functor (7.13).

To see that this enriched functor indeed presents the oco-functor D, defined in Section 4.1,
consider the following commuting diagram:

ArtS > Alg, < Alg®®

D¢\L \t«%
o, ~ ~ d
Alg?? —— Alg? < Alg}.
By Lemma 7.11, Art; — AlgZ models the inclusion of the Artin Salgebras in the co-category of
all Salgebras. The assertion then follows by noting that the marked arrows become equivalences
after localizing at the quasi-isomorphisms. O

7.3 | Formal moduli problems from the Maurer-Cartan equation

We will now describe the equivalence provided by Theorem 4.18

MC: Alg,, —5 FMP,,
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more concretely in terms of simplicial sets of Maurer-Cartan elements, at least for 1-reduced coop-
erads @ satisfying the finiteness hypotheses of Assumption 7.6. Let us start with the following
observation:

Lemma 7.15. Fix a dg-category k and a 1-reduced k-cooperad & as in Assumption 7.6. For any
twisting morphism ¢ . € --> P, there exists a functor

Al ® Algl — Alg®: (0.4) — 4 ®, A

to the category of shifted L -algebras. When A or g is nilpotent, ¢ ®, A is a nilpotent shifted L, -
algebra.

Construction 7.16 (Hadamard tensor product of k-operads). Let k be a dg-category with a set of
objects S. Given a k°P-operad Yand a k-operad @, we can construct a (monochromatic) operad

P®y; @ over the base field k, their (internal) Hadamard tensor product’, as follows. For two tuples
of objects ¢ = (cy, ..., cp) and d = (d;, ...,d,) in k, consider the tensor product

Ke) Q. A(d) 1= Ac; —) @, Qd; —) = (@ He; co) @ Q(d; co)>/ ~.

Co

Explicitly, the tensor product over k (see Section 1.2) is computed as the quotient by relations

2 2
(Eicoédo>® <Qido> ~ (Eico> ® <Qido—>co>’

where ¢ and ¢ are operations in Pand @, 4 is an arrow in k and A denotes the corresponding
arrow in k°P. We then define

(#®y O)(p) := Homyepgoryer (k®pw@®u« @) c H He) @, Q(e).

Explicitly, its elements are S*P-tuples of the form

$e ¥,
ZE_’ Co®c— ¢y (7.17)
ceSxp

€

such that for every tuple of maps 4; : d; — ¢; ink

T This construction differs from the (simpler) exterior Hadamard tensor product (A.9).
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in the complex Ac) ®, @(d). These equations guarantee that P®y @ carries a well-defined
operad structure determined by

Z(gic()@gic()) °iz<gido®iido> =2 2 m@)m

Co dO Co dO =c;

The operad #®y; @ is constructed in order for the following to hold: if A is a Jfalgebra and B
is a @Q-algebra, then the chain complex A ®, B is a ?@y; @-algebra. Indeed, given p elements in
A ®, B of the form ZC,- a., ® b, with a, € A(c;) and b € B(c;), the operation (7.17) sends it to

YD 8, ))®Uelbe by ).

Co c=(cynrtp)

Proof (of Lemma 7.15). Note that for any k-cooperad € and any k-operad 9 there is a natural
inclusion of operads over the ground field k

€Y @y P —— Conv(6,P).

Here ¢ ®y Pis the Hadamard tensor product (Construction 7.16) and Conv(®, &) is the convo-
lution operad (Remark A.19). Given an element in 6" ® Pof the form (7.17), with ¢ € €" and
P € A the corresponding map 6(p) — A p) is given by

%5<gic> — 2(020()&0)

€

The arrow (c;bc, a) is the natural value of c;bc € ¢¥ on a € @, cf. equation (A.12).

When % is 1-reduced, the twisting morphism ¢: % -» 2 determines a map of operads
L {—1} — Conv(%, P (Remark A.19). When & satisfies the finiteness conditions of Assumption
7.6, this maps factors as

Lof-1} —3 €V @y P — Conv(E,P).

Indeed, for every ¢ = (c, ..., ¢,), Assumption 7.6 allows us to pick a finite basis e, , € 6(c; c,,) for
the left k-module @(c; —). Unravelling the definitions, one then sees that the generating p-ary
operation of L {—1} will be sent to the element

(Z € ® ¢<eg,a)> €€ ®u 2

c=(C1,-Cp)

By Construction 7.16, ¢ ®, A is a € ®y; JRalgebra and hence an L {—1}-algebra by restriction.
Furthermore, if g is nilpotent, then there are only finitely many composites of eZ -, that act non-
trivially on g. Consequently, only finitely many composites of the generating operz;tions inL {-1}
act non-trivially on g ®, A. It follows that ¢ ®, A is a nilpotent L {—1}-algebra, and similarly if
A is nilpotent. Ll
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Using the shifted L -structure from Lemma 7.15, we can now describe the formal moduli
problem associated to a €"-algebra more precisely as follows:

Theorem 7.18. Consider a dg-category k and a I-reduced k-cooperad € satisfying the conditions
from Assumption 7.6, and denote = QE. For every € -algebra g, there is a simplicially enriched
functor

MC, : Art;; — sSet; A —> MC(g®, AQ® Q. ),

where g ®, A carries the L {—1}-algebra structure from Lemma 7.15. This determines a simplicially
enriched functor

MC: Alg%v —— Fun(Artg;,sSet)

sending quasi-isomorphisms to pointwise homotopy equivalences. The associated functor between
oo-categories presents the fully faithful functor of Theorem 4.18

MC: Algy ) > Fun(Artg,S), (7.19)

whose essential image is the oo-category of formal moduli problems over 5

Example 7.20. Let € = Lie"{1} be the shifted coLie cooperad, so that Q& = C_, is a resolution
of the commutative operad. Suppose that g is a Lie algebra and that A is a strict unital Artin
dg-algebra, that is, an augmented unital cdga whose augmentation ideal m , is (strictly) finite
dimensional and nilpotent. Theorem 7.18 then shows that

MC,(A) = MC(m, ® ¢ ® Q).

In other words, the value on A of the formal moduli problem associated to g by the equivalence
of Lurie [38, Theorem 2.0.2] coincides with the value of the deformation functor considered, for
example, by Hinich [25] and Pridham [46]. In addition, Theorem 7.18 shows that the full FMP
associated to g can be described similarly, by allowing A to be a strictly Artin C -algebra, in which
case m, ® gisan L -algebra.

Proof. Consider the simplicially enriched functor Alg,, — Fun(ArtZ},sSet) sending g to the
enriched functor

Ar—> Map%v (Dg(A), g).
By Lemma 7.12, this enriched functor presents the functor of co-categories (7.19) after inverting
the weak equivalences. It therefore suffices to identify Map%,v (Dg(A), ) with a simplicial set of

Maurer-Cartan elements. But now recall that

D,(A) = Qi (AY)
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is the cobar construction of the linear dual of A, which is a B(€")-coalgebra. By the universal
property of the cobar construction (Proposition A.20), we then have that

Map?, (D4(A), g) = MC(Homyp(A",g ® Q.))

is given by the simplicial set of Maurer-Cartan elements in the convolution L_{—1}-algebra
Hom;op(AY, g ® Q,) (Remark A.29). The result now follows from the fact that the maps

A®yg — AV ®, g — Hom(AY, g)

are isomorphisms of L_{—1}-algebras, since A is quasi-free, finitely generated over k
(Remark 2.6). ]

Remark 7.21. Suppose we are in the setting of Theorem 7.18 and fix a strictly Artin 2algebra A.
The above proof shows that the space

MC,(A) = Mapy (D(A), g) = Mapy (Q4(AY), g)
can be presented by the simplicial set
MC(Homyo(AY,4g.)) = MC(A ®, g.)

for any choice of fibrant simplicial resolution g, of the €"-algebra g. The additional feature of the
particular choice g, = g ® Q, is that one obtains a simplicially enriched functor in A.

Remark 7.22. Let € be a k-cooperad as in Assumption 7.6 with contributions in arity O or 1. Let
us denote by Q,,. the cobar construction of non-coaugmented cooperads, that is, Q,.(%) is by
definition Q(k @ 6). A twisting morphism ¢ : € --» Pthen determines an operad map

QnC(COCOI’nu) H €Y ®H gb’

from the non-coaugmented cobar construction on the counital cocommutative cooperad. This
operad is freely generated by symmetric operations [, of degree 1, with p > 0; the operation [;
differs from the differential.

If A is a strictly Artin Q%-algebra, then maps of €"-algebras Q(AY) — g correspond bijec-
tively to Maurer-Cartan elements of the nilpotent Q, .(coCom*)-algebra A ® g, that is, degree 0
elements satisfying

dx + ilp(x, vy x) = 0.
550 P!

One can then repeat the proof of Theorem 7.18 to show the following: the formal moduli problem
associated to a €"-algebra g is represented by the simplicially enriched functor A — MC(A ®,
g ® Q,) on strictly Artin Q%-algebras.
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8 | RELATIVE KOSZUL DUALITY

In this final section, we describe a somewhat simplified case of quadratic duality in the setting
of k-operads. This was already mentioned in our discussion of operadic deformation problems
(Section 3.3) and we will conclude this section by providing the leftover proofs of Theorem 3.21
and Proposition 3.32 appearing there.

8.1 | Distributive laws and quadratic duality

Recall that a k-operad & is said to be quadratic if it admits a presentation of the form %=
Freeop(V) /(R), where V is a symmetric sequence of graded (but non-dg) k-vector spaces and

RCV o)V = Freeg)(V)

is contained in the subspace spanned by V-labelled trees with two vertices [40, Section 7.1]. In this
section, let us fix a dg-category k with set of objects S and consider the following generalization
of this:

Definition 8.1. A k-operad Zis called quadratic if it admits a quadratic presentation
P=Q(V,R) := Freeopk(V)/(R)

where V is a symmetric k-bimodule which is free (not quasi-free) as a left k-module and R C
V o)V. In this case, its Koszul dual cooperad #* = Q;°(V[1],R[2]) is the conilpotent quadratic
k-cooperad cogenerated by V[1] with corelations R[2]. We denote its Koszul dual operad (relative
to k) by & := (R#{-1})".

There is a canonical k-twisting morphism & --» & arising from the identity V — V[1] on
(co)generators. Indeed, such a canonical twisting morphism Q°(V[1], R[1]) ~» Qg(V, R) exists at
the level of S-coloured operads [52, Section 3], and descends to the quotients obtained by taking
tensor products relative to k.

Definition 8.2. A quadratic operad %= Q,(V, R) is said to be a weakly Koszul operad (relative
to k) if the induced map % — BZ%is a quasi-isomorphism. In that case, the operad & is quasi-
isomorphic to D (A{1}.

Observation 8.3. Suppose that k is concentrated in degrees < 0 and that = Q(V, R) is Koszul
relative to k with V' concentrated in degrees > 0 and finitely many arities. Then Zis a splendid
operad and FMP, ~ Alg., (as in Observation 3.39).

A main source of quadratic k-operads arises from distributive laws. If V' is an S-coloured
symmetric sequence, let us say that a k-law on V is a map of S-coloured symmetric sequences

A:Vok — koV
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such that the following diagrams commute

Vokok 225 koVok -2 kokoV Vok — Volk
VOM\L \LyoV E\L \LA
Vok > koV koV ——> ko V.

Let A: V ok — koV be ak-law on a symmetric sequence. Then k o V has the natural structure
of a symmetric k-bimodule (free as a left k-module) via the maps

ko(koV) £ koV (koV)ok -2 kokoy 21 v,

Any symmetric k-bimodule that is free as a left k-module arises in this way. If V = Pis an S-
coloured operad (augmented, as always), then k o Pinherits a k-operad structure via

(koP)oy (koP)=xko(PoP) —> koP

as long as the k-law is a distributive law in the sense of [40, Section 8.6], that is, it is also right
distributive:

Aol 1oA

PoPokok —> PokoP ——> koPoP kok —> Pok — kok
- be L)
Pok —~ > ko PP kok —> koP» —— kok.

Similarly, if V' = @is an S-coloured cooperad, then
ko® —°2% koG o€ = (ko®) oy (ko®)

endows k o ¥ with the natural structure of a k-cooperad as long as the k-law is codistributive:

€ ok A S ko® kok —> Gok —> kok
l l 2| I 2
C@o%okokﬁ)%oko%m}ko%o% ko k —> ko® —> kok.

Example 8.4. Let A : Vok — koV be a k-law. This induces a distributive law on the free operad
Freeq, (V) and a codistributive law on the cofree cooperad Cofreecqp (V).

Definition 8.5. Let ¢ : € --» Pbe a twisting morphism. We will say that a k-law on ¢ is the data
of:

* acodistributive law A4 on E;
* adistributive law Ag,bon %

such that ¢ intertwines A and A g
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Lemma 8.6. If ¢: G -> Pis a twisting morphism and A is a distributive law on ¢, then
kog¢: ko@® -> ko Pis a k-twisting morphism (see Construction A.17).

Proof. This follows from checking that given maps f, g : € — Psuch that f intertwines A4 and
A, the equation (ko f) % (ko g) = ko (f % g) is satisfied. O

Example 8.7. Let A, be a distributive law on an augmented k-operad & This extends to a
canonical k-law on the universal twisting morphism 7z : B(9) --» Psuch that k o 7 is the universal
twisting morphism of the k-operad k o & In particular, if Pis splendid, then k o 2is a splendid
k-operad.

The following proposition shows that under good conditions, distributive laws are compatible
with Koszul duality.

Proposition 8.8. Let = Q(V,R) be an S-coloured quadratic operad and consider a k-law
A: Vok — koV such that the induced distributive law on FreeopS(V) preserves the quadratic
relations R. In other words, A induces a distributive law on & Then:

(1) A[1]: V[1]ok — ko V[1] induces a codistributive law on the quadratic dual S#;

(2) A and A[1] together determine a k-law on the twisting morphism P --> P

(3) if A --> Pisweakly Koszul, then the induced twisting morphism k o # --> k o Pis weakly Koszul
over k.

Proof. For (1), one can check that A[1] preserves the quadratic relations. For (2), note that the
maps

Q“(V[1L,R[2)) — V[1] — V — Q(V,R)
are all compatible with the distributive law by construction. Finally, for (3), the map of cooperads

¢ 1 P — B(9) is compatible with the codistributive law on & and that of Example 8.7 (both
ultimately arise from A). Consequently, there is an induced map of k-coalgebras

ko¢': koQ®(V[1],R[2]) — koB(P).

Since the composition product (over k) preserves quasi-isomorphisms, the result follows. O

8.2 | Koszul self-duality of O™ and proof of Theorem 3.21

Let us now spell out how the operad &Y™ for non-unital symmetric operads, discussed in Sec-
tion 3.3, fits into the framework from the previous section. To this end, note that the presentation
of the Z-coloured operad of non-symmetric operads ©"° given in Definition 3.24 is quadratic
and therefore fits the framework of (coloured) Koszul duality:

Proposition 8.9 [52, Theorem 4.3]. The quadratic Z,-coloured operad O™ is Koszul, and it is
isomorphic to its Koszul dual operad 6™' = 0™,
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A priori a similar result is not expectable for the operad of symmetric operads since the relations
for the symmetric group are not quadratic. Dehling and Vallette [17] used curved Koszul duality
theory to construct an appropriate cofibrant replacement functor over any ring. Crucially, they
observed that the symmetric group data could be obtained as a distributive law.

Proposition 8.10 [17, Proposition 1.9]. There is a k[Z]-law on the quadratic data generating O™,
such that

k[Z] o O™ = G™,

Following the previous section, we can therefore interpret 6™ as a quadratic k[Z]-operad
which is Koszul. Using the canonical equivalence inv : ¥ — Z°P, sending a permutation to its
inverse, to identify k[Z]-operads with k[Z°P]-operads, the Koszul dual of 6™ can be viewed as a
k[Z]-operad as well.

Corollary 8.11 (The operad of symmetric operads is Koszul). The quadratic k[Z]-operad O™ is
self-dual in the sense that

Dy (OV™{1} = (V™) = Y™,

Proof. Propositions 8.9 and 8.10, together with Proposition 8.8 imply that O™ is a (weakly) Koszul
operad with quadratic dual cooperad k[Z] o (O")i. Since k[Z] ~ k[Z°P] and using Proposition 8.9
once more, one finds that the Koszul dual of 6™ is k[Z] o (O™)' = 6™, O

Proposition 8.12. Consider the k-twisting morphism (O%Y™)i — O%™ relativeto k[Z]. The induced
bar-cobar adjunction can be identified with the usual bar-cobar adjunction

B: Op™™" . ? CoOp™™: Q

between non-unital k-operads and k-cooperads.

Proof (sketch). Note that coalgebras for the k[XZ]-cooperad (OY™)i = k[Z] o (O")i are symmet-
ric sequences with a (conilpotent) non-counital cooperad structure. The bar construction then
takes the cofree (0Y™)i-coalgebra (in symmetric sequences) with some differential. Unraveling
the definitions, this is exactly the cofree cooperad with the bar differential. O

8.3 | Relating operads over k and k[X]| and proof of Proposition 3.32

In this final section, we will describe a functor L : Op, — Opyy; associating to each k-operad
a k[Z]-operad, and show that L preserves Koszul operads (see Proposition 3.32). This was already
used in Section 3.3 to relate permutative algebras and non-unital operads using a map of k[XZ]-
operads O™ — L(Perm). It will be convenient to compare operads over k and over k[X] in two
steps, passing by the linear category k™ with non-negative integers as objects and morphisms
given by multiples of the identities.
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Construction 8.13. Consider the following two adjoint pairs of functors:

wt Mod:g . ? Mod®® : Tot wt: BlMod):dg 7 ? BiMod>% : Tot.

[kns [ns

Here the first adjunction between categories of modules simply sends a k-module M to
wt(M)(n) = M and a k™-module N to Tot(N) = [],, N(n). The second adjunction, at the level
of symmetric bimodules, has left adjoint

Mk) ifny+--+n.=n,+k—1
Wt(/l)(nl,...,nk;no)={ ) ! k 0

0 otherwise
and right adjoint

Tot(H)(k) = H MRy s 1y + -+ 1 + 1= k).

.....

Note that viewing a module as a symmetric bimodule concentrated in arity 0 does not identify the
two version of wt and Tot. All of these functors preserve quasi-isomorphisms.

The explicit description of the relative composition product shows that wt is a (strong)
monoidal functor which is (strongly) compatible with the action of symmetric bimodules on left
modules, that is,

wt(k) = kS, WM o) N) = Wt(M) opns WE(N), WM o) N) = Wt(M) opns Wt(N)

for symmetric sequences .# and ./'and a k-module N. It follows that Tot is lax monoidal, that is,
it preserves operads and algebras over them.

Remark 8.14. Let @ be a k-operad. Unraveling the definitions, wt(@) is a k"S-operad whose algebras
can be identified with Z_,-graded @-algebras, where each n-ary operation in @ has weight 1 — n.
In this case, the adjoint pair wt: Alg, < Alg, ) @ Totsendsa @-algebra A to the Z,-graded
algebra wt(A)(p) = A, and Tot(B) = [], B(n).

Construction 8.15. Let 7 : k[X] — k™ be the evident k-linear functor sending » to n and all
permutations to the identity. This induces restriction and (co)induction functors at the level of
modules, and similarly at the level of symmetric bimodules

2,dg

H . . 2,dg
Wz < BiMod,,;” : 7

7* : BiMod, ), . ? BiModk[Z] 1T,

: BiMod

Explicitly, 7*M(ny, ..., ny; ny) carries the trivial T, XX Zno-action and 7, and 7, take the
coinvariants and invariants with respect to this action.

As is the case for any dg-functor, 7, is strong monoidal for the relative composition product (as

follows from the explicit description in Section A.1). Consequently, the fully faithful functor 7* is

lax monoidal. In fact, the structure maps for the lax monoidal structure on 7z* have the following
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additional property: the lax monoidality and lax unitality maps induce isomorphisms

T Mo sy T* N = > (M Ooyns N')

= (8.16)
T Moz (K[Z] @ * V) —=5 T Moz (7K™ @ 7T N).

Indeed, this follows from the explicit description of the relative tensor product and the fact that
trivial representations are closed under tensor products.

Now let us write %2‘?21 for the category of retract diagrams k[X] — # — k[Z] of symmetric
k[Z]-bimodules (and likewise for k™). The pointwise composition product endows this category
with a monoidal structure, such that associative algebras are precisely (augmented) k[X]-operads.
The adjoint pair (7*, 7r,) then induces an adjoint pair

T Ly ] 7 &"k[z] DT
Explicitly, 7" (k™ @ M) = k[Z] & 7* M and similarly for 7z,.. The two natural isomorphisms (8.16)
now imply that 77" is strong monoidal. It follows that there are adjoint pairs

T Opyn ¢ ? OPypsy * s . Algg, . ? Op+ & 7,

between k"S-operads and k[X]-operads, and between algebras over a k"$-operad S and algebras
over 7, P

Remark 8.17. Given a k™-operad @, an algebra over 7" @ is simply given by a symmetric sequence
4, together with operations &/(n,) ® --- @ (n,) — A (n,) for each element of Q(n,, ..., ny; ny)
that are invariant under pre- and postcomposition with some o € %, . This induces a S*algebra
structure on the invariants of the £,, X --- X X, -action.

Combining Construction 8.13 and Construction 8.15 yields a (left adjoint) functor
L= ﬁ*owt: Opk — Opk[ZJ
Using this, we prove Proposition 3.32:

Proof of Proposition 3.32. Since both 7" and wt are strong monoidal for the composition product,
they preserve quadratic presentations. Furthermore, the explicit formulas in Construction 8.13
and 8.15 show that they commute with linear duality and preserve all quasi-isomorphisms. It fol-
lows that for any Koszul binary quadratic operad @, the k[X]-operad L(@) is Koszul and Koszul
dual to L(@") (relative to k[Z]).

Let us now compare algebras over a k-operad @ and over L(@). Remarks 8.14 and 8.17 show
that an L(@)-algebra is given by a symmetric sequence &/, together with an operation q : (n;) ®
- Q@ dny) — Any + -+ + n —k + 1) for each g € G(k) which is invariant under pre- and
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postcomposition with the symmetric group actions. Combining Constructions 8.13 and 8.15 then
shows that for any k-operad @, there is an adjoint pair

d d
L: Alg —U AlgLf@): R

as announced in Proposition 3.32. O

APPENDIX: OPERADIC TOOLKIT

In this section, we introduce the operadic homotopical algebra required for our purposes through-
out the text, notably in Section 8. The results from this section hold over a general dg-category k
but many of them are standard when the base k is the point and similar statements can be found
in [40] or in [36].

We recall that we work over a fixed field k, and we denote by S the set of objects of the
dg-category k. When we use the term operad (respectively, cooperad) we always mean unital aug-
mented operad (respectively, counital coaugmented cooperad) unless otherwise explicitly written.

A.1 | Operads over a dg-category

A symmetric k-bimodule in S-coloured symmetric sequences is a family of chain complexes over
k

V(cicy) 1= V(cl,...,cp;co), ¢, ES
together with maps

k(co» do) ® V(¢;¢0) ® R k(dg1),¢;) — k(dy, ... d;dg), d; €S

forevery ¢ : {1, ..., p} — {1, ..., p} which satisfy natural associativity conditions.

Definition A.1. We denote by BiModE’dg the category of symmetric k-bimodules.

Note that a symmetric k-bimodule M has an arity p part M(p), which is a k-k®P-bimodule with
a X ,-action that is compatible with the right k®P-structure. In arity 1, this is simply a k-bimodule
in the usual sense, that is, a functor k ® k°°> — Ch,, while a symmetric k-bimodule in arity 0 is
a left k-module k — Ch,.

The category BiModi’dg has a (non-symmetric) monoidal structure given by the relative compo-
sition product o,. An element in M o, N can be identified with a tree of height 2 with root vertex
labelled by ¢ € M(cy, ..., ¢p;¢o) and all other vertices labelled by ¢, ...,$, € N, with ; having
an output of color ¢;, subject to the relation that edges are k equivariant. In other words, for all
a € k(c;,c),

labelling (¢ o; ), ¥y, ..., ¥, ~ labelling ¢, 9, ..., aph;, ..., P,.

Proposition A.2. The following categories carry model structures, in which the fibrations are the
surjections and the weak equivalences are the quasi-isomorphisms.
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(1) The category of k-operads, defined to be the category of augmented unital associative algebras in
symmetric k-bimodules

Opig = Alg8 ( BiModi’dg )

(2) For any associative algebra & in symmetric k-bimodules, the categories of left and right
FPmodules
LMod®¥ := LMod,(BiMod;*)  and ~ RMod®¥ := RMod( BiMod; **).
In particular, the category BiModi’dg itself.

(3) Forany k-operad & the category of Falgebras, defined to be the category of left modules that
are concentrated in arity 0

Alg®® = LMod@<LMod§g).

Proof. The proposition follows essentially from the fact that over a field of characteristic zero,
algebras over a coloured operad have a canonical model structure [27]. For example, (1) the cate-
gory of augmented unital k-operads can be identified with the category of non-unital operads in
symmetric k-bimodules; these are algebras over an operad with set of colours given by [ [ ... sxn=1
(cf. Definition 3.27). Something similar holds for (2) left and right modules, and for (3) it suffices
to observe that an algebra over a k-operad is simply an algebra over its underlying S-coloured
operad. O

Example A.3 (Free algebras). Let ’be an k-operad and V a left k-module. Then the free S2algebra
on V is given by the usual formula

AV) 1= Po V = @g(P) Bz, xier ver,
p

A symmetric k-bimodule that is cofibrant for the model structure from Proposition A.2(2) is
(in particular) given in each arity p by a quasi-projective k-k®P-bimodule. For many practical
purposes, it will suffice to impose a slightly weaker cofibrancy condition, concerning only the left
k-module structure:

Definition A.4. A symmetric k-bimodule M is cofibrant as a left k-module if for each tuple of
objects ¢; € S, the left k-module M(c, ..., Cps —) is cofibrant. This holds in particular if M is cofi-
brant in the model structure of Proposition A.2. If M and N are cofibrant as left k-modules, then
M oy N is as well.

Proposition A.5. Let Pbe a k-operad which is cofibrant as a left k-module. Then the forgetful func-
tor Alg(;f — LModig preserves cofibrant objects, that is, every cofibrant Salgebra is also cofibrant
as a left k-module.

Proof. This follows from a variation of the argument from [3, Appendix 5]. Let us consider the
following two conditions on a JRalgebra A.
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(1) Foreach cofibrant k-module W, the Palgebra coproduct A LI AW) is cofibrant as a k-module.
(2) Aiscofibrant as a k-module and for each cofibration of k-modules V » W andamapV — A,
the map A — A Ly, AW) into the pushout of Salgebras is a cofibration of k-modules.

Clearly (2) implies (1), and the converse implication holds as well. To see this, we claim that there
exists an increasing filtration on A Ugyy AW) whose associated graded is A LI AW /V). Assum-
ing this, condition (1) implies that the cokernel of i : A & A Liyy) AW) admits an increasing
filtration whose associated graded is the cokernel of the summand inclusion A & AL AW /V).
The latter is cofibrant, so that the cokernel of i is cofibrant as well and i is a cofibration of
k-modules (cf. Remark 1.9).

For the desired filtration, we can filter the k-module W by F,(W) =V and F;(W) = W, put A
and V in weight 0 and compute the pushout A Uy AW) in the category of Falgebras in filtered
k-modules. Since forgetting the filtration defines a symmetric monoidal left adjoint functor from
filtered k-modules to k-modules, this provides a filtration on A Ly AW). Likewise, taking the
associated graded is symmetric monoidal, so that the associated graded can be identified with
A Ugyy Agr(W)). Since gr(W) =V @ (W /V) (with W /V of weight 1), this coincides with the
graded JRalgebra A LI AW /V).

Now let us say that a Palgebra A is adequate if it satisfies the equivalent conditions (1) and (2).
Our goal will be to show that all cofibrant Salgebras are adequate. To see this, note that if A is
adequate and V/ — W' isa cofibration of k-modules, then A Lizy) AW')is adequate (one easily
verifies (1) using condition (2) for A). The class of adequate JRalgebras is therefore closed under
iterated pushouts along generating cofibrations and under retracts. To conclude that it contains
all cofibrant JRalgebras, it remains to verify that the initial S2algebra HK0) is adequate, that ism
that for any cofibrant left k-module V, the free Salgebra AV) is cofibrant as a left k-module.
This follows directly from the formula in Example A.3 and the fact that #was cofibrant as a left
k-module. O

Given a k-operad Ptogether with a right module M and a left module N, we denote by M o N
the coequalizer of M o, Po, N =3 M o, N.

Lemma A.6. Let € Opig and suppose that M € RModf;g and N € LModg” are cofibrant. Then
the two functors

M og(~) : LMod¥ — BiMod. (—)oyN : RMod%¥ —— BiMod,"*

both preserve quasi-isomorphisms.

Proof. We will only deal with the first functor, the other is similar. Consider the simplicial reso-
lution of M as a right 2module M 0 Po =2 M 0 P— M, where o is the composition product
for S-coloured symmetric sequences of chain complexes. Since M is cofibrant, it is quasi-free as
a right 92 module; in particular, without differentials this augmented simplicial object has extra
degeneracies. Taking the relative composition product over Pwith a quasi-isomorphism X — Y
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yields a map of augmented simplicial objects

MogX <—MoX ¢ MoP oX

! L L

MogY <—— MoY { MoP oX

kil

Since the composition product o preserves quasi-isomorphisms, all marked vertical maps are
quasi-isomorphisms. Without differentials, the rows are augmented simplicial objects with (nat-
ural) extra degeneracies, so that the above diagram provides a simplicial resolution of the map
M 04X — M o,Y and the result follows. O

Remark A.7. Lemma A.6 implies that the composition product has a left derived functor, which
we will denote by

M og,N
and which can be computed by taking a cofibrant resolution of either M or N. A quasi-
isomorphism % — @ induces a quasi-isomorphism M o;}\] — M ogN for any M € RModC@1g

and N € LModgg.

Corollary A.8. Givenamap f: P— Qin Opgg, there are Quillen adjunctions

fi: Alg® —>$ Algl®: f* fi: LMod¥ —>< LModg® : f*

given by restriction and induction. When f is a quasi-isomorphism, these are Quillen equivalences.

Proof. The functor f* clearly preserves (and detects) fibrations and quasi-isomorphisms. When
f is a quasi-isomorphism, (f), f*) is a Quillen equivalence because the counit f,f*(M) =
@ o ;M — M is a quasi-isomorphism for all cofibrant M by Lemma A.6. 1

Dualizing
Given two dg-categories k; and k,, one can take the exterior Hadamard tensor product

. z,d . 2,d . z.d
BiMod,  x BiMod,'® —— BiMod, g, ; (M}, My) ——> M; ® M, (A.9)

where for any ¢; € k; and d; € k,,
(Ml ® Mz)((cl, dl)’ eey (Cp, dp); (Co, do)) = Ml(Cl, ceey Cp; Co) ® Mz(dl, ey dp; do).

From the description of the composition product, one sees that it is compatible with the exterior
Hadamard tensor product in the sense that there is a natural morphism

(M1°k1N1) ® (M2°|k2N2) — (M1 ®M2)°[k1®[k2 (Nl ®N2)- (A.10)
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An element in the domain can be represented by a tensor product of two trees of height two, with
vertices labelled by M; and N, respectively, by M, and N,. Such a tensor product is sent to zero if
the two trees are different and if the trees are the same, one labels its vertices by the corresponding
elementsin M; ® M, and N; ® N,.

The exterior Hadamard tensor product preserves colimits in both of its variables. It follows that
there are functors

2,dg
ks

z,dg z,dg

op
Homkl(—,—): (BlMOd ) ><B1ModIkl®|k2 —_— B1ModIkz

op
. . x,dg . z,dg . zdg
Homkz(—,—). (BlModk2 > X B1Mod|k] &k, —_— B1Mod|k]

2,dg
kq

2,dg

such that for M; € BiMod ke @k,

M, € BiModEflg and N € BiMod there are natural bijections

Hom(Ml, Hom, (MZ,N)> ~ Hom(M; ® M,,N) = Hom <M2, Homkl(Ml,N)).
We will be interested in applying this to the case where k; = k and k, = k°P is its opposite.

Definition A.11. Let End(k) denote the endomorphism operad of k, considered as a
left k ® k°P-module. More precisely, End(k) has set of colours S X S and p-ary morphisms
((cy,dy), - (cp, dp)) — (cp,dy) given by k-linear maps

ker, dy) ® - k(cp, dp) — ke, dy).

This is a (non-augmented) k ® k°P-operad. We define the dual of a symmetric k-bimodule M to
be the symmetric k°P-bimodule

MY := Hom, (M, End(k)).
Unravelling the definition, one sees that MY is given in arity p by the dual MY(p) =
Hom, (M (p), k) with respect to the left k-module structure on M(p). The right k-action on k and

the right k®P-action on M(p) endow M" with the structure of a symmetric k°P-module. Explicitly,
we have

MY(cy, s Cp; o) = Hom,, (M(cy, ..., ¢ps =), k(co; -)). (A.12)
Note that taking duals is only homotopically well behaved on symmetric k-bimodules that are
cofibrant as left k-modules (Definition A.4).

Cooperads over a dg-category

Definition A.13. A k-cooperad €is a coaugmented counital coalgebra in the category BiModi’dg.
We will say that € is filtered-cofibrant as a left k-module if it admits an exhaustive filtration

k=F,CF,4CF,%C..

such that A(F,6) C @ p+q=r F'p€oF € and each F, €is cofibrant as a left k-module. The first con-
dition implies that % is conilpotent and the second is equivalent to the associated graded gr(®)
being cofibrant as a left k-module.



84 | CALAQUE ET AL.

Remark A.14. Rgs;all that one can always endow a k-cooperad with its coradical filtration, where
F,.% =k @ ker(A ). If 6(0) = 0 and 6(1) = k, then % is filtered-cofibrant as a left k-module if and
only if it is cofibrant as a left k-module, using the filtration by arity.

Proposition A.15. Let € be a k-cooperad and let €' be its (left) k-linear dual. Then €
has the natural structure of an operad. If C is a G-coalgebra, then the dual CV has a natural
©"-algebra structure.

Proof. 1t suffices to verify that the functor (—) is lax monoidal, in the sense that there is a natural
map MY opop N¥Y — (M o, N)V. This map is the adjoint of
(MY 0p NY) ® (M 0, N) 2% (MY @ M) oy (NY ®N)
— End(k) oyw» gx End(k) —— End(k),
where the second map arises from the evaluation map Hom, (M, End(k)) ® M — End(k) and
the last map uses that End(k) is a (non-augmented) k°? ® k-operad. O

A.2 | All we need about bar-cobar for operads

From now on, all k-objects (bimodules, operads) that we consider are assumed to be as in
Assumption 1.10: they are cofibrant as left k-modules, and filtered-cofibrant in the case of
cooperads.

Definition A.16 (Bar-cobar constructions, see [21] and [40, Section 6.5]). Given a k-operad %
its bar construction BZis the k-cooperad constructed as the cofree conilpotent k-cooperad on the
augmentation ideal A1], that is,

B=T{ (A1) =k @ AL @ A1l 0, A1 ® ..

with an additional bar differential given by contraction of trees along inner edges.
Similarly, given a conilpotent Ik-coogerad @, its cobar construction Q% is the free graded k-
operad on the coaugmentation coideal 6[—1], that is,

Q6 =T, <%[—1]) =k@®E-11®E-1] 0, 61-1] D ...
with an additional cobar differential given by decomposing trees along inner edges.

Construction A.17 (k-twisting morphisms). Let M and N be symmetric k-bimodules. Their
infinitesimal composition product M o) N is the subobject of M o, N given by trees with 2 ver-
tices, with root vertex labelled by M and the other vertex labelled by N. There is a natural retraction

MO(I)N—)M OkN—>M 0(1)N

where the projection quotients out trees labelled by M and N with more than two vertices.
Let 9be a k-operad and € a conilpotent k-cooperad. A twisting morphism ¢ : € --> Pis a map
of symmetric k-bimodules of cohomological degree 1, which vanishes both after composing with
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the augmentation and coaugmentation map, such that:
dp+¢p*x¢ =0, (A.18)

where ¢ x ¢ is the composite

6 — Go & — G0, G2 Po,P—s Po P—s P,

and d denotes the commutator of differentials in Hom 5.4¢ (€, &). We denote by TwW(E, A C

BiMod,

Hom . = 54(%, P the set of twisting morphisms.
BlModk

Remark A.19. Similar to [40, Proposition 6.4.3], one checks that the sequence of complexes

Conv(@, A(p) := Homygopyer (G(p), Ap))

has the structure of an (ordinary) operad in chain complexes, called the convolution operad. As in

[40, Proposition 6.4.5], it follows that (HomBiMO e (6, P, x,d) is a pre-Lie algebra and the twist-
k

ing morphisms are its Maurer—Cartan elements. If & or &is 1-reduced, that is, zero in arity 0 and
k in arity 1, then [54, Section 7] shows that such Maurer-Cartan elements correspond bijectively
to maps of operads

L {—1} —— Conv(€,P)

from the operadic suspension of the L,,-operad: the value on the generating p-ary operation [, of
L{—1}is givenby ¢, : €(p) — HAp).

Proposition A.20. Let € be a conilpotent k-cooperad and Pa k-operad. Then there are natural
bijections

Ho 4g(6, BA = Tw(E, P = Homopdg(Q%, P.
k

InCoOp[k

Proof. Maps of bimodules ¢ : € — 2 which vanish both when composed with the augmentation
and coaugmentation map are in one-to-one correspondence with maps of augmented operads
from the free operad generated by%to 2. One can check that the compatibility with the differen-
tials is given exactly by equation (A.18). A dual argument on the category of conilpotent cooperads
shows that Hom Coopig(%, BA =~ Tw(E, P, see [40, Theorem 6.5.7] for the case k = k. O

Lemma A.21. Let »— @ be a quasi-isomorphism between two k-operads which are cofibrant as
left k-modules. Then the map B9’ — BQ@ is a quasi-isomorphism of k-cooperads, which are filtered-
cofibrant as left k-modules.

Proof. Endow both bar constructions with the (exhaustive) filtration by word length in Pand
@. The map on the associated graded is just the map T¢(A1]) — T(@[1]). When Pand @ are
cofibrant as left k-modules, these associated gradeds are cofibrant as left k-modules, so that B
and B@ are filtered-cofibrant. Using Lemma A.6, we conclude that the map at the level of the
associated graded is a quasi-isomorphism. O
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Proposition A.22. Let Pbe a k-operad which is cofibrant as a left k-module. Then the counit of the
bar-cobar adjunction QBP — Pis a quasi-isomorphism.

Proof. Ignoring degrees, elements of QBZ can be seen as trees whose vertices are themselves
(‘inner’) trees whose vertices are labelled by & Filtering by the number of inner edges (bar word
length) and using the cofibrancy of as a left k-module, we recover at the level of the associated
graded only the piece of the differential corresponding to the one from ZPand a second one making
an inner edges into an outer edge.

One checks that the associated graded retracts into &by constructing a homotopy that makes
an outer edge into an inner edge. O

Definition A.23 (Twisted composition products). Given a twisting morphism ¢ : € --> %A the
twisted composition product € 0,9 [40, Section 6.4.11] is the symmetric k-bimodule € o, % but
with differential twisted by the map

Aol

%Okg) H (%0(1)%)0|k95 % %Ok%okgb H %Okgéokg H %Okg)
Similarly, the twisted composition product & o4 € has differential twisted by

logol Hayol

Po 6 —) PoBo 6 ——> Po,Po 6 —» (930(1)95)0[1((6 — Po, 6.

Example A.24. For the universal twisting morphism 7 : B%--> & elements of B# o, & can
be identified with trees whose vertices are labelled by elements in A1), or by elements of Pfor
(some of the) leaf vertices. The differential then has three parts: (a) applying the differential of
Pto vertices, (b) contracting inner edges between 9{1] labelled trees and (c) replacing an 9{1]
labelled vertex with only S*labelled vertices above it by a Plabelled vertex and contracting (at the
same time) all inner edges above it.

Similarly, Q% o, € consists of trees with vertices labelled by &[-1], or by & for (some of the)
leaf vertices, with differential having three terms: (a) applying the differential of %, (b) partially
decomposing along inner edges between %[ —1]-labelled vertices and (c) decomposing a €-labelled
leaf vertex into height 2 trees with root vertex labelled by %[—1].

Lemma A.25. Let ¢: € -> P be a twisting morphism, where € and P are filtered-cofibrant,
respectively, cofibrant as left k-modules.

(1) Let M — N be a quasi-isomorphism between left S~modules that are cofibrant as left
k-modules. Then (€ o P oy M — (€ % 9P o4 N is a quasi-isomorphism between
filtered-cofibrant left k-modules.

(2) Let M — N be a quasi-isomorphism between right S2modules. Then M o, (P o €) —
N 04(P oy 6) is a quasi-isomorphism.

(3) The maps BP o, #— k and Q¥ o, € — k are quasi-isomorphisms.

Proof. For (1), filter €o4% using the filtration on . The associated graded is gr(%) o, & The
map (€oyP) oM —> (Goy, P oyN preserves the induced filtrations and is given on the associ-
ated graded by gr(®) o, M — gr(%) o, N. This is a quasi-isomorphism by Lemma A.6. The same
argument applies to (2).
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For (3), filter B%o_%by the number of inner edges. On the associated graded, one can then
construct a contracting homotopy replacing a Plabelled leaf vertex by a ﬁl]-labelled leaf vertex.

Similarly, the filtration on ¥induces a total filtration on Q€ o, €. The associated graded consists
of trees with vertices labelled by the associated graded gr(%)[—l], or gr(%) for (some) leaf vertices.
Since the cocomposition vanishes on gr(%), the differential has two remaining contributions: (a)
the differential on gr(%) and its shift and (c) sending a gr(%)-labelled leaf vertex to the correspond-
ing gr(%)[—l]-labelled vertex. This has a contracting homotopy by replacing gr(%)[—l]-labelled
leaf vertices by gr(%)-labelled leaf vertices. O

Corollary A.26. Let Pbe a k-operad which is cofibrant as a left k-module. Then B9~ k ogjlk.

A3 | All we need about bar-cobar for algebras

Let € be a k-cooperad and 2a k-operad, which are filtered-cofibrant, respectively, cofibrant, as
left k-modules.

Definition A.27. A twisting morphism ¢: €-» P is said to be Koszul if ¢ induces a
quasi-isomorphism Q% — £

We will say that it is weakly Koszul if instead the map € — B%is a quasi-isomorphism. Since
the bar construction preserves quasi-isomorphisms (Lemma A.21), Koszul morphisms induce a

quasi-isomorphism BQ# = B%and are therefore weakly Koszul.

Definition A.28. Let ¢ : € --> SPbe a twisting morphism, C a €-coalgebra (in left k-modules) and
A a Salgebra (in left k-modules). A twisting morphism f : C — A over ¢ is a left k-linear map
of degree 0 satisfying

df +¢of =0,
where ¢po f : C —> Aisgiven by

C—)%okcip—ofpgjokA—)A.
We denote by Twy(C, A) the set of twisting morphisms over ¢.

Remark A.29. If C is a conilpotent @-coalgebra and A is a JRalgebra, then one can check that the
complex Hom, (C, A) has the structure of an algebra over the convolution operad Conv(%, % of
Remark A.19 [54, Proposition 7.1].

If € or Pis 1-reduced, then a twisting morphism ¢ determines a map L {—1} — Conv(%, P,
so that Hom, (C, A) has a shifted L -structure. As in [54] the value | p( f1ren f p) of the generating
p-ary operation [, in L,{—1} is given by

- P(DI®f (1)@ ®f
C ——3 B(p) oy (O 2 PI0O BT Gy A® 4

where the sum runs over o € Z,. The twisting morphisms f : C — A are exactly the degree
1 elements of this L,-algebra satisfying the Maurer-Cartan equation ), %ln( fyes f) =0 [54,
Theorem 7.1]. Note that the infinite sum becomes finite when evaluated at some ¢ € C, because
C is a conilpotent %-coalgebra.
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Definition A.30 (Bar-cobar construction for algebras). Given a twisting morphism ¢ : € - P
and C a @-coalgebra, we define the cobar construction Q¢C , to be the free J2algebra on C, %o, C,
with differential given on generators by d(c) = d-(c) + 6(c) with & : C — G o, ,C —> Po,C.

Similarly, given A a SRalgebra, its bar construction B¢A is the cofree G-coalgebra on A, € o, A,
with differential given by d, + § with & onto generators given by o, A — Po, A — A.

Remark A.31. One can also identify using twisted composition products (Definition A.23) as
Q4C = (Poy6) 0¢C and By = (€04 P o A. In particular, if 7 : B9 — Pis the universal twist-
ing morphism, then Lemma A.25 shows that for every Jfalgebra which is cofibrant as a left
k-module,

B,A = (BP0, P ol A ~k o;A.
Proposition A.32. There are natural bijections

HomAlgig (Q¢C, A) = TW¢(C, A) = HomCOAIgig (C, B¢A) .

Proof. The proof is similar to Proposition A.20, see also [40, Proposition 11.3.1]. [

Lemma A.33. Let ¢ : € --> Pbe a twisting morphism and A a Falgebra. Then:

(1) By preserves quasi-isomorphisms between Salgebras that are cofibrant as left k-modules;

(2) if A is cofibrant as a left k-module and € is filtered-cofibrant as a left k-module, then By(A) is
filtered-cofibrant as a left k-module;

(3) in the setting of (2), Q¢B¢(A) is a cofibrant S algebra.

Proof. The first two points follow from Lemma A.25 and Remark A.31. In particular, the proof of
Lemma A.25 shows that B¢(A) = (G o A,d, + dp) carries a filtration induced from the filtration
on é.

For the third point, note that Q4B,(A) inherits a filtration by subalgebras from the filtration
on B¢(A). Since gr(B¢(A)) is a trivial coalgebra, gr(Q¢B¢(A)) is the free JRalgebra on gr(®) o, A.
Since gr(®) o, A is cofibrant as a graded left k-module, an inductive argument shows that QyBy (A)
is cofibrant (see also [51, Proposition 2.8]). O

Lemma A.34.

(1) Let € be filtered-cofibrant as a left k-module and let 1: € — QF be the universal twisting
morphism. Then the counit QB A — A is a quasi-isomorphism for all A € Algq, which are
cofibrant as left k-modules.

(2) Let¢: € — Pbe a Koszul twisting morphism. Then QgByB — B is a quasi-isomorphism for
all B € Alg,,which are cofibrant as left k-modules.

Proof. For (1), note that B, A consists of trees with vertices labelled by %[—1] or by & for (some
of the) leaf vertices, and with leaves labelled by A. The differential has a contribution from the
differential on Q% o, %€ (Example A.24) and a contribution by letting €-labelled leaf vertices act on
their leaves. Filtering Q B, A by the number of leaves, the associated graded is (Q€ 0,%) o, A. The
result then follows from Lemma A.25.
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For (2), let f: Q% — Pbe the induced map and notice that QyB,B = f,(Q,B,(f*B)). The
result then follows from part (1), (f,, f*) being a Quillen equivalence (Corollary A.8) and
Q,B,(f*B) being cofibrant (Lemma A.33). O

A.4 | Free resolutions of operads

The remainder of this section is devoted to a proof of the following result, relating the homotopy-
invariant condition appearing in Theorem 1.3 to a more concrete condition in terms of quasi-free
resolutions:

Proposition A.35. Let Pbe a connective O-reduced k-operad. Then the following are equivalent.

(1) The symmetric sequence F<! ogﬂﬁl is eventually highly connective.

(2) Pis quasi-isomorphic to a quasi-free, non-positively graded k-operad with higher arity genera-
tors in increasingly negative degrees. More precisely, for every n € Z, there exists a p(n) € N such
that all generators of arity > p(n) are in conomological degrees < n.

Remark A.36. Recall that every cofibrant k-operad is the retract of an operad which is quasi-freely
generated by a (S-coloured) symmetric sequence of graded vector spaces (one can take for instance
its cobar-bar construction). Conversely, if 9is quasi-freely generated by a symmetric sequence of
graded vector spaces in non-positive degree, then Zis cofibrant®.

For the remaining of the section, all (co)operads are 0-reduced (trivial in arity zero). We will
make use of the following Quillen adjunction between the categories of 0-reduced (augmented)
k-operads

sk, : Opiu’dg ﬁ Opﬂu’dg: (=)=

The right adjoint is the ‘truncation to arity at most p’ functor that quotients an operad by
the operadic ideal ), » HAk). 1ts left adjoint is the ‘p-skeleton’ functor that associates to @ the
operad sk (@) which is given in arities < p by @, and which is freely generated by this data.

Remark A.37. A map f: P— @ between cofibrant operads induces a quasi-isomorphism
sk, #— sk, @ as soon as it induces a quasi-isomorphism in arity < p. Indeed, factor f as an
acyclic cofibration 2 — & followed by a fibration f : & — @ and use Lemma A .42 to resolve
f’ by amap which is an isomorphism in arities < p. The result then follows from the fact that sk,
is a left Quillen functor and which only depends on arity (< p)-parts.

Lemma A.38. Let Pbe a cofibrant O-reduced k-operad, let p > 1 and consider the cofibre sequences

sk, (P) > P > X

<1l.h <1 <1.h <1
P P —> PP — Y.

" Here we use the natural left and right actions of Zon its quotient <!,

# More generally, a triangulated quasi-free operad is cofibrant, see [40, Proposition B.6.10].
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There is a natural map X — Y[—1], which is an equivalence in arity p + 1. Furthermore, the map
720 ogﬂﬁl —> Y is an equivalence in arity p + 1 as well.

Proof. Let 922 denote the kernel of the quotient %»— 95!, so that there is a cofibre sequence

P22 0;9551 s gp<l S gafloggﬁfl. (A.39)

Using the same cofibre sequence for sk ,() and unraveling the definitions, one sees that there is
a natural cofibre sequence

skp(P)20f, (5P ——> Pop Pt — Y[-1].

There is a natural map # — %2 — 2 ogﬂﬁl (the first one quotients out the arity 1 part), and
similarly for sk ,(%). The desired map X — Y[—1] is the induced map on cofibres.

Now suppose that #= (Freeg, (V),d) is a cofibrant k-operad, quasi-freely generated by a sym-
metric k-bimodule V. Then 9% is a cofibrant right Z2module, given by H1)oV>?0%(with some
differential), where V>2 is the arity > 2 piece of V. It follows that

F7? og,%l ~ FFloy220 ] (A.40)

with some differential. A similar equivalence holds for sk ,(9), which is a cofibrant suboperad of
SPfreely generated by V<P, the arity < p piece of V. One then deduces that

Y[-1] = A1)oVZPHoA1).

In particular, it agrees with %2 o {;ﬂ(l) in arity p + 1. Note that the above symmetric sequence
consists exactly of the (p + 1)-ary operations of % modulo those that are compositions of (< p)-ary
operations. This is exactly the (p + 1)-ary part of the cofibre X. 1

Corollary A.41. Let f : 9»— @ be a map of connective O-reduced k-operads such that the map of
symmetric k-bimodules

A1) A1) — (1) oL a(1)
is a quasi-isomorphism. Then f is a quasi-isomorphism.

Proof. We may assume that % and @ are cofibrant. In that case, the map f induces a quasi-
isomorphism in arity < p if and only if the induced maps on p-skeleta sk,%— sk, @ is
a quasi-isomorphism (Remark A.37). We check this for all p by induction. For p = 1, note
that A1) og‘ﬂ{l) is given in arity 1 by HA1); this follows from the cofibre sequence A.39 and
equation (A.40).

Next, note that the arity (p + 1)-part of Pis quasi-isomorphic to the arity (p + 1)-part of the
cofibre Y from Lemma A.38. If f induces a quasi-isomorphism on p-skeleta, then this cofibre is
quasi-isomorphic to the corresponding cofibre for @. It then follows that f also induces a quasi-
isomorphism on (p + 1)-skeleta. O
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Proof of Proposition A.35. (2)=> (1): follows from the cofibre sequence (A.39) and the identification
(A.40).

(1)= (2): we can assume that Zis cofibrant to begin with. It then suffices to show that Padmits
a free resolution with all generators in degrees < 0 and with the following property at each arity
p=2:

If H*(9~! 0,9<1)(p) is concentrated in degrees < n(p), then the generators of arity p are
concentrated in degrees < n(p) + 1.

We construct this resolution by induction on skeleta, using that
1_h 1, 1 h g<1\SP
Tl P 2 (55 o)

For the 1-skeleton 95! = sk, (9), there is no condition. Suppose we have found the desired pre-
sentation for sk,,_; (). It follows from Lemma A.38 that in arity p, the cohomology of the cofibre
sk 93/ skp 1(99 is concentrated in degrees < n(p) + 1 (and also in degrees < 0). This means that
sk S°can be obtained from sk ,_; (%) by adding arity p generators of degree < n(p) + 1 (as well as
generators of higher arity). O

In Section 5, we will need a slight refinement of Proposition A.35 which provides a quasi-free
resolution of the entire tower #— -+ — " —s

Lemma A.42. Let f: »— @ be a fibration of connective operads such that f induces a trivial
fibration in arities < p. For any cofibrant resolution @ — @, there exists a cofibrant resolution Pof
SPwhich fits into a diagram

&
On

1y
o

Q
2

f
such that f induces an isomorphism in arities < p.
Proof. Since @ is cofibrant, there exists a lift
(P xq Q)P
Tk
Q —> (@)=F

and therefore, by adjuction we have a lift
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We can now factor the map ¢ into a cofibration followed by a weak equivalence skp@ S P
PX, Q.

Since all operads involved are connective, this can be done inductively by ‘adding cells to kill
a cycle’. As g is already a weak equivalence in arity < p, it suffices to add cells in arity > p + 1,
which does not change the arity < p part. In particular, the composite map %— @ induces a

weak equivalence in arities < p. O

Proposition A.43. Let Pbe a connective k-operad and consider the tower of k-operads
P — . —— PP s L5 ST

Then there exists a resolution of this tower by a tower of quasi-free, non-positively graded k-operads
@ —> - —> @P) — ... with the following properties.

(@) Each 6P —s @P~Y induces an isomorphism in arity < p — 1.

(b) Each @) has higher arity generators in increasingly negative degrees (in the sense of
Proposition A.35).

(c) @ is the limit of the tower.

(d) For each p > 2, the generators of @P) in arity p are concentrated in degrees < n(p) + 1, where
n(p) is such that

H*(Qﬁl ol@gﬁl)(p):o > n(p).

In particular, @ is a graded-free resolution of 9 with higher arity generators in increasingly
negative degrees.

Proof. We can assume from the start that Zis already cofibrant, and then construct such a tower of
free resolutions inductively, as in Lemma A.42. In each inductive step, it suffices to add generators
of arity > p to skp_l(@(p‘l)). In particular, we can always arrange for condition (a).

To see what kind of generators have to be added in arity p, note that there is a quasi-
isomorphism

sk, (QP™V) — sk, (P=P) = sk, (P)

since both are quasi-isomorphic in arities < p — 1 (Remark A.37). One deduces that the cofibre of
skp_l(@(p_l)) — 9P is given in arity p by the arity p part of <! ogfpgﬁl. Since

gas%g)gﬂ H géslog;y@sl

is an equivalence in arity < p, it follows that we only have to add arity p generators in degrees
< n(p) + 1 (together with generators of higher arity). This makes sure that we can arrange for
condition (d).

For the remaining generators that we have to add, note that %P satisfies the equivalent con-
ditions of Proposition A.35, since it is zero in arities > p + 1. This implies that it suffices to add
higher arity generators in increasingly negative degrees, so that we can arrange for (c).
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Finally, define @ to be the limit of the tower. Since the tower becomes stationary in every fixed
arity, it follows that @ is graded-free. Furthermore, one sees that the arity p generators of @ are
concentrated in degrees < n(p) + 1, so they sit in increasingly negative degrees by the assumption
on & 0
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