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0. Introduction

The original deformation quantization problem aims to obtain a formal deformation 
of the associative product of functions of a Poisson manifold M , called a star product. 
The space governing such deformations is essentially the Lie algebra of multidifferential 
operators Dpoly, the smooth version of the Hochschild complex of the algebra C∞(M). In 
his celebrated paper [21], Kontsevich showed that the Lie algebra Dpoly is formal i.e., it 
is quasi-isomorphic to its homology, the Lie algebra of multivector fields Tpoly. His proof 
involves the construction of the “formality morphism”, a homotopy quasi-isomorphism 
of Lie algebras

U : Tpoly → Dpoly,

with explicit local formulas depending on integrals over configurations of points and 
expressed in terms of graphs. This results solves the deformation quantization problem 
by establishing a correspondence between formal Poisson structures and star products 
(bijective up to gauge equivalence).

Kontsevich’s result, however, ignores the richer structures existent on Tpoly and Dpoly. 
Let now M be an oriented D-dimensional manifold with a fixed volume form ω. The 
pull back of the de Rham differential via contraction with ω endows the space Tpoly
with the structure of a BV algebra. On the other hand, there is a natural action of 
the cyclic group of order n + 1 on Dn

poly given by “integration by parts” which, after 
the cyclic Deligne’s conjecture (see [18]), induces a natural BV∞ algebra structure on 
Dpoly. The natural question to ask is whether Kontsevich’s formality morphism can be 
extended to a BV∞ quasi-isomorphism. Tamarkin [26,16] constructed a non-explicit Ger∞
(homotopy Gerstenhaber) quasi-isomorphism Tpoly → Dpoly depending on a solution of 
Deligne’s conjecture whose underlying Lie∞ morphism was later shown by Willwacher 
[31] to be homotopy equivalent to Kontsevich’s map if one uses the Alekseev–Torossian 
associator to construct a solution to Deligne’s conjecture. Furthermore, Willwacher shows 
that the original formality morphism can be strictly extended to a Ger∞ morphism. 
The full extension to the BV setting was given by the first author [2] who constructed 
a BV∞ quasi-isomorphism Tpoly → Dpoly with explicit local formulas depending on 
integrals over configurations of framed points. One advantage of incorporating these 
richer structures into the discussion is that we may now view the algebraic operations 
as being parametrized by geometric objects, namely by the moduli spaces of genus zero 
surfaces with parametrized boundary components.

The subspace of cyclic invariants of Dpoly, denoted by Dσ
poly :=

⊕
n≥0(Dn

poly)Zn+1 , is 
preserved by the Lie bracket and the Hochschild differential. The differential graded Lie 
algebra Dσ

poly is associated to a different deformation problem, namely the construction 
of closed star products. This led to the conjecture of an analogous formality statement, 
the “cyclic formality conjecture” [25]. Let divω : T •

poly → T •−1
poly be the divergence operator 
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on the space of multivector fields. In [32] Willwacher gave an affirmative answer to the 
cyclic formality conjecture by constructing a homotopy Lie quasi-isomorphism

Ucyc : (Tpoly[u], u divω) → (Dσ
poly, dHoch).

As in the non-cyclic case, both of these objects have structures richer than just 
Lie algebras. Namely, viewing these objects as models for cyclic invariants associated 
to the non-cyclic case above, it will be possible to show that they each have opera-
tions parametrized by models of the moduli spaces M∗ of genus zero surfaces with 
unparametrized boundary components.

To make this precise we use the presentation of the Gravity operad, introduced by 
Getzler in [11]. The graded vector spaces ΣH∗(Mn+1) form an operad Grav which injects 
into Ger, which is generated operadically by the classes of points in H0(Mn+1) (ranging 
over n ≥ 2), and whose sub-operad of top degree homology ΣHn−2(Mn+1) is isomorphic 
to the suspension of the Lie operad sLie. In particular every gravity algebra is a (shifted) 
Lie algebra.

Both spaces (Tpoly[u], u divω) and H(Dσ
poly) are naturally gravity algebras with first 

bracket equal to the usual Lie bracket. The natural question to ask is then whether 
Willwacher’s homotopy Lie quasi-isomorphism can be extended to the Gravity setting, 
as conjectured in [29]. However, before attempting to answer this question one must find 
a Grav∞ structure on Dpoly inducing the Gravity structure in homology, which is in some 
sense a dual version of the cyclic Deligne’s conjecture.

In [29] the second author constructed the operad M�, a cyclic variation of the 
braces/minimal operad M that acts naturally on spaces of cyclic invariants such as Dσ

poly, 
and whose homology is Grav. Our first result shows that the dg operad M� is formal.

Theorem A. The operad M� is quasi-isomorphic to Grav.

The proof of this theorem combines three ingredients: formality of the framed little 
disks after [14] and [24], the homology calculations of [29], and the theory of cyclic 
homology of operads valued in mixed complexes. This final ingredient is developed in 
section 1 and should be of independent interest.

From Theorem A we obtain a Grav∞ structure on Dpoly after picking a homotopy lift 
Grav∞

∼→ M�. Having this Grav∞ structure on Dpoly we can formulate the main result 
of this paper.

Theorem B. Let M be an oriented smooth manifold with a fixed volume form ω. There is 
a Grav∞ quasi-isomorphism (Tpoly[u], u divω) → (Dσ

poly, dHoch) extending Willwacher’s 
Lie∞ quasi-isomorphism.

In particular, the first component is the (cyclic [25]) HKR map. In the M = R
D

case this formula admits an explicit expression in terms of integrals over configuration 
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spaces in the upper half plane, parametrized by graphs, similar to the original paper 
from Kontsevich.

We emphasize the paradigm when considering formality-like theorems, that the natu-
ral structure on Dσ

poly is not that of a Grav∞ algebra but rather that of a M� algebra, the 
same way that the natural structure on Dpoly is not the one of a Ger∞/BV∞ algebra but 
rather the Braces/Cyclic Braces structure. For this reason, operadic tools and concretely 
the language of operadic bimodules are a neat way to work simultaneously with the M�
algebra structure on Dσ

poly and the Gravity algebra structure on Tpoly.

0.1. Organization

This paper is organized as follows. We begin in section 1 by studying the interaction of 
operads, mixed complexes, and cyclic homology. We then apply this theory in section 2
to prove Theorem A and to define the Grav∞ structures that will be the subject of 
Theorem B. In section 3 we apply our constructions from section 1 to categories of colored 
operads and operadic bimodules. The resulting structures are then used in section 4 to 
prove Theorem B in the case M = R

D using the theory of operadic torsors. Finally 
in section 5 we globalize the results using a suitable modification of the usual formal 
geometry techniques developed in [21].

0.2. Notation and conventions

We work in the category of differential graded (dg) vector spaces over a field k of 
characteristic 0. We use the notation Σ to denote the suspension of vector spaces and s
to denote operadic suspension, such that for a vector space V , (ΣV )d = Vd−1 and ΣV is 
an O algebra if and only if V is an sO algebra, for any operad O.

We assume familiarity with operads, operadic twisting, and graph complexes. A table 
of the graph complex operads appearing in this paper and relevant references follows:

Notation Graphs Differential cf.
B planar rooted 

trees
none e.g.

[10]
M stable planar rooted trees w/ 

internal and external vertices
via Tw
of B

[22]

B� planar connected 
and genus 0

none [29]

M� planar, connected, stable, genus 0, 
with internal and external vertices

via Tw
of B�

[29]

Gra graphs without 
tadpoles

none [31]

Graphs internal and external vertices 
and no tadpoles

via Tw
of Gra

[31]

vKGra boundary and bulk vertices 
with tadpoles and powers of v

∂(v) = Section 3.2
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1. Operads in mixed complexes and S1-operads

In this section we consider the interaction of mixed complexes, operads, and cyclic 
homology.

Definition 1.1. A mixed complex is a triple (V, d, Δ) such that (V, d) is a cochain complex 
and Δ: V → V is a degree −1 operator such that Δ2 = 0 and dΔ + Δd = 0.

The category of mixed complexes is naturally a symmetric monoidal category with 
monoidal unit (k, 0, 0). The monoidal product is

(A, dA,ΔA) ⊗ (B, dB ,ΔB) = (A⊗k B, dA ⊗ 1B + 1A ⊗ dB ,ΔA ⊗ 1B + 1A ⊗ ΔB)

where we follow the Koszul rule for evaluation over a tensor product. Explicitly d(a ⊗b) =
d(a) ⊗ b + (−1)|a|a ⊗ d(b).

Since mixed complexes form a symmetric monoidal category, one can talk about op-
erads valued in mixed complexes. The category of such will be denoted OpsMxCpx. An 
object in OpsMxCpx is given by a triple (O, d, Δ); where O is a graded operad and where 
d and Δ are maps of S-modules which anti-commute and which are compatible with the 
operad structure.

If (A, d, Δ) is a mixed complex, the operad EndA can be viewed as an operad in 
OpsMxCpx, but it has more structure. Thus we introduce the following definition:

Definition 1.2. An S1-operad is an operad under the operad H∗(S1). The category of 
such is denoted S1-Ops.

We denote the fundamental class of S1 by δ and by abuse of notation we often use δ
to denote its image in an S1-operad.

Construction 1.3. Let H∗(S1) → Q be a morphism of dg operads. Define Δ := {δ, −}
where {−, −} is the external Lie bracket associated to O (see e.g. [29] Lemma 1.9). 
Explicitly for a ∈ O(n) of degree d we define:
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Δ(a) := δ ◦1 a− (−1)d
n∑

i=1
a ◦i δ

Then (Q, dQ, Δ) is an operad in mixed complexes. This gives a functor from S1-Ops →
OpsMxCpx, which we call X for eXternal.

Example 1.4. Viewing the operad Ger as a suboperad of the S1-operad BV, we define Δ as 
above, and then show it restricts to these subspaces. Hence, (Ger, 0, {δ, −}) is an operad 
in mixed complexes. Since the operator {δ, −} captures the rotation of a configuration 
of little disks, we will also write (Ger, 0, R) for this object in OpsMxCpx.

Example 1.5. More generally, we define Gra(n) to be the Sn-module spanned by graphs 
with n numbered vertices having no tadpoles. (Recall a tadpole is an edge which is 
incident to the same vertex at both ends.) Insertion of graphs makes Gra an operad; 
in particular it is a suboperad of the S1-operad of all graphs in which δ is the tadpole 
graph (one edge and one vertex). One may then form an operad in mixed complexes 
(Gra, 0, {δ, −}). There is an inclusion of (Ger, 0, {δ, −}) ↪→ (Gra, 0, {δ, −}) in OpsMxCpx

given by sending the commutative product to the graph with two vertices and no edges 
and sending the bracket to the graph with two vertices connected by an edge. We will 
revisit this example in greater detail in Section 3.2.

Example 1.6. Let X be an operad in the category of S1-spaces and let S : S1-spaces →
cdga be a strict symmetric monoidal functor.1 Then, (S∗(X ), d, Δ) form naturally an 
operad in mixed complexes. We will often consider the case X = D2, the little disks 
operad.

Example 1.7. If (A, d, Δ) is a mixed complex then by default we consider EndA ∈ S1-Ops

by δ �→ Δ. We may also view End as internal to OpsMxCpx by defining Endmxd
A :=

X(EndA). The terminology “an algebra over” either an object in S1-Ops or OpsMxCpx is 
understood as a morphism to the respective End.

We would now like to observe the following non-example: the minimal operad (M, d, R)
of [22] is not an object in OpsMxCpx. Let us first recall that the minimal operad (M, d) is 
a dg operad whose arity n space is spanned by planar rooted trees with n distinguished 
vertices labeled by {1, . . . , n}. These labeled vertices are often drawn as white, the re-
maining vertices are drawn as black, and the root will be denoted by an asterisk. The 
operad structure is given by graph insertion (summing over possible reconnections) at 
the white vertices. The differential d can be described combinatorially, or it may equiva-
lently be encoded via operadic twisting and the Maurer–Cartan formalism (see [6]). The 

1 In this paper since our topological spaces are typically piecewise algebraic spaces we can consider the 
functor of semi-algebraic chains, see Section 2. We may also consider the model of [7] Section 2.2.
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operator R is as defined in [29]; it moves the root from black to white in all ways and 
from white to zero.

The operator R is a square zero operator which commutes with d, but it does not 

distribute over the compositions maps. To see this let μ =
∗

represent the product 
(with white vertex labeling suppressed). One easily checks that R(μ ◦1μ) 	= R(μ) ◦1R(μ)
for the left hand side has three summands while the right hand side has eight summands. 
In order to accommodate this non-example, we introduce the following weaker notion:

Definition 1.8. Let P be a dg operad and ρ a degree −1, square zero operator on the 
underlying dg S-module ρn : P(n) → P(n) (so dρ + ρd = 0). A pair (P, ρ) is called 
a rotational operad if ρ(a ◦i ρ(b)) = ρ(a) ◦i ρ(b). We denote the category of rotational 
operads as OpsRot.

Example 1.9. Every operad in mixed complexes can be viewed as a rotational operad, 
via ρ = Δ, (but not vice versa as per the following example). The induced functor will 
be denoted ι : OpsMxCpx → OpsRot.

Example 1.10. (M, d, R) is a rotational operad. This follows from Lemma 2.6 of [29].

Example 1.11. Every S1-operad may be viewed as a rotational operad by defining ρ :=
δ ◦1 −.

To introduce the next example we must first recall the topological operad of spine-
less cacti, denoted Cact. First note that the arity n component of the minimal operad 
(M(n), d) may be realized as the cellular chains of a CW complex by assigning weights 
to each white vertex arc which add to 1 [19]. These spaces do not form a topological 
operad because the analogous composition operation is only associative up-to homotopy 
due to the necessity to rescale weights. On the other hand if we drop the normalization 
requirement, i.e. the requirement that the weights add to 1 at each vertex, we get an 
honest topological operad (although no longer CW complexes). This topological operad 
is (up to contraction of associahedra) equal to the topological operad of spineless cacti 
Cact. This topological operad was introduced by Voronov [28] and studied in detail by 
Kaufmann [17]. In particular:

Example 1.12. The topological operad Cact has a level-wise S1 action given by moving the 
base point, but is not an operad in the category of S1 spaces. Consequently the induced 
structure on chains (S∗(Cact), d, R) is not an operad in mixed complexes. However it is 
a rotational operad.

Proposition 1.13. There is a weak equivalence of rotational operads (M, d, R) ∼
(S∗(D2), d, Δ).
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Proof. By weak equivalence of rotational operads we mean a zig-zag of quasi-
isomorphisms of dg operads which preserves the ρ operator at each stage.

From [30, Lemma 7.8] we know there exists a zig-zag of weak equivalences of topo-
logical operads connecting Cact ∼← W (D2) 

∼→ D2 which preserve the S1 actions level-
wise. Taking chains we have an equivalence of rotational operads (S∗(Cact), d, R) ∼
(S∗(D2), d, Δ).

We now consider the inclusion of the normalization Cact1 ∼
↪→ Cact after [17], where 

the spaces Cact1 are CW complexes forming an operad up to homotopy as described 
above. Taking chains we find the following sequence of homotopy operads:

CC∗(Cact1) ∼→ S∗(Cact1) ∼� S∗(Cact)

where � denotes an ∞-quasi-isomorphism whose first component is induced by the 
inclusion of spaces. We emphasize that this sequence respects the underlying mixed 
complex structure at each arity.

From [17] we know that the cellular chains CC∗(Cact1) form an honest dg operad. 
Hence the composite CC∗(Cact1) ∼� S∗(Cact), may be realized as a map of honest dg 
co-operads B(CC∗(Cact1)) ∼→ B(S∗(Cact)) and this morphism allows us to construct a 
zig-zag of dg operads:

CC∗(Cact1) ∼← Ω(B(CC∗(Cact1))) ∼→ Ω(B(S∗(Cact1))) ∼→ S∗(Cact) (1.1)

The ends of this sequence are rotational operads with operator R induced by the 
S1-action on the underlying spaces. If P is a rotational operad then each Ω(B(P))(n)
inherits the structure of an operad in mixed complexes. Since the original ∞-quasi-
isomorphism was compatible with the underlying mixed-complex structure, it follows 
that the diagram in line (1.1) constitutes a weak equivalence of rotational operads be-
tween (CC∗(Cact1), d, R) and (S∗(Cact), d, R).

To finish the proof we recall (see [29] Lemma 4.6) that contracting associahedra in 
the minimal operad commutes with the operator R and gives us a weak equivalences of 
rotational operads (M, d, R) ∼ (CC∗(Cact1), d, R). �
Construction 1.14. Define a functor θ : OpsRot → OpsMxCpx by taking a dg rotational 
operad O to (θρ(O), d, ρ) ∈ OpsMxCpx where θρ(O)(n) := Σ−1O(n), with “twist gluings” 
a◦̃ib := a ◦i ρ(b). (It is easy to check that the twist gluings satisfy associativity and are 
compatible with d and ρ.) For every such O there is a morphism of rotational operads 
ι(θρ(O)) → O given by a �→ ρ(a). We denote the induced natural transformation ι ◦ θ ⇒
idOpsRot by θ−1.

Remark 1.15. The operad θ(O) does not come with a unit for the composition in 
θ(O)(1) = ΣO(1). Thus here we are considering non-unital or “pseudo-operads” in the 
parlance of some authors.
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Lemma 1.16. Given (P, d, ρ) ∈ OpsRot, the natural transformation θ−1 above factors as:

θ(P) ρ→ im(ρ) ↪→ ker(ρ) → P

We conclude this subsection by recalling, in the present terminology, the definition of 
the gravity operad due to [11], and a chain model for this operad due to [29].

Definition 1.17. Consider (Ger, 0, R) as a rotational operad. The gravity operad Grav is 
defined to be the suboperad im(R).

Let us recall that Getzler shows Grav(n)d ∼= Hd−1(M0,n+1), the homology of the 
moduli space of punctured Riemann spheres, he shows this operad is generated in ho-
mological degree 0 with one generator in each arity, and he gives an explicit description 
of the relations in this operad. See [11] for details.

Definition 1.18. Consider the rotational operad (M, d, R). We define the dg operad 
(M�, d) to be (im(R), d). In particular there exists an inclusion of dg operads M� ↪→ M.

Recall that the minimal operad M may be described via black and white planar rooted 
trees. Therefore the dg operad M� may be described via unrooted black and white planar 
trees and the map between them sums over all ways to attach a root to a white vertex. 
Using this description, the homology of M� is generated operadically by graphs with 
n white vertices connected to a common black vertex over all n ≥ 2. For example the 
homology class of the graph pictured here is an operadic generator in arity 3. We refer 
to [29] for complete details on the dg operad M�.

1

2

3

. = 1

2

3

.* ± 1

2

3

.

*

± 1

2

3

.

*

1.1. Adjoints and algebras

We have seen that if (A, d, Δ) is a mixed complex then EndA is an S1-operad. As 
such, algebras over operads in OpsMxCpx are controlled by morphisms to X(EndA); this 
prompts us to construct the left adjoint to X.



448 R. Campos, B.C. Ward / Advances in Mathematics 331 (2018) 439–483
Construction 1.19. Define a functor W : OpsMxCpx → S1-Ops by

W (Q, dQ, R) = (Q � k[δ])/〈R− {δ,−}〉,

where � denotes the categorical coproduct of dg operads.
In words: take the free S1-operad on the underlying operad and identify the two 

candidates for rotation; the original R and the external bracket with the newly added δ. 
This S1 operad is given the differential induced by dQ and the relation d(δ) = 0.

Lemma 1.20. (W, X) are an adjoint pair.

Proof. Given φ ∈ HomOpsMxCpx(A, X(B)), we may forget the mixed complex struc-
tures and take the adjoint to forgetting the morphism from H∗(S1) to get a map 
FreeS1(A) → B, which we call φ̃. We then calculate

φ̃(R(a) − {ΔW (A), a}) = φ(R(a)) − φ̃({ΔW (A), a}) = φ(R(a)) − {ΔB , φ(a)}

but we now remember that φ was a map of mixed complexes so this last ex-
pression equals 0. Thus φ̃ lifts over the quotient of such expressions, that is φ̃ ∈
HomS1-Ops(W (A), B); and conversely. �

Recall that for O ∈ OpsMxCpx, the structure of an O-algebra on a mixed complex 
(A, d, Δ) is a morphism O → Endmxd

A := X(EndA). Thus we immediately see:

Corollary 1.21. Let O ∈ OpsMxCpx. The O-algebra structures on a mixed complex 
(A, d, ΔA) are in bijective correspondence with morphisms W (O) → EndA in S1-Ops.

Example 1.22. W (Ger) = BV. To see this, notice R(μ) = {Δ, μ} = b (the bracket) and 
R(b) = {Δ, b} = 0. In otherwords, a W (Ger) algebra is a Gerstenhaber algebra and 
a mixed complex such that Δ is a derivation of the bracket, and the failure to be a 
derivation of the product is the bracket. In particular a mixed complex is a (dg) BV 
algebra iff and only if it is a Gerstenhaber algebra for which the two inherent notions of 
rotation coincide.

Remark 1.23. The functor S1-Ops → OpsRot defined in Example 1.11 also has a left 
adjoint by a similar construction, and hence we may also encode algebras over rotational 
operads in the category of S1-operads. However, this will not be needed for our present 
purposes.
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Let us now gather together the relevant constructions of this subsection:

OpsMxCpx

W
ι

S1-Ops
X

OpsRot

θ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ι via inclusion
X via Δ := {δ,−}
θ via Σ and twist gluings a◦̃ib := a ◦i ρ(b)
(W,X) an adjoint pair.

1.2. Levelwise cyclic homology

Given an operad (O, d, Δ) ∈ OpsMxCpx we may take the cyclic homology of each 
level/arity. These spaces still form a dg operad. We will also need to consider negative 
and periodic variants. Having fixed cohomological conventions for our mixed complexes, 
we have |d| = 1, |Δ| = −1, |u| = 2. We also define v := u−1 so that |v| = −2, and abuse 
notation by writing u for the linear map k[v] → k[v] of degree 2 sending vr �→ vr−1 with 
the convention that v0 = 1 and v−1 = 0.

Construction 1.24. Define functors CC, CC−, CCper : OpsMxCpx → OpsMxCpx by:

CC(O, d,Δ)(n) = (O(n) ⊗ k[v], d + Δu,Δ)

CC−(O, d,Δ)(n) = (O(n) ⊗ k[u], d + Δu,Δ)

CCper(O, d,Δ)(n) = (O(n) ⊗ k[u, v], d + Δu,Δ)

with the operad structure:

(a⊗ vr) ◦i (b⊗ vs) := (a ◦i b) ⊗ vr+s

It is then straight forward to check associativity and compatibility of the differential and 
the operad structure.

The functor CC will be called the level-wise cyclic chain functor and its homology is 
called the level-wise cyclic homology, denoted HC(O). We similarly refer to the negative 
CC− and CCper periodic variants. Notice that we call this constructions cyclic homology
regardless of the degree conventions of our mixed complexes. This is because we are 
considering the mixed complexes themselves and not functions on them. We also observe 
that there is a useful modification of this construction which takes the completed tensor 
product, but since we will be considering O which are bounded and of finite type, we 
are not concerned with this distinction.

A weak equivalence in the category OpsMxCpx is a zig-zag of morphisms each of which 
are level-wise quasi-isomorphisms. Note that since CC, CC−, CCper preserve level-wise 
quasi-isomorphisms, they preserve weak equivalences.
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Definition 1.25. We define the functor CCθ : OpsRot → OpsMxCpx by CCθ := CC ◦ θ. If 
O ∈ OpsMxCpx we write CCθ(O) in place of CCθ(ι(O)) without further ado. We also 
define HCθ(−) := H∗(CCθ(−)).

Spelling out the definition of the functor CCθ, we see that as an S-module we can 
identify CCθ(O) = Σ−1O[v] and under this identification the composition maps are 
given by “twisted gluings”

(p⊗ vr)◦̃i(q ⊗ vs) = (p ◦i ρ(q)) ⊗ vr+s, for p, q ∈ O.

Given O ∈ OpsMxCpx, there is a short exact sequence in dg-S-Mod

0 → CC−(O) ↪→ CCper(O) u−→ Σ−2CC(O) → 0 (1.2)

the map labeled by u is “multiplication by u” and sends v to 1, 1 to 0, etc.
The connecting homomorphism in the associated long exact sequence can be de-

scribed via θ (Construction 1.14). First observe that there is an isomorphism of S-modules 
HCθ(O) ∼= Σ−1HC(O) and this endows the right hand side with an operad structure.

Lemma 1.26. The boundary map in the long exact sequence associated to equation (1.2)
is a morphism of operads HCθ(O) ∼= Σ−1HC(O) → HC−(O).

Proof. This follows from the fact that if c0 + c1u
−1 + . . . is a d + uΔ cycle in CC(O)(n)

then the image of its homology class under the connecting homomorphism is [Δ(c0)]. �
We also remark that if dO = 0, the connecting homomorphism coincides with the 

homology of θ−1, else it is a combination of θ−1 and projection u �→ 0.

Lemma 1.27. Let (O, d, Δ) ∈ OpsMxCpx and suppose that [Δ] is exact on H(O, d) and 
that each (O(n), d) is bounded above. Then the morphism of operads in Lemma 1.26 is 
an isomorphism.

Proof. It is enough to show that HCper(O) vanishes. Consider a filtration of O(r)[u, v]
by the powers of u. The exactness of [Δ] will result in the E2 page of the associated 
spectral sequence being exactly 0. Since O(r)[u, v] is bounded in each filtration degree, 
this spectral sequences converges to HCper(O)(r), hence the claim. �
Corollary 1.28. Let (O, d, Δ) ∈ OpsMxCpx. There are maps of dg operads:

CCθ(O) −→ (ker(Δ), d) −→ CC−(O) (1.3)

which are both weak equivalences if the conditions of Lemma 1.27 are satisfied.
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Proof. Define the left hand map by c0 + c1u
−1 + · · · + cnu

−n �→ Δ(c0) in each arity. 
Define the right hand map by inclusion at u0 in each arity. It is straight forward to check 
that these are dg operad maps.

Now we assume the conditions of Lemma 1.26 which implies that the composition of 
these two maps is a weak equivalence. We then claim the left hand map is surjective on 
homology at each level. For if [a] is a class in H(ker(Δ), d) then [Δ(a)] = 0 implies [a] ∈
Im([Δ]) and hence there exists b ∈ O(r) with db = 0 such that [Δ(b)] = [a] ∈ H(O(r)). 
Since Δ(b) is in the image of the left hand map, the claim follows.

So if we consider the sequence on line (1.3), the composite being a level-wise isomor-
phism on homology forces the left hand map to be a level-wise injection on homology. 
Since it is also a level-wise surjection on homology, the left hand map is a weak equiva-
lence. Hence the right hand map is an weak equivalence by the 2-out-of-3 property. �

By a truncated operad we refer to the truncation of an operad to its arity ≥ 2 terms.

Example 1.29. Consider (Ger, 0, R) as a truncated operad in mixed complexes. Then R
is exact on Ger, see [11]. In arity ≥ 2, CC−(Ger) has cycles and boundaries:

Z(CC−(Ger)) = ker(R) ⊗ k[u] and B(CC−(Ger)) = Im(R) ⊗ uk[u]

so HC−(Ger) ∼= Im(R) ∼= ker(R). On the other hand CC(Ger) has cycles and boundaries:

Z(CC(Ger)) = Ger ⊕ (ker(R) ⊗ vk[v]) and B(CC(Ger)) = Im(R) ⊗ k[v]

so ΣHC(Ger) ∼= ΣGer/Im(R). In particular the generators are the n-fold commutative 
products. The corollary gives us weak equivalences of dg operads:

CCθ(Ger) ∼−→ Grav ∼−→ CC−(Ger)

where Grav is (by Definition 1.17 above) the graded operad (im(R), 0) = (ker(R), 0). 
This weak equivalence CCθ(Ger) ∼→ CC−(Ger) can be interpreted as a dg version of [30, 
Corollary 2.8].

Recall that two objects in OpsMxCpx (resp. OpsRot) are said to be weakly equivalent 
(denoted ∼) if they are connected by a zig-zag of levelwise quasi-isomorphisms of dg 
operads which preserve the rotation operator.

From the level-wise homotopy invariance of CCθ and CC− we immediately see:

Corollary 1.30. If (O, d, Δ) in OpsMxCpx is weakly equivalent to (Ger, 0, R), then 
CCθ(O) ∼ Grav ∼ CC−(O) are weakly equivalent dg operads.

If (O, d, Δ) in OpsRot is weakly equivalent to (Ger, 0, R) (viewed as a rotational operad) 
then CCθ(O) ∼ Grav are weakly equivalent dg operads.
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1.3. Operations on cyclic homology

In this section we fix a mixed complex (A, dA, δA) and consider its cyclic homology as 
well as negative and periodic variants. This is the same construction as Construction 1.24
above, except the input and output is just a mixed complex (as opposed to an operad in 
mixed complexes). Let us use the same notation to denote these constructions for both 
algebras and operads; so explicitly we consider chain complexes CC(A) := (A ⊗ k[v], d +
δu), CC−(A) := (A ⊗ k[u], d + δu), and CCper(A) := (A ⊗ k[u, v], d + δu).

Recall that for our mixed complex A we may consider EndA as an S1-operad or as 
an operad in mixed complexes Endmxd

A , via Δ = {δ, −}. In this section we take the latter 
consideration as the default. The following lemma will allow us to study operations on 
cyclic cohomology:

Lemma 1.31. Let A = (A, d, Δ) be a mixed complex. There is an inclusion CC−(EndA) ↪→
EndCC−(A) in OpsMxCpx.

Proof. Define a map ψn:

Hom(A⊗n, A) ⊗ k[u] ψn→ Hom(A[u]⊗n, A[u])

as the k-linear extension of the assignment:

f ⊗ ur �→
[
(a1u

i1 ⊗ · · · ⊗ anu
in) �→ f(a1, . . . , an)ur+

∑
j uij

]
This map is clearly injective. In particular, a multi-linear operation on A[u] is in the 
image of this map if and only if it is u-linear and has bounded support in the codomain. 
We remark that the extension of this map to Hom(A⊗n, A)⊗̂k[u] would encompass all 
multi-linear operations in its image, but this intermediary operad is not needed for our 
purposes. We now claim that the ψn constitute a map of dg operads.

Let us first check the differential. The operad EndA has an internal differential, call it 
∂, induced by dA ∈ EndA(1). Notice that it can be described via the operadic Lie bracket 
as ∂(f) = {dA, f}. Therefore the total differential on CC−(EndA) which is a priori of the 
form ∂ + Δu, can be rewritten as {dA, −} + {δ, −}u = {dA + uδ, −}. On the other hand, 
the operad EndCC−(A) has differential induced from the complex (CC−(A), dA + uδ) via 
the operadic Lie bracket. Thus we again find {dA +uδ, −}, and so the differentials agree.

It is then an easy exercise to see that ψ respects the operad compositions. In particular 
let f and g be multi-linear operations on A of arities n and m. Then we see that both 
ψ(f ⊗ ur) ◦l ψ(g ⊗ us) and ψ(f ⊗ ur ◦l g ⊗ us) := ψ(f ◦l g ⊗ ur+s) are evaluated at a 
pure tensor ⊗n+m−1

j=1 aju
ij by evaluating f ◦l g at ⊗jaj and multiplying by u to the power 

(s +
∑l+m−1

j=l ij) + (r +
∑l−1

j=1 ij +
∑n+m−1

j=l+m ij) in the former case and r + s +
∑

j ij in 
the latter; and these two expressions are equal. �
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Remark 1.32. We have given the statement of the Lemma using the negative variant of 
cyclic cohomology because it will be the result we need subsequently. However the same 
result can be proven for the other variants.

Corollary 1.33. If (A, d, Δ) is an algebra over the S1-operad W (O) then CC−(A) inherits 
the structure of an algebra over CC−(O).

Proof. Associated to the map of S1-operads W (O) → EndA is the adjoint map O →
EndA in OpsMxCpx (suppressing the notation X used above). Taking CC− of this map 
and applying the lemma we have CC−(O) → CC−(EndA) ↪→ EndCC−(A). �
Example 1.34. If A is a BV-algebra, then CC−(A) inherits the structure of a gravity 
algebra via the sequence

Grav ∼→ CC−(Ger) ↪→ EndCC−(A) (1.4)

after Example 1.22.
More generally, combining this example with Example 1.29 above we see that if A is 

a BV-algebra, there is a sequence of (truncated) dg operads:

Grav∞
∼→ CCθ(Ger) ∼→ CC−(Ger) ↪→ EndCC−(A) (1.5)

We will use this construction in the following section to associate a gravity algebra to 
the poly-vector fields of an oriented manifold.

Remark 1.35. In this section we have studied the interaction of operads, mixed com-
plexes, and cyclic homology. Although it is not needed for the purposes of this paper, it 
should be possible to generalize these results and examples to apply to operads valued 
in multi-complexes. In particular, the suitably derived version of Example 1.22 is an 
interesting question.

2. Formality, cyclic formality, and gravity structures

In this section we recall the statement of Kontsevich’s formality theorem [20,21] and 
the cyclic variant of the theorem due to Willwacher [32]. We also apply our work from 
Section 1 to establish the Grav∞ structures on the respective sides of the cyclic formality 
theorem that will be the subject of our results in subsequent sections.

In this section we fix an oriented manifold M of dimension d and equip it with a 
fixed volume form ω. In this section and beyond we take our ground field to be the real 
numbers.
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2.1. Multivector fields

The graded vector space Tpoly(M), or just Tpoly, of multivector fields on M is

T •
poly = Γ(M,

∧•
TM ),

where TM is the tangent bundle of M . This space is naturally a s−1Lie algebra with Lie 
bracket given by the Schouten–Nijenhuis bracket. It is also a graded commutative algebra 
under the exterior product and these operations combine to make Tpoly a Gerstenhaber 
algebra.

We now define a map f : T •
poly(M) → Ωd−•

dR (M) that sends a multivector field to its 
contraction with the volume form of M . This map is easily checked to be an isomorphism 
of vector spaces. We define the divergence operator divω to be the pullback of the de 
Rham differential via f , i.e. divω := f−1◦ddR◦f . The square zero operator divω combines 
with the Gerstenhaber structure to make Tpoly a BV algebra.

Our work in Section 1, namely Example 1.34, assigns to the complex (Tpoly[u], u divω)
the structure of a dg gravity algebra. Explicit formulas for this structure can be given 
as the u-linear extension of those given in [11, Lemma 4.4]. In particular this complex is 
a dg s−1Lie algebra whose bracket is the u-linear extension, [Xuk, Y ul] := [X, Y ]uk+l.

2.2. Multidifferential operators

In this section we describe the differential graded Lie algebra of multidifferential op-
erators of M , denoted by Dpoly(M) or just Dpoly. We do an operadic construction which 
is less standard but allows us to introduce notation that suits our needs better.

Consider the endomorphism operad End(C∞
c (M)) = Hom(C∞

c (M)⊗•, C∞
c (M)) on 

the algebra of compactly supported smooth functions on M , concentrated in degree 
zero. We define Dpoly ⊂ End(C∞

c (M)) to be the suboperad given by endomorphisms 
that vanish on constant functions2 and that can be locally expressed in the form

∑
f

∂

∂xI1

⊗ · · · ⊗ ∂

∂xIn

where the Ij are finite sequences of indices between 1 and dim(M) and ∂/∂xIj is the 
multi-index notation representing the composition of partial derivatives.

Associated to Dpoly is the graded vector space D̃poly =
⊕

n ΣsDpoly(n) (graded inter-
nally so that arity n operators are of concentrated in degree n) which inherits a natural 
graded s−1Lie algebra structure from the symmetrization of the total composition maps

2 Some authors call this space the “normalized cochains” or “normalized multidifferential operators” due 
to this condition.
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D ◦D′ =
|D|∑
i=1

(−1)(i−1)(|D′|−1)D ◦i D′.

The product μ ∈ Dpoly(2) of compactly supported functions is associative. This can 
be rewritten as [μ, μ] = 0 which amounts to saying that μ is a Maurer–Cartan element 
of the shifted Lie algebra D̃poly. The differential graded Lie algebra of multidifferen-
tial operators Dpoly is defined to be D̃μ

poly := (D̃poly, [μ, −]), the twist of D̃poly by the 
Maurer–Cartan element μ.

The Hochschild–Kostant–Rosenberg map is a quasi-isomorphism of cochain complexes 
Tpoly → Dpoly that is not compatible with the Lie algebra structures. Kontsevich’s result 
states that the obstructions of the Hochschild–Kostant–Rosenberg map to commute with 
the Lie algebra structure are homotopically trivial.

Theorem 2.1 (Kontsevich formality). There exists a homotopy s−1Lie∞ quasi-isomor-
phism

U : Tpoly → Dpoly

extending the Hochschild–Kostant–Rosenberg map.

We will now describe an action of the group Zn+1 = 〈σn|σn+1
n = e〉 on Dpoly(n). 

Consider the natural map

Hom(C∞
c (M)⊗n, C∞

c (M)) → Hom(C∞
c (M)⊗n+1,R)

induced from the pairing 
∫
M

: C∞
c (M) ⊗ C∞

c (M) → R. The restriction of this 
map to Dpoly(n) is injective and therefore Dpoly(n) inherits the Zn+1 action of 
Hom(C∞

c (M)⊗n+1, R) coming from cyclic permutation of the inputs.
We define the cyclic multi-differential operators Dσ

poly to be those multi-differential 
operators which are left invariant under the cyclic action.

Proposition 2.2. The Lie algebra structure and differential of Dpoly restrict to this sub-
space making Dσ

poly a differential graded Lie algebra.

Similarly to the non-cyclic setting, there is a cyclic Hochschild–Kostant–Rosenberg 
map [25] Tpoly[u] → Dσ

poly which is a quasi-isomorphism of chain complexes. Willwacher’s 
result shows that also in the cyclic setting this map can be made compatible with the 
Lie bracket up to homotopy.

Theorem 2.3 (Willwacher’s cyclic formality). There exists a homotopy s−1Lie∞ quasi-
isomorphism
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Ucyc : Tpoly[u] → Dσ
poly

extending the cyclic Hochschild–Kostant–Rosenberg map.

Remark 2.4. The cyclic group actions combine with the operad structure to endow Dpoly
with the structure of a cyclic operad (cf. [13]). Proposition 2.2 actually holds for any 
cyclic operad (see e.g. [29]) and so we term the associated dg Lie algebra (Oσ, dμ) the 
cyclic deformation complex of (O, μ). In particular this complex controls equivalence 
classes of deformations of our algebra which are inner-product preserving, see [4].

The fact that Dpoly is a cyclic operad equipped with the invariant Maurer–Cartan 
element μ allows us to apply [29, Theorem C] to show that the dg Lie algebra structure 
on Dσ

poly lifts to an action of the dg operad M� of Definition 1.18. This will be used 
below to endow Dσ

poly with the structure of a Grav∞-algebra.

2.3. FM2 and formality of M�

Let

Confn(C) = {(x1, . . . , xn) ∈ (C)n|xi 	= xj for i 	= j}/R+ �C

be the configuration space of n labeled points in C modulo the action of the Lie group 
R+�C acting by scaling and translations. Notice that Confn(C) is a 2n −3 dimensional 
smooth manifold.

The Fulton–MacPherson topological operad FM2, introduced by Getzler and Jones [12]
after [9] is constructed in such a way that the n-ary space FM2(n) is a compactification 
of the Confn(C). The spaces FM2(n) are manifolds with corners with each boundary 
stratum representing a set of points that got infinitely close.

Formally, the compactification is done by considering the closure of Confn(C) under 
the embedding Confn(C) ↪→ (S1)n(n−1)× [0, +∞]n2(n−1)2 that maps every pair of points 
to their angle and every triple of points to their relative distances.

The first few terms are

• FM2(0) = ∅,
• FM2(1) = {∗},
• FM2(2) = S1.

The operadic composition ◦i is given by inserting a configuration at the boundary stra-
tum at the point labeled by i. For details on this construction see also [9, Part IV] or 
[20].

The homology of the Fulton–MacPherson operad is the Gerstenhaber operad Ger [1]. 
The formality of this operad was established by Kontsevich with the exhibition of the 
following explicit zig-zag of quasi-isomorphisms.
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Theorem 2.5 ([20,23]). There is a zig-zag of quasi-isomorphisms of operads

Chains∗(FM2) → Graphs ← Ger.

The operad Graphs is an operad of graphs, constructed by considering the twisted 
operad of Gra (see section 3.2 for the definitions). Concretely, it is the suboperad of Tw Gra
consisting of graphs containing no connected components without external vertices and 
all internal vertices have valence at least 3. The construction of this operad using operadic 
twisting was first done in [31].

We mention the technical point that the various projection maps FM2(n + k) →
FM2(n) obtained by forgetting k points of the configuration are not smooth fiber bundles. 
Since Kontsevich’s construction requires integration of forms along fibers, one has to work 
in a semi-algebraic setting. In particular, the functor Chains∗, used by Kontsevich is the 
functor of semi-algebraic chains (see [15] for an extensive study of this functor) and the 
morphism Chains∗(FM2) → Graphs is best constructed in the dual setting, as a map of 
cooperads

ω• : Graphs∗ → Ω(FM2),

where Ω represents the functor of PA (piecewise-algebraic) forms.

Remark 2.6. The functor Ω is not comonoidal since the canonical map Ω(A) ⊗ Ω(B) →
Ω(A × B) goes “in the wrong direction”, therefore Ω(FM2) is not a cooperad but still 
satisfies cooperad-like relations (see [23]). Nevertheless, by abuse of language throughout 
this paper we will refer to these spaces as cooperads and refer to maps such as Gra∗ →
Ω(FM2) as maps of (colored) cooperads if they satisfy a compatibility relation such as 
commutativity of the following diagram:

Graphs∗(n) Ω(FM2(n))

Ω(FM2(n− k + 1) × FM2(k))

Graphs∗(n− k + 1) ⊗ Graphs∗(k) Ω(FM2(n− k + 1)) ⊗ Ω(FM2(k)).

To describe the map ω•, first let us take Γ, a graph in Graphs∗(n) with no internal 
vertices. We define

ωΓ :=
∧

dφi,j ∈ Ω(FM2(n)),

(i,j) edge of Γ
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where dφi,j = p∗i,j(volS1)3 is the pullback of the volume form of the circle via the pro-
jection map pi,j : Ω(FM2(n)) → Ω(FM2(2)) = Ω(S1).

If the graph Γ ∈ Graphs∗(n) contains k internal vertices, one can construct a graph 
Γ′ ∈ Graphs∗(n +k) by replacing all internal vertices by external vertices labeled in some 
way from n + 1 to n + k. The map ω• : Graphs∗(n) → Ω(FM2(n)) is defined by sending 
Γ to 

∫
n+1,...,n+k

ωΓ′ , where the integral runs over all possible configuration of the points 
that correspond to the internal vertices.

Notice that the induced composition map Gra∗ → Graphs∗ → Ω(FM2) is just the map 
of commutative algebras defined by sending the edge connecting vertices i and j to φi,j .

Remark 2.7. The operad FM2 can be directly related to a shifted version of the homotopy 
Lie operad via the operad morphism

s−1Lie∞ → Chains∗(FM2),

given by sending the generator μn ∈ s−1Lie∞ to the fundamental chain of FM2(n).4 This 
is essentially lifting the formality zig-zag for s−1Lie∞ ⊂ Ger∞.

The action of S1 on FM2 allows us to consider the operad (Chains∗(FM2), d, Δ) ∈
OpsMxCpx.

Theorem 2.8. There exists a zig-zag of quasi-isomorphisms in OpsMxCpx connecting

(S∗(D2;R), d,Δ) ∼ (S∗(FM2;R), d,Δ) ∼ (Ger, 0, R).

Proof. Recall that the usual proof of the homotopy equivalence of D2 and FM2 [8, Chap-
ter 4] makes use of the Boardman–Vogt W-construction to construct the following zig-zag 
of homotopy equivalences

D2
∼← W (FM2)

∼→ FM2.

One readily notices that for a fixed arity both maps preserve the natural S1 actions on the 
three topological spaces, from which it follows that D2 and FM2 are homotopy equivalent 
as S1 operads. From the functoriality of the semi-direct product of a topological group 
with a topological operad it also follows [14] that the framed versions Dfr

2 and FMfr
2 are 

homotopy equivalent topological operads.
At the algebraic level we obtain that (S∗(D2), d, Δ) ∼ (S∗(FM2), d, Δ), since both Δ

operators are given by the composition with the unary framed element.

3 Notice that dφi,j is not an exact form, since the angle φi,j is only well defined up to a constant.
4 Note that due to our cohomological conventions the generator μn ∈ s

−1Lie∞ has degree (1 −n) +(2 −n) =
3 − 2n as desired.



R. Campos, B.C. Ward / Advances in Mathematics 331 (2018) 439–483 459
Recall from [15], that the equivalence between the functor of singular chains and the 
one of semi-algebraic chains is given by a zig-zag of natural quasi-isomorphisms

Chains∗(−) ∼← SPA
∗ (−) ∼→ S∗(−),

where SPA
p (X) = {σ : Δp → X | σ is a semi-algebraic map}. Both maps are easily seen 

to be compatible with the mixed complex structure, and therefore (S∗(D2), d, Δ) ∼
(Chains∗(FM2), d, Δ).

Kontsevich’s quasi-isomorphism of operads Chains∗(FM2) → Graphs is compatible 
with the mixed complex structure, as shown in [14, Lemma 3.1]. It remains to see that 
the map Ger → Graphs is also compatible with the mixed complex structure. It suffices 
to check this statement on generators, where it is clear since Δ sends the graph with 
no edges in Graphs(2) to the graph containing only two external vertices and an edge 
connecting them. �

As a corollary to this theorem we can relate the rotational operads discussed above 
in Examples 1.4 and 1.10. The proof follows immediately from the Theorem and Propo-
sition 1.13.

Corollary 2.9. There is an equivalence of rotational operads (M, d, R) ∼ (Ger, 0, R).

Combining this corollary with our work in Section 1 yields the following result:

Theorem 2.10. The operad M� of [29] is weakly equivalent to the gravity operad.

Proof. Applying CCθ to the above result, and using Corollary 1.30, we find CCθ(M, R) ∼
Grav as truncated dg operads, where the commutative products generate the gravity 
operations. We then define a map of truncated operads CCθ(M, R) ∼→ M� ⊂ M by R
(with v �→ 0). This is a morphism of operads with the same homologies, and on homology 
it takes generators to generators so it’s a quasi-isomorphism. �
Remark 2.11. This proof works over R. For other fields of characteristic 0 we can prove 
this result by appealing to the formality of the gravity operad along with Proposi-
tion 1.13. The analog of Theorem 2.8 in the non real case is an open problem.

We recall from [29, Theorem C] that the dg operad M� acts on the cyclic deformation 
complex of any cyclic operad. This action extends the Lie algebra structure discussed 
above (Remark 2.4), is compatible with the action of M on the (non-cyclic) deformation 
complex, and recovers the expected gravity structure on the homology of this complex. 
We choose a weak equivalence Grav∞

∼→ M�, whose existence is guaranteed by the 
Theorem and then define:
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Definition 2.12. If O is a cyclic operad with associated MC element μ, we define a Grav∞
structure on cyclic deformation complex (Oσ, dμ) via Grav∞

∼→ M� → EndOσ . In par-
ticular, in the case O = Dpoly this defines a Grav∞ structure on Dσ

poly.

3. Cyclic Swiss Cheese type operads

In this Section we introduce the 2-colored operads that we will work with throughout 
the paper. They all have a compatible cyclic structure encoded by the following definition.

Definition 3.1. Let P be a 2-colored operad that is non-symmetric in color 2. We say 
that P is of Swiss Cheese type if P1(m, n) = 0 if n > 0.

A Swiss Cheese type operad P endowed with a right action of the cyclic group Zn+1
on each P2(m, n) is said to be of Cyclic Swiss Cheese type (abbreviated CSC) if:

• The cyclic action is P1 equivariant,
• The cyclic action and the color 2 compositions satisfy the same compatibility as in 

a cyclic operad.

In particular, this last axiom implies that if P is of CSC type then the partial com-
positions and the cyclic action combine to endow 

∏
m P2(m, n) with the structure of a 

cyclic operad.
A morphism of CSC type operads is a map of colored operads that is moreover equiv-

ariant with respect to the cyclic action.

3.1. Configuration spaces of points

The (original) Swiss Cheese operad is a colored operad introduced by Voronov [27]
whose operations in color 1 are given by rectilinear embeddings of discs in a big disc, 
while operations in color 2 consist of rectilinear embeddings of discs and semi-disc in a 
big semi-disc. In [27], Voronov considers also a homotopy equivalent operad (FM2, H)
made out of configuration spaces of points on the plane or upper half-plane. This second 
construction has some advantages over the first one, one of them being that there is a 
natural Cyclic Swiss Cheese structure on (FM2, H) as we describe in this subsection.

Analogously to section 2.3, one can consider the configuration space of m points 
on the upper half-plane and n points at the boundary, modulo scaling and horizontal 
translations

Confm,n(C) = {(x1, . . . , xm; y1, . . . , yn) ∈ C
n+m|�(xi) > 0,�(yi) = 0,

no points overlap}/R+ �R.

There is an embedding Confm,n(C) ↪→ Conf2m+n(C) by mirroring the bulk points along 
the real axis. Compactifying as in section 2.3, we obtain the space Hm,n.
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The spaces FM2 and H•,• assemble into a Swiss Cheese type operad, with the two 
color compositions into H•,• being still done by insertion into boundary strata. There 
is in fact a cyclic action extending the Swiss Cheese structure to a Cyclic Swiss Cheese 
type operad structure as follows:

The open upper half plane is isomorphic to the Poincaré disc via a conformal map. 
This isomorphism sends the boundary of the plane to the boundary of the disc except 
one point that we label by ∞. We define the cyclic action of Zn+1 in Hm,n by cyclic 
permutation of the point labeled by infinity with the other points at the boundary.

1

2

3
. . .

n− 1

n

∞

·σ =

∞

1

2
. . .

n− 2

n− 1
n

3.2. Graphs

For m, n ≥ 0, let vKGra(m, n) be the free differential graded commutative algebra 
generated by “edges” Γi,j , 1 ≤ i, j ≤ m; “edges” Γi

j
, 1 ≤ i ≤ m; 1 ≤ j ≤ n in degree −1

and symbols vi, 1 ≤ i ≤ m of degree −2.
The differential sends vi to Γi,i and vanishes on every other generator. The reason for 

the notation is that this cdga can be considered a variation of Kontsevich’s graphs, used 
in [21].

We interpret vKGra(m, n) as the space spanned by directed graphs with m vertices of 
type I labeled with the numbers {1, . . . , m} that can be additionally decorated with a 
power of v, n vertices labeled with the numbers {1, . . . , n} of type II and edges that can 
not start on a vertex of type II.

Let us consider a different free cdga, Gra(n) (cf. [31]), to be generated by symbols Γi,j , 
1 ≤ i 	= j ≤ n, that is to say, Gra(n) is the subspace of graphs of vKGra(n, 0) containing 
no tadpoles or positive powers of v.

We define a symmetric operad structure on Gra by setting the symmetric action to 
permute the labels on vertices and the operadic composition Γ ◦i Γ′ to be the insertion 
of Γ′ in the i-th vertex of Γ and taking a signed sum over all possible ways of connecting 
the edges incident to i to Γ.

Remark 3.2 (Sign rules). To obtain the appropriate signs one has to consider the full 
data of graphs with an ordering on the set of edges. In this situation the orientation 
of the edges of Γ is preserved and one uses the symmetry relations on Γ in such a way 
that the labels of the edges of the subgraph Γ come before the labels of the edges of the 
subgraphs Γ′. The operad axioms are a straightforward verification.
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We can form a Swiss Cheese type operad by setting Gra to be the operations in color 
1 and vKGra to be the operations in color 2, considering the symmetric action permuting 
the labels of type I vertices and ignoring the symmetric action of type II vertices. The 
partial compositions are given as in Gra, i.e., by insertion on the corresponding vertex, 
connecting in all possible ways and distributing corresponding the powers of v also in all 
possible ways.

Following Kontsevich’s conventions, since type II vertices in vKGra will be seen as 
boundary vertices, we draw them with a line passing by the type II vertices.

1
v7

2

3
v2

4
v

1 2 3 4 5
∈ vKGra(4, 5).

We define a cyclic Zn+1 = 〈σ|σn+1 = e〉 action on vKGra(m, n) on generators as 
follows: For all 1 ≤ i ≤ m and 2 ≤ j ≤ n, we have σ(Γi

j̄
) = Γi

j−1 and σ(Γi
1̄) =

− 
∑n

k=1 Γi
k̄
−
∑m

k=1 Γi,k. The action is trivial on other generators, namely for 1 ≤ i, j ≤ m, 
σ(Γi,j) = Γi,j and σ(vi) = vi.

The cyclic action is extended to the whole vKGra(m, n) by requiring it to be compatible 
with the product in the sense that σ(ab) = σ(a)σ(b), ∀a, b ∈ vKGra(m, n). Since σ2(Γi

1̄) =
Γi
m̄, we have that σn+1 acts as the identity in every one-edge graph, and therefore the 

action of Zn+1 is well defined.

3.3. Representation of a morphism

Let P be a cyclic operad and V a chain complex. Notice that there is an obvious 
operad of Cyclic Swiss Cheese type

(
EndV ,Hom

(
V ⊗•,P

))
given by insertion of functions in to tensor powers of V and the cyclic operadic compo-
sitions in P. If V is an algebra over the operad O, then this induces the structure of an 
operad of CSC type on (O,Hom (V ⊗•,P)) in which a cross color composition is given 
by pushing forward along the given morphism O → EndV and then composing as in the 
first example. In particular there is an induced map:

(
O,Hom

(
V ⊗•,P

))
→

(
EndV ,Hom

(
V ⊗•,P

))
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Now suppose (A, d, Δ) is an algebra over O ∈ OpsMxCpx. Combining this example 
with the sequence of dg operads CCθ(O) → CC−(O) → CC−(EndA) → EndCC−(A)
constructed in Section 1 (via Corollaries 1.28 and 1.33) we have a morphism of CSC 
type operads:

(
CCθ(O),Hom

(
CC−(A)⊗•,P

))
→

(
EndCC−(A),Hom

(
CC−(A)⊗•,P

))
Example 3.3. We will make subsequent use of the following example of such an operad 
of CSC type. Let A be the mixed complex (Tpoly, 0, u divω), O = EndTpoly

∈ OpsMxCpx, 
and P = Dpoly. Then we may consider the consequent morphism of CSC type operads:

(
CCθ(EndTpoly),Hom(CC−(Tpoly)⊗•,Dpoly)

)
→

(
EndCC−(Tpoly),Hom(CC−(Tpoly)⊗•,Dpoly)

)
3.4. The functor CCθ on operads of Cyclic Swiss Cheese type

Proposition 3.4. If P = (P1, P2) is an operad of CSC type and if the operad P1 is a 
rotational operad, then CCθ(P) = (CCθ(P1), P2) is still an operad of CSC type, with 
compositions given by

p2 ◦̃l p1v
k =

{
p2 ◦l ρ(p1) if k = 0
0 if k > 0,

for pi ∈ Pi.

Proof. Let pi, p′i ∈ Pi. We start by showing the associativity of the composition, which 
is clear if we take three elements of P2 or three elements of P1. Otherwise, if a positive 
power of v appears in an element of CCθ(P1), both double compositions will be zero and 
associativity holds trivially. If p2 ◦̃l (p1v

0 ◦̃j p′1v
0) compose sequentially (as opposed to 

parallely), we have p2 ◦̃l (p1v
0 ◦̃j p′1v

0) = p2 ◦l ρ(p1 ◦j ρ(p′1)) = p2 ◦l (ρ(p1) ◦j ρ(p′1)) =
(p2 ◦l ρ(p1)) ◦l+j−1 ρ(p′1)) = (p2◦̃lp1) ◦̃l+j−1 p′1. The other associativity verifications are 
straightforward.

For the compatibility with the differential, consider that d(p2 ◦̃i p1v
k) = 0 if k > 0. 

In that case, dp2 ◦̃l p1v
k ± p2 ◦̃l dp1v

k ± p2 ◦̃l ρ(p1)vk−1 = 0, owing to the compatibility 
of d with ◦i and the fact that ρ2 = 0. If k = 0, then dp2 ◦̃l p1 ± p2 ◦̃l (d + uρ)p1 =
dp2 ◦l ρ(p1) ± p2 ◦̃l dp1 = d(p2 ◦l ρ(p1)) ∓ p2 ◦l dρ(p1) ± p2 ◦l ρ(dp1) = d(p2 ◦̃l p1).

The cyclic action on P2 is still CCθ(P1) equivariant since

pσ2 ◦̃l p1 = pσ2 ◦l ρ(p1) = (p2 ◦l ρ(p1))σ = (p2 ◦̃i p1)σ. �
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Remark 3.5. Notice that this construction defines an endofunctor on the category whose 
objects are operads of CSC type that are operads on mixed complexes in color 1 and 
whose morphisms are maps of colored operads that are equivariant with respect to the 
cyclic action and commute with the rotational structure in color 1.

Recall from [29] the operad B� constructed as the image of the rotational operator R
on the operad of rooted planar trees. It is the untwisted version of the operad M�.

Proposition 3.6. Let P = (P1, P2) be an operad of CSC type. The totalized space of cyclic 
invariants 

∏
n ΣnP2(•, n)Zn+1 is a B� − P1 bimodule.

Proof. The left module structure follows from [29, Corollary 2.11]. The colored operad 
structure defines a right P1-module structure on 

∏
n ΣnP2(•, n) and the fact that this 

right module structure restricts to the space of invariants is a consequence of the equiv-
ariance of P1 with respect to the cyclic structure.

The compatibility of the left and right actions follows from the associativity for parallel 
composition on operads, as the left action only involves insertions of color 2 and the right 
action only involves insertions of color 1. �
Proposition 3.7. This construction is functorial.

Proof. The equivariance of the morphism with respect to the cyclic action guarantees 
that cyclic invariants are mapped to cyclic invariants. Since a morphism of CSC type 
operads is in particular a morphism of colored operads, the induced map on the total 
space is a morphism of right bimodules. As for the right B� action, the compatibility 
follows from the compatibility of the compositions with the cyclic structure, given in the 
axioms of a cyclic operad. �
4. Bimodule maps

A homotopy Grav∞ morphism from a Grav∞ algebra A to a Grav∞ algebra B can be 
expressed as a representation of the canonical Grav∞ operadic bimodule on the colored 
vector space A ⊕B.

The strategy to find such a representation for our case A = Tpoly[u], B = Dσ
poly is 

to construct a certain bimodule M� � ker ΔH � CCθ(Chains∗(FM2)) which is homotopy 
equivalent to the Grav∞ canonical bimodule and construct a map of bimodules into 

EndDσ
poly

� EndTpoly[u]
Dσ

poly
� EndTpoly[u], where EndTpoly[u]

Dσ
poly

(n) = Hom(Tpoly[u]⊗n
, Dσ

poly).
More concretely, the goal of this Section is to define several operadic bimodules and 

construct the following series of bimodule maps, whose composition determines our de-
sired Grav∞ formality map.
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Grav∞ � Gravbimod
∞

4.3

� Grav∞

M� � ker ΔH

4.3

� CCθ(Chains∗(FM2))

M� � Chains∗(H•,0)

4.3

� CCθ(Chains∗(FM2))

M� �
(∏

n ΣnChains∗(H•,n)Zn+1
)μ

4.2

� CCθ(Chains∗(FM2))

M� �
(∏

n ΣnvKGra(•, n)Zn+1
)μ

4.4

� CCθ(Gra)

M� � EndTpoly[u]
Dσ

poly

4.4

� CCθ(EndTpoly)

EndDσ
poly

� EndTpoly[u]
Dσ

poly
� EndTpoly[u]

(4.1)

Most of these maps follow from the application of Propositions 3.6 and 3.7, sometimes 
after using Proposition 3.4. The labels on the arrows represent the section in which the 
respective map is constructed.

The top-most map in the diagram is due to the theory of quasi-torsors that was 
developed in [3] and which we now briefly recall.

Definition 4.1. Let P and Q be two differential graded operads and let M be a P − Q
operadic differential graded bimodule, i.e., there are compatible actions

P � M � Q.

We say that M is a P-Q quasi-torsor if there is an element 1 ∈ M0(1) such that the 
canonical maps

l : P → M r : Q → M
p �→ p ◦ (1, . . . ,1) q �→ 1 ◦ q

(4.2)

are quasi-isomorphisms.
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Fig. 1. The hyperbolic angle φi,j .

The main Theorem of [3] states that if the P −Q-bimodule M is an operadic quasi-
torsor, then there is a zig-zag of quasi-isomorphisms connecting P � M � Q to the 
canonical bimodule P � P � P. Under good conditions, one can then homotopy lift the 
zig-zag to a cofibrant resolution P∞ � Pbimod

∞ � P∞ → P � M � Q.
From this discussion it follows that to obtain Grav∞ morphism A → B it suffices to 

construct a representation of a Grav quasi-torsor. We will show that the second row of 
diagram (4.1) is such a quasi-torsor, from which Theorem B (for M = R

d) follows.

4.1. From topology to graphs

Recall from Section 2.3 the map of cooperads ω• : Gra∗ → Ω(FM2). We wish to define 
a similar map ω• : vKGra∗ → Ω(H•,•) denoted by the same symbol by abuse of notation.

Let us consider the (multivalued) angle function θ on Hm,n such that

θ(z, w, x) = 1
2π arg

(
(w − z)(1 − z̄x)
(1 − z̄w)(x− z)

)

giving the angle between the geodesics [w, z] and [z, x]. Since all values differ by an 
integer, the differential dθ is a well-defined 1-form.

The map ω• : vKGra∗ → Ω(H•,•) is defined to be a map of commutative algebras as 
follows:

• The one-edge graph Γi,j ∈ vKGra∗5 for i 	= j is sent to dφi,j := dθ(zi, zj , z∞). Here, 
φi,j can be pictured as the hyperbolic geodesic passing through i and j and the 
vertical line passing by i or alternatively, on the hyperbolic disc, this angle can be 
pictured as the angle between the lines [∞, i] and [i, j] (see Fig. 1).

• Similarly, the one-edge graphs Γi
j
∈ vKGra∗ are sent to dφi

j
:= dθ(zi, zj , z∞).

5 We identify the basis of vKGra with its dual basis in vKGra∗, except the dual of the elements v that we 
denote by u.
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• The tadpole graphs Γk,k are sent to Willwacher’s form ηzk , where

ηz =
n∑

i=0
θ(z, zi+1, zī)dθ(z, zī, z∞).

Notice that θ(z, zi+1, zī) is a well defined smooth function since the points zī and 
zi+1 are on the boundary of the disc.

• To define the image of a graph Γ with no edges and with a vertex decorated with 
u = v∗ = v−1, in order for f2 to commute with the differential, we have no choice 
but to define f2(vk) = dηzk .

Remark 4.2. Recall from Theorem 2.8 that the map Chains∗(FM2) → Gra is compatible 
with the mixed complex structure and therefore induces a map CCθ(Chains∗(FM2)) →
CCθ(Gra). One would like to have a map of CSC type operads

(Chains∗(FM2),Chains∗(H•,•)) → (Gra, vKGra),

however, due to the existence of tadpoles in vKGra this map is not compatible with the 
operadic composition. The next proposition states that we obtain nevertheless a map of 
CSC operads after taking the functor CCθ.

Proposition 4.3. The map

ω∗
• :

(
CCθ(Chains∗(FM2)),Chains∗(H•,•)

)
→ (CCθ(Gra), vKGra)

is a morphism of operads of Cyclic Swiss Cheese type.

Proof. Let us start by showing that the map vKGra∗ → Ω(H•,•) is compatible with the 
cyclic structure. It suffices to check this on the generators of vKGra∗. For this, we start 
by observing that the cyclic structure on vKGra∗, being dual to the one of vKGra is the 
following:

•
(
Γi,j

)σ = Γi,j − Γi
1,

•
(
Γi
j̄

)σ

= Γi
j+1 − Γi

1 with the convention that Γi
n+1 = 0,

• (vi)σ = vi.

The cyclic structure on Ω(Hm,n) is given by the pullback of the cyclic structure on 
Hm,n. It follows that θ(z, zi, zj) = θ(z, zi+1, zj+1), from which it follows that

dφi
j

σ = dθ(zi, zj+1, z1) = dθ(zi, zj+1, z∞) − dθ(zi, z1, z∞) = dφi
j+1 − dφi

1

Similarly, it follows that dφi,jσ = dφi,j − dφi .
1
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To show that ησzi = ηzi − dφi
1, we make use of the fact that 

∑n
i=0 θ(z, zi+1, zi) = 1.

ησz =
n∑

i=0
θ(z, zi+2, zi+1)dθ(z, zi+2, z1)

=
n∑

i=0
θ(z, zi+1, zi)dθ(z, zi+1, z1)

=
n∑

i=0
θ(z, zi+1, zi)(dθ(z, zi+1, z∞) − dθ(z, z1, z∞))

= ηz − dφz
1.

Notice that the same computation, but with dθ instead of θ shows that dηz is invariant 
by the cyclic action.

To show the compatibility with the cooperadic structure, let us start by noticing 
that the pullback of forms of the type ηzk , dφ

i,j and dηzk under the composition map 
◦i : Hm,n×FM2(k) → Hm+k−1,n is expressible with forms of the same type. For instance, 
the image of dφ1,2 ∈ Ω(Hm,n) inside Ω(Hm−2,n × FM2(3)) under the map ◦∗1 is the form 
1 ⊗ dφ1,2 ∈ Ω(Hm−2,n) ⊗ Ω(FM2(3)) ⊂ Ω(Hm−2,n × FM2(3)), while ◦∗1(ηz1) = ηz1 ⊗ 1.

Let X ∈ Chainsl(Hm,n) and Y ∈ Chainsr(FM2). The operadic compatibility in mixed 
colors amounts to showing that6

∑
Γ∈vKGral+r(m+k−1,n)

⎛
⎜⎝ ∫

X◦iΔ(Y )

ωΓ

⎞
⎟⎠ · Γ

=
∑

Γ̃∈vKGral(m,n)

⎛
⎝∫

X

ωΓ̃

⎞
⎠ · Γ̃ ◦i

∑
Γ′∈Grar(k)

⎛
⎝∫

Y

ωΓ′

⎞
⎠ · Δ(Γ′).

We need therefore to show that for every graph Γ in vKGral+r(m + k− 1, n), we have

∫
X◦iΔ(Y )

ωΓ =
∑

Γ′∈Grar(k)
Γ̃∈vKGral(m,n)
Γ∈Γ̃◦iΔ(Γ′)

⎛
⎝∫

X

ωΓ̃

⎞
⎠

⎛
⎝∫

Y

ωΓ′

⎞
⎠ . (4.3)

Consider those vertices in Γ labeled with numbers i, i +1, . . . , i +k−1 and let γ be the 
subgraph of Γ induced by these vertices. Furthermore, let us consider γ the subgraph 
of γ where we disregard tadpoles and powers of v.

6 The sums are meant to be taken over the basis of graphs.
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Notice that 
∫
X◦iΔ(Y ) ωΓ =

∫
X×Δ(Y ) ◦∗iωΓ and that we can decompose this integral 

into 
∫
X
ωrest ·

∫
Δ(Y ) ωγ

. Notice that if γ has at least two tadpoles, there will be two 

copies of ηzi in ωrest and therefore ωrest = 0. If that is the case, then also the right hand 
side of (4.3) must vanish as Γ̃ would need to have two tadpoles at the vertex i. Here we 
have used the fact that Γ′ and hence Δ(Γ′) are tadpole free (after Example 1.5).

Suppose now that γ has one tadpole. Then, a decomposition Γ ∈ Γ̃ ◦i Δ(Γ′) allows 
just one choice of Γ̃ (that requires Γ̃ to have a tadpole at i and a power of v equal to the 
total amount of powers of v in γ).

It suffices to check that 
∫
Δ(Y ) ωγ

=
∑

Γ′
∫
Y
ωΓ′ , where the sum is being taken 

over the admissible Γ′ such that we find Γ as a summand in Γ̃ ◦i Δ(Γ′). Since Δ(Γ′)
adds an edge in every possible way, those admissible graphs correspond precisely to all 
possible graphs that one obtains by removing one edge from γ . Notice however that ∫
Δ(Y ) ωγ

=
∫
Y

Δ∗(ω
γ

) and Δ∗ is a derivation that sends every dφi,j to the constant 
function 1. This is because the projection maps pij : FM2(n) → FM2(2) are S1 equivariant 
and therefore Δ∗(dφij) = p∗(Δ∗(dφ12)) = p∗(1) = 1. It follows that expanding Δ∗(ω

γ
)

one obtains exactly the same admissible graphs Γ′.
Suppose now that γ has no tadpoles. In general there are two possibilities for the choice 

of Γ̃, one containing a tadpole at i and other not containing a tadpole at i. Suppose we 
consider Γ̃ with a tadpole at i. Then, for every admissible choice of Γ′, when we compute 
Γ̃◦iΔ(Γ′) two copies of Γ appear with opposite signs, since, like Δ, inserting at a tadpole 
vertex produces every possible edge. Therefore there is no contribution on the right hand 
side of (4.3) if we take Γ̃ containing a tadpole at i. If Γ̃ contains no tadpole at i, then, 
as before, ωrest = ωΓ̃ and Δ∗(ω

γ
) =

∑
admissible Γ′

ωΓ′ .

The compatibility of ω• with the composition in color 1 is clear. �
By applying Propositions 3.6 and 3.7 we obtain the following Corollary.

Corollary 4.4. There exist bimodules and a bimodule morphism

B�

id

�
∏

n ΣnChains∗(H•,n)Zn+1 � CCθ(Chains∗(FM2))

B� �
∏

n ΣnvKGra(•, n)Zn+1 � CCθ(Gra)

4.2. Twisting left modules

Let us consider μ, the n − 2 dimensional chain of H0,n in which the points at the 
boundary are free, the “fundamental chain of the boundary”. This chain is invariant under 
the Zn+1 action and therefore defines a degree 2 element of 

∏
n ΣnChains∗(H•,n)Zn+1 . 

This is a Maurer–Cartan element with respect to the s−1Lie action induced by s−1Lie →
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B�. We can therefore twist the left modules of the diagram from Corollary 4.4 by μ and 
its image μ′ to obtain the following bimodule map

Tw B�

id

�
(∏

n ΣnChains∗(H•,n)Zn+1
)μ

Tw B� �
(∏

n ΣnvKGra(•, n)Zn+1
)μ

Since the left action concerns boundary points and the right action concerns bulk 
points, the two actions are compatible, giving us the bimodule map

Tw B�

id

�
(∏

n ΣnChains∗(H•,n)Zn+1
)μ � CCθ(Chains∗(FM2))

Tw B� �
(∏

n ΣnvKGra(•, n)Zn+1
)μ � CCθ(Gra)

(4.4)

We can also consider the restriction of the left actions to M�, giving us the fourth 
map in (4.1).

4.3. Topological maps

The projection map p : Hm,n → Hm,0 that forgets the points at the boundary induces 
a strongly continuous chain [15] p−1

m,n : Hm,0 → Chains∗(Hm,n). The image of a configu-
ration of points in Hm,0 can be interpreted as the same configuration of points but with 
n points at the real line that are freely allowed to move. If we consider the total space 
Chains∗(H•,0) =

⊕
m≥1 Chains∗(Hm,0), this induces a degree preserving map

p−1 : Chains∗(H•,0) →
∏
n≥0

ΣnChainsμ∗ (H•,n).

Notice that this map actually lands in the cyclic invariant space
(∏

n≥0 ΣnChainsZn+1
∗ (H•,n)

)μ

.

Proposition 4.5. The map p−1 is a morphism of right CCθ(Chains∗(FM2)) modules and 
its image is stable under the action of M�.

The proof of this result is essentially in [31, Appendix A.2] where the reader can find 
further details.
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Proof. The morphism clearly commutes with the right action. Let c ∈ Chains∗(Hm,0).
The boundary term ∂p−1

m,n(c) has two kind of components. When at least two points at 
the upper half plane get infinitely close, giving us the term p−1

m,n(∂c), and when points at 
the real line get infinitely close, giving us ±pf∂m,n(c), where the f∂ superscript represents 
that we are considering the boundary at every fiber.

Then, we have p−1(∂c) =
∏

n≥0 p
−1
m,n(∂c) =

∏
n≥0 ∂p

−1
m,n(c) ± pf∂m,n(c). The first sum-

mand corresponds to the normal differential in Chains∗(Hm,n) and the second summand 
is precisely the extra piece of the differential induced by the twisting.

It remains to check the stability under the left M� ⊂ M action. In fact, the stronger 
statement that the image is stable by the M holds. To show this, it is enough to check 
the stability under the action of the generators Tn and T ′

n.
Let c0, . . . , cn be chains on Chains∗(Hm,0) and consider the action of generators of the 

form Tn ∈ M(n + 1) on their images, i.e. consider Tn(p−1(c0), p−1(c1), . . . , p−1(cn)). The 
result follows from computing that

Tn(p−1(c0), p−1(c1), . . . , p−1(cn)) = p−1(p(Tn(p−1(c0), p−1(c1), . . . , p−1(cn))))

and a similar equality for T ′
n. �

Since p−1 is right inverse to the projection map, from this proposition it follows that 
Chains∗(H•,0) has a natural left M� module structure. This gives us the third map of 
bimodules from diagram (4.1)

M�

id

� Chains∗(H•,0) � CCθ(Chains∗(FM2))

M� �
(∏

n ΣnChains∗(H•,n)Zn+1
)μ′

� CCθ(Chains∗(FM2))

We want now to make the first row a quasi-torsor. The left and right operads have 
the correct homology Grav however, as a symmetric sequence H(H•,0) = Ger.

Notice that there is no analog of the S1 action of FM2 on H•,0. We can nevertheless 
define a mixed complex structure at the chain level in the following way. Let i : FM2 →
H•,0 be the map resulting from collapsing a configuration into one point, or alternatively, 
composing a configuration in FM2 with the single element 1 ∈ H1,0. This is a homotopy 
equivalence and admits a retract r : H•,0 → FM2 by forgetting the boundary line. In 
particular ri = id.

Denoting the induced maps on chains also by i and r, we see Chains∗(H•,0) has a mixed 
complex structure by defining the degree 1 map ΔH : Chains∗(H•,0) → Chains∗(H•,0) to 
be ΔH = iΔFM2r. From ri = id it follows Δ2

H
= 0.



472 R. Campos, B.C. Ward / Advances in Mathematics 331 (2018) 439–483
Proposition 4.6. The subspace ker ΔH ⊂ Chains∗(H•,0) is a M� − CCθ(Chains∗(FM2))
sub-bimodule.

Proof. Let h ∈ Chains∗(H•,0) and let c ∈ Chains∗(FM2) so that vkc ∈ CCθ(Chains∗(FM2)).
We have ΔH(h ◦i c) = iΔr(h ◦i c) = iΔ(r(h) ◦i c) = i(Δr(h) ◦i c) + ir(h) ◦i Δ(c) =

ΔH(h) ◦i c + ir(h) ◦i Δ(c).
Therefore, ΔH(h ◦̃i c) = ΔH(h ◦i Δc) = ΔHh ◦i Δc, so if h ∈ ker Δ, also h ◦̃i c ∈ ker Δ. 

For higher powers of k we have Δ(h ◦̃i vkc) = 0, therefore kerΔH is trivially stable by 
the right action.

On the other hand, kerΔH is stable by the left action since it only involves cyclic 
operations and compositions, all of which are compatible with ΔH. �
Proposition 4.7.

M� � ker ΔH � CCθ(Chains∗(FM2))

is a quasi-torsor.

Proof. We may apply Corollary 1.28 to the underlying S-modules to find

H(ker ΔH) = HC−(Chains∗(FM2)) = Grav = H(M�),

and we just need to check that the maps p : M� → ker ΔH and q : CCθ(Chains∗(FM2)) →
ker ΔH induce quasi-isomorphisms.

The map q fits in the following commutative diagram

CCθ(Chains∗(FM2)) kerΔH

CC−(Chains∗(FM2)) CC−(Chains∗(H•,0))

q

θ−1

CC−(i)

Since all other maps are quasi-isomorphisms, so is q.
To see that p : M� → ker ΔH is a quasi-isomorphism, notice that since we already 

know the homologies are isomorphic, it suffices to show that the generators gn ∈ M±1
� (n)

are sent to generators of the homology of kerΔH(n).
Notice that since Grav1(n) is 1-dimensional, in fact in suffices to show that p(gn) is 

non-zero in homology.
For this, notice that if we denote by ∠12 : Hn,0 → S1 the map remembering only the 

angle between points 1 and 2, then, the image of p(gn) under the composition kerΔH ↪→
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C(Hn,0) 
∠12→ C(S1) is (homologous to) the fundamental chain of the circle and is therefore 

non-zero. �
Remark 4.8. This is another way to show the formality of M�, as it would be now quasi-
isomorphic to CCθ(Chains∗(FM2)) and therefore to CCθ(Graphs) and Grav → CCθ(Graphs)
is a quasi-isomorphism.

4.4. Action of graphs on Tpoly[u] and Dσ
poly

In this Section we construct the action on Tpoly[u] and Dσ
poly. We express this in the 

form of an operadic bimodule morphism

M� �
(∏

n ΣnvKGra(•, n)Zn+1
)μ′

� CCθ(Gra)

EndDσ
poly

� EndTpoly[u]
Dσ

poly
� EndTpoly[u]

Remark 4.9. If one tries to replicate the arguments of the previous section, the starting 
place would be to construct a map of CSC type operads

(Gra, vKGra) →
(
EndTpoly ,Hom

(
Tpoly[u]⊗•, Dpoly

))
,

and the argument would continue with the application of Proposition 3.4. Unfortunately, 
on the right hand side we don’t have a colored operad due to the non-compatibility of 
the differential with the operadic composition.

We will rectify this problem by using the operad of CSC type(
CCθ(EndTpoly),Hom

(
Tpoly[u]⊗•,Dpoly

))
(see Example 3.3) as an intermediary.

Recall Kontsevich’s action of the operad Gra on Tpoly [21] given for every graph Γ ∈
Gra(k) and vector fields X1, . . . , Xk ∈ Tpoly(Rd) by

Γ(X1, . . . , Xk) =

⎛
⎝ ∏

(i,j)∈Γ

d∑
l=1

∂

∂x
(j)
l

∧ ∂

∂ξ
(i)
l

⎞
⎠ (X1 ∧ · · · ∧Xk),

where x1, . . . , xd are the coordinates in Rd and ξ1, . . . , ξd be the corresponding basis of 
vector fields. Notice that this map is compatible with the mixed complex structure on 
both sides.
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Proposition 4.10. There is a map of Cyclic Swiss Cheese type operads

(
CCθ(Gra), vKGra

)
→

(
CCθ(EndTpoly),Hom

(
Tpoly[u]⊗•,Dpoly

))
.

Proof. The map CCθ(Gra) → CCθ(EndTpoly) is obtained by taking the functor CCθ to 
Kontsevich’s map above and is therefore a map of dg operads. The map vKGra →
Hom (Tpoly[u]⊗•,Dpoly) is essentially7 defined as described in [32, Section 4.2]. For 
X1u

i1 , . . . , Xmuim ∈ Tpoly[u] the action of Γ ∈ vKGra(m, n) on X1u
i1 , . . . , Xmuim is 

zero if there exists a vertex l of type I in Γ such that the power of v at the vertex l does 
not match il. Otherwise, for f1, . . . , fn ∈ C∞

c (Rd), the action is given by

Γ(X1u
i1 , . . . , Xmuim)(f1, . . . , fn)

=

⎛
⎝ ∏

(i,j)∈Γ

d∑
r=1

∂

∂x
(j)
r

∧ ∂

∂ξ
(i)
r

⎞
⎠ (X1, . . . , Xm; f1, . . . , fn), (4.5)

where the product runs over all edges of Γ in the order given by the numbering of edges 
and the superscripts (i) and (j) mean that the partial derivative is being taken on the 
i-th and j-th component of X1, . . . , Xm (or fj , if j corresponds to a type II vertex).

We need to check compatibility with the differentials. For simplicity of notation, let us 
focus on the piece of the differential acting on the vertex 1 and suppose this is decorated 
by vk and let us denote by d1 the piece of the differential only acting on the first vertex, 
i.e., the piece that lowers k by 1 and adds a tadpole. Since the differential on Dpoly

is zero, we need to show that 0 = d1Γ(X1u
i1 , . . . ) − Γ(d(X1u

i1), . . . ). Both summands 
are zero if k 	= i1 − 1 and if k = i1 − 1 they cancel since the action of a tadpole on a 
multivector field produces its divergence.

The compatibility of the map with the mixed color composition is clear, as the map 
Gra → End(Tpoly) is given by essentially the same formula (4.5).

To check the compatibility with the cyclic action in color 2 we notice that the cyclic 
action on Hom (Tpoly[u]⊗•,Dpoly) is given by the cyclic action on Dpoly and integration 
by parts produces exactly the kind of graphs given by the cyclic action on vKGra. An 
explicit computation can be found in [2, Lemma 20]. �

Combining this result with Example 3.3 we find:

Corollary 4.11. There is a map of Cyclic Swiss Cheese type operads

(
CCθ(Gra), vKGra

)
−→

(
EndTpoly[u],Hom

(
Tpoly[u]⊗•,Dpoly

))

7 Notice that Willwacher’s graphs do not involve powers of v.
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Applying Propositions 3.6 and 3.7 to this result, we get the following bimodule maps:

B� �
(∏

n ΣnvKGra(•, n)Zn+1
)

� CCθ(Gra)

B� � EndTpoly[u]
D̃σ

poly
� CCθ(EndTpoly)

B� � EndTpoly[u]
D̃σ

poly
� EndTpoly[u]

By twisting we get the last 3 rows from diagram (4.1). Notice that we can replace the 
last row by EndDσ

poly
as the action on the bimodule is, by definition, the action on Dσ

poly.

4.5. An extension of Willwacher’s morphism

In this section we remark that the restriction of the Grav∞ morphism to s−1Lie∞
is Willwacher’s morphism [32]. This follows essentially from the rigidity of bimod-
ule maps from s−1Liebimod

∞ to Chains∗(H•,0). Concretely, suppose we take two maps 
f, g : s−1Liebimod

∞ → Chains∗(H•,0) that agree in arity 1 (notice that H1,0) = {pt}). An 
inductive argument shows that then f and g must be the same map.

Let us consider the family (μn)n≥1 of generators of s−1Liebimod
∞ . The element μn ∈

s−1Liebimod
∞ (n) has degree 2 − 2n. Assume by induction that f(μk) = g(μk) for all 

k < n. Then d(f(μn) − g(μ0)) = f(dμn) − g(dμn) = 0, since the differential of μn only 
involves elements μk for k < n. Therefore f(μn) − g(μn) represent a homology class in 
H2−2n(Hn,0) = s−1Liebimod

2−2n (n) = 0.
It follows that there exists some chain c ∈ Chains1−2n(Hn,0) such that dc = f(μn) −

g(μn), but since dim(Hn,0) = 2n − 2 there can be no such (non-zero) chain c from which 
our conclusion follows.

5. Globalization

Let M be a d-dimensional oriented manifold. In this section we show that the Grav∞
quasi-isomorphism Tpoly[u](Rd) → Dσ

poly(Rd) constructed in the previous sections can 
be globalized to a quasi-isomorphism Tpoly[u](M) → Dσ

poly(M). All work is essentially 
already done as the globalized version follows from formal geometry techniques as in the 
original Kontsevich map [21, Section 7] and its cyclic version [32, Appendix].

Before reading this section, we recommend the non-expert reader to read [32, Ap-
pendix] that contains all the crucial arguments. We also recommend [5, Section 4] for a 
detailed introduction to the Fedosov resolutions that we use. Let us nevertheless sketch 
the general argument.



476 R. Campos, B.C. Ward / Advances in Mathematics 331 (2018) 439–483
We start by remarking that the entire construction of the Grav∞ quasi-isomorphism 
Tpoly[u](Rd) → Dσ

poly(Rd) still holds if we replace Rd by Rd
formal, its formal completion 

at the origin.
One considers T formal

poly (resp. Dformal
poly ), the vector bundle on M of fiberwise formal 

multivector fields (resp. multidifferential operators) tangent to the fibers. As in the flat 
case, one can also consider their cyclic versions T formal

poly [u] (with appropriate differential) 
and (Dformal

poly )σ.
We can then construct the vector bundles Ω(T formal

poly [u], M) of forms valued in Tpoly[u]
and Ω((Dformal

poly )σ, M) of forms valued in (Dformal
poly )σ with appropriate differentials.

The fibers of the bundles T formal
poly [u] and (Dformal

poly )σ are isomorphic to Tpoly(Rd
formal)

and Dpoly(Rd
formal), respectively. Therefore, the formal version of the formality map can 

be used to find a vector bundle Grav∞ quasi-isomorphism8

Uf : Ω(T formal
poly [u],M) → Ω((Dformal

poly )σ,M). (5.1)

These two vector bundles can be related with Tpoly[u](M) and Dσ
poly(M). In fact, 

with an appropriate change of differential that comes from a choice of a flat connection, 
Ω(T formal

poly [u], M) becomes a resolution of Tpoly[u](M) and Ω((Dformal
poly )σ, M) becomes a 

resolution of Dσ
poly(M). Both changes of differential can be seen locally as a twist via a 

Maurer–Cartan element B9 sitting inside Ω1(T formal,1
poly [u], U) or Ω1((Dformal

poly )σ,1, U).
However, the linear part of B (in the fiber coordinates) is not globally well defined. 

It follows that to show that the globalization of the Grav∞ map is possible, it suffices 
to see that its construction is compatible with twisting by Maurer–Cartan elements in a 
way that is not using the linear part of B.

There are three main components in the globalization procedure:

(1) The Grav∞ formality morphism needs to be made compatible with twisting,
(2) The s−1Lie∞ piece of the Grav∞ map must send B to itself,
(3) The twisting procedure must not use the linear part of B.

We remark that the second condition is automatically satisfied since the s−1Lie∞ piece 
of the Grav∞ map is precisely Willwacher’s formality map which satisfies this property.

The first component is essentially done by operadic twisting together with the ver-
ification of a condition of native twistability at the level of Chains∗(H•,0). The third 
component consists of checking that after the twisting procedure, the obtained Grav∞
morphism factors through graphs whose action does not use the linear part of B. As we 
will see later, this would occur whenever there exist internal vertices with exactly one 

8 Using the fact that the formality morphism is invariant by linear transformation of coordinates.
9 This B is the same one that one uses in the non-cyclic setting. The fact that B is still a Maurer–Cartan 

element in Ω(T formal
poly [u], U) follows from it being divergence free [32, Proposition 27].
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outgoing edge and at most one incoming edge (since more incoming edges would kill the 
linear part).

5.1. The approach using operadic twisting

Let us recall the formalism of operadic twisting, developed extensively in [6]. Most of 
it adapts in a straightforward manner to the operadic bimodule setting, as explained in 
the Appendix of [2]. Let P be an operad under s−1Lie∞. If one twists a P-algebra A (in 
particular a s−1Lie∞-algebra) by a Maurer–Cartan element μ ∈ A, the resulting twisted 
algebra Aμ is not an algebra over P but rather over the twisted TwP.

However, if P is natively twistable, i.e., there exists an operad morphism P → TwP
such that P → TwP → P is the identity, then P still acts on A.

Recall that the action of Grav∞ on Tpoly[u] can be expressed as a map

Grav∞ → CCθ(Chains∗(FM2)) → CCθ(Gra) → EndTpoly[u] (5.2)

inducing a similar action on Ω(T formal
poly [u], M). Unfortunately, the functor CCθ does not 

behave well with respect to operadic twisting. For instance, given a map s−1Lie → P, 
there is no natural map s−1Lie → CCθ(P). On the other hand, as the following lemma 
shows, we can circumvent this issue by considering the functor CC− instead.

Lemma 5.1. Let μ : (s−1Lie, 0, 0) → (P, d, Δ) be a morphism in OpsMxCpx. (So in partic-
ular μ(l2) ∈ ker(Δ).) Then there is a morphism μ̂ : s−1Lie → CC−(P) for which

CC−(Twμ(P)) ↪→ Twμ̂(CC−(P))

Proof. The morphism μ̂ : s−1Lie → CC−(P) is given by f(−) ⊗ u0, which is a dg map 
since f lands in the kernel of d and of Δ.

Now on the level of graded vector spaces we can include

(
∏
r≥0

P(n + r)) ⊗ k[u] ↪→
∏
r≥0

(P(n + r) ⊗ k[u])

as the subset of lists whose powers of u match. Here we view Tw(P) as having a mixed 
complex structure via the product over r of Δn+r : P(n +r) → P(n +r). The differential 
on the left hand side is (dP + dTw

μ ) + uΔ. The differential on the right hand side is 
(dP + uΔ) + dTw

μ̂ . So since the inclusion takes {μ(l2), −} ⊗ u0 to {μ(l2) ⊗ u0, −} it turns 
dTw
μ into dTw

μ̂ , whence the claim. �
We can then reexpress the action (5.2) as

Grav∞ → CCθ(Chains∗(FM2)) → CCθ(Gra) → CC−(Gra) → EndTpoly[u] .
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If we factor the map CCθ(Chains∗(FM2)) → CC−(Gra) through the canonical projec-
tion Tw CC−(Gra) → CC−(Gra), we will obtain a Grav∞ structure on Ω(T formal

poly [u], M)μ
for every Maurer–Cartan element μ given by the following maps

Grav∞ → CCθ(Chains∗(FM2)) → Tw CC−(Gra) → EndΩ(T formal
poly [u])μ .

In fact, looking at diagram (4.1) using operadic bimodule twisting,10 we see that the 
same argument can be used to twist the Grav∞ morphism, as long as we can find a 
factorization of the following form:

M� � Chains∗(H•,0) � CCθ(Chains∗(FM2))

Tw M� � Tw
(∏

n ΣnvKGra(•, n)Zn+1
)μ � Tw CC−(Gra)

M� �
(∏

n ΣnvKGra(•, n)Zn+1
)μ � CC−(Gra)

(5.3)

In fact, due to the ill-definedness of the linear part of the Maurer–Cartan element B
that we consider, we must in fact factor the morphism through a smaller bimodule which 
we construct in the next section.

5.2. Twisting of graphs

The construction of this section is essentially a formal adaptation of the globalization 
section in [2], so we will only sketch it and refer to [2] for the missing proofs. We first 
need the following proposition whose proof is immediate.

Proposition 5.2. If P = (P1, P2) is an operad of CSC type and if the operad P1 is a 
rotational operad, then CC−(P) = (CC−(P1), P2) is still an operad of CSC type, with 
compositions given by

p2 ◦̃l p1u
k =

{
p2 ◦l p1 if k = 0
0 if k > 0,

for pi ∈ Pi. Moreover, the map from Corollary 1.28 induces a morphism of CSC type 
operads CCθ(P) → CC−(P).

10 Cf. [2, Appendix] regarding twisting of operadic bimodules.
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The M� − CC−(Gra)-bimodule 
(∏

n ΣnvKGra(•, n)Zn+1
)μ constructed in section 4.4

(together with Proposition 5.2) can be twisted to obtain the Tw M� − Tw CC−(Gra)-bi-
module Tw

(∏
n ΣnvKGra(•, n)Zn+1

)μ. Notice that M� arises itself from operadic twisting 
and we can therefore restrict the left action of TwM� to M� using the map M� → Tw M�.

Recall from section 2.3 the operad Graphs, defined as the suboperad of Tw Gra spanned 
by graphs such that all internal vertices have ≥ 3 valence and every connected component 
contains at least an external vertex.

We can restrict the bimodule right action to CCθ(Graphs) via the chain of inclusions 
CC−(Graphs) ⊂ CC−(Tw Gra) ⊂ Tw CC−(Gra).

Definition/Proposition 5.3. The M� − CC−(Graphs) bimodule

Tw
(∏

n ΣnvKGra(•, n)Zn+1
)μ

has a sub-quotient denoted by vKGraphsσ constructed in the following way:
We first consider the quotient Q of Tw

(∏
n ΣnvKGra(•, n)Zn+1

)μ by the subspace con-
sisting of graphs with tadpoles or powers of v on type I internal vertices and then the 
subspace of Q spanned by the graphs with the following properties:

(1) There is at least one type I external vertex,
(2) There are no 0-valent type I internal vertices
(3) There are no 1-valent type I internal vertices with an outgoing edge,
(4) There are no 2-valent type I internal vertices with one incoming and one outgoing 

edge.

Proof. This result is essentially [2, Def./Prop. 24], where it was done for BVKGraphs, 
since BVKGra can be interpreted as the quotient of vKGra by graphs containing non-zero 
powers of v. We sketch the proof pointing out the adaptations to our case.

The right CC−(Graphs) action cannot destroy tadpoles on internal vertices hence it 
descends to Q. vKGraphsσ is clearly stable by the right action.

To verify the stability by the left action and by the differential one uses two properties 
of the Maurer–Cartan element m (the image of the generators of s−1Liebimod

∞ ) by which 
we twist:

(a) The only graph in m containing a 1-valent type I internal vertex is the 2 vertex 

graph , with coefficient 1.
(b) There are no graphs with vertices like the ones in property (4).

The proof of these properties is the same as for the original Kontsevich vanishing 
lemmas.
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Using these properties it is a straightforward (but lengthy) combinatorial verification 
that non-cyclic invariant graphs vKGraphs ⊃ vKGraphsσ are preserved by the left M
action. It follows that the cyclic invariant vKGraphsσ are preserved by the M�.

Similarly, one can check that vKGraphs are stable by the differential and to see that 
the cyclic invariant vKGraphsσ are preserved by the differential it is enough to notice 
that the image of the generators of s−1Liebimod

∞ is cyclic invariant itself. �
5.3. Factorization of the bimodule morphism

To conclude the globalization procedure it is enough to construct the first bimodule 
morphism of the following diagram:

M�

id

� Chains∗(H•,0)

f

� CCθ(Chains∗(FM2))

g

M� � vKGraphsσ � CC−(Graphs)

EndΩ((Dformal
poly )σ,M)B � EndΩ(T formal

poly [u],M)B

Ω((Dformal
poly )σ,M)B � EndΩ(T formal

poly [u],M)B

(5.4)

The map g is defined to be the composition

CCθ(Chains∗(FM2)) → CC−(Chains∗(FM2))
CC−(π−1)→ CC−(Tw Chains∗(FM2))

→ CC−(Tw Gra).

Here we consider the maps

π−1
n =

∏
k

π−1
n,k : Chains∗(FM2(n)) → Tw Chains∗(FM2(n))

=
∏
k

Σ2kChains∗(FM2(n + k))Sk ,

obtained as the strongly continuous chain associated to the SA bundle corresponding to 
the map πn,k : FM2(n + k) → FM2(n) that forgets the last k points. Informally, the map 
π−1
n,k is obtained by creating k points that move freely.
The maps π−1

n are clearly compatible with the cyclic action and therefore induce the 
desired

CC−(Chains∗(FM2)) → CC−(Tw Chains∗(FM2)).
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Notice that fact that the composition Chains∗(FM2) → Tw Chains∗(FM2) → Tw Gra
actually lands inside Graphs uses Kontsevich’s vanishing lemmas [21].

The map f is given by the composition: Chains∗(Hm,0) 
π−1

→
∏

k Σ2kChains∗(Hm+k,0) →
⎛
⎝ ∏

n,k≥0

Σn+2kChains∗(Hm+k,n)Zn+1

⎞
⎠μ

→ Tw
(∏

n

ΣnvKGra(m,n)Zn+1

)μ

.

Here, π−1 is defined, as above, as the strongly continuous chain associated to the 
projection Hm+k,n → Hm,n.

To finish the globalization argument, one needs to check the following two properties:
(i) f is a map of bimodules,
(ii) f lands in vKGraphsσ(m) seen as a subquotient of Tw

(∏
n ΣnvKGra(m,n)Zn+1

)μ.

5.3.1. Proof of (i)
We start by noticing that the compatibility with the left M� is immediate. As for the 

right action, notice that f as a right module map can be decomposed as

Chains∗(H•,0) � CCθ(Chains∗(FM2))

g′(∏
n,k≥0 Σn+2kChains∗(H•+k,n)Zn+1

)μ

� CC−(Tw Chains∗(FM2))

Tw
(∏

n ΣnvKGra(m,n)Zn+1
)μ � CC−(Graphs).

(5.5)

The upper map is easily checked to be a morphism of right modules. However, due to 
Remark 4.2 the bottom map is not a morphism of right modules. However, it is so if we 
restrict it to the image of g′, essentially by Proposition 4.3. This guarantees that f itself 
is a morphism of right modules.

The compatibility of f with the differential follows from the same arguments as the 
functoriality of bimodule twisting.

5.3.2. Proof of (ii)
One has to show that every graph not satisfying at least one of properties (1), (2), (3)

or (4) appears in the image of f with coefficient zero. This is clear for the first property.
As for property (2), if a graph contains an isolated type I internal vertex, its coefficient 

will involve the integration of a 0-form over a two dimensional space, which is zero.
Similarly, if a graph contains a 1-valent internal vertex, its coefficient will involve an 

integral of a 1-form over a two dimensional space and is therefore 0.
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Finally, if a graph has an internal vertex i connected to vertices a and b as in prop-
erty (4), in the computation of its coefficient we find the factor∫

Xza,zb

dφaidφib

where Xza,zb is the space of configurations in which the points labeled by a and b are in 
positions za and zb, and the point labeled by i moves freely. Here the notation assumes 
that both a and b are type I vertices but the argument also holds if they are type II 
vertices.

By Stokes’ theorem for SA bundles, we have

d

∫
Yza,zb

dφaidφijdφjb

︸ ︷︷ ︸
0

=
∫

Yza,zb

d(dφaidφijdφjb)︸ ︷︷ ︸
0

±
∫

∂Yza,zb

dφaidφijdφjb,

where Yza,zb is the configuration space of four points (i, j, a and b) where a and b are 
fixed at za and zb and the points labeled by i and j are free. The integral on the left 
hand side vanishes by degree reasons. The boundary terms on the right hand side vanish 
except on the following cases:

• The boundary stratum in which a and i are infinitely close,
• The boundary stratum in which i and j are infinitely close,
• The boundary stratum in which j and b are infinitely close.

In each of these cases, the result is an integral of the form 
∫
Xza,zb

dφaidφib, therefore it 
is zero.
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