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Abstract. We prove an analog of the Deligne conjecture for prestacks. We
show that given a prestack A, its Gerstenhaber–Schack complex CGS(A) is nat-
urally an E2-algebra. This structure generalises both the known L∞-algebra
structure on CGS(A), as well as the Gerstenhaber algebra structure on its co-
homology HGS(A). The main ingredient is the proof of a conjecture of Hawkins
[Adv. Math. 428 (2023), p. 80], stating that the dg operad Quilt has vanish-
ing homology in positive degrees. As a corollary, Quilt is quasi-isomorphic
to the operad Brace encoding brace algebras. In addition, we improve the
L∞-structure on Quilt by showing that it originates from a PreLie∞-structure
lifting the PreLie-structure on Brace in homology.
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1. Introduction

In his famous 1993 letter, Deligne conjectured that the Gerstenhaber-structure
of Hochschild cohomology for associative algebras lifts to an E2-structure on the
Hochschild complex, that is, the complex is an algebra over a dg operad homotopy
equivalent to the chain little disks operad Disk [Del, Ger63, CLM76]. The many
solutions proposed [MS02,KS00,Tam98,BF04,BB09,Vor00,Kau07] factor through
Gerstenhaber and Voronov’s explicit Homotopy G-structure on the complex [GV95],
that is, they construct a dg operad G homotopy equivalent to Disk and a quasi-
isomorphism G ∼−→ HG where HG is the dg operad encoding Homotopy G-algebras.

In this paper we are interested in an analog of the Deligne conjecture for prestacks.
In this setting, similar to the Hochschild complex for associative algebras, the
Gerstenhaber–Schack complex CGS(A) for a prestack A controls the deformations
of A and its homology carries a Gerstenhaber algebra structure [GS88, LvdB11,
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DVL18]. Our main result is an explicit solution of the Deligne conjecture for
prestacks lifting the Gerstenhaber algebra structure to the level of the complex.

Construction 1.1 (Theorem 3.7). There is a dg operad TwQuilt that is quasi-
isomorphic to both HG and Disk and which admits an explicit combinatorial de-
scription.

Theorem 1.2 (Theorem 4.7). Given a prestack A, there is an action of TwQuilt on
its Gerstenhaber–Schack complex CGS(A) inducing a Gerstenhaber algebra structure
on Gerstenhaber–Schack cohomology HGS(A).

We point out that the abstract existence of solutions of the Deligne conjecture
for prestacks can be deduced via homotopy transfer (see Remark 4.3). On the
other hand, our solution (the first explicit one) has both practical and conceptual
advantages. Conceptually, TwQuilt is a 2-dimensional analog of HG which has
proven to take up a central role in the classical Deligne conjecture (see above).

1.1. The GS complex. The GS complex for prestacks takes up the pivotal role
of the Hochschild complex for associative algebras: its cohomology is a derived
invariant computing Ext-cohomology [DVL18,LvdB11] and it is endowed with an
L∞-structure governing its deformations [DVHL22,DVHL23]. Prestacks generalize
presheaves of associative algebras by relaxing their functoriality up to a natural
isomorphism c called twists. They are motivated by (noncommutative) algebraic
geometry, where they appear for example as structure sheaves of a scheme and non-
commutative deformations thereof [ATVdB90, Bar07, DVLL17, LVdB05, VdB11].
Indeed, Lowen and Van den Bergh observed in [LVdB05] that Ext-cohomology
of presheaves parametrizes their first order deformations, not as presheaves, but as
prestacks. In a more global picture, they have become part of homological mirror
symmetry as proposed by Kontsevich [Kon95,AKO08].

1.2. Structure of the proof. Let us start by recalling Gerstenhaber and Voronov’s
approach and present our key insight. For an associative algebra A, the Ho-
motopy G-structure on its (desuspended) Hochschild complex CH(A) is obtained
by twisting the brace-structure with the multiplication. Using operadic twisting
[DW15,DSV24], this result can be rephrased as a morphism of dg operads

TwBrace −→ End(s−1CH(A)),

where TwBrace (Definition 3.1) is the operadic twisting of the operad Brace encod-
ing brace algebras. In fact, HG is isomorphic to TwBrace (Remark 3.5), a quasi-
isomorphic suboperad of TwBrace. The same approach does not work for prestacks:
the operad Brace is too small to act on the GS complex CGS(A) of a prestack A.
Indeed, a brace algebra induces a Lie-structure although a L∞-structure is required
to capture prestack structures as Maurer–Cartan elements.

As a remedy, Dinh Van, Lowen and the second author construct in [DVHL22]
an action of Hawkins’ dg operad Quilt [Haw23] on the (desuspended) GS complex
CGS(A). As Quilt projects onto Brace and induces a L∞-structure, it is posited as a
suitable replacement. In §2, our main technical result shows the following, hereby
proving Hawkins’ conjecture [Haw23, Conj. 3.7].

Theorem 1.3 (Theorem 2.4). The projection Quilt � Brace is a quasi-isomorphism.
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In addition, we improve upon the result from [Haw23, Thm. 7.8] which con-
structs a morphism L∞ −→ Quilt. Indeed, we factor this morphism through
PreLie∞, the minimal model of the Koszul operad PreLie, lifting the morphism
PreLie −→ Brace in homology.

Proposition 1.4 (Proposition 2.11). We have a morphism PreLie∞ −→ Quilt
inducing the morphism PreLie −→ Brace in homology.

Our next key insight is that we can now apply the machinery of operadic twisting
in §3. As the twisting functor Tw preserves quasi-isomorphisms [DW15, Thm. 5.1],
we obtain our main result.

Theorem 1.5 (Corollary 3.8). TwQuilt is an E2-operad.

Observe that generally the PreLie∞-structure does not carry through to TwQuilt-
algebras. An appropriate analogy is the fact that the bracket in the Hochschild
complex arises from a PreLie-algebra, which, after twisting by the relevant Maurer–
Cartan element, is no longer a dg PreLie-algebra, only a dg Lie-algebra. In the
present setting, after twisting, the relevant algebraic structure is L∞, instead of
PreLie∞.

Finally, in §4, we show that the action of Quilt on the GS complex from [DVHL22]
extends to an action of TwQuilt by twisting with the prestack’s twists c. Hence, we
obtain the following explicit solution to the Deligne conjecture for prestacks.

Theorem 1.6 (Theorem 4.7). There is an action of the E2-operad TwQuilt on the
GS complex CGS(A) of a prestack A.

Remark that in [DVHL22] they ‘informally’ twist Quilt by c and establish an
action of a new operad Quiltb�c� to obtain the correct L∞-structure. This is sub-
sumed in our TwQuilt-action as we construct a morphism TwQuilt � Quiltb�c�
through which it factors.

Interestingly, in §4.3, we obtain as a bonus, in the restricted case of presheaves,
a second ‘orthogonal’ TwQuilt-action and thus solution to the Deligne conjec-
ture. In particular, this action subsumes the action of Hawkins’ operad mQuilt
for presheaves from which he deduces the correct L∞-structure [Haw23].

Conventions. We work over a field of characteristic zero even though the results of
§2 and in particular Hawkins’ conjecture hold over the integers with no modifica-
tions to the proofs. We use cohomological conventions throughout. In particular,
chains on a topological space live in non-positive degrees and have a differential of
degree +1.

If σ is a permutation, we use (−1)σ to denote its sign and (−1)k+σ should be
interpreted as (−1)k(−1)σ.

2. The operad Quilt and its homology

2.1. The operad Quilt. In this section we recapitulate the dg operad Quilt intro-
duced by Hawkins [Haw23] and fix conventions.

2.1.1. The operad Brace. The operad Brace encoding brace algebras is defined using
trees, that is, planar rooted trees. Following the presentation from [Haw23, §2.2]
and [DVHL22, §2.1], a tree T = (VT , ET , �T ) consists of a set of vertices VT , a set
of edges ET which induces a “vertical” partial order <T on VT , and a “horizontal”
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partial order �T on VT , satisfying a number of properties [Haw23, Def. 2.3]. For
(u, v) ∈ ET , we call u the parent of v and v a child of u. A leaf is a vertex without
a child. We have an induced total order on VT by setting u ↗T v if u <T v or
u �T v. We will depict the vertical and horizontal orders in the plane as follows

below <T above and left �T right,

with the root at the bottom. This corresponds to the convention of [DVHL22] and
reverses the direction of <T in [Haw23].

For n ≥ 1, let Tree(n) denote the set of planar rooted trees with vertex set
{1, . . . , n} labelled vertices. For example, Tree(3) contains a total of 12 elements
corresponding to the different labelings of

1

3 2

and 1

3

2

.

Let Brace(n) be the free k-module on Tree(n) endowed with the symmetric action
by permuting its vertices and the operadic composition is given by substitution of
trees into vertices, as follows. For trees T ∈ Tree(m), T ′ ∈ Tree(n) and 1 ≤ i ≤ m,
we denote by Ext(T, T ′, i) ⊆ Tree(m+ n− 1) the set of trees extending T by T ′ at
i (that is, U ∈ Ext(T, T ′, i) has T ′ as a subtree which upon removal reduces to the
vertex i of T ). We then define

T ◦i T ′ :=
∑

U∈Ext(T,T ′,i)

U.

Consider the following example

1

3 2

◦1
2

1

=

2

34 1

+

2

1

3

4 +
2

14 3

+

2

1

4 3

+

2

1

4

3 +
2

41 3

In particular, the tree on two vertices C2 :=
1

2

induces a Lie-structure, i.e. we

have a morphism

Lie −→ Brace, l2 	−→ C2 − C
(12)
2 .

The induced Lie bracket on a brace algebra is more commonly known as the Ger-
stenhaber bracket.
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2.1.2. The operad F2Surj. In this section we recall the operad F2Surj, which is a
particular model of an E2-operad. Recall that in characteristic 0 the operad E2 is
formal [LV14] and therefore F2Surj actually encodes Gerstenhaber algebras up to
homotopy. As the notation suggests, F2Surj is the second filtration of the surjection
operad Surj, which is an E∞-operad introduced in [BF04] even though we will not
work with Surj in the present paper.

Again, we largely follow the exposition from [Haw23, §2.3] and [DVHL22, §2.2],
reversing the degree in order to work cohomologically.

Given a set A, a word over A is an element of the free monoid on A. For a
word W = a1a2 . . . ak, denoting 〈k〉 = {1, . . . , k} we can associate to it the function
W : 〈k〉 −→ A : i 	−→ ai, the i-th letter of W is the couple (i, ai). We will often
identify a word with its graph W = {(i, ai) | i ∈ 〈n〉} ⊆ 〈n〉×A, writing (i, ai) ∈ W .

For a ∈ A, a letter (i, a) ∈ W is called an occurrence of a in W . The letter (i, a)
is a caesura if there is a later occurrence of a in W , that is, a letter (j, a) with
i < j. We say that a ∈ A is interposed in W by b if W = . . . ba . . . b . . . . length of
W : 〈k〉 −→ A is |W | = n.

Let F2Word(n) be the set of words over 〈n〉 such that:

(1) W : 〈k〉 −→ 〈n〉 is surjective,
(2) W �= . . . uu . . . (nondegeneracy), and
(3) for any u �= v ∈ 〈n〉, W �= . . . u . . . v . . . u . . . v . . . (no interlacing).

A word W ∈ F2Word(n) induces two partial orders on 〈n〉: set u <W v if W =
. . . u . . . v . . . u . . ., and u �W v if all occurrences of u are left of the occurrences of v.
We call u a parent of v and v a child of u if u <W v and they are minimal for this
relation: there exists no number w such that u <W w <W v holds. We call u a leaf
if it has no children, that is, it is maximal for <W . Moreover, u →W v if u <W v
or u �W v is a total order.

Let F2Surj(n) be the free k-module on F2Word(n) endowed with the symmetric
Sn-action by permuting letters, i.e. W σ = σ−1W . It is naturally graded by setting
deg(W ) := n− |W |.

The operadic composition on F2Surj is based upon merging of words, as fol-
lows. For words W ∈ F2Word(m),W ′ ∈ F2Word(n) and 1 ≤ i ≤ m, we denote by
Ext(W,W ′, i) ⊆ F2Word(m+ n− 1) the set of extensions of W by W ′ at i (that is,
X ∈ Ext(W,W ′, i) if up to relabelling and deleting repetitions, W ′ is a subword of
X and upon collapsing the letters from W to i, relabelling and deleting repetitions,
we recover W ).

In order to define the composition, we need the sign of an extension.

Sign of extension. Let W ∈ F2Surj(m) and let int(W ) be the set of elements of 〈m〉
interposed in W ordered by their first occurrence in W . For X ∈ Ext(W,W ′, i) the

relabelling gives rise to two functions 〈m′〉 α
↪→ 〈m + m′ − 1〉

β
� 〈m〉 which induce

functions α : int(W ′) −→ int(X) and γ : int(W ) −→ int(X) where γ := β−1 except
if i is interposed in W , then γ(i) := α(a) for (1, a) the first letter of W ′.

As |int(W )| = deg(W ), an extension X defines a unique (deg(W ), deg(W ′))−
shuffle χ and we define

sgnW,W ′,i(X) := (−1)χ.

Moreover, there is a natural notion of a boundary of a word, which induces a
differential.
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Boundary. Given a word W ∈ F2Word(n) and a letter (i, a) of W for which a is
repeated in W , then define ∂iW ∈ F2Surj(n) as the word obtained by deleting the
letter (i, a) from W (and relabelling). If a is not repeated, then set ∂iW = 0.

Sign of deletion. Given a word W ∈ F2Word(n) of length n, we define sgnW :
〈n〉 −→ {−1, 1} by setting sgnW (i) = (−1)k if (i, ai) is the k-th caesura of W ,
and otherwise sgnW (i) = (−1)k+1 if it is the last occurrence, but the previous
occurrence is the k-th caesura of W .

The S-module F2Surj defines a dg operad with operadic composition given by

W ◦i W ′ :=
∑

X∈Ext(W,W ′,i)

sgnW,W ′,i(X)X

and boundary given by

∂W :=
∑

i∈〈|W |〉
sgnW (i)∂iW.

Example 2.1. For words 1232, 1213 ∈ F2Word(3), we have

1232 ◦2 1213 = 1252324− 1235324− 1232524− 1232454

and

∂(1232) = −132 + 123 and ∂(1213) = −213 + 123.

Lemma 2.2. We have a morphism of operads F2Surj −→ Com sending a word
W ∈ F2Word(n) to the point if |W | = n, and 0 otherwise.

2.1.3. The operad Quilt. In [Haw23], Hawkins defines a dg suboperad Quilt ⊆
F2Surj⊗H Brace which we can rephrase as follows: Quilt(n) is the k-module spanned
by (W,T ) ∈ F2Word(n)× Tree(n) such that

(i) (Horizontality) If u <T v, then u �W v,
(ii) (Verticality) if u <W v, then v �T u.

In this case, we say W quilts T . It is clear that Quilt(n) is closed under the Sn
and the differential. To see that Quilt is closed under the operadic composition, see
[Haw23, Lemma 3.3]. For a quilt Q = (W,T ), the children of a rectangle u with
respect toW are called its vertical children (see §2.1.2), and its children with respect
to W its horizontal children (see §2.1.1). We denote their union as the children of
u. The vertical leaves of Q are the rectangles u without vertical children. The
horizontal leaves of Q are the rectangles u without horizontal children, that is, the
leaves of the tree T . A quilt Q = (W,T ) is in standard order if the total order
↗T on vertices agrees with the natural order on {1, . . . , n}.

Quilt derives its name from the pictorial presentation of its elements (W,T ) as
quilts, as follows. Let each vertex correspond to a rectangle in the plane, then a
quilt (W,T ) ∈ Quilt(n) is a planar ordering of n rectangles with possibly shaded
regions inbetween and possibly certain horizontal lines are drawn double. The tree
T determines the horizontal adjacencies, whereas the word W fixes the vertical
adjacencies. Their partial orders on vertices impose on the rectangles the following
planarity

below <W above above �T below

left �W right left <T right.
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Remark that in this sense the tree T is drawn by turning 90 degrees clockwise.
Each rectangle has at most one rectangle adjacent to its left and below. They can
have multiple adjacent rectangles to their right and above.

The following algorithm describes how to draw a quilt from a quilt Q = (W,T ).
Draw the vertices of T as rectangles of the following size

height rectangle i = max{1 , # horizontal leaves to the right of i in T}
width rectangle i = max{1 , #vertical leaves above i in W}.

Draw the tree T in the plane turning it 90 degrees clockwise from the drawings in
§2.1.1, its root is now the leftmost rectangle. We order the rectangles vertically
into columns inductively:

(1) For u1 �W . . . �W uk the <W -minimal rectangles, draw k vertical columns
and draw a shaded rectangle underneath ui of the following height

#{w ∈ RB(ui) : �w
′ ∈ RB(u) : w <T w′},

where RB(ui) := {w : ui �T w,w �W ui} the set of rectangles to the right of
and below ui.

(2) For u drawn, repeat (1) for u1 �W . . . �W uku
the <W -minimal rectangles

above u, i.e. the children of u in W .

When you get to the leaves, shade the appropriate region above to make the full
quilt into a rectangle. Finally, if W = . . . uv . . . wu . . . with no u in between v and
w, then draw a double horizontal line along the edge of u from the depth of v till
the depth of w.

The above algorithm is best understood via examples.

Examples 2.3.

1

2

3

4

=

⎛
⎜⎜⎜⎜⎝12324, 1 3

4

2

⎞
⎟⎟⎟⎟⎠

and

1

2

3

4

5 =

⎛
⎜⎜⎜⎜⎝1232452, 1 3

4

2

5

⎞
⎟⎟⎟⎟⎠

2.2. The homology of Quilt. We have a morphism of dg operads

p : Quilt ↪→ F2Surj⊗H Brace → Com⊗H Brace = Brace

sending (W,T ) ∈ F2Word(n)× Tree(n) to T if |W | = n, and 0 otherwise. Theorem
2.4 computes the homology of Quilt, thus proving Hawkins’ conjecture [Haw23,
Conj. 3.7].

Theorem 2.4. Over the integers, the morphism p : Quilt −→ Brace is a quasi-
isomorphism.
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As a first step, observe that the differential of Quilt solely involves the differential
of F2Surj. For a tree T , let F2Word(T ) be the set of words quilting T and let Quilt(T )
be the dg submodule of F2Surj spanned by F2Word(T ). We have an isomorphism
of chain complexes

Quilt(n) ∼=
⊕

T∈Tree(n)

Quilt(T ).(1)

2.2.1. The double complex Quilt(T )•,•. Fix a tree T ∈ Tree(n) and we can assume
its vertices are in standard order. When we draw the tree as part of a quilt,
then n is its bottommost leaf. We assign to each W that quilts T a bidegree
(degn(W ), deg¬n(W )) as follows

degn(W ) := 1−# occurrences of n in W,

deg¬n(W ) := deg(W )− degn(W ) = n− |W | − degn(W ).

Hence, Quilt(T )•,• is a bigraded complex, concentrated in the third quadrant, whose
differential ∂ splits as ∂n + ∂¬n where

∂n(W ) =
∑

i:W (i)=n

sgnW (i)∂i(W ) and

∂¬n(W ) = ∂(W )− ∂n(W ) =
∑

i:W (i) �=n

sgnW (i)∂i(W ).

Lemma 2.5. Quilt(T )•,• is a double complex.

Proof. The equations ∂2
n = 0 and ∂n∂¬n + ∂¬n∂ = 0 follow from the relations: for

j ≥ i, we have ∂i∂j = ∂j+1∂i and sgnW (i) sgn∂iW (j) = − sgn∂j+1W (i) sgnW (j +

1). �
2.2.2. The homology of Quilt(T ). Consider the tree T¬n ∈ Tree(n− 1) by removing
the vertex n from the tree T , i.e. its bottommost leaf.

Lemma 2.6. Removing all occurrences of n induces a surjection

redn : F2Word(T ) −→ F2Word(T¬n).

Proof. First, we verify that redn(W ) ∈ F2Word for W ∈ F2Word. It suffices to only
check the nondegeneracy condition: suppose redn(W ) = . . . uu . . . for some number
u, then W = . . . unu . . . and thus u <W n whence n �T u. As n is the bottommost
leaf, nondegeneracy thus cannot occur in redn(W ).

Next, we verify that redn(W ) quilts T¬n if W quilts T . This follows from the
following observation: for u, v < n, we have that u <redn(W ) v if and only if u <W v,
and u �redn(W ) v if and only if u �W v.

Finally, for W ∈ F2Word(T¬n), we have that Wn ∈ F2Word(T ) and redn(Wn) =
W . �

For a word W ∈ F2Word(T¬n), let QuiltW• (T ) be the subcomplex of
(Quilt•,deg(W )(T ), ∂n) spanned by words W ′ such that redn(W

′) = W . Notice that

QuiltW• (T ) lives in degrees ≤ 0. Observe that deg(W ) and degn(W
′) determine the

bidegree of W ′ since deg(W ′) = deg(W ) + degn(W
′). We have an isomorphism of

chain complexes

(Quilt•,deg(W )(T ), ∂n) ∼=
⊕

W∈F2Word(T¬n)

(QuiltW• (T ), ∂n).(2)
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We have a unique description of every word W ′ ∈ F2Word(T ) that reduces to
W .

Lemma 2.7. Given W ∈ F2Word(T¬n), there is a unique decomposition into sub-
words W = W1 . . .Wl such that any number appears in exactly one Wi. Further-
more, elements in red−1

n (W ) are obtained by inserting n after certain Wi, i.e.

red−1
n (W ) =

{
W1 . . .Wi1n . . .Wijn . . .WiknWik+1 . . .Wl |

1 ≤ i1 < . . . < ik ≤ l and k ≥ 1
}
.

Proof. Let u1 �W . . .�W ul be the <W -minimal numbers amongst {1, . . . , n−1} and
let Wi be the subword of W starting with the first occurrence of ui and the ending
with the last occurrence of ui. Due to no interlacing, the words W1, . . . ,Wl are
disjoint. Moreover, again due to no interlacing, all occurrences of a number u in W
occur in a single Wi, namely for i such that ui <W u. Hence, W = W1 . . .Wl. For
example, the word 152563436787 decomposes as W1W2W3W4 where W1 = 1,W2 =
525,W3 = 63436 and W4 = 787.

Let W ′ ∈ red−1
n (W ). As n is the bottommost leaf of T by assumption, n is

minimal for <W ′ . Moreover, due to redn(W
′) = W , the corresponding unique

decomposition for W ′ is given by W1 . . .Wi1W
′′Wik+1 . . .Wl for some 1 ≤ i1 <

ik ≤ l and where W ′′ is the subword of W ′ starting with the first occurrence of n
and ending with the last occurrence of n.

We analyse the word W ′′ further: the <W ′-minimal numbers above n are
ui1+1, . . . , uik due to redn(W

′) = W . Hence, a similar reasoning tells us

W ′′ = nWi1+1 . . .Wi2n . . . nWik−1+1 . . .Wikn

for some i1 < i2 < . . . < ik, proving the result. Note that k = degn(W
′) + 1. �

Lemma 2.8. The homology of QuiltW• (T ) is free of rank one and concentrated in
degree 0. In particular, any quilt (W ′, T ) with a single n and such that redn(W

′) =

W represents the class spanning H0(Quilt
W
• (T )).

Proof. Lemma 2.7 provides an isomorphism

(3) φ : QuiltW• (T ) −→ Ccell
• (Δl−1),

where l is the number of subwords given in Lemma 2.7 and the right hand side is
the cellular chain complex of the (l − 1)th simplex (living in negative degrees, due
to our cohomological conventions). �

Proposition 2.9. The homology of Quilt(T ) is free of rank one and concentrated in
degree 0. In particular, any quilt (W,T ) of degree 0 represents the class generating
H0(Quilt(T )).

Proof. The double complex Quilt(T )•,• is concentrated in the third quadrant and
thus its horizontal filtration

Fs Quilt(T )t =
⊕

a+b=t
b≥s

Quilt(T )a,b
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induces a converging spectral sequence. As E0
st = Quilt(T )s,t and d0 = ∂n, we

obtain by (2)

E1
st = Hs(Quilt(T )•,t) =

⊕
W∈F2Surj(T¬n)
deg(W )=t−1

Hs(Quilt
W
• (T )).

By Lemma 2.8, if s �= 0 this is zero and otherwise

E1
0t

∼= Quilt(T¬n)t−1.

Moreover, under these identifications, its differential d1 = ∂¬n corresponds to the
differential ∂ of Quilt(T¬n)[1]. As T¬n has strictly fewer vertices than T , we obtain
by induction on n that E2 is concentrated in degree 0, free of rank one and living
only in the first filtration piece. Due to convergence, E2 computes the homology of
Quilt(T ). �

Proof of Theorem 2.4. We verify that the morphism of dg operads p : Quilt −→
Brace is a quasi-isomorphism. As Brace is a dg operad concentrated in degree 0
with trivial differential, it suffices to show that Hs(Quilt) = 0 for s �= 0 and that
H(p) : H0(Quilt) −→ Brace is an isomorphism. By Proposition 2.9 and (1), the first
condition holds. Furthermore, they show that H0(Quilt(n)) ∼=

⊕
T∈Tree(n) k and

that moreover for every T ∈ Tree(n), the unique generating class can be represented
by any quilt (W,T ) ∈ Quilt(n) of degree 0. Hence, the projection p induces an
isomorphism H0(Quilt(n)) ∼= Brace(n). �

2.3. The morphism PreLie∞ −→ Quilt. We show that the morphism L∞ −→ Quilt
established in [Haw23, Thm. 7.8] factors through the the operad PreLie∞, the
minimal model of the Koszul operad PreLie, lifting the morphism PreLie −→ Brace
in homology.

2.3.1. The operad PreLie∞. The operad PreLie is Koszul with Koszul dual operad
Perm, which is n-dimensional in arity n [CL01, Prop. 2.1]. As a result, its minimal
model PreLie∞ is generated by the operations

pln ∈ PreLie∞(n) of degree 2− n

such that plσn = (−1)σpln for σ ∈ Sn such that σ(1) = 1, and with differential

(4)

∂(pln) =
∑

k+l=n+1
k,l≥2

∑
χ∈Shl,k−1

χ(1)=1

(−1)l(k−1)+χ+1(plk ◦1 pll)χ
−1

+
∑

χ∈Shl+1,k−2

χ(1)=1

∑
j=1,...,l

(−1)kl+χ+(1j)+1
(
plk ◦2 pl(1j)l

)χ−1

.

We have a morphism L∞ −→ PreLie∞ sending ln to
∑n

j=1 (−1)(1j)pl
(1j)
n = pln −∑n

j=2 pl
(1j)
n .
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2.3.2. The morphism PreLie∞ −→ Quilt. For n ≥ 2, the morphism L∞ −→ Quilt
sends ln to the operations Ln which are defined as the antisymmetrization of oper-
ations Pn, i.e

Ln :=
∑
σ∈Sn

(−1)σP σ
n where Pn :=

∑
Q∈Quilt(n)
deg(Q)=2−n

Q in standard order

(−1)1+
n(n−1)

2 Q.

Note that we have reversed the degrees of both L∞ and Quilt with respect to
[Haw23] and [DVHL22]. In [DVHL22, Ex. 4.7], the quilts making up L2, L3 and
L4 are drawn.

Definition 2.10. For n ≥ 2, define the degree 2− n operations

PLn :=
∑
σ∈Sn
σ(1)=1

(−1)σP σ
n ∈ Quilt(n).

Proposition 2.11. We have a morphism

PreLie∞ −→ Quilt

sending pln to PLn.

Proof. Unraveling the relation (4) for the operations PLn, we aim to show the
equation

(5)
∑
σ∈Sn
σ(1)=1

(−1)σ∂(P σ
n ) =

∑
σ∈Sn
σ(1)=1

∑
k+l=n+1

k,l≥2
i=1,...,k

(−1)σ(−1)(k−1)l+(i−1)(l−1)(Pk ◦i Pl)
σ.

The proof of [Haw23, Thm. 7.8] consists of showing that for each quilt appearing in
either ∂(Pn) or Pk ◦i Pl for k+ l = n+1 and index i, there is a unique counterpart
in either ∂(P σ

n ) or (Pk′ ◦i′ Pl′)
σ for unique numbers k′, l′, i′ and unique permutation

σ ∈ Sn. We observe that for quilts Q and Q′ in standard order, the labelling of the
root of the quilts appearing in either Q ◦i Q′ and ∂(Q) remains unchanged, that
is, it keeps label 1 under these operations. Hence, this is also true for the quilts
appearing in Pk ◦i Pl or ∂(Pn) and thus the number 1 is a fixpoint of the above
unique permutation σ. We deduce that the proof of [Haw23, Thm. 7.8] descends
to a proof of equation (5). �

3. A new model for E2

3.1. Twisting of Brace. Recall that we have a morphism Lie −→ Brace given by

l2 := C2 − C
(12)
2 , the antisymmetrisation of the 2-corolla. We apply the twisting

procedure for operads as in [DSV24, §5.5]. From now on, we work over a field of
characteristic zero, as the twisting formalism is not defined otherwise.

Definition 3.1. Let TwBrace be the twisting of Brace by a MC-element, i.e.

TwBrace = (Brace∨m, ∂m)

the coproduct of Brace with a formal element m of arity 0 and degree 1, with
differential

∂m(m) =
1

2
l2(m,m)
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∂m(T ) = l2(m,T )−
m∑
j=1

T ◦j l2(m,−),

for T ∈ Brace(m).

Following [DW15, §9] and [DSV24, Prop. 5.23], we provide a k-module basis
of TwBrace(n) as follows. Let a tree with black vertices (T, I) consist of a tree
T ∈ Tree(n + n′) and a subset I of {1, . . . , n + n′} of cardinality n′. The tuple
can be drawn as a tree T of n+ n′ vertices such that each vertex i ∈ I is coloured
black. Vertices in I are considered indistinguishable (or unlabeled), whereas the
remaining n vertices preserve their linear order, or equivalently, are labeled from 1
to n. These correspond to the elements of TwBrace(n) consisting of a tree T such
that each vertex i ∈ I is filled by an instance of m through composition. Observe
that composition of trees with black vertices is simply composing their underlying
trees and colouring the correct vertices black.

Definition 3.2. Let TwBrace be the graded suboperad of TwBrace spanned by the
trees with black vertices such that each black vertex has at least two children.

Remark 3.3. In contrast with TwBrace, TwBrace is finite dimensional in all arities.
In [DW15, §9], TwBrace is denoted Br.

The following is a combination of results on the surjection operad [BF04] with
theorems [DW15, Prop. 9.2, Thm 9.3].

Proposition 3.4. TwBrace is an E2-suboperad of TwBrace. Furthermore, TwBrace
is isomorphic to F2Surj.

Remark 3.5. The dg operads TwBrace and F2Surj are both isomorphic to the dg
operad HG which encodes homotopy G-algebras. Historically, Gerstenhaber and
Voronov were the first to establish the Gerstenhaber up to homotopy structure
on the Hochschild cochain complex and coined the term “homotopy G-algebra”
[GV95]. The corresponding dg operad HG is generated by an associative binary
operation m2 ∈ HG(2) of degree 0 (“a dot product”) and, for every n ≥ 1, an
element Bn ∈ HG(n + 1) of degree −n (“a n-brace”) satisfying the homotopy G-
algebra relations (see [KVZ97, Example 4.1] or [Vor00, §3.2]). The isomorphism
HG ∼= F2Surj realizes the generators m2 and Bn as the words 12 and 121 . . . 1n1
[BF04, §1.6.4]. The isomorphism HG ∼= TwBrace realises the generators m2 and Bn

as the following trees with black vertices

1 2

and
1

2 n. . .

.

For a proof, see [Wil16, Cor. 29], keeping in mind that Willwacher considers the
A∞ version of these operads (see also [Wil16, Rem. 26]).

3.2. Twisting of Quilt. Recall from §2.3.2 that we have a morphism of operads
L∞ −→ Quilt. We apply the twisting procedure from [DSV24, §5.5].

Definition 3.6. Let TwQuilt be the twisting of Quilt by a MC-element, i.e.

TwQuilt = (Quilt ∨̂α, ∂α)
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the completed coproduct of Quilt with a formal element α of arity 0 and degree 1,
with differential

∂α(α) =
∑
n≥2

(n− 1)(−1)
n(n+1)

2 +1

n!
Ln(α, . . . , α),

∂α(Q) = ∂(Q) +
∑
n≥2

(−1)
n(n+1)

2 +1

(n− 1)!
Ln(α, . . . , α,Q)

+

m∑
j=1

(−1)deg(Q)+n(n+1)
2

(n− 1)!
Q ◦j Ln(α, . . . , α,−)

for Q ∈ Quilt(m).

Quilts with black rectangles provide a k-module basis of TwQuilt(n) as follows.
Let a quilt with black rectangles (Q, I) consist of a quilt Q ∈ Quilt(n + n′) and a
subset I of {1, . . . , n+n′} of cardinality n′. The tuple can be drawn as a quilt Q of
n+n′ rectangles such that each rectangle i ∈ I is coloured black. These correspond
to the elements of TwQuilt consisting of a quilt Q such that each rectangle i ∈ I is
filled by an instance of α through composition. Observe that composition of quilts
with black rectangles is simply composing their underlying quilts and colouring the
correct rectangles black.

Notice that the quasi-isomorphism p : Quilt −→ Brace from Theorem 2.4 is
compatible with the respective maps from the L∞ operad. The following result is
therefore an immediate consequence of Theorem [DW15, Thm. 5.1].

Theorem 3.7. The twisted projection

Tw(p) : TwQuilt −→ TwBrace

which applies the projection on quilts and sends α to m is a quasi-isomorphism.

Corollary 3.8. The operad TwQuilt is an E2-operad.

Remark 3.9. Recall that there is a quasi-isomorphism Lie
∼→ TwLie while there is no

map PreLie to TwPreLie, only a quasi-isomorphism Lie → TwPreLie [DK24], which
evokes the fact that twisting a pre-Lie algebra is not generally a dg pre-Lie algebra.

In particular, in the light of Proposition 2.11 we see that the L∞ structure on
TwQuilt-algebras actually arises from twisting a PreLie∞-algebra structure.

4. The E2-action on the Gerstenhaber-Schack complex

4.1. The Gerstenhaber-Schack complex for prestacks. We recall the notions
of prestack and its associated Gerstenhaber-Schack complex, thus fixing terminol-
ogy and notations. We use the same terminology as in [DVL18], [LvdB11].

A prestack is a pseudofunctor taking values in k-linear categories. Let U be a
small category.

Definition 4.1. A prestack A = (A,m, f, c) over U consists of the following data:

• for every object U ∈ U, a k-linear category (A(U),mU , 1U ) where mU is the
composition of morphisms in A(U) and 1U encodes the identity morphisms
of A(U).
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• for every morphism u : V −→ U in U, a k-linear functor fu = u∗ : A(U) −→
A(V ). For u = 1U the identity morphism of U in U, we require that
(1U )

∗ = 1A(U).
• for every couple of morphisms v : W −→ V, u : V −→ U in U, a natural
isomorphism

cu,v : v∗u∗ −→ (uv)∗.

For u = 1 or v = 1, we require cu,v = 1. Moreover, the natural isomor-
phisms have to satisfy the following coherence condition for every triple
w : T −→ W , v : W −→ V and u : V −→ U :

cu,vw(cv,w ◦ u∗) = cuv,w(w∗ ◦ cu,v).

The data (m, f, c) are also called the multiplications, restrictions and twists
of A respectively.

A presheaf of categories A is a prestack for which all twists are trivial, i.e. cu,v = 1
for every u and v.

Given such a prestack A, we have an associated Gerstenhaber–Schack complex
CGS(A). In [DVL18] this is defined as the totalisation of a multicomplex C•,•(A).
We first review some notations.

Notations. Let σ = (U0
u1→ U1 → . . .

up→ Up) be a p-simplex in the category U, then
we have two functors A(Up) −→ A(U0), namely

σ# := u∗
1 . . . u

∗
p and σ∗ := (up . . . u1)

∗.

For each 1 ≤ k ≤ p − 1, define the subsimplices Lk(σ) = (U0
u1→ U1 → . . .

uk→ Uk)

and Rk(σ) = (Uk
uk+1→ Uk+1 → . . .

up→ Up) and the natural isomorphism cσ,k =
cuk...u1,up...uk+1 : (Lkσ)

∗(Rk(σ))
∗ −→ σ∗.

Definition 4.2. Let p, q ≥ 0, then define

Cp,q(A) =
∏

σ∈Np(U)

∏
A∈A(Up)q+1

Hom

(
q⊗

i=1

A(Up)(Ai, Ai−1),A(U0)(σ
#Aq, σ

∗A0)

)

for N(U) the nerve of U, and set

Cn
GS(A) =

⊕
p+q=n

Cp,q(A).

The GS complex is a multicomplex with differential d=
∑q+1

j=0 dj for dj : C
p,q(A) −→

Cp+j,q+1−j(A). We provide a definition of d0 and d1, respectively called the
Hochschild and simplicial component, below, and refer to [DVHL22, Def. 3.2]
for a detailed description of dj for j ≥ 2.

Elements of the GS complex have a neat geometric interpretation as rectangles:
for θ ∈ Cp,q(A) and the data (σ,A, a) from above, we can represent θσ(A)(a) as
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the rectangle of data

A1A0 AqAq−1

a1 aq

u∗
2 . . . u

∗
pAq

σ#Aq

u∗
pAq

u∗
1

u∗
p

σ∗A0

σ∗

θσ(A)(a1, . . . , aq)

θσ(A)

In particular, the prestack data (m, f, c) ∈ C2
GS(A) can be depicted as

mU

A1A0 A2

A0 A2

1U 1U fu

A0 A1

u∗A0 u∗A1

u∗ u∗ cu,v

A0 A0

(uv)∗A0 v∗u∗A0

v∗
(uv)∗

u∗

u∗A0

Similarly, we can draw different components of the differential d using rectangles.
For the Hochschild component d0(θ)

σ(A) we have

a1 aq+1

u∗
1

u∗
p

θσ(A)

a2

mU0

fσσ∗
+

q∑
i=1

(−1)i
θσ(A)

mUp

u∗
1

u∗
p

a1 aq+1

ai ai+1

σ∗

+ (−1)q+1

a1 aq+1

θσ(A)

a2

mU0

σ∗

u∗
1

u∗
p

fu1

fup

Note that d0 constitutes a differential as well, i.e. it squares to 0. The simplicial
component (−1)p+q+1d1(θ)

σ(A) can similarly be drawn as
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a1 aq

θ∂0σ(A)

mU0

cσ,1,A0

u∗
2

u∗
p+1

fu1 u∗
1

σ∗

A0

+

p∑
i=1

(−1)i

a1 aq

θ∂iσ(A)

mU0

cui,ui+1(Aq)

u∗
1

u∗
p+1

σ∗
u∗
i

u∗
i+1

Ri+1σ
#

Li−1σ
#

Aq

+

(−1)p+1

a1 aq

θ∂0σ(A)

mU0

cσ,p,A0

u∗
p

u∗
p+1fup+1

u∗
1

fup+1

σ∗

In case A is a presheaf of categories, d0+d1 defines a differential making (C•,•(A),d0+
d1) a bicomplex. This is the original complex devised by Gerstenhaber and Schack
[GS88].

We will also be interested in the subcomplex CGS(A) ⊆ CGS(A) of normalized
and reduced cochains which is shown to be quasi-isomorphic to the GS complex
[DVL18, Prop. 3.16]. Moreover, on normalized and reduced chains, the differentials
d and d0 + d1 coincide. A simplex σ = (u1, . . . , up) is reduced if ui = 1Ui

for some
1 ≤ i ≤ p. A cochain θ = (θσ(A))σ,A ∈ CGS(A) is reduced if θσ(A) = 0 for every

reduced simplex σ. A simplex a = (a1, . . . , aq) in A(U) is normal if ai = 1U for
some 1 ≤ i ≤ q. A cochain θ is normalized if θσ(A)(a) = 0 for every normal simplex
a in A(Up).

Remark 4.3. In [DVL18], Dinh Van and Lowen realise the (normalized and reduced)

GS complex CGS(A) as a deformation retract of the Hochschild complex CU(Ã) of

the associated U-graded category Ã. As a result, homotopy transfer equips the
GS complex with an algebra structure over any cofibrant solution Q ∼ Disk of the
classical Deligne conjecture. However, the chain maps and homotopy involved in the
deformation retract turn out to be intricate and complex, which is already reflected
by the fact that they each have an infinite amount of components. Furthermore,
as the dg operad encoding Homotopy G-algebras HG is not cofibrant, finding an
explicit cofibrant resolution Q ∼−→ HG that is a solution to the classical Deligne
conjecture is not easy. For example, the evident solution provided by the minimal
model G∞ of the operad Gerst encoding Gerstenhaber-algebras is cofibrant, yet the
morphism G∞ −→ HG provided by Tamarkin [Tam98] is inexplicit.

4.2. The action of TwQuilt for prestacks.

4.2.1. The action of Quilt for prestacks. In [DVHL22, §3], the authors construct a
morphism of dg operads

ψ : Quilt −→ End(s−1CGS(A), d0).
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Remark, this action holds only with respect to the Hochschild differential d0.
Let us describe this action intuitively: a quilt Q acts on GS cochains (θ1, . . . , θn)

via ψ by interpreting them as rectangles (see §4.1) and composing them according
to Q, filling in possible ‘open spaces’ by instances of restrictions f and composing
with multiplications m both at the bottom and wherever a double line is drawn in
Q. For a detailed description we refer to [DVHL22, §3].

Here, we will make the action more concrete using examples.

Example 4.4. The quilt on the right from Examples 2.3 acts on the cochains

θ = (θ1, θ2, θ3, θ4, θ5) ∈ C3,1(A)⊕C1,3(A)⊕C2,2(A)⊕C2,1(A)⊕C1,1(A)

given the simplex σ = (u1, . . . , u5) ∈ N(U) as

ψ

(
1

2

3

4

5

)
(θ)σ =

θu2,u3

3 θu2
5

θu1,u2u3,u4u5

1

θu4,u5

4

θu1
2

mU1

fu5

fu4

fu3

fu2

fu5

fu4

fu3fu3

fu2

fu4u5 fu4u5

mU0

+ θu2,u3

3 fu2
θu1,u2u3,u4u5

1

θu4,u5

4

θu1
2

mU1

fu5

fu4

fu3

fu2

fu5

fu4

θu3
5fu3

fu2

fu4u5 fu4u5

mU0

+

θu2,u3

3 θu2
5

θu1,u2u3,u4u5

1

θu4,u5

4

θu1
2

mU1

fu5

fu4

fu3fu3

fu2

fu4u5 fu4u5

mU0

fu4u5

fu3

fu2 + θu2,u3

3 fu2
θu1,u2u3,u4u5

1

θu4,u5

4

θu1
2

mU1

fu5

fu4

θu3
5fu3

fu2

fu4u5 fu4u5

mU0

fu4u5

fu3

fu2 +

θu2,u3

3 θu2
5

θu1,u2u3,u4u5

1

θu4,u5

4

θu1
2

mU1

fu5

fu4

fu3fu3

fu2

fu4u5 fu4u5

mU0

fu4u5

fu2u3 + θu2,u3

3 fu2
θu1,u2u3,u4u5

1

θu4,u5

4

θu1
2

mU1

fu5

fu4

θu3
5fu3

fu2

fu4u5 fu4u5

mU0

fu4u5

fu2u3

where we marked the added instances of m and f by green.

4.2.2. The morphism TwQuilt −→ End(s−1CGS(A)). In [DVHL22, §4], the authors
extend the action of Quilt on s−1CGS(A) by including the twists c and employing
the operad Quiltb�c�, which we can rephrase as follows: Quiltb�c� is the completed
coproduct of Quilt and a formal element c of arity 0 and degree 1 imposing the
following relations:

(1) ∂(c) = 0,
(2) L2(c, c) = 0,
(3) Q ◦i c = 0 if i has either more than two horizontal children, or at least one

horizontal child.
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The action ψ of Quilt extends to Quiltb�c� by sending the formal element c to the
twist c ∈ C2,0(A), obtaining a morphism

ψc : Quiltb�c� −→ End(s−1CGS(A)).

Further, they obtain a new morphism L∞ −→ Quiltb�c� : ln 	−→ Lc
n via twisting

with c [DVHL22, Thm 4.10]: define for n ≥ 1

Lc
n :=

∑
r≥0

(−1)rn+
r(r+1)

2

r!
Ln+r(c, . . . , c︸ ︷︷ ︸

r-times

,−, . . . ,−).

The new differential is given by

∂c = ∂ + ∂Lc
1
.

Lemma 4.5. We have a surjective morphism of dg operads TwQuilt −→ Quiltb�c�
that is the identity on quilts and sends α to c.

Proof. It suffices to verify that the differential is preserved. For Q ∈ Quilt, unrav-
elling the definitions shows ∂α(Q) is exactly ∂c(Q). Further, ∂c(c) = ∂Lc

1
(c) which

corresponds on the nose to ∂α(α) when replacing c by α. �

Remark 4.6. Observe that Quiltb�c� is a quotient of TwQuilt by the ideal spanned
by the MC-equation of α and some extra relations on c.

This gives us the desired solution to the Deligne conjecture for prestacks.

Theorem 4.7. The E2-operad TwQuilt acts on the desuspended Gerstenhaber-
Schack complex, i.e. we have a morphism of dg operads

TwQuilt −→ End(s−1CGS(A)).

4.3. Another action of TwQuilt for presheaves. For this section, let A : U −→
Cat(k) be a presheaf of categories.

4.3.1. Another action of Quilt for presheaves. In [Haw23], Hawkins obtains an ac-
tion of Quilt on the desuspended GS complex for presheaves in a fundamentally
different way, as we now will explain. For a detailed description of this morphism

ψHawkins : Quilt −→ End(s−1CGS(A), d1)

we refer to [Haw23, Def. 4.22]. Observe that this is a morphism of dg operads with
respect to the simplicial differential of the GS complex. Note that for prestacks the
simplicial component d1 of the differential importantly not even squares to zero.

By switching the role of trees and words, we can interpret a quilt on its side:
a tree determines the vertical adjacencies and a word determines the horizontal
adjacencies. For instance, Examples 2.3 are instead drawn as

1

23

4

and

1

2

3

4

5

.

In this case, the root of the tree corresponds to the top rectangle.
Via ψHawkins, a quilt Q = (W,T ) acts on GS cochains (θ1, . . . , θn) by composing

them vertically according to the tree T matching up the rectangles horizontally via
the word W . Again, the ‘open spaces’ are filled in by instances of restrictions f .
However, as the restrictions of presheaves are functorial, i.e. fuv = fvfu for two
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composable arrows u and v, there is no need to involve their multiplications m (nor
vertical versions thereof). In particular, as there is a single rectangle at the bottom
of Q, there is no need to compose with multiplications at the bottom.

We illustrate the action by an example.

Example 4.8. For the quilt Q and cochains θ = (θ1, . . . , θ5) given in Example 4.4,
ψHawkins(Q)(θ) = 0. If we replace cochain θ2 by a cochain θ′2 in C3,1(A), we obtain

ψHawkins

⎛
⎜⎝

1

2

3

4

5
⎞
⎟⎠ (θ1, θ

′
2, θ3, θ4, θ5)

σ =

θu4u5,u6,u7u8

2

θu4,u5

3 fu4

fu7

θu6
5

fu5

fu8

θu1,u2,u3

1

fu6fu6

θu7,u8

4fu7u8

+

θu4u5,u6,u7u8

2

θu4,u5

3 fu4

fu7

θu6
5

fu5

fu8

θu1,u2,u3

1

fu6fu6

θu7,u8

4 fu7

fu8

Remark 4.9. Observe that we have two distinctly different actions of Quilt on the
GS complex for a presheaf: one that employs both the data of m and f , and one
that employs solely the datum f .

4.3.2. Another morphism TwQuilt −→ End(s−1CGS(A)). In [Haw23], Hawkins ex-
tends the action of Quilt on s−1CGS(A) by twisting with the multiplications m
and employing the operad mQuilt, which we can rephrase as follows: mQuilt is
the completed coproduct of Quilt and a formal element m of arity 0 and degree 1
imposing the following relations:

(1) ∂(m) = 0,
(2) L2(m,m) = 0,
(3) Q ◦i m = 0 if i has either more than two vertical children, has at least one

horizontal child or is a parent horizontally.
(4) Q ◦i m = Q′ ◦i m if Q = (T,W ) and Q′ = (T,W ′) and W and W ′ differ

solely in the position of i.

The action ψHawkins extends to mQuilt by sending the formal element m to the
multiplication m ∈ C0,2(A), obtaining a morphism of dg operads

ψHawkins
c : mQuilt −→ End(s−1CGS(A))

where, this time, the GS complex is endowed with the full differential d0 + d1.
Further, Hawkins obtains a new morphism L∞ −→ mQuilt : ln 	−→ Lm

n via twisting
with m: define for n ≥ 1

Lm
n := Ln + (−1)n+1Ln+1(m,−, . . . ,−).

The new differential is given by

∂m = ∂ + ∂Lm
1
.
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Lemma 4.10. We have a morphism of dg operads TwQuilt −→ mQuilt that is the
identity on quilts and sends α to m.

The following constitutes another solution to the Deligne conjecture for presheaves
of categories.

Theorem 4.11. The operad TwQuilt acts on the desuspended GS complex, i.e. we
have a morphism of dg operads

TwQuilt −→ End(s−1CGS(A)).
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