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0. Introduction

0.1. Can one recover a Lie algebra g from its universal enveloping algebra Ug? Over
a field of characteristic zero, one possible answer is yes, as follows: the set of primitive
elements in any bialgebra form a Lie algebra, and a consequence of the Poincaré–Birkhoff–
Witt theorem is that the Lie algebra of primitive elements in Ug is isomorphic to g.
However, note that this answer to the question assumes that we know the bialgebra
structure of Ug. Let us suppose that we are only given Ug as an associative algebra — is
it still possible to recover the Lie algebra g? This question is in fact an open problem,
which seems to have been first stated in print by Bergman [5, p. 187]. The results of
this paper imply a positive answer to the question for nilpotent Lie algebras: a nilpotent
Lie algebra g is completely determined up to isomorphism by the associative algebra Ug.
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Perhaps surprisingly, the proof of this very concrete result will require passing through
a study of the abstract deformation theory of ∞-algebras over operads. Our original
motivation was a seemingly unrelated question arising from rational homotopy theory.

0.2. Recall that two (commutative, associative, Lie, etc.) differential graded algebras
A and B are said to be quasi-isomorphic if they can be linked by a zig-zag

A
∼
 − �

∼−! ...
∼
 − �

∼−!B

of morphisms of (commutative, associative, Lie, etc.) algebras, each of which induces an
isomorphism on homology.

0.3. A commutative differential graded (dg) algebra is in particular an associative
dg algebra. This means that there are two a priori different notions of what it means for
two commutative dg algebras to be quasi-isomorphic, as there are many more potential
zig-zags in the larger category of associative dg algebras. One is led to ask: if two
commutative dg algebras are quasi-isomorphic as associative dg algebras, must they be
quasi-isomorphic also as commutative dg algebras? This turns out to be a surprisingly
subtle question. Our first main theorem settles the question completely in characteristic
zero.

0.4. Theorem A. Let A and B be two commutative dg algebras over a field of
characteristic zero. Then, A and B are quasi-isomorphic as associative dg algebras if
and only if they are quasi-isomorphic as commutative dg algebras.

0.5. Our second main theorem is Koszul dual to Theorem A, informally speaking.
The Koszul dual of a commutative dg algebra is a dg Lie algebra, and vice versa, and the
Koszul dual of an associative dg algebra is an associative dg algebra. Moreover, Koszul
duality interchanges the forgetful functor from commutative dg algebras to associative
dg algebras and the universal enveloping functor from dg Lie algebras to associative dg
algebras. Thus, one might expect a Koszul dual form of Theorem A to assert that, if
two dg Lie algebras have quasi-isomorphic universal enveloping algebras, then the dg Lie
algebras are themselves quasi-isomorphic. Unfortunately, we are not able to prove this
statement (and it is not clear if one should expect it to be true), since Koszul duality is
not an equivalence; some information is lost when passing from one side of the Koszul
duality correspondence to the other.(1) In order to carry out the proof we need to
restrict our attention to a certain subcategory of homotopically complete algebras. This
completeness hypothesis is also what one might expect based on recent work of Heuts
[15], although our work is independent of his.

(1) However, by working with a different equivalence relation on coalgebras, one can obtain a
version of Koszul duality which is a genuine equivalence of categories— see Remark 4.30.
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0.6. In order to state the next result, we need to recall the notion of homotopy
completion, introduced by Harper–Hess [13] (in a far more general setting than the one
considered here). Let g be a dg Lie algebra over a field of characteristic zero, with lower
central series filtration

g=L1g⊇L2g⊇L3g⊇ ... .

We define the completion of g as the inverse limit

g∧ := lim←− g/Lng.

The homotopy completion of g, denoted by gh∧, is defined to be the completion of a cofi-
brant replacement of g, for example the bar-cobar resolution of g. Any quasi-isomorphism
between cofibrant dg Lie algebras induces a quasi-isomorphism between completions, so
the homotopy completion is well defined up to quasi-isomorphism.

0.7. Theorem B. Let g and h be dg Lie algebras over a field of characteristic zero.
If their universal enveloping algebras Ug and Uh are quasi-isomorphic as associative dg
algebras, then the homotopy completions gh∧ and hh∧ are quasi-isomorphic as dg Lie
algebras.

0.8. Theorem B raises a further question. Let us say that a dg Lie algebra g is
homotopy complete if g and gh∧ are quasi-isomorphic. Clearly, Theorem B becomes
more useful if g and h are known to be homotopy complete, and it is natural to ask for
simple conditions ensuring this. Theorem 1.12 (a) of [13], specialized to our situation,
says that a dg Lie algebra concentrated in positive homological degrees is homotopy
complete. We prove the following result.

0.9. Theorem. Let g be a dg Lie algebra over a field of characteristic zero. Suppose
that one of the following two conditions holds:

(i) g is nilpotent and concentrated in non-negative homological degree;
(ii) g is concentrated in strictly negative homological degree.
Then, g is homotopy complete.

0.10. Here, a dg Lie algebra is said to be nilpotent if the lower central series is
bounded below in each homological degree. In particular, any dg Lie algebra concen-
trated in positive degrees is nilpotent, so Theorem 0.9 recovers the result of Harper–Hess
mentioned in §0.8.

0.11. Theorem A is trivial in case the algebras A and B have no differential, which
is not the case for Theorem B. In fact, Theorem B is highly non-trivial even in the case
where g and h are classical Lie algebras concentrated in degree zero. It is particularly
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interesting when g and h are additionally assumed to be nilpotent, since in this case
Theorem 0.9 ensures that g and h are homotopy complete. In this case Theorem B says
the following.

0.12. Corollary. Let g and h be nilpotent Lie algebras over a field of characteristic
zero. The universal enveloping algebras Ug and Uh are isomorphic as associative algebras
if and only if g and h are isomorphic as Lie algebras.

0.13. Remark. If g and h are Lie algebras such that Ug∼=Uh as associative algebras,
then g is nilpotent if and only if h is nilpotent, according to a result of Riley–Usefi [29].

0.14. Corollary 0.12 makes progress on the long-standing problem of whether a Lie
algebra can be recovered from its universal enveloping algebra (seen as an associative
algebra only) [5, p. 187]. Before this, the statement was known only for some special
cases. For example, Schneider–Usefi [32] have a computer-assisted proof of the claim for
all nilpotent Lie algebras of dimension at most 6. Over a field of positive characteristic,
it is possible for Ug and Uh to be isomorphic, even as Hopf algebras, without g and h

being isomorphic. We refer the reader to the survey paper [34] for more information.

0.15. The question of whether a Lie algebra can be recovered from its universal
enveloping algebra is analogous to the more well-studied question of whether a discrete
group can be recovered from its group algebra (considered as an associative algebra);
the latter problem was famously settled by Hertweck’s construction [14] of two non-
isomorphic finite groups G and H such that ZG∼=ZH. For finite nilpotent groups G

and H it is true that ZG∼=ZH implies G∼=H [30], which suggests that Theorem B might
be “sharp” in the sense that some (pro)nilpotence condition is necessary in order to
recover a (dg) Lie algebra from its universal enveloping algebra.

0.16. Theorem B gives an interesting example where generalizing a problem makes
it easier. Theorem B is a significantly stronger result than its special case, Corollary 0.12.
One could ask whether our methods could be simplified if we only wanted to give a proof
of Corollary 0.12, so that we could give a more direct argument in this special case. We
do not believe that this is possible. Indeed, the very first step of our argument is to pass
to the Koszul dual setting by applying the bar construction (also known as the functor
of Chevalley–Eilenberg chains), so that even if we start with a classical (non-dg) Lie
algebra, we immediately obtain something differential graded. The Koszul duality which
is crucial for our arguments only makes sense in the differential graded world.

0.17. Theorem A gives a positive answer to a folklore problem in rational homotopy
theory. Let C∗(X,Z) denote the singular cochains of a topological space X. It is well
known that C∗(X,Z) is an associative dg algebra which is not commutative in general;
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the best one can say is that it admits the structure of an E∞-algebra (an algebra which
is commutative up to coherent higher homotopy). This E∞-algebra structure is not in
general quasi-isomorphic to a strictly commutative multiplication, as one can see from the
non-triviality of cohomology operations like the Steenrod squares. Rationally, however,
every E∞-algebra is quasi-isomorphic to a strictly commutative dg algebra, and Sullivan
[33] constructed a functor APL from spaces to commutative dg algebras over Q such that
C∗(X,Q) is naturally quasi-isomorphic to APL(X). Sullivan also showed that if X and Y

are nilpotent spaces of finite type, then X and Y have the same rational homotopy type
if and only if APL(X) and APL(Y ) are quasi-isomorphic as commutative dg algebras. It
is then natural to ask whether one can detect the rational homotopy type of X using
only the dg algebra C∗(X,Q), i.e. without invoking the functor APL — a priori, the fact
that C∗(X,Q) and C∗(Y,Q) are quasi-isomorphic as dg algebras does not imply that
APL(X) and APL(Y ) are quasi-isomorphic as commutative dg algebras. Theorem A gives
a positive answer to the question.

0.18. Corollary. Let X and Y be connected, nilpotent, based spaces of finite Q-
type. Then, X and Y are rationally homotopy equivalent if and only if the cochain
algebras C∗(X,Q) and C∗(Y,Q) are quasi-isomorphic as associative dg algebras.

0.19. Theorem B also admits an immediate interpretation in rational homotopy
theory, via Quillen’s approach to rational homotopy theory using dg Lie algebras [27]
(which in fact predates Sullivan’s work). Quillen constructed a functor λ from based
simply connected spaces to dg Lie algebras over Q such that X and Y are rationally
homotopy equivalent if and only if λX and λY are quasi-isomorphic, and such that there
is a quasi-isomorphism of associative dg algebras between U(λX) and C∗(ΩX,Q). The
multiplication on C∗(ΩX,Q) is given by the Pontryagin product, i.e. the product coming
from the concatenation of loops, and we take ΩX to be the Moore loop space of the based
space X, which has a strictly associative multiplication. Moreover, the dg Lie algebra
λX is concentrated in positive degrees if X is simply connected, so it is in particular
homotopy complete. Theorem B implies the following statement in this context.

0.20. Corollary. Let X and Y be simply connected based spaces. Then, X and Y

are rationally homotopy equivalent if and only if the algebras C∗(ΩX,Q) and C∗(ΩY,Q)

of chains on their Moore loop spaces are quasi-isomorphic as associative dg algebras.

0.21. Remark. Quillen’s original results for simply connected spaces were later ex-
tended also to finite-type connected nilpotent spaces [25], and the analogue of Corol-
lary 0.20 remains true if, instead of assuming X and Y to be simply connected, we
suppose they are finite-type connected nilpotent.
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0.22. In a paper that had a strong influence on the present project, Saleh [31] proved
that a commutative dg algebra is formal as a dg algebra if and only if it is formal as a com-
mutative dg algebra, and a dg Lie algebra is formal if and only if its universal enveloping
algebra is formal as a dg associative algebra. These are special cases of our results, since
formality says precisely that an algebra and its homology are quasi-isomorphic. How-
ever, one should note that Saleh’s paper does not require any nilpotence or connectivity
assumptions on the dg Lie algebras, so in this respect his result is stronger than ours.
The starting point of the present paper was an attempt to see how far the arguments of
Saleh could be pushed. Further prior work in the direction of Theorem A can be found in
an answer [19] by Tyler Lawson to a question on MathOverflow, explaining an argument
as to why Theorem A holds in the non-negatively graded case.

0.23. In a sense, our Theorem A is about probing how the forgetful functor from the
homotopy category of commutative dg algebras to the homotopy category of all dg alge-
bras fails to be fully faithful — as opposed to the classical (non-dg) forgetful functor from
commutative rings to non-commutative rings, which is fully faithful. Our Theorem A
shows that, in characteristic zero, some shadow of fully faithfulness is mysteriously re-
stored, in that the functor is injective on isomorphism classes. In a sequel to this paper
[6] we show by similar methods that the same functor is in addition faithful, also in
characteristic zero, extending prior work of Amrani [1]. However, the forgetful functor is
certainly not full [6, §1.4].

0.24. In this paper we systematically use the language of operads, operadic algebras,
and the Koszul duality theory of operads; the results are obtained by studying the inter-
play between the operads Lie, Ass and Com. In fact, the only property of these operads
that we end up using (besides their Koszulness) is that the natural morphism Lie!Ass

admits a left inverse in the category of infinitesimal bimodules over the operad Lie. One
obtains versions of Theorems A and B for any morphism of Koszul operads P!Q which
is a split injection of infinitesimal P-bimodules.

0.25. Theorem. Let f :P!Q be a morphism of binary Koszul operads in charac-
teristic zero with P(n) and Q(n) finite-dimensional for all n. Let Q!

!P! be the induced
morphism between the Koszul dual operads. Suppose that there exists a morphism of
infinitesimal P-bimodules s:Q!P such that s�f=idP. Then, the following holds.

(i) Two dg P!-algebras A and B are quasi-isomorphic if and only if they are quasi-
isomorphic as Q!-algebras.

(ii) Let A and B be dg P-algebras. If their derived operadic pushforwards Lf!A and
Lf!B are quasi-isomorphic as dg Q-algebras, then the homotopy completions Ah∧ and
Bh∧ are quasi-isomorphic.
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0.26. By specializing Theorem 0.25 to the case P=Lie and Q=Ass, one recovers
(more or less) Theorems A and B. Two technical remarks are in order:

• Theorem 0.25 only considers binary quadratic operads. In particular, the cor-
responding algebras do not have units. In the body of the paper we prove versions of
Theorems A and B that apply to unital algebras as well. The additional complications
arising from the presence of units are treated by ad hoc arguments (§3.3, §3.4, §4.9 and
§4.10), which do not apply to the case of general operadic algebras.

• In the statement of Theorem B we considered the usual universal enveloping al-
gebra functor, but Theorem 0.25 (ii) considers the derived version of the universal en-
veloping algebra [17, §4.6]. Nevertheless, Theorem 0.25 (ii) specializes to Theorem B: the
universal enveloping algebra functor always preserves quasi-isomorphisms (Lemma 4.5),
so in this case we have f!A≃f!A′ if and only if Lf!A≃Lf!A′.

The proof of Theorem 0.25 is a modification of the arguments given in the body of
the paper; no part of it should be difficult for the reader comfortable with the necessary
operadic formalism. We leave the details to the interested reader.

0.27. We know of one further example to which the general Theorem 0.25 applies. By
[12, §6.2], the morphism Leib!Diass from the Leibniz operad to the diassociative operad
admits a left inverse as infinitesimal bimodule. It follows that two dg Zinbiel algebras
are quasi-isomorphic if and only if they are quasi-isomorphic as dendriform algebras (the
analogue of Theorem A), and two dg Leibniz algebras whose universal enveloping diasso-
ciative algebras are quasi-isomorphic must have quasi-isomorphic homotopy completions
(the analogue of Theorem B).

Outline of the arguments and structure of the paper

0.28. The Koszul duality between Theorems A and B is clearly visible in the struc-
ture of the proofs. We will prove Theorem A by a direct argument, and Theorem B by
dualizing to reduce to Theorem A, or rather to a statement very close to it.

0.29. Let us briefly summarize the proofs, focusing first on Theorem A. We will need
to work with A∞-algebras rather than associative algebras, and similarly we will have to
replace commutative algebras with C∞-algebras (which are sometimes called “commuta-
tive A∞-algebras” in the older literature). The statement we will actually prove is that
if two C∞-algebras are A∞-quasi-isomorphic, then they are also C∞-quasi-isomorphic.
We will represent our two C∞-algebra structures by two Maurer–Cartan elements of
a certain dg Lie algebra h, called the deformation complex of C∞-algebra structures.
Two Maurer–Cartan elements of the deformation complex are gauge equivalent if and
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only if the two C∞-algebra structures are C∞-quasi-isomorphic (in fact, C∞-isotopic).
The fact that they are A∞-quasi-isomorphic translates into the assertion that these two
Maurer–Cartan elements are gauge equivalent in a larger dg Lie algebra g, which is the
deformation complex of A∞-algebra structures. These dg Lie algebras are essentially the
Harrison and Hochschild cochain complexes, respectively. One can now ask the following
rather general question: consider complete filtered dg Lie algebras h⊂g, and suppose we
are given two Maurer–Cartan elements in h which are gauge equivalent in g. When are
they also gauge equivalent in h?

0.30. In §1, we will give an answer to this more general question: this holds whenever
there exists a filtered retraction of g onto h as an h-module. Thus, our goal becomes
to construct a retraction of the Hochschild cochains onto the Harrison cochains. The
existence of such a retraction goes back to Barr, but we will give a slightly different
proof of this fact. In §2, we observe that there is a retraction of the operad Ass onto
the operad Lie as an infinitesimal bimodule over the operad Lie, as a consequence of the
Poincaré–Birkhoff–Witt theorem. This implies in particular the existence of a filtered
retraction of the Hochschild cochains onto the Harrison cochains. In §3, we put these
ingredients together to prove Theorem A.

0.31. For the proof of Theorem B we will use Quillen’s bar-cobar adjunction

C⊢L

between dg Lie algebras and cocommutative dg coalgebras. It is well known that, for any
dg Lie algebra g, there is a quasi-isomorphism of coassociative dg coalgebras between Cg

and BUg, where B denotes the classical bar construction of associative dg algebras. It
follows that if Ug and Uh are quasi-isomorphic, then so are BUg and BUh, which implies
that Cg and Ch are quasi-isomorphic as coassociative dg coalgebras, so that there is an
A∞-quasi-isomorphism Cg Ch. We will then prove a dual form of Theorem A, showing

that there is in fact a C∞-quasi-isomorphism Cg Ch. At this point, one might hope to
apply the cobar functor to deduce that g≃h. Unfortunately, this is problematic for two
reasons:

• the cobar functor L does not preserve quasi-isomorphisms in general;
• in general, a C∞-morphism between cocommutative dg coalgebras does not induce

a morphism between their cobar constructions, unless some finiteness conditions are
imposed.

It turns out that both problems are solved by replacing L with the completed cobar
functor L∧, which does preserve quasi-isomorphisms and which is functorial for arbitrary
C∞-morphisms; cf. §6. It follows that, if g and h are quasi-isomorphic, then the comple-
tions of the bar-cobar resolutions of g and h are quasi-isomorphic, which means precisely
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that gh∧≃hh∧. In §4 we will explain the proof of Theorem B, and in §5 we will prove
Theorem 0.9, giving criteria for when a dg Lie algebra is homotopy complete. Finally, in
§6, we will briefly recall some background on ∞-coalgebras.

0.32. The reader who wants to get the gist of the proofs of Theorems A and B with
a minimum of fuss about operadic preliminaries is invited to read only the statements of
Theorem 1.7 and Corollary 2.12, and then proceed to §3 and §4.

Notation and conventions

0.33. We always work over a field K of characteristic zero and in the category of
chain complexes. In other words, we use homological conventions and differentials have
degree −1. We use conventions such that the dual of a chain complex is again a chain
complex. The Harrison and Hochschild cochain complexes will play a supporting role
in the paper; when they are mentioned they will be considered as chain complexes via
the usual convention that Cn=C−n, and so on. All algebras and coalgebras are in
chain complexes unless explicitly specified otherwise, and we often omit the adjective dg,
writing e.g. associative algebras when speaking of associative differential graded algebras.
We implicitly identify invariants and coinvariants whenever necessary.

0.34. We consistently apply the Koszul sign rule: the category of chain complexes is
symmetric monoidal with V ⊗W∼=W⊗V given by sending v⊗w to (−1)|v| |w|w⊗v. We
denote by s a formal element of degree 1 and write sV :=Ks⊗V for the suspension of a
chain complex V . The dual of s is denoted by s−1, so that s−1s=1=−ss−1.

0.35. We try to follow the notation of [20] as closely as possible when talking about
operads. All cooperads are conilpotent. Unless explicitly specified otherwise, associative
and commutative algebras are non-unital, and coassociative and cocommutative coalge-
bras are non-counital.
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1. Some deformation theory

1.1. A famous principle, due to Deligne and Drinfeld and developed by many oth-
ers, assigns to a dg Lie algebra a “deformation problem”, in which the solutions to the
deformation problem are Maurer–Cartan elements and deformation equivalence of solu-
tions is defined by the action of the group obtained by exponentiating the degree-zero
elements. Any deformation problem in characteristic zero arises in this way, according to
an informal principle which is now a theorem of Pridham–Lurie [26], [22]. We will only
require a tiny fragment of the general theory, which we recall below; for an introductory
textbook account, see e.g. [24]. However, it is worth pointing out that our set-up is quite
different to the one considered in the references mentioned above: instead of considering
functors of Artin rings, our dg Lie algebras have complete filtrations which make the
required power series converge. So, strictly speaking, we will never write down an actual
deformation functor.

1.2. Let g be a dg Lie algebra equipped with a complete Hausdorff descending fil-
tration

g=F 1g⊇F 2g⊇ ...

such that
d(F pg)⊆F pg and [F pg, F qg]⊆F p+qg.

The set of degree-zero elements g0 can be made into a group, called the gauge group of g,
using the Baker–Campbell–Hausdorff formula

BCH(a, b)= a+b+
1

2
[a, b]+...,

in which the higher-order terms are given by higher-order nested brackets of a and b.
Given a∈g0, we write exp(a) for the corresponding group element. The series converges,
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since g=F 1g and the filtration is complete. The only fact about the Baker–Campbell–
Hausdorff formula we will need in this article is that, if a∈Fng0 and b∈g0, then

BCH(a, b)≡ a+b (mod Fn+1g).

1.3. Let MC(g) be the set of solutions to the Maurer–Cartan equation

dx+
1

2
[x, x] = 0

in g−1. If x∈MC(g), we may define a “twisted” differential dx on g by dx=[x,−]+d.
Then, (g, [ · , · ], dx) is again a complete filtered dg Lie algebra with the same underlying
filtration, which we denote by gx. Then, y∈g is a Maurer–Cartan element if and only if
y−x is a Maurer–Cartan element in gx.

1.4. The gauge group acts on MC(g) by

exp(a)·x=x−
∑
n⩾0

([a,−])n

(n+1)!
dx(a).

Two Maurer–Cartan elements are said to be gauge equivalent if they differ by an element
of g0 in this way. The only fact about the gauge action we will need here is that if da
and x are in Fng−1, then

exp(a)·x≡x−da (mod Fn+1g).

1.5. The main result of the present section is the following.

1.6. Proposition. Let h⊆g be a Lie subalgebra. Suppose that h is a retract of g as
a filtered complex, meaning that there is a filtration-preserving chain map s: g!h whose
restriction to h is the identity. Let x∈MC(h), and suppose that there is a gauge equiva-
lence between x and zero given by an element a∈g0. Then, x is also gauge equivalent to
zero in h.

Proof. We write x1 :=x and a1 :=a, and we define inductively the following sequence
of elements for n⩾1:

an+1 =BCH(an,−s(an)) and xn+1 =exp(s(an))·xn.

By construction, the element xn is gauge equivalent to xn+1 via the gauge s(an) for all n,
which lives in h. Each xn is also gauge equivalent to zero via the gauge an, which instead
is in general only an element of g.
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We claim that s(an), dan and xn are in Fng for all n. In particular, all three
sequences converge to zero. We prove this by induction on n, the base case n=1 being
clear.

For the first claim, suppose that s(an)∈Fng. Then, we have

an+1≡ an−s(an) (mod Fn+1g).

It follows that
s(an+1)≡ s(an)−s(an)≡ 0 (mod Fn+1g).

Here we used the fact that s(s(x))=s(x) for all x∈g.

The second and third claims are proven in tandem. Suppose that xn and dan are in
Fng. Consider the equation exp(an)·xn=0 modulo Fn+1g to get

xn≡ dan (mod Fn+1g).

Since xn∈h, we have s(xn)=xn. It follows that s(dan)=ds(an) is also equivalent to xn

modulo Fn+1g. Thus,

xn+1≡xn−ds(an)≡ 0 (mod Fn+1g).

Moreover, we have the identity

dan+1≡ dan−ds(an) (mod Fn+1g).

But we just saw from the equation

xn≡ dan (mod Fn+1g)

that
dan≡ ds(an) (mod Fn+1g),

so that dan+1∈Fn+1g, as claimed.
It follows that x1 is gauge trivial in h. Indeed, all elements of the sequence x1, x2, ...

in h are gauge equivalent to each other in h by construction, since the gauge taking xn to
xn+1 is given by an element of h. Since the sequence of gauges converges to the identity
in the group, we may consider the (ordered) product

∏∞
n=1 exp(s(an)), which is now a

well defined gauge from x1 to zero.

1.7. Theorem. Let h⊆g be a dg Lie subalgebra. Suppose that h is a retract of g

as a filtered h-module, that is, there is a filtration-preserving chain map s: g!h whose
restriction to h is the identity map and such that s([x, y])=[s(x), y] for all x∈g and y∈h.
If x and y are Maurer–Cartan elements of h which are gauge equivalent in g, then they
are gauge equivalent in h.
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Proof. This result reduces to Proposition 1.6 by replacing the differentials in h and g

with the twisted differential dy (§1.3). The fact that s is an h-module morphism implies
in particular that s is a chain map with respect to the twisted differentials.

1.8. Remark. To any complete Lie algebra g one can associate a Kan complex of
Maurer–Cartan elements MC

�
(g) [16], which contains all the information about the de-

formation theory encoded by g. In particular, π0(MC
�
(g)) is in bijection with the set of

Maurer–Cartan elements of g modulo gauge equivalence. Thus, Theorem 1.7 states that
if h!g is a morphism of Lie algebras which is split injective as a map of h-modules, then
the induced map

π0(MC
�
(h))−!π0(MC

�
(g))

is injective. It is natural to ask what happens for the higher-homotopy groups. This
question is answered by a theorem of Berglund [4, Theorem 5.5], which gives an identi-
fication

πn(MC
�
(g), x)∼=Hn−1(g

x), n⩾ 1,

functorial in g, for any basepoint x∈MC(g). It follows that, under the hypotheses of
Theorem 1.7, we have injections

πn(MC
�
(h))−!πn(MC

�
(g))

for any basepoint x∈MC(h) and any n⩾0, since the assumptions imply that hx is a direct
summand of gx as a chain complex.

2. A consequence of the PBW theorem

2.1. The goal of this section is to prove Proposition 2.10, giving a simple direct
sum decomposition of the associative operad, considered as an infinitesimal bimodule
over the Lie operad. This result may be considered as a refined form of Gerstenhaber–
Schack’s Hodge decomposition of the Hochschild complex [11]. Proposition 2.10 is not
new — it seems to have first been proven by Griffin [12], who showed it by explicitly
verifying that the Eulerian idempotents used by Gerstenhaber–Schack define morphisms
of infinitesimal bimodules. Griffin’s paper also explains in detail the relationship with
the Hodge decomposition of the Hochschild complex. We will give a short and self-
contained proof, explaining that the result can also been seen as a consequence of the
Poincaré–Birkhoff–Witt theorem.
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2.2. Recall that an operad can be defined as a monoid in a certain monoidal category:
the category of S-modules, with monoidal structure given by the composite product � [20,
§5.2]. As such there are evident notions of left and right modules over an operad P: an
S-module M is a left (resp. right) P-module if it is equipped with maps P�M!M (resp.
M�P!M) satisfying axioms of associativity and unit. If M has commuting structures of
a left P-module and a right Q-module, then we say that it is a (P,Q)-bimodule.

2.3. The category of S-modules is symmetric monoidal with respect to the tensor
product (Day convolution) of S-modules. If M and N are right Q-modules, then M⊗N is
again a right Q-module in a natural way, making the category of right Q-modules itself
symmetric monoidal. The category of (P,Q)-bimodules is equivalent to the category of
P-algebras in the symmetric monoidal category of right Q-modules [10, Chapter 9].

2.4. One can also define the infinitesimal composite product �(1) of two S-modules
[20, §6.1.1]. If P is an operad, an infinitesimal left (resp. right) module is an S-module M

equipped with a map P�(1)M!M (resp. M�(1)P!M) satisfying the analogous unit and
associativity axioms. The notion of infinitesimal right module is equivalent to the usual
notion of right module, but for left modules the two are strictly different. Moreover,
neither notion is stronger or weaker than the other.

2.5. Let f :P!Q be a morphism of operads. Then, Q becomes both a P-bimodule
and an infinitesimal P-bimodule. When we consider Q as a left P-module, we are con-
sidering morphisms

P(k)⊗(Q(n1)⊗...⊗Q(nk))−!Q(n1+...+nk),

and when we consider Q as an infinitesimal left P-module we are considering instead the
morphisms

P(k)⊗(P(n1)⊗...⊗Q(ni)⊗...⊗P(nk))−!Q(n1+...+nk).

This means that considering Q as a left P-module is equivalent to considering Q as
an algebra over the operad P in the category of S-modules, and considering Q as an
infinitesimal left P-module is equivalent to considering Q as a module over P, where P is
considered as an algebra over itself in the category of S-modules.

2.6. There is a pushforward functor f! from P-algebras to Q-algebras which is left ad-
joint to the functor f∗ restricting a Q-algebra structure to a P-algebra structure along f .
If A is a P-algebra, then f!A is the Q-algebra defined as the coequalizer of the two natural
arrows

Q(P(A))−!−!Q(A)
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given by applying the P-algebra structure of A, and by mapping P to Q using f and
then applying the operadic composition in Q, respectively. This coequalizer can also be
written as a “relative composite product” Q�PA. If we consider the operad P itself as a
P-algebra in right P-modules, then f!P is the Q-algebra in right P-modules given by Q

itself, considered as a (Q,P)-bimodule.

2.7. An important example of this pushforward functor is given by the universal
enveloping algebra. Any unital associative algebra may be considered as a Lie algebra,
with bracket given by the commutator; this forgetful functor corresponds to a morphism
of operads Lie!Ass+, where Lie is the Lie operad and Ass+ is the operad of unital asso-
ciative algebras. The pushforward gives a functor from Lie algebras to unital associative
algebras, which is precisely the usual universal enveloping algebra construction.

2.8. What will be more important for us in this paper is the operad Ass of non-
unital associative algebras. The pushforward along Lie!Ass maps a Lie algebra to
the augmentation ideal of its universal enveloping algebra, and the pushforward along
Ass!Ass+ is the functor which freely adjoins a unit to a non-unital algebra.

2.9. For a Lie algebra g, the category of g-modules is symmetric monoidal. In par-
ticular, if M is a g-module, then there is a natural g-module structure on the symmetric
algebra Sym(M). When g=Lie is the Lie operad, considered as an algebra over itself in
S-modules, this says that, if Q is an infinitesimal Lie-bimodule, then Sym(Q) is again
naturally an infinitesimal Lie-bimodule, where

Sym(Q)=
⊕
k⩾0

Symk(Q)

denotes the direct sum of all symmetric powers of Q, taken in the category of S-modules.
This observation, and those of §2.5, make the following proposition meaningful.

2.10. Proposition. There is an isomorphism of infinitesimal Lie-bimodules

Ass+∼=Sym(Lie).

Similarly,
Ass∼=

⊕
k⩾1

Symk(Lie)

as infinitesimal Lie-bimodules.

Proof. Consider Lie as a bimodule over itself. Then, the (Ass+, Lie)-bimodule given
by f!Lie, i.e. the universal enveloping algebra of Lie, is given by Ass+. The Poincaré–
Birkhoff–Witt theorem states that, for any Lie algebra g in characteristic zero, there is
an isomorphism of g-modules

Ug∼=Sym(g).
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This theorem is true for Lie algebras in any K-linear symmetric monoidal Abelian cat-
egory [7, §1.3.7]. In particular, Ass+ is isomorphic to the symmetric algebra on Lie,
considered as a module over the Lie algebra Lie in the category of right Lie-modules. But
a module over the Lie algebra Lie in the category of right Lie-modules is exactly the same
thing as an infinitesimal Lie-bimodule.

2.11. Remark. If we disregard the bimodule structure, Proposition 2.10 expresses the
well-known fact that Ass+∼=Com+

�Lie. We write Sym(Lie) rather than Com+
�Lie because

the latter notation obscures the infinitesimal bimodule structure.

2.12. Corollary. Let f : Lie!Ass be the natural morphism described in §2.7. There
is a morphism of infinitesimal Lie-bimodules s:Ass!Lie such that s�f=idLie.

Proof. Indeed, s is given by projecting onto the summand Sym1(Lie)=Lie.

2.13. In §3, we will consider the deformation complexes of A∞-deformations and C∞-
deformations of a C∞-algebra. These are (essentially) the Hochschild cochain complex
and the Harrison cochain complex, respectively. The isomorphism of infinitesimal Lie-
bimodules

Ass∼=
⊕
k⩾1

Symk(Lie)

gives rise to a direct sum decomposition of the Hochschild cochains of a commutative or
C∞-algebra, for which the k=1 summand Sym1(Lie)=Lie is identified with the Harrison
cochains. This decomposition coincides with the Hodge decomposition of Hochschild
cohomology of Quillen [28, §8] and Gerstenhaber–Schack [11]. The relationship between
the Hodge decomposition and the Poincaré–Birkhoff–Witt theorem seems to have first
been made explicit by Bergeron and Wolfgang [3], although in a different form than
the one found here. The only fact we will need for the proofs of Theorems A and B is
Corollary 2.12, which in this context says that the Hochschild cochains retracts onto the
Harrison cochains, and in particular that Harrison cohomology is a direct summand of
Hochschild cohomology [2]. However, it does not seem possible to deduce Theorems A
and B purely from the fact that Harrison cohomology injects into Hochschild cohomology;
we really do need the stronger statement that there exists a splitting on the chain level
(or a splitting of infinitesimal operadic bimodules). By contrast, Saleh [31] proves the
weaker statement that, if a C∞-algebra is formal as an A∞-algebra, then it is also formal
as a C∞-algebra, using only the fact that Harrison cohomology is a direct summand of
Hochschild cohomology.

2.14. Proposition 2.10 can be found in Fresse [10, Lemma 10.2.6], although stated
there only for right modules. Dotsenko and Tamaroff [9] explain more generally that a
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morphism of operads P!Q satisfies a PBW-type theorem if and only if Q is free as a right
P-module. Fresse and Dotsenko–Tamaroff consider right modules instead of infinitesimal
bimodules, since for them the statement of the PBW theorem is that Ug∼=Sym(g) as
vector spaces, not as g-modules.

3. Proof of Theorem A

3.1. The goal of this section is to prove Theorem A.

3.2. Theorem A. Two commutative dg algebras A and B are quasi-isomorphic if
and only if they are quasi-isomorphic as associative dg algebras.

3.3. We remind the reader of our convention (§0.35) that all dg algebras are assumed
to be non-unital, unless specified otherwise. It is natural to ask whether Theorem A
holds also in the unital setting, i.e. whether two unital commutative dg algebras are
quasi-isomorphic whenever they are quasi-isomorphic as unital associative dg algebras.
The answer is yes — in fact, this is implied by Theorem A, together with a general
result of Lurie [23, Corollary 5.4.4.7], as was pointed out to us by an anonymous referee.
Informally, Lurie’s result states that, in order to give a unital structure to a non-unital
algebra in an ∞-category, it is enough to exhibit a quasi-unit, which is roughly a unit
in the homotopy category, and that a unital structure is unique if it exists. A precise
statement (a weakening of [23, Corollary 5.4.4.7]) is that, if C is a symmetric monoidal∞-
category, CAlg(C) denotes the ∞-category of E∞-algebras in C, and CAlgnu(C) denotes
the ∞-category of non-unital E∞-algebras in C, then the forgetful functor

CAlg(C)≃−!CAlgnu(C)≃

can be identified with the inclusion of the full subcategory spanned by those non-unital
E∞-algebras which admit a quasi-unit. Here ( ·)≃ denotes the maximal Kan subcomplex
of an ∞-category, i.e. the subcategory with the same objects and only isomorphisms. In
particular, the functor is injective on isomorphism classes.

3.4. Specializing to the setting where C is the ∞-category of unbounded K-chain
complexes modulo quasi-isomorphism, Lurie’s result shows in particular that two unital
commutative dg algebras A and B are quasi-isomorphic if and only if they are quasi-
isomorphic as non-unital commutative dg algebras. (Indeed, the homotopy theories of
E∞-algebras and commutative algebras are equivalent over a field of characteristic zero.)
With this fact in place it is clear that the unital version of Theorem A follows from the
non-unital version, whose proof will take up the rest of this section.
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3.5. Instead of working with commutative algebras we work in the larger category
of C∞-algebras and C∞-morphisms, also known as ∞-morphisms of C∞-algebras. We
denote C∞-morphisms by a squiggly arrow. This category has the following useful prop-
erties.

(1) [20, Theorem 10.3.10] Any C∞-algebra is C∞-quasi-isomorphic to a minimal
C∞-algebra, i.e. a C∞-algebra with zero differential.

(2) [20, Theorem 10.4.4] If two C∞-algebras A and B are quasi-isomorphic, then
there exists a C∞-quasi-isomorphism(2) A B.

(3) [20, Theorem 11.4.8] Two commutative dg algebras are quasi-isomorphic if and
only if they are C∞-quasi-isomorphic.

3.6. We will similarly work with A∞-algebras instead of associative algebras; they
satisfy evident analogous properties (1′), (2′) and (3′).

3.7. Suppose that we are given two commutative dg algebras A and B that are
quasi-isomorphic as associative dg algebras. Our goal is to show that they are quasi-
isomorphic as commutative dg algebras as well. By (1), we may assume that A and B

are minimal. By (2′) there is an A∞-quasi-isomorphism A B, and by (3) the proof of
Theorem A is reduced to showing the existence of a C∞-quasi-isomorphism A B.

3.8. We can make the following further simplification. Note that a quasi-isomorphism
between chain complexes with vanishing differential is just an isomorphism. Therefore,
by the minimality assumption, the underlying graded vector spaces of A and B are iso-
morphic, an isomorphism being given by the first component of the given A∞-morphism.
By “transport of structure” along this isomorphism, we thereby reduce to the case where
A and B are minimal C∞-algebras with the same underlying graded vector space that
are linked by an A∞-morphism whose linear component is given by the identity, i.e. what
is called an A∞-isotopy.

3.9. Putting all of this together, we see that Theorem A is implied by the following
statement.

3.10. Proposition. Let V be a chain complex. Suppose that we are given two
C∞-algebra structures on V , and an A∞-isotopy between them. Then, there also exists
a C∞-isotopy between them.

3.11. For the proof of Proposition 3.10, we will apply Corollary 2.12 to the defor-
mation complexes DefA∞(V ) and DefC∞(V ) of A∞-algebra and C∞-algebra structures
on V . These are complete filtered graded dg Lie algebras whose Maurer–Cartan elements
are the A∞-algebra (resp. C∞-algebra) structures on V , and whose gauge equivalences

(2) As opposed to a zig-zag of quasi-isomorphisms.



lie, associative and commutative quasi-isomorphism 213

are A∞-isotopies (resp. C∞-isotopies). Elements of the deformation complexes are given
by collections of equivariant maps:

DefA∞(V ) :=
∏
n⩾2

HomSn(S
−1coAss(n),HomK(V

⊗n, V ))

and
DefC∞(V ) :=

∏
n⩾2

HomSn(S
−1coLie(n),HomK(V

⊗n, V )).

These complexes are filtered by

F p DefA∞(V ) :=
∏

n⩾p+1

HomSn(S
−1coAss(n),HomK(V

⊗n, V )),

and similarly for DefC∞(V ).

3.12. Here, S−1coAss is the Koszul dual cooperad of Ass, given by the operadic
suspension [20, §7.2.2] of the cooperad coAss encoding coassociative coalgebras. Similarly,
S−1coLie is the Koszul dual of Com, given by the suspension of the cooperad coLie

encoding Lie coalgebras.

3.13. To describe the Lie algebra structure on the deformation complexes, and to
see that DefC∞(V ) is a Lie subalgebra of DefA∞(V ), it is useful to put ourselves in a
more general situation. If C is a dg cooperad and P is a dg operad, then we can define a
complete filtered dg Lie algebra

HomS(C,P)=
∏
n⩾2

HomSn(C(n),P(n)),

which is called the convolution Lie algebra of C and P. This construction is covariantly
functorial in P and contravariantly functorial in C. There is a binary operation ⋆ on
HomS(C,P) which can be heuristically described as follows: if f, g∈HomS(C,P), then
f ⋆g is the composition

C−!C�(1)C
f�(1)g−−−−−!P�(1)P−!P,

where the first and last arrows are given by the infinitesimal cocomposition (resp. com-
position) of C (resp. P). See [20, §6.4] for a precise description. The Lie bracket is then
defined by

[f, g] = f ⋆g−(−1)|g| |f |g⋆f.

The deformation complexes can now be defined as DefC∞(V )=HomS(S
−1coLie,EndV )

and DefA∞(V )=HomS(S
−1coAss,EndV ), where EndV is the endomorphism operad of V .

Dualizing the natural injection Lie!Ass defines a surjection coAss!coLie which induces
the embedding of DefC∞(V ) into DefA∞(V ).
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3.14. Theorem. ([8, Theorem 3]) The Maurer–Cartan elements of DefA∞(V )

are in bijection with the set of A∞-algebra structures on V , and the group of gauge
equivalences coincides with the group of A∞-isotopies. Similarly, the Maurer–Cartan
set of DefC∞(V ) is the set of C∞-algebra structures on V , and the group of gauge
equivalences is the group of C∞-isotopies.

3.15. The first part of the theorem is well known: a Maurer–Cartan element of
HomS(C,P) is by definition an operadic twisting morphism from C to P, and if P is a
Koszul operad and V is a chain complex, then a twisting morphism from the Koszul
dual cooperad P¡ to EndV is the same thing as a P∞-algebra structure on V [20, §10.1].
For the second half of the theorem, there is an obvious bijection between the gauge
group and the set of ∞-isotopies; the non-trivial part of the theorem is to show that
the group operations and the group action on the Maurer–Cartan set (which on one
side are defined by sums over trees formulas, and on the other side are defined by the
Baker–Campbell–Hausdorff formula) are identified under the obvious bijection.

3.16. Remark. An A∞-structure on V corresponds to a Maurer–Cartan element in
DefA∞(V ), and twisting by this Maurer–Cartan element (§1.3) defines a differential on
DefA∞(V ). Up to a degree shift and the fact that the n=1 component HomK(V, V ) is
missing, DefA∞(V ) with this differential is the Hochschild cochain complex of the A∞-
algebra. Similarly, if we twist DefC∞(V ) by the Maurer–Cartan element corresponding to
a C∞-algebra structure on V , we recover the Harrison cochain complex of the C∞-algebra.

Proof of Proposition 3.10. We can rephrase the statement in terms of deformation
complexes as follows. We are given two Maurer–Cartan elements in the Lie algebra
DefC∞(V ) which are gauge equivalent in the bigger Lie algebra DefA∞(V ). We need to
prove that the two Maurer–Cartan elements are also gauge equivalent in DefC∞(V ). This
puts us in the situation considered in §1, and by Theorem 1.7 we are done if we can prove
that DefA∞(V ) retracts onto DefC∞(V ) as a filtered DefC∞(V )-module.

As already mentioned above, the inclusion DefC∞(V ) �
�
// DefA∞(V ) is induced by the

dual of the map Lie!Ass. Clearly any retraction of S-modules s:Ass!Lie will induce
a retraction of filtered complexes from DefA∞(V ) to DefC∞(V ), but a priori we will
not have any compatibility with the Lie brackets. We claim that if s is a morphism of
infinitesimal Lie-bimodules, then the induced map

DefA∞(V )−!DefC∞(V )

is a morphism of DefC∞(V )-modules. Showing this will complete the proof of Theorem A
as, by Corollary 2.12, we have such a morphism s:Ass!Lie of infinitesimal Lie-bimodules.
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Again, it is useful to put ourselves in a slightly more general setting. If C is a
cooperad and P is an operad, then we have the convolution Lie algebra HomS(C,P); if
M is an infinitesimal C-bicomodule and N is an infinitesimal P-bimodule, then

HomS(M,N)=
∏
n⩾2

HomSn(M(n),N(n))

is naturally a filtered module over the Lie algebra HomS(C,P). More specifically, given
elements f∈HomS(C,P) and ξ∈HomS(M,N), we set

f ·ξ= f ⋆ξ−(−1)|f | |ξ|ξ⋆f,

where f ⋆ξ denotes the composition

M−!C�(1)M
f�(1)ξ−−−−−!N�(1)P−!N,

with the first and last arrows being given by the infinitesimal left (co)module structures
of M and N, respectively. One defines ξ⋆f similarly, using instead the right (co)module
structure of M and N. This construction is functorial in M and N. Note in particular
that a morphism of cooperads D!C makes D into an infinitesimal bicomodule over C,
which means that HomS(D,P) is both a Lie algebra equipped with a morphism from
HomS(C,P), as well as a module over the Lie algebra HomS(C,P). These two structures
are compatible with each other, in the sense that the module structure on HomS(D,P)

deduced from the infinitesimal bicomodule structure on D agrees with the one obtained
from the pullback morphism HomS(C,P)!HomS(D,P).

The map Lie!Ass makes Ass into an infinitesimal bimodule over Lie. Dualizing,
coAss becomes an infinitesimal bicomodule over coLie, and this defines the DefC∞(V )-
module structure on DefA∞(V ). Given a morphism of infinitesimal bimodules Ass!Lie,
we obtain by dualizing a morphism of infinitesimal bicomodules coLie!coAss, and hence
a morphism of DefC∞(V )-modules from DefA∞(V ) to DefC∞(V ). This concludes the
proof of Theorem A in the non-unital case.

3.17. Remark. In the first preprint version of this paper, we proved the unital and
non-unital versions of Theorem A by separate arguments, instead of arguing as in §3.3
and §3.4. Indeed, it is also possible to treat the unital case by a modification of the
arguments used to prove the non-unital case. To do this, one may systematically work
with strictly unital A∞- and C∞-algebras. The categories of strictly unital A∞- and C∞-
algebras satisfy properties exactly analogous to those stated in §3.5. Moreover, strictly
unital∞-algebra structures and∞-isotopies are parameterized by deformation complexes
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exactly like those used in the non-unital case. In the same way that the deformation com-
plexes for non-unital A∞-algebra and C∞-algebra structures correspond to the Hochschild
and Harrison complexes, the deformation complexes for strictly unital algebra structures
correspond to the normalized Hochschild and Harrison complexes, respectively. One dif-
ference is that the strictly unital versions of the deformation complexes are not dg Lie
algebras but curved Lie algebras, but Theorem 1.7 is true just as well in the curved
setting (cf. [6, §5]).

4. Proof of Theorem B

4.1. The goal of this section is to prove that two dg Lie algebras with quasi-isomorphic
universal enveloping algebras have quasi-isomorphic homotopy completions (for this no-
tion, see Definition 4.15).

4.2. Theorem B. Let g and h be two dg Lie algebras. If the universal enveloping
algebras Ug and Uh are quasi-isomorphic as unital associative dg algebras, then the
homotopy completions gh∧ and hh∧ are quasi-isomorphic as dg Lie algebras.

4.3. For the proof, we will need to juggle the bar-cobar adjunction between associa-
tive algebras and coassociative coalgebras, as well as the bar-cobar adjunction between
Lie algebras and cocommutative coalgebras. We denote these adjunctions by

Ω: {conilpotent coassociative dg coalgebras}−! −{associative dg algebras} :B

and

L : {conilpotent cocommutative dg coalgebras}−! −{dg Lie algebras} :C,

and we refer the reader to [20, Chapter 11] for more details on how these functors are
defined. We will in particular use the fact that the functors B and C preserve quasi-
isomorphisms [20, Proposition 11.2.3], and that the counit and the unit of both adjunc-
tions are pointwise quasi-isomorphisms [20, Corollary 11.3.5]. The reader should keep
in mind that algebras and coalgebras are assumed to be non-unital (resp. non-counital)
unless stated otherwise.

4.4. We begin with two simple preliminary lemmas.

4.5. Lemma. If a morphism g!h of dg Lie algebras is a quasi-isomorphism, then
Ug!Uh is also a quasi-isomorphism.
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Proof. If g!h is a quasi-isomorphism of Lie algebras, then Sym(g)!Sym(h) is a
quasi-isomorphism of chain complexes. The statement then follows immediately from
the functoriality of the Poincaré–Birkhoff–Witt isomorphism, see e.g. [27, Theorem 2.3
in Appendix B].

4.6. It is well known that taking the augmentation ideal gives an equivalence of
categories between augmented associative algebras and non-unital associative algebras,
its inverse associating to an algebra A the augmented unital algebra A+ obtained from
A by formally adding a unit. Similarly, we have an equivalence of categories between
coaugmented coassociative coalgebras and non-counital coassociative coalgebras.

4.7. Lemma. For any cocommutative conilpotent dg coalgebra C there is a natural
isomorphism of augmented dg associative algebras (ΩC)+∼=ULC.

Proof. Ignoring the cobar differentials, the result just says that the tensor algebra is
canonically isomorphic to the universal enveloping algebra of the free Lie algebra. The
compatibility of the isomorphism with the differentials is a computation, see e.g. [27,
p. 290, last paragraph].

4.8. As a first step towards Theorem B, we will show that if Ug and Uh are quasi-
isomorphic as unital associative algebras, then they are also quasi-isomorphic as aug-
mented associative algebras. This is a consequence of the following lemma, see also [29,
Lemma 2.1].

4.9. Lemma. Let g be a dg Lie algebra. Let u:K!Ug and ε: Ug!K be the unit
element and augmentation of its universal enveloping algebra. Suppose that ε̄: Ug!K
is any other augmentation of Ug. Then, there exists an automorphism α: Ug!Ug of
unital associative algebras such that ε=ε̄α.

Proof. Consider the composition

g−!Ug
id−u�ε̄−−−−−−!Ug,

which is a morphism of Lie algebras. By the universal property of the enveloping algebra,
this induces a morphism of unital associative algebras α: Ug!Ug. We have ε(x)=ε̄�α(x)

for all x∈Ug. Indeed, since g generates Ug it is enough to check this equality for x∈g,
in which case the identity is obvious. Moreover, α is an isomorphism. To see this,
we start by noticing that α preserves the Poincaré–Birkhoff–Witt filtration on Ug, i.e.
the filtration obtained by declaring that FkUg is spanned by products of at most k

elements of g. Indeed, α maps g into F1Ug, so the result follows since g generates Ug.
It is also straightforward to check that the induced map on the associated graded is the
identity map. Since the filtration is bounded below and exhaustive, it follows that α is
bijective.
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4.10. Lemma. Let g and h be dg Lie algebras. Suppose that Ug and Uh are quasi-
isomorphic as unital associative algebras. Then, they are also quasi-isomorphic as aug-
mented associative algebras.

Proof. If g is a dg Lie algebra, we have a natural quasi-isomorphism

LCg
∼−! g,

given by the counit of the bar-cobar adjunction. By Lemma 4.5, this gives a quasi-
isomorphism of augmented associative algebras

ULCg
∼−!Ug.

Therefore, it is enough to show that ULCg and ULCh are quasi-isomorphic as augmented
associative algebras, and then by Lemma 4.7 it is enough to construct such a quasi-
isomorphism between

(ΩCg)+ and (ΩCh)+.

Now, we already know that (ΩCg)+ and (ΩCh)+ are quasi-isomorphic as unital al-
gebras, since we assumed that Ug and Uh were quasi-isomorphic. Moreover, we may in
fact assume the existence of a quasi-isomorphism of unital dg algebras

ϕ: (ΩCg)+
∼−! (ΩCh)+

(as opposed to a zig-zag of quasi-isomorphisms). Indeed, (ΩCg)+ is a triangulated uni-
tal associative algebra [20, Appendix B.6.7], for the same reason that any bar-cobar-
resolution of an algebra is triangulated. Hence, one can construct construct ϕ by in-
duction on the depth of the corresponding filtration of Cg, with the requirement that
the relevant triangle commutes at the level of homology. More generally, one may note
that triangulated algebras are bifibrant for the model structure on unbounded unital dg
algebras constructed by Hinich [17].

Now, the quasi-isomorphism ϕ has no reason to be compatible with the two aug-
mentations on (ΩCg)+ and (ΩCh)+. However, by Lemma 4.9, we may compose ϕ with an
automorphism of (ΩCg)+ to obtain a quasi-isomorphism which preserves the augmenta-
tions, which concludes the proof.

4.11. Proposition. Let g and h be dg Lie algebras. Suppose that Ug and Uh are
quasi-isomorphic as unital dg associative algebras. Then, Cg and Ch are quasi-isomorphic
as conilpotent coassociative dg coalgebras.
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Proof. By Lemma 4.10, Ug and Uh are also quasi-isomorphic as augmented associa-
tive algebras. Since g≃LCg for any dg Lie algebra and the universal enveloping algebra
functor preserves quasi-isomorphisms by Lemma 4.5, we have

ULCg≃Ug≃Uh≃ULCh.

Then, by Lemma 4.7, we have (ΩCg)+≃(ΩCh)+ as augmented associative algebras, so
that we also have ΩCg≃ΩCh as non-unital associative algebras. We now apply the bar
functor B to get a string of quasi-isomorphisms of coassociative conilpotent coalgebras

Cg≃BΩCg≃BΩCh≃Ch

which implies the claim.

4.12. We are now in a situation entirely dual to the one considered in Theorem A.
Indeed, we have the two conilpotent cocommutative coalgebras Cg and Ch which are
quasi-isomorphic (in fact even weakly equivalent) as conilpotent coassociative coalgebras.
If we wanted to prove that g≃h, then a potential approach would be to try to prove a
dual version of Theorem A, implying that Cg and Ch are already quasi-isomorphic as
cocommutative coalgebras, and then apply the cobar functor L and hope to deduce the
following string of quasi-isomorphisms:

g≃LCg≃LCh≃ h.

Unfortunately, there are some obstacles involved in realizing this strategy. Although we
will prove an analogue of Theorem A for coalgebras (Theorem 4.28), we can not show
in general that Cg and Ch are quasi-isomorphic as cocommutative coalgebras. Moreover,
even if we could, the cobar functor does not preserve quasi-isomorphisms in general [20,
§2.4]. Nevertheless a version of this idea does work to prove that gh∧≃hh∧.

4.13. The rest of this section will be devoted to deducing Theorem B from Propo-
sition 4.11. This will require proving Theorem 4.28, a “dual” form of Theorem A,
which forces us to work systematically with C∞- and A∞-coalgebras. The theory of
∞-coalgebras is less developed and less standardized than the theory of ∞-algebras, and
one can find multiple inequivalent definitions of C∞- and A∞-coalgebra being used in the
literature. In §6 we will give a more detailed background on C∞- and A∞-coalgebras.
For the moment, let us just state what definition we are using and what properties of
C∞- and A∞-coalgebras we need, and conclude the proof of Theorem B.

4.14. We will first need to recall the notions of completion and homotopy completion;
they will be redefined in greater generality in §5.
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4.15. Definition. Let A be a non-unital associative algebra. The adic filtration of A
is the descending filtration A=A1⊇A2⊇... , where An is the ideal generated by n-fold
products of elements of A. The completion of A is

A∧ := lim←−A/An.

Similarly, if g is a Lie algebra, then its completion is

g∧ := lim←− g/Lng,

where Lng is the nth term in the lower central series of g, i.e.

L1g= g and Lng= [g, Ln−1g] for n> 1.

4.16. Definition. The homotopy completion of an associative algebra or Lie algebra
is the completion of any cofibrant replacement of the algebra.

4.17. We will need some background on ∞-coalgebras and their ∞-morphisms. For
the moment, we will just state the definition of the types of coalgebras we need in this
section. The general discussion is deferred to §6.

4.18. Definition. A C∞-coalgebra is a chain complex C together with a continuous
square-zero derivation of degree −1 on Lie(s−1C)∧ (the completion of the free Lie algebra
on the desuspension of C) whose linear term vanishes. Similarly, an A∞-coalgebra is a
chain complex C with a continuous square-zero derivation of degree −1 on the completion
of the tensor algebra on the desuspension of C with vanishing linear term.

4.19. Recall that in Theorem A we used three key properties (1)–(3) of C∞- and
A∞-algebras, see §3.5. In the coalgebra case, the first two properties remain true mutatis
mutandis, but the third property is problematic: if two cocommutative coalgebras are
quasi-isomorphic as C∞-coalgebras, then there is no reason for them to also be quasi-
isomorphic as cocommutative coalgebras.(3) However, a weaker form of (3) remains
true. In order to state it, we need to introduce the following notion of completed cobar
constructions.

4.20. Definition. Let C be a C∞-coalgebra. The completed cobar construction L∧(C)

is the dg Lie algebra given by Lie(s−1C)∧, together with the differential obtained from
the square-zero derivation of Definition 4.18. If C is an A∞-coalgebra, we define similarly
Ω∧(C).

(3) We do not actually have an example where property (3) fails, so the statement should be
interpreted merely as saying that the usual proof of property (3) for ∞-algebras breaks down for ∞-
coalgebras.



lie, associative and commutative quasi-isomorphism 221

4.21. The name “completed cobar construction” for the functors L∧ and Ω∧ is natu-
ral, since if C is a conilpotent cocommutative dg coalgebra (resp. conilpotent coassociative
coalgebra), then one has

L∧(C)=L(C)∧ and Ω∧(C)=Ω(C)∧.

4.22. Recall that the bar constructions C and B preserve quasi-isomorphisms, but
that the cobar constructions L and Ω do not. One way to understand this asymmetry is
in terms of the natural filtrations on the various complexes involved (see §5 for our con-
ventions on filtered complexes). The functor C (resp. B) takes quasi-isomorphisms of Lie
(resp. associative) algebras to filtered quasi-isomorphisms of coalgebras, where the coal-
gebras are filtered by the coradical filtration. A nearly identical argument shows similarly
that L (resp. Ω) takes quasi-isomorphisms of coalgebras to filtered quasi-isomorphisms
of Lie (resp. associative) algebras, where Lie algebras are filtered by their lower cen-
tral series, and associative algebras have the adic filtration. However, a filtered quasi-
isomorphism of chain complexes will typically not be a quasi-isomorphism: this is in
general only true if the filtrations are exhaustive and complete, see Lemma 5.6. The rea-
son that C and B preserve quasi-isomorphisms is that the coradical filtrations of the bar
constructions are exhaustive and bounded below (in particular complete), so that a fil-
tered quasi-isomorphism with respect to the coradical filtrations is a quasi-isomorphism.
On the other hand, the reason that L and Ω fail to preserve quasi-isomorphisms is that
the lower central series filtration (resp. the adic filtration) on the cobar constructions are
instead bounded above (in particular exhaustive) but not complete.

4.23. The reasoning in the previous paragraph, however, makes it clear why the com-
pleted cobar constructions should preserve quasi-isomorphisms: the reason that L (resp.
Ω) does not preserve quasi-isomorphisms was precisely that the lower central series (resp.
adic filtrations) of the cobar constructions are not complete. If we complete with respect
to these filtrations, we should obtain functors which do preserve quasi-isomorphisms. We
record this as a proposition for the moment; a more general statement will be proven as
Theorem 6.28.

4.24. Proposition. Let C!D be a quasi-isomorphism of coassociative coalgebras.
(i) The induced map

Ω∧C −!Ω∧D

is a quasi-isomorphism.
(ii) If C and D are moreover cocommutative, then the induced map

L∧C −!L∧D

is a quasi-isomorphism.



222 r. campos, d. petersen, d. robert-nicoud and f. wierstra

4.25. We are now ready to state the properties of C∞- and A∞-coalgebras we will
need going forward.

(1) Any C∞-coalgebra is C∞-quasi-isomorphic to a minimal C∞-coalgebra, i.e. a
C∞-coalgebra with zero differential. (Theorem 6.24.)

(2) If two C∞-coalgebras C and D are quasi-isomorphic, then there exists a C∞-
quasi-isomorphism(4) C D. (Theorem 6.22.)

(3) If two cocommutative dg coalgebras C and D are quasi-isomorphic, then they are
also C∞-quasi-isomorphic. In the other direction, if C and D are C∞-quasi-isomorphic,
then L∧C and L∧D are quasi-isomorphic. (Theorem 6.28.)

Note that, by the preceding proposition, we may think of L∧C≃L∧D as a weakened
form of the statement C≃D. Similarly, A∞-coalgebras satisfy analogous properties (1′)–
(3′), where in (3′) we use the completed cobar functor Ω∧.

4.26. We will also need the existence of deformation complexes parameterizing the
A∞- and C∞-coalgebra structures on a given chain complex V . These are complete
filtered graded dg Lie algebras whose Maurer–Cartan elements are A∞-coalgebra (resp.
C∞-coalgebra) structures on V , and whose gauge equivalences are A∞-isotopies (resp.
C∞-isotopies). They can be explicitly written as

coDefA∞(V ) :=
∏
n⩾2

HomSn(S
−1coAss(n),HomK(V, V

⊗n))

and
coDefC∞(V ) :=

∏
n⩾2

HomSn(S
−1coLie(n),HomK(V, V

⊗n)),

in complete analogy with the usual deformation complexes DefA∞(V ) and DefC∞(V ).
The fact that the Maurer–Cartan elements of these dg Lie algebras correspond to A∞-
and C∞-coalgebra structures on V is equivalent to the statement that an A∞-coalgebra
structure on V is the same thing as an operadic twisting morphism from S−1coAss to
the coendomorphism operad coEndV , and similarly a C∞-coalgebra structure on V is
the same thing as an operadic twisting morphism from S−1coLie to coEndV . As for the
usual deformation complex, it is easy to identify the gauge equivalences between Maurer–
Cartan elements with ∞-isotopies as a set. What is less trivial is that this identification
takes the composition of two gauge equivalences to the composition of the corresponding
isotopies. This statement is the dual of [8, Theorem 3] and can be proven in exactly the
same way.

4.27. We can now prove the following result, which is dual to Theorem A.

(4) As opposed to a zig-zag of quasi-isomorphisms.
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4.28. Theorem. (Dual form of Theorem A) Let C and D be C∞-coalgebras. Then,
C and D are quasi-isomorphic as A∞-coalgebras if and only if they are quasi-isomorphic
as C∞-coalgebras.

Proof. By §4.25, properties (1) and (2′), we may assume that C and D are mini-
mal and that we have an A∞-quasi-isomorphism f :C D. Since a quasi-isomorphism
between chain complexes with vanishing differential is just an isomorphism, it follows
that f induces an isomorphism between the underlying graded vector spaces of C and D.
We can transport the C∞-structure of one of the coalgebras along this isomorphism and
reduce to the case where C and D are C∞-coalgebras with the same underlying graded
vector space H that are linked by an A∞-morphism whose linear component is given by
the identity, i.e. an A∞-isotopy.

To finish the proof, we apply Corollary 2.12 to the deformation complexes

coDefA∞(H) and coDefC∞(H)

of A∞-coalgebra and C∞-coalgebra structures on H. Indeed, by §4.26, we now have two
Maurer–Cartan elements of coDefC∞(H) which are gauge equivalent in the larger Lie
algebra coDefA∞(H). By applying Corollary 2.12 in exactly the same way as in the proof
of Theorem A, we see that there is a filtered retraction of coDefA∞(H) onto coDefC∞(H),
and applying Theorem 1.7 as in the proof of Theorem A yields the result.

4.29. Finally, we can put all of this together to conclude the proof of Theorem B.

Proof of Theorem B. Suppose that g and h are dg Lie algebras and that Ug is quasi-
isomorphic to Uh. By Proposition 4.11, we deduce that Cg and Ch are quasi-isomorphic as
coassociative coalgebras, and in particular quasi-isomorphic as A∞-coalgebras. Therefore,
by Theorem 4.28, we have that Cg and Ch are also C∞-quasi-isomorphic. By §4.25 (3)
we deduce that

L∧Cg=(LCg)∧

and

L∧Ch=(LCh)∧

are quasi-isomorphic. But LCg and LCh are cofibrant replacements of g and h, so saying
that their completions are quasi-isomorphic to each other is exactly the same as saying
that gh∧≃hh∧, concluding the proof.

4.30. Remark. There exists an analogue of Theorem B for Lie coalgebras which is
literally Koszul dual to Theorem A, in the sense that the two statements are formally
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equivalent and interchanged by Koszul duality. Let P and Q be Koszul operads with
Koszul dual cooperads P¡ and Q¡, and suppose we are given a commutative diagram

P¡ P

Q¡ Q

in which the horizontal arrows are the canonical Koszul twisting morphisms, and the
vertical arrows are morphisms of cooperads and operads, respectively. There is then a
commuting square of adjunctions

P¡-coalg P-alg

Q¡-coalg Q-alg

where P¡-coalg and Q¡-coalg denote the categories of conilpotent P¡-coalgebras and Q¡-
coalgebras, respectively. The horizontal adjunctions are the bar-cobar adjunctions, the
right vertical arrows are given by restriction and operadic pushforward, and the left
vertical arrows are given by corestriction and cooperadic pullback. The fact that this
square of adjunctions commutes merely means that the square of left adjoints (equiva-
lently, the square of right adjoints) commutes, which is proven in much the same way as
our Lemma 4.7. The categories P-alg and Q-alg have model structures defined by Hinich
[17], and these model structures may be transferred along the bar-cobar adjunctions
to give model structures on conilpotent coalgebras for which the bar-cobar adjunctions
are Quillen equivalences [35, Theorem 2.1]. In particular, a weak equivalence of coalge-
bras in this model structure is a morphism whose image under the cobar functor is a
quasi-isomorphism. Under the resulting equivalences of categories

Ho(P-alg)≃Ho(P
¡-coalg) and Ho(Q-alg)≃Ho(Q

¡-coalg),

we obtain an identification of the restriction functor Ho(P-alg)!Ho(Q-alg) and the de-
rived cooperadic pullback functor Ho(P¡-coalg)!Ho(Q¡-coalg). In this way, any non-
trivial theorem about the functor Ho(P-alg)!Ho(Q-alg) (e.g. that it reflects isomor-
phisms, as in our Theorem A) can be equivalently restated as a theorem about coalgebras.
We have for example the following:

(i) Theorem A is equivalent to the statement that, if m and n are conilpotent dg
Lie coalgebras whose derived universal conilpotent coenveloping coalgebras are weakly
equivalent, then m and n are themselves weakly equivalent.
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(ii) The problem whether the universal enveloping algebra functor reflects quasi-
isomorphisms is equivalent to the problem whether the forgetful functor from cocommu-
tative conilpotent dg coalgebras to coassociative conilpotent dg coalgebras reflects weak
equivalences.

One might be tempted to try to modify our proof of Theorem A to prove statement
(ii) above. One stumbling block is that one would need an analogue of the deformation
complex, which would be a dg Lie algebra whose Maurer–Cartan elements are conilpotent
(or locally finite)∞-coalgebra structures and whose gauges are locally finite∞-isotopies,
which are moreover weak equivalences. It is far from clear to us that such an object even
exists, given the indirect manner in which weak equivalences are defined.

5. Homotopy complete operadic algebras

5.1. The goal of this section is to prove that dg Lie algebras which are either non-
negatively graded and nilpotent or negatively graded, are homotopy complete. We will
in fact prove a result that applies to more general Koszul operads. Before going into the
details, let us recall some well-known results about filtered complexes.

Filtered complexes

5.2. Definition. A filtration on a chain complex V is a decreasing sequence of sub-
spaces of V

...⊇FnV ⊇Fn+1V ⊇Fn+2V ⊇ ...

such that d(FnV )⊆FnV for all n. A morphism of filtered chain complexes f :V!W

is a morphism of chain complexes which satisfies f(FnV )⊆FnW for all n. The tensor
product of two filtered chain complexes is itself a filtered chain complex via

Fn(V ⊗W )=
∑

p+q=n

F pV ⊗F qW.

5.3. Definition. Let V be a filtered chain complex with filtration FnV . The filtration
is called

(1) exhaustive, if
⋃

n F
nV =V ,

(2) complete, if the canonical map V!lim←−n
V/FnV is an isomorphism,

(3) bounded below (resp. bounded above), if for any homological degree k there exists
some n such that FnVk=0 (resp. if FnVk=Vk).

Note that bounded above implies exhaustive and bounded below implies complete.
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5.4. Remark. In our definition of bounded below and above we do not insist that
FnV =0 for some n, or that FnV =V for some n. These conditions are only imposed in
each homological degree separately. This will be important e.g. when defining what it
means for a dg Lie algebra to be nilpotent, in which case the correct condition is that
the lower central series filtration is bounded below in the above sense.

5.5. Definition. Let V be a filtered chain complex with filtration FnV . We denote

GrnF V :=FnV /Fn+1V .

A map of filtered chain complexes V!W is called a filtered quasi-isomorphism if, for
all n, the induced map GrnF V!GrnF W is a quasi-isomorphism.

5.6. Lemma. Let V!W be a filtered quasi-isomorphism. Then, the induced map

lim←−
n

lim−→
m

FmV /FnV −! lim←−
n

lim−→
m

FmW/FnW

is a quasi-isomorphism. In particular, a filtered quasi-isomorphism between exhaustive
and complete filtered complexes is a quasi-isomorphism.

Proof. We prove first that FmV/FnV!FmV/FnV is a quasi-isomorphism for any
n⩾m. For this, we fix an arbitrary m and prove it for all n⩾m by induction on n, using
the short exact sequence

0 GrnF V FmV/Fn+1V FmV/FnV 0

0 GrnF W FmW/Fn+1W FmW/FnW 0

and the five lemma. The result then follows from this, since lim−→ is an exact functor in
general and lim←− is exact when restricted to inverse systems of surjections. The latter fact
can be proven either by a diagram chase, or by arguing that such an inverse system is
fibrant for the injective model structure on diagrams, so that the limit of the diagram is
a homotopy limit.

5.7. Above, we considered only decreasing filtrations. We will denote increasing
filtrations by a subscript, according to the convention F pV =F−pV . In this manner,
everything said above applies equally well to increasing filtrations. This convention is
the exact analogue of using subscripts and superscripts to switch between homological
and cohomological indexing.
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Homotopy complete algebras

5.8. For the rest of this section, we let P be a Koszul operad concentrated in homo-
logical degree zero. Then, P¡(n) is concentrated in homological degree n−1 for all n∈N.
Examples are P=Lie, P=Com and P=Ass.

5.9. Definition. Let A be a P-algebra. The operadic filtration of A is the descending
filtration defined by

FnA := Image(P(n)⊗A⊗n
!A).

5.10. Example. For P=Lie and P=Ass, the operadic filtration specializes to the lower
central series filtration and the adic filtration considered in Definition 4.15, respectively.

5.11. Definition. A P-algebra is said to be nilpotent(5) if its operadic filtration is
bounded below. This is the case, for instance, if the algebra is concentrated in strictly
positive degrees or strictly negative degrees.

5.12. We will now define the homotopy completion, which depends on the choice of
a cofibrant replacement functor. We let QA be the cofibrant replacement of A given by
the bar-cobar resolution. As a graded vector space, QA can be written explicitly as

QA=
⊕
n⩾1

(P�P
¡
)(n)⊗SnA

⊗n

=
⊕
n⩾1

P(n)⊗Sn
⊕

k1+...+kn=ℓ

IndSℓSk1
×...×Skn

(P
¡
(k1)⊗...⊗P

¡
(kn))⊗SℓA

⊗ℓ.

5.13. Definition. The completion of A is

A∧ = lim←−A/FnA.

The homotopy completion of A is Ah∧ :=(QA)∧ [13], and A is said to be homotopy
complete if QA!(QA)∧ is a quasi-isomorphism.

5.14. Lemma. Suppose that A is concentrated in strictly positive or negative degrees.
Then, QA has the same property.

Proof. We consider each summand in the explicit expression for QA separately.
Suppose that A is concentrated in negative degrees. Then, A⊗ℓ is concentrated in degrees
at most −ℓ. If k1+...+kn=ℓ, then P¡(k1)⊗...⊗P¡(kn) has degree ℓ−n. So their tensor
product has degree at most −n. The case when A is positively graded is obvious since
both A and P¡ are concentrated in positive degrees.

(5) This notion is also sometimes referred to as degree-wise nilpotent in the literature.
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5.15. Proposition. Let A be strictly positively or negatively graded. Then, A is
homotopy complete.

Proof. By the previous lemma, QA is nilpotent. Therefore, QA=(QA)∧.

5.16. By a more careful argument, we can also treat the case where A is non-
negatively graded and nilpotent. We will need to consider multiple distinct filtrations on
QA. We denote by G the operadic filtration of QA, which we can write explicitly as

GpQA=
⊕
n⩾p

P(n)⊗Sn
⊕

k1+...+kn=ℓ

IndSℓSk1
×...×Skn

(P
¡
(k1)⊗...⊗P

¡
(kn))⊗SℓA

⊗ℓ.

The operadic filtration of A, which we denote by F , induces a second filtration on QA.
Informally, we are just using the natural tensor product filtration on all the tensor powers
A⊗n, and P and P¡ are given the trivial filtration, so that

F pQA=
⊕
n⩾1

(P�P
¡
)(n)⊗SnF

p(A⊗n).

We refer to this filtration as the F -filtration, and to the operadic filtration of QA as the
G-filtration.

5.17. Lemma. The map QA!A is a filtered quasi-isomorphism with respect to the
F -filtrations.

Proof. The proof is more or less identical to the usual proof that QA!A is a quasi-
isomorphism. Let us first recall this proof. We give QA a third filtration, which is the
increasing filtration defined by

LpQA :=

p⊕
n=1

(P�P
¡
)(n)⊗SnA

⊗n.

We also define an increasing filtration on A by L0A:=0 and L1A:=A. Since the L-
filtrations are bounded below and exhaustive, it will be enough to show that QA!A is
a filtered quasi-isomorphism with respect to the L-filtrations. But we have

GrLp QA∼=(P�P
¡
)(p)⊗SpA

⊗p.

Now, (P�P¡)(p) is acyclic for p>1, since P is Koszul, and (P�P¡)(1)∼=K. Therefore, the
morphism GrLp QA!GrLp A is a quasi-isomorphism for all p, as claimed.

We now want to see that QA!A is a filtered quasi-isomorphism with respect to the
F -filtrations, i.e. that GrpF QA!GrpF A is a quasi-isomorphism for all p. Again, we use
the L-filtration which is bounded below and exhaustive, so that it is enough that

GrLq GrpF QA−!GrLq GrpF A
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is a quasi-isomorphism for all p and q. But now we have

GrLq GrpF A∼=
{

GrpF A, if q=1,
0, if q ̸=1,

and also
GrLq GrpF QA∼=(P�P

¡
)(q)⊗SqGrpF (A

⊗q).

But, by the same argument as in the previous paragraph, this is acyclic for q ̸=1 and
isomorphic to GrpF A when q=1, finishing the proof.

5.18. Definition. Let V be a chain complex with two filtrations F and G. We say
that F and G are commensurable if, for all homological degrees k and for all p, there
exists a q such that F pVk⊇GqVk, and vice versa.

5.19. Lemma. Let V be a chain complex with two commensurable filtrations F

and G. Then, lim←−V/FnV is isomorphic to lim←−V/GnV .

Proof. Clear by a standard cofinality argument.

5.20. Lemma. Suppose that F and G are bounded above filtrations on a chain com-
plex V , such that the filtration on GrpF (V ) induced by G is bounded below for all p, and
the filtration on GrpG(V ) induced by F is bounded below for all p. Then, F and G are
commensurable.

Proof. Fix a homological degree k. We need to show that, for all p, there exists
q such that F pVk⊇GqVk. We prove this by induction on p, the base case being clear
since F pVk=Vk for p≪0. Now note that, if q is chosen large enough so that both
F p−1Vk⊇GqVk (possible by induction) and also Gq GrpF (Vk)=0 (possible by hypothesis),
then F pVk⊇GqVk.

5.21. Lemma. Suppose that A is concentrated in non-negative degrees and nilpotent.
Then, the F -filtration and the G-filtration of QA are commensurable.

Proof. Notice that, since A is nilpotent and non-negatively graded, the F -filtration
on A⊗ℓ is bounded below for any ℓ. Let us consider the expression

GrpG QA∼=
⊕
ℓ⩾p

(some Sℓ-representation concentrated in degree ℓ−p )⊗SℓA
⊗ℓ

in a fixed homological degree k. Since A is non-negatively graded, there are in fact only
finitely many terms in this direct sum which are non-zero in degree k, and for each of
these finitely many terms the F -filtration is bounded below.



230 r. campos, d. petersen, d. robert-nicoud and f. wierstra

The other direction is true for any P-algebra A, without any connectivity or nilpo-
tence assumption. Indeed, consider the expression

GrpF QA∼=
⊕
n⩾1

P(n)⊗Sn
⊕

k1+...+kn=ℓ

IndSℓSk1
×...×Skn

(P
¡
(k1)⊗...⊗P

¡
(kn))⊗SℓGrpF A⊗ℓ.

Since A=F 1A, we must have GrpF A⊗ℓ=0 for ℓ>p. Hence, in the above sums, all terms
with ℓ>p vanish, so all terms with n>p vanish, so Gn GrpF QA=0 for n>p.

5.22. Theorem. Suppose that A is non-negatively graded and nilpotent. Then, A
is homotopy complete.

Proof. Since QA!A is a filtered quasi-isomorphism by Lemma 5.17, it induces a
quasi-isomorphism between the completions with respect to the F -filtrations. Since A is
nilpotent, this just means that the completion of QA with respect to the F -filtration is
quasi-isomorphic to A. But, by the previous lemma, the completion of QA with respect
to the F -filtration equals the completion with respect to the G-filtration, which means
then that A≃(QA)∧=Ah∧.

5.23. Remark. In rational homotopy theory, positively graded dg Lie algebras over
Q correspond to rational homotopy types of simply connected spaces (which was the case
originally considered by Quillen [27]), and non-negatively graded, nilpotent Lie algebras
of finite type over Q correspond to connected, nilpotent spaces of finite Q-type [25]. Thus,
Theorem 5.22 essentially says that all dg Lie algebras arising from rational homotopy
theory are homotopy complete.

6. A primer on infinity-coalgebras

6.1. The goal of this section is to give a brief account of the formalism of ∞-
coalgebras over a Koszul operad. We assume that the reader is comfortable with the
corresponding formalism of ∞-algebras, see e.g. [20, Chapter 10]. In particular, we will
try to clarify the difference between the various notions of ∞-coalgebra that one can
find in the literature, and why it is important for us that we use precisely the definition
we have chosen. This section will contain almost no proofs. We will several times refer
to Hoffbeck–Leray–Vallette [18] for theoretical results, although they work in a more
general setting of “gebras” over a properad, meaning that they consider operations with
multiple inputs and multiple outputs. In the special case of ∞-coalgebras, these results
were certainly known before [18], but we are not aware of a prior systematic treatment
in the literature.
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6.2. Let us first recall that, although one most often speaks of algebras over operads
and coalgebras over cooperads, it is also possible to define the notions of a coalgebra over
an operad and an algebra over a cooperad. If P is an operad, C is a cooperad and V is
a chain complex, then we have the following schematic table:

V an algebra over P: maps P(n)⊗SnV
⊗n−!V ,

V a coalgebra over C: maps V −!C(n)⊗SnV
⊗n,

V a coalgebra over P: Sn-equivariant maps P(n)⊗V −!V ⊗n,
V an algebra over C: Sn-equivariant maps V ⊗n−!C(n)⊗V .

One can also think of a P-coalgebra as a chain complex V with a morphism of operads
P!coEndV to the coendomorphism operad coEndV , with coEndV =HomK(V, V

⊗n). If
P(n) is finite-dimensional for all n, then its linear dual P∗ is a cooperad, and there are
equivalences of categories between P-algebras and P∗-algebras, and between P-coalgebras
and P∗-coalgebras. We caution the reader that a different definition of “algebra over a
cooperad” appears in [21].

6.3. For the rest of this section, we let P be a Koszul operad, with Koszul dual
cooperad P¡. We have P(0)=0 and P(1)∼=K. We assume moreover that P(n) is finite-
dimensional for all n. We will now untangle the various definitions of a P∞-coalgebra.

6.4. Recall that P has a canonically defined Koszul resolution P∞ :=ΩP¡
!P, and

that a P∞-algebra is the same thing as an algebra over the Koszul resolution P∞. Dual-
izing this definition leads to one possible definition of a P∞-coalgebra, which is the one
we are using in this article.

6.5. Definition. A P∞-coalgebra is a coalgebra over the operad P∞.

6.6. Remark. An equivalent definition of a P∞-coalgebra structure on C is an op-
eradic twisting morphism from the Koszul dual cooperad P¡ to coEndC , cf. [20, Theo-
rem 6.5.7].

6.7. One can also define the notion of a P∞-algebra without mentioning the Koszul
resolution or twisting morphisms, as follows. Let P¡(A) denote the cofree conilpotent
P¡-coalgebra cogenerated by a chain complex A. For example, if P=Com, then P¡ is
the operadic suspension of the Lie cooperad, and P¡(A) is the cofree conilpotent Lie
coalgebra cogenerated by sA. Then, a P∞-algebra structure on a chain complex A is
the same thing as a square-zero coderivation of degree −1 of P¡(A), whose linear term
vanishes. Dualizing this definition leads to a different notion of a P∞-coalgebra than the
one of Definition 6.5.



232 r. campos, d. petersen, d. robert-nicoud and f. wierstra

6.8. Definition. A locally finite P∞-coalgebra is a chain complex C together with
a square-zero derivation of degree −1 with vanishing linear term on the free P¡-algebra
generated by C.

6.9. Unraveling all of the structures involved, one sees that a P∞-coalgebra structure
on a chain complex V is given by a collection of Sn-equivariant maps

P
¡
(n)⊗C −!C⊗n

satisfying an infinite sequence of quadratic equations, formally dual to those satisfied by
the operations in a P∞-algebra. Taking the linear dual of each P¡(n), we may encode a
P∞-coalgebra by a single linear map

C −!
∏
n

P
¡
(n)∗⊗SnC

⊗n.

On the other hand, a locally finite P∞-coalgebra is given by a map

C −!
⊕
n

P
¡
(n)∗⊗SnC

⊗n

(satisfying exactly the same quadratic equations as those of a P∞-coalgebra), since the
right-hand side is the free P¡-algebra generated by C, and a derivation of an algebra
is determined by the values it takes on the generators. This shows that locally finite
P∞-coalgebras are exactly those P∞-coalgebras for which the map

C −!
∏
n

P
¡
(n)∗⊗SnC

⊗n

factors through the direct sum.

6.10. We denote by P¡(C)∧ the completion of the free P¡-algebra on C, cf. Defini-
tion 5.13. It can be written explicitly as

P
¡
(C)∧ =

∏
n

P
¡
(n)∗⊗SnC

⊗n.

One has the following result, which is proven in exactly the same way as the analogous
fact for P∞-algebras [20, Proposition 10.1.11].

6.11. Proposition. There is a natural bijection between P∞-coalgebra structures
on a chain complex C and (continuous) square-zero derivations of degree −1 with van-
ishing linear term on P¡(C)∧, the free complete P¡-algebra generated by C.
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6.12. Remark. In the previous proposition the word “continuous” is redundant. In-
deed, since we are considering the operadic filtration (cf. Definition 5.9), every derivation
is necessarily filtration preserving, and therefore continuous. Similarly, every morphism
of P-algebras is filtration preserving. In particular, complete P-algebras form a full sub-
category of all P-algebras.

6.13. Example. An A∞-coalgebra structure on C can be identified with a square-
zero derivation on the completion of the tensor algebra on s−1C, and a C∞-coalgebra
structure can be identified with a square-zero derivation on the completion of the free
Lie algebra on s−1C.

6.14. Remark. We say that a P∞-coalgebra C is conilpotent if there exists an ex-
haustive filtration of the form

0=F0C ⊆F1C ⊆F2C ⊆F3C ⊆ ...

such that all coalgebra structure maps preserve this filtration. A conilpotent P∞-
coalgebra is always locally finite, but not vice versa: there are strict inclusions

{conilpotent P∞-coalgebras}⊊ {locally finite P∞-coalgebras}⊊ {P∞-coalgebras}.

To see strictness of the first inclusion, note e.g. that any P-coalgebra is also a locally finite
P∞-coalgebra, but not all P-coalgebras are conilpotent. We caution the reader that all
three notions are often referred to as simply “P∞-coalgebras” in the literature.

6.15. Let C be a locally finite P∞-coalgebra. Adding the square-zero derivation of
P¡(C) to the internal differential of P¡(C) gives a differential graded P¡-algebra that we
call the cobar construction on C, and that we denote ΩC. Similarly if C is a general
P∞-coalgebra, then adding the square-zero derivation of P¡(C)∧ to the internal differ-
ential of P¡(C)∧ gives a differential graded P¡-algebra that we call the completed cobar
construction, which we denote by Ω∧C.

6.16. The definition of P∞-coalgebra in terms of square-zero derivations is more
convenient when one wants to define the notion of a morphism of P∞-coalgebras.

6.17. Definition. Let C and D be P∞-coalgebras. A P∞-morphism C D is a
morphism of P¡-algebras Ω∧C!Ω∧D. If, additionally, C and D are locally finite, then a
locally finite P∞-morphism C D is a morphism ΩC!ΩD. There is an evident notion
of composition of P∞-morphisms and locally finite P∞-morphisms making P∞-coalgebras
(resp. locally finite P∞-coalgebras) into a category.
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6.18. We note that a P∞-morphism of P∞-coalgebras f :C D, when considered
as a map Ω∧C−!Ω∧D, is completely determined by how it acts on generators. This
implies that it can be written in terms of its components, which are Sn-equivariant maps
fn:P

¡(n)⊗C!D⊗n for n⩾1. In particular, since P¡(1)∼=K, the first component is a map
f1:C!D, which we call the linear term of f .

6.19. Definition. A P∞-morphism between P∞-coalgebras is said to be a P∞-quasi-
isomorphism if its linear term is a quasi-isomorphism and a P∞-isomorphism if its linear
term is an isomorphism. A P∞-morphism between two P∞-coalgebras with the same
underlying chain complex is called a P∞-isotopy if its linear term is the identity.

6.20. The definitions of P∞-quasi-isomorphism and P∞-isomorphism given in Defi-
nition 6.19 are justified by the following two facts:

(1) If C and D are P∞-coalgebras, then their homologies H(C) and H(D) are
naturally P-coalgebras. If f :C D is a P∞-morphism, then H(f1):H(C)!H(D) is
a morphism of P-coalgebras. So, C D is a P∞-quasi-isomorphism if and only if the
induced map of P-coalgebras H(C)!H(D) is an isomorphism.

(2) A P∞-morphism f :C D of P∞-coalgebras is a P∞-isomorphism in the sense
of Definition 6.19 if and only if there exist a P∞-morphism g:D C such that

g�f = idC and f �g= idD .

For the proof of (2), see [18, Theorem 3.22]; it is virtually identical to the proof of
the analogous property of ∞-morphisms of P∞-algebras.

6.21. Remark. Suppose that f is a locally finite P∞-morphism of locally finite P∞-
coalgebras. If f is a P∞-isomorphism in the sense of Definition 6.19, then it is not
necessarily an isomorphism in the category of locally finite P∞-coalgebras: its unique
inverse in the category of all P∞-coalgebras may not be a locally finite morphism. The
reason is that, if f is given by a morphism ΩC!ΩD, then the formula for its inverse is
given by an infinite sum over trees, and this infinite sum will in general not converge,
unless the cobar constructions are completed. For a concrete example, consider the
vector space K as an Abelian L∞-coalgebra, i.e. an L∞-coalgebra with all cobrackets
identically zero. Then, the group of L∞-isomorphisms K K is isomorphic to the group
of formal power series over K in one variable with vanishing constant term and non-zero
linear term, under composition. Such a power series corresponds to a locally finite L∞-
morphism K K if and only if it is a polynomial. Since the compositional inverse of a
polynomial is in general only a power series, we see in particular that the inverse of a
locally finite L∞-morphism is in general not locally finite.



lie, associative and commutative quasi-isomorphism 235

6.22. Theorem. Let f :C D be a quasi-isomorphism of P∞-coalgebras. Then,
there exists a quasi-isomorphism g:D C such that the induced maps H(C)!H(D)

and H(D)!H(C) are inverses. In particular, if two P∞-coalgebras C and D are quasi-
isomorphic, then there exists a P∞-quasi-isomorphism C D.

Proof. See [18, Theorem 4.18].

6.23. Definition. A P∞-coalgebra is said to be minimal if its underlying chain com-
plex has vanishing differential.

6.24. Theorem. Let C be a P∞-coalgebra. Then, C is quasi-isomorphic to a min-
imal P∞-coalgebra, which is unique up to non-canonical P∞-isomorphism.

Proof. The first statement follows from a version of the homotopy transfer theorem
for ∞-coalgebras, see [18, Theorem 4.14]. By choosing a contraction from C to H(C),
we can transfer the P∞-coalgebra structure to a quasi-isomorphic structure on H(C),
which is then minimal. Uniqueness follows since a quasi-isomorphism between minimal
P∞-coalgebras is necessarily an isomorphism.

6.25. Theorems 6.22 and 6.24 both rely on the homotopy transfer theorem for ∞-
coalgebras, which is proven using explicit “sums over trees” formulas. As in Remark 6.21,
such an argument becomes problematic in the category of locally finite P∞-coalgebras,
since an infinite sum over trees will not have any reason to converge in that setting. We
are not aware of any useful analogue of the homotopy transfer theorem in the category of
locally finite P∞-coalgebras. Since both Theorems 6.22 and 6.24 are crucial for our argu-
ments in §4, we are forced to work in the category of general P∞-coalgebras, even though
all the P∞-coalgebras we care about happen to be locally finite (in fact conilpotent).

6.26. In §4.19, we mentioned that, if two P-algebras A and B are quasi-isomorphic
in the category of P∞-algebras, then they are also quasi-isomorphic in the category of
P-algebras, but that there is no reason for the corresponding statement for coalgebras
to be true. Let us explain why this is the case, by first recalling how to prove the
corresponding statement for P-algebras. Suppose that A and B are P-algebras, and that
we have a P∞-quasi-isomorphism A B. Applying the bar and cobar functors gives a
morphism of P-algebras

ΩBA−!ΩBB,

and the counit of the bar-cobar adjunction furnishes morphisms of P-algebras

ΩBA−!A and ΩBB−!B
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which fit together in a commutative square

ΩBA ΩBB

A B.

∼ ∼

Since the bottom arrow and the vertical arrows are quasi-isomorphisms, so is the top one.
Thus, the algebras A and B are connected by a zig-zag of P-algebra quasi-isomorphisms,
as claimed. Now, if we had two locally finite P-coalgebras C and D, and a locally finite
P∞-coalgebra quasi-isomorphism C D, one could write down an analogous diagram

BΩC BΩD

C D,

∼ ∼

and conclude by a similar argument that C and D are quasi-isomorphic as P-coalgebras.
But, if C and D are not locally finite, then ΩC and ΩD are undefined, and if the morphism
C D is not locally finite, then it does not correspond to a morphism ΩC!ΩD. Either
way, the above argument breaks down.

6.27. One advantage of the completed cobar construction over the usual cobar con-
struction is that the former preserves quasi-isomorphisms, unlike the latter.

6.28. Theorem. Let C D be a P∞-quasi-isomorphism of P∞-coalgebras. Then,
the induced map Ω∧C!Ω∧D is a quasi-isomorphism.

Proof. Recall that

Ω∧C =

∞∏
n=1

P
¡
(n)⊗SnC

⊗n.

We introduce a descending filtration on Ω∧C by the formula

LpΩ∧C =

∞∏
n=p

P
¡
(n)⊗SnC

⊗n,

and by the same formula we obtain a descending filtration on Ω∧D. The map Ω∧C!Ω∧D

preserves filtrations and is a filtered quasi-isomorphism. Indeed, GrpL Ω∧C!GrpL Ω∧D is
given by

P
¡
(p)⊗SpC

⊗p id⊗f⊗p
1−−−−−−!P

¡
(p)⊗SpD

⊗p,

where f1:C!D is the linear term of the∞-morphism C D, and by assumption f1 is a
quasi-isomorphism. The result follows from this, since the filtrations are bounded above
and complete.
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